特開2015-153133(P2015-153133A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ オムロン株式会社の特許一覧
特開2015-153133因果ネットワーク生成システムおよび因果関係のデータ構造
<>
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000004
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000005
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000006
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000007
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000008
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000009
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000010
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000011
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000012
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000013
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000014
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000015
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000016
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000017
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000018
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000019
  • 特開2015153133-因果ネットワーク生成システムおよび因果関係のデータ構造 図000020
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-153133(P2015-153133A)
(43)【公開日】2015年8月24日
(54)【発明の名称】因果ネットワーク生成システムおよび因果関係のデータ構造
(51)【国際特許分類】
   G06F 17/15 20060101AFI20150728BHJP
   G06F 17/30 20060101ALI20150728BHJP
   G06Q 50/22 20120101ALI20150728BHJP
【FI】
   G06F17/15
   G06F17/30 350C
   G06Q50/22 130
【審査請求】未請求
【請求項の数】10
【出願形態】OL
【全頁数】23
(21)【出願番号】特願2014-26160(P2014-26160)
(22)【出願日】2014年2月14日
(71)【出願人】
【識別番号】000002945
【氏名又は名称】オムロン株式会社
【住所又は居所】京都府京都市下京区塩小路通堀川東入南不動堂町801番地
(74)【代理人】
【識別番号】100085006
【弁理士】
【氏名又は名称】世良 和信
(74)【代理人】
【識別番号】100106622
【弁理士】
【氏名又は名称】和久田 純一
(74)【代理人】
【識別番号】100125357
【弁理士】
【氏名又は名称】中村 剛
(72)【発明者】
【氏名】和田 洋貴
【住所又は居所】京都府京都市下京区塩小路通堀川東入南不動堂町801番地 オムロン株式会社内
(72)【発明者】
【氏名】尾林 慶一
【住所又は居所】京都府京都市下京区塩小路通堀川東入南不動堂町801番地 オムロン株式会社内
(72)【発明者】
【氏名】小久保 綾子
【住所又は居所】京都府京都市下京区塩小路通堀川東入南不動堂町801番地 オムロン株式会社内
【テーマコード(参考)】
5B056
5L099
【Fターム(参考)】
5B056BB23
5L099AA15
(57)【要約】
【課題】時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表すための技術を提供する。
【解決手段】因果関係を表現する対象を特定するための対象識別情報と、前記対象において生じる事象を定量的に記述するために用いるべき複数個の指標ごとの指標識別情報と、前記複数個の指標の中から選択した異なる2つの指標の組ごとの因果関係情報と、を含み、前記因果関係情報は、前記2つの指標のうちのどちらが原因指標でどちらが結果指標であるかを表す方向情報と、前記原因指標と前記結果指標のあいだの因果強度を表す強度情報と、前記原因指標の影響が前記結果指標に伝播するのにかかる遅延時間を表す時間情報と、前記原因指標の増減に対する前記結果指標の変化の方向を表す相関情報と、を含むデータ構造により、因果関係を表現する。
【選択図】図4
【特許請求の範囲】
【請求項1】
因果関係を表現する対象を特定するための対象識別情報と、
前記対象において生じる事象を定量的に記述するために用いられる複数個の指標それぞれの指標識別情報と、
前記複数個の指標の中から選択した異なる2つの指標の組ごとの因果関係情報と、を含み、
前記因果関係情報は、
前記2つの指標のうちのどちらが原因指標でどちらが結果指標であるかを表す方向情報と、
前記原因指標と前記結果指標のあいだの因果強度を表す強度情報と、
前記原因指標の影響が前記結果指標に伝播するのにかかる遅延時間を表す時間情報と、
前記原因指標の増減に対する前記結果指標の変化の方向を表す相関情報と、を含む
ことを特徴とする因果関係のデータ構造。
【請求項2】
前記強度情報は、前記原因指標の変化と、前記時間情報で表された遅延時間後の前記結果指標の変化とのあいだの因果強度を表すものである
ことを特徴とする請求項1に記載の因果関係のデータ構造。
【請求項3】
前記時間情報は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間を表し、
前記強度情報は、前記原因指標と前記結果指標のあいだの最大の因果強度を表すものである
ことを特徴とする請求項2に記載の因果関係のデータ構造。
【請求項4】
前記時間情報は、第1から第nのn個(nは2以上の整数)の遅延時間の情報を含み、
前記強度情報は、前記第1から第nの遅延時間それぞれに対応するn個の因果強度の情報を含む
ことを特徴とする請求項2に記載の因果関係のデータ構造。
【請求項5】
前記相関情報は、前記原因指標の値と、前記時間情報で表された遅延時間後の前記結果指標の値とのあいだの相関係数を表すものである
ことを特徴とする請求項1〜4のうちいずれか1項に記載の因果関係のデータ構造。
【請求項6】
対象において生じる複数の事象のあいだの因果関係を表す因果ネットワークを生成する因果ネットワーク生成システムであって、
前記複数の事象を定量的に記述するために用いられる複数個の指標それぞれの時系列データを取得するデータ取得部と、
前記複数個の指標の中から選択した異なる2つの指標の組ごとに、当該2つの指標のあいだの因果関係を求める因果関係評価部と、
前記因果関係評価部により求められた2つの指標の組ごとの因果関係を記述したデータを出力する出力部と、を有し、
前記因果関係評価部は、
前記2つの指標のうちの一方を原因指標、他方を結果指標と仮定し、
前記原因指標の変化と時間s後の前記結果指標の変化とのあいだの因果強度を、時間sの値を変えながら計算することによって、前記原因指標と前記結果指標のあいだの因果強度、及び、前記原因指標の影響が前記結果指標に伝播するのにかかる遅延時間を求めることを特徴とする因果ネットワーク生成システム。
【請求項7】
前記因果関係評価部は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間を求め、
前記出力部から出力される前記因果関係は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間の情報と、前記原因指標と前記結果指標のあいだの最大の因果強度の情報を含む
ことを特徴とする請求項6に記載の因果ネットワーク生成システム。
【請求項8】
前記因果関係評価部は、第1から第nのn個(nは2以上の整数)の遅延時間について前記原因指標と前記結果指標のあいだの因果強度を求めるものであり、
前記出力部から出力される前記因果関係は、第1から第nのn個の遅延時間の情報と、前記第1から第nの遅延時間それぞれに対応するn個の因果強度の情報を含む
ことを特徴とする請求項6又は7に記載の因果ネットワーク生成システム。
【請求項9】
前記因果関係評価部は、前記原因指標の値と前記遅延時間後の前記結果指標の値とのあいだの相関係数を計算し、
前記出力部から出力される前記因果関係は、前記相関係数の情報を含む
ことを特徴とする請求項6〜8のうちいずれか1項に記載の因果ネットワーク生成システム。
【請求項10】
前記因果関係評価部は、移動エントロピーを用いて前記原因指標と前記結果指標のあいだの因果強度を求める
ことを特徴とする請求項6〜9のうちいずれか1項に記載の因果ネットワーク生成システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、因果ネットワークを生成する技術、および、因果関係のデータ構造に関するものである。
【背景技術】
【0002】
複数の事象(要素)のあいだの因果関係(因果ネットワークと呼ばれる)を表やグラフで表現し、これを複雑な系の挙動予測や問題発生時の原因推定などに利用する、という手法が従来より知られている。例えば、ベイジアンネットワークは個々の要素を確率変数ととらえ、要素間の因果関係を条件付き確率で表現したものである。また特許文献1には、因果ループ図(CLD:Causal Loop Diagram)をソフトウェア開発プロジェクトのリス
ク評価に利用する例が開示されている。この因果ループ図では、因果関係をもつ要素間をアークで結び、正の相関がある場合はプラス符号、負の相関がある場合はマイナス符号、結果が現れるまでに時間遅延がある場合は二重線をアークに付加する、という表記法がとられる。また特許文献2には、大規模プラントで異常が発生した場合に、想定される異常原因と監視指標毎の徴候パターンとを対応付けた因果表を参照して、原因同定を行う例が開示されている。また特許文献3には、大規模プラントでの異常発生時にインターロックシステムにより発生する警報の順番とその発生間隔を定義した因果ネットワークを用意しておき、実際に警報が発生したときに、運転員が次に発生し得る警報やそれに対する対応処理を予測できるようにした例が開示されている。また特許文献4には、異常発生からの経過時間に伴う要素間の因果関係の変化を表現するために、経過時間t1、t2、・・・ごとの因果グラフ(正の相関をもつ要素間をプラスのアークで結び、負の相関をもつ要素間をマイナスのアークで結んだグラフ)を時系列に並べた多層構造因果ネットワークが示されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012−113537号公報
【特許文献2】特開平8−234832号公報
【特許文献3】特開平5−333186号公報
【特許文献4】特公昭62−53760号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
対象の挙動(ふるまい)の分析や予測を正確に行うには、因果の伝播、すなわち、ある事象Aが起きたときに他の事象Bについていつ頃どのような影響が現れるか、の理解が重要となる。しかし、従来の因果ネットワークでは、因果の伝播強度や伝播遅延(時間遅れ)をうまくモデル化できておらず、対象のもつ複雑な因果関係を十分に表現できないという課題があった。
【0005】
本発明は上記実情に鑑みなされたものであり、時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表すための技術を提供することを目的とする。
【課題を解決するための手段】
【0006】
請求項1に係る発明は、因果関係を表現する対象を特定するための対象識別情報と、前記対象において生じる事象を定量的に記述するために用いられる複数個の指標それぞれの指標識別情報と、前記複数個の指標の中から選択した異なる2つの指標の組ごとの因果関係情報と、を含み、前記因果関係情報は、前記2つの指標のうちのどちらが原因指標でど
ちらが結果指標であるかを表す方向情報と、前記原因指標と前記結果指標のあいだの因果強度を表す強度情報と、前記原因指標の影響が前記結果指標に伝播するのにかかる遅延時間を表す時間情報と、前記原因指標の増減に対する前記結果指標の変化の方向を表す相関情報と、を含むことを特徴とする因果関係のデータ構造である。請求項1に係る発明によれば、時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表すことができる。
【0007】
請求項2に係る発明は、前記強度情報は、前記原因指標の変化と、前記時間情報で表された遅延時間後の前記結果指標の変化とのあいだの因果強度を表すものであることを特徴とする請求項1に記載の因果関係のデータ構造である。請求項2に係る発明によれば、原因指標から結果指標への伝播遅延を考慮した因果強度を表すことができる。
【0008】
請求項3に係る発明は、前記時間情報は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間を表し、前記強度情報は、前記原因指標と前記結果指標のあいだの最大の因果強度を表すものであることを特徴とする請求項2に記載の因果関係のデータ構造である。請求項3に係る発明によれば、原因指標から結果指標への伝播遅延を考慮した因果強度を表すことができる。また、指標の組み合わせごとの因果強度の違いや遅延時間の違いを明確に表すことができる。
【0009】
請求項4に係る発明は、前記時間情報は、第1から第nのn個(nは2以上の整数)の遅延時間の情報を含み、前記強度情報は、前記第1から第nの遅延時間それぞれに対応するn個の因果強度の情報を含むことを特徴とする請求項2に記載の因果関係のデータ構造である。請求項4に係る発明によれば、原因指標から結果指標への伝播遅延を考慮した因果強度を表すことができる。また、指標の組み合わせごとの因果強度の違いや遅延時間の違い、さらには遅延時間ごとの因果強度の変化も明確に表すことができる。
【0010】
請求項5に係る発明は、前記相関情報は、前記原因指標の値と、前記時間情報で表された遅延時間後の前記結果指標の値とのあいだの相関係数を表すものであることを特徴とする請求項1〜4のうちいずれか1項に記載の因果関係のデータ構造である。請求項5に係る発明によれば、原因指標の増加/減少に対する結果指標の変化の方向(正の相関か負の相関か)に加え、相関の強さも明確に表すことができる。
【0011】
請求項6に係る発明は、対象において生じる複数の事象のあいだの因果関係を表す因果ネットワークを生成する因果ネットワーク生成システムであって、前記複数の事象を定量的に記述するために用いられる複数個の指標それぞれの時系列データを取得するデータ取得部と、前記複数個の指標の中から選択した異なる2つの指標の組ごとに、当該2つの指標のあいだの因果関係を求める因果関係評価部と、前記因果関係評価部により求められた2つの指標の組ごとの因果関係を記述したデータを出力する出力部と、を有し、前記因果関係評価部は、前記2つの指標のうちの一方を原因指標、他方を結果指標と仮定し、前記原因指標の変化と時間s後の前記結果指標の変化とのあいだの因果強度を、時間sの値を変えながら計算することによって、前記原因指標と前記結果指標のあいだの因果強度、及び、前記原因指標の影響が前記結果指標に伝播するのにかかる遅延時間を求めることを特徴とする因果ネットワーク生成システムである。請求項6に係る発明によれば、時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表す因果ネットワークを生成することができる。
【0012】
請求項7に係る発明は、前記因果関係評価部は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間を求め、前記出力部から出力される前記因果関係は、前記原因指標と前記結果指標のあいだの因果強度が最大となる遅延時間の情報と、前記原因指標と前記結果指標のあいだの最大の因果強度の情報を含むことを特徴とする請求項6に記載の因果ネットワーク生成システムである。請求項7に係る発明によれば、原因指標か
ら結果指標への伝播遅延を考慮した因果強度を表す因果ネットワークを生成することができる。
【0013】
請求項8に係る発明は、前記因果関係評価部は、第1から第nのn個(nは2以上の整数)の遅延時間について前記原因指標と前記結果指標のあいだの因果強度を求めるものであり、前記出力部から出力される前記因果関係は、第1から第nのn個の遅延時間の情報と、前記第1から第nの遅延時間それぞれに対応するn個の因果強度の情報を含むことを特徴とする請求項6又は7に記載の因果ネットワーク生成システムである。請求項8に係る発明によれば、原因指標から結果指標への伝播遅延を考慮した因果強度を表す因果ネットワークを生成することができる。また、指標の組み合わせごとの因果強度の違いや遅延時間の違いを明確に表す因果ネットワークを生成することができる。
【0014】
請求項9に係る発明は、前記因果関係評価部は、前記原因指標の値と前記遅延時間後の前記結果指標の値とのあいだの相関係数を計算し、前記出力部から出力される前記因果関係は、前記相関係数の情報を含むことを特徴とする請求項6〜8のうちいずれか1項に記載の因果ネットワーク生成システムである。請求項9に係る発明によれば、原因指標の増加/減少と結果指標の変化の関係(正の相関か負の相関か)、及び、相関の強さも明確に表す因果ネットワークを生成することができる。
【0015】
請求項10に係る発明は、前記因果関係評価部は、移動エントロピーを用いて前記原因指標と前記結果指標のあいだの因果強度を求めることを特徴とする請求項6〜9のうちいずれか1項に記載の因果ネットワーク生成システムである。請求項10に係る発明によれば、移動エントロピーを用いることで時間遅れを伴う因果関係及びその因果強度を適切に求めることができる。
【発明の効果】
【0016】
本発明によれば、時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表すことが可能となる。
【図面の簡単な説明】
【0017】
図1】因果ネットワーク生成システムの機能ブロック図。
図2】因果ネットワーク生成処理の流れを示すフローチャート。
図3】因果ネットワークの生成に用いる時系列データの一例。
図4】因果関係データのデータ構造の一例。
図5】因果ネットワークの表示例。
図6】健康管理支援システムの機能ブロック図。
図7】健康管理支援システムの構成例。
図8】健康管理支援システムの構成例。
図9】健康管理支援システムの処理の流れを示すフローチャート。
図10】因果関係データ、因果ネットワーク、部分ネットワークの一例。
図11】ユーザ支援用グラフの生成処理を説明するための図。
図12】運動効果発現区間の検出処理の流れを示すフローチャート。
図13】正の運動効果発現区間SP−posiの検出例を示す図。
図14】連続区間の結合例を示す図。
図15】ユーザ支援用グラフの一例を示す図。
図16】支援メッセージパターン記憶部に格納されたテンプレートの一例。
図17】ユーザに提供する支援情報の表示例。
【発明を実施するための形態】
【0018】
<因果ネットワーク生成システム>
本発明の実施形態に係る因果ネットワーク生成システムについて説明する。因果ネットワーク生成システムは、分析対象において発生する複数の事象のあいだの因果関係を表す因果ネットワークを自動で生成するためのシステムである。因果ネットワークは分析対象の挙動(ふるまい)を表現するためのものであり、例えば、生産ラインや大規模プラントの管理・保全、気象や災害の予測、株価や為替の予想、マーケティングなど、さまざまな対象の挙動の分析や予測に応用可能である。
【0019】
図1に、因果ネットワーク生成システム1の機能構成例を示す。因果ネットワーク生成システム1は、時系列データ取得部10、因果関係評価部11、因果関係データ出力部12などの機能ブロックを有する。このシステム1は、CPU(中央演算処理装置)、主記憶装置(メモリ)、補助記憶装置(ハードディスク、半導体ディスクなど)、入力装置(キーボード、マウス、タッチパネルなど)、表示装置(液晶モニタなど)、通信IFを有する汎用のコンピュータにより構成可能であり、図1に示した各機能は、CPUがプログラムを読み込み実行することで実現されるものである。なお、このシステム1は、一つの装置で構成することもできるし、有線又は無線で相互に通信可能な複数の装置で構成することもできる。
【0020】
時系列データ取得部10は、分析対象において生じる事象を定量的に記述するために用いられる指標の時系列データを取得する機能である。事象(指標)の種類及び数は分析の対象や目的に合わせて任意に設計できる。例えば、生産ラインの保全が目的であれば、製造装置に設けられたセンサの出力、製造条件、稼働時間、直行率や良品率、温度や湿度などの環境データを指標として選ぶことができる。複雑な系では、数十から数百種類の指標の時系列データを用いることもできる。
【0021】
因果関係評価部11は、各指標のあいだの因果関係を評価する機能である。前述したように、対象の挙動分析や予測を正確に行うには、2つの指標(原因指標と結果指標)のあいだの因果強度や、原因指標の影響が結果指標に伝播するのにかかる遅延時間の正しい理解が必要である。そこで本実施形態の因果関係評価部11は、「移動エントロピー(Transfer Entropy:TE)」という情報理論の概念を用いて、2つの指標のあいだの因果関係を評価する。
【0022】
移動エントロピーとは、二つの指標X、Yのあいだの伝播時間(遅延時間)を考慮した因果関係を評価する尺度ないし手法であり、指標Xから時間s後の指標Yへと移動した平均情報量(エントロピー)を、原因指標Xが時間s後に結果指標Yに与える影響の強さ(つまり因果強度)とみなす考え方である。なお、似た概念に相関係数があるが、相関係数は2つの指標XとYの間の線形関係の度合いと線形関係の符号を評価するだけであり、因果の方向(どちらの指標が因でとちらが果か)および時間遅れを考慮していない点で、移動エントロピーとは異なる。
【0023】
指標X、Yそれぞれの時系列データをx(t)、y(t)とし、確率密度関数をP(x(t))、P(y(t))とすると、指標Xを因、指標Yを果とする、遅延時間sに関する移動エントロピーTEXY(s)は、次式で計算できる。
【数1】

ここで、P(a,b)は、P(a)とP(b)の結合確率密度変数を表し、[*]は*の時間平均を表す。
【0024】
上式から分かるように、移動エントロピーは、二つの指標X、Yの時系列データと遅延時間sを与えることで計算できる。ここで、指標X、Yのあいだに、Xを因、Yを果とする因果関係が存在する場合には、TEXY(s)の値と、因と果を入れ替えて計算したTEYX(s)の値とのあいだに、TEXY(s)>TEYX(s)が成立する。よって、TEXY(s)とTEYX(s)の値の大小関係を評価することにより、因果関係の存在および因果の方向を判断できる。また、sの値を変えながら移動エントロピーTEXY(s)を計算することで、原因指標Xと結果指標Yのあいだの因果強度の最大値、及び、因果強度が最大となる遅延時間sを求めることができる。
【0025】
因果関係データ出力部12は、因果関係評価部11により求められた各指標のあいだの因果関係を記述したデータ(因果関係データと呼ぶ)を生成し、出力する機能である。因果関係データの出力先は、補助記憶装置、表示装置、プリンタ、外部の(LAN又はインターネット上の)ストレージやコンピュータなどが想定される。
【0026】
(因果ネットワークの生成処理)
図2のフローチャートに沿って、因果ネットワーク生成システム1による因果ネットワーク生成処理の流れを説明する。
【0027】
ステップS20では、時系列データ取得部10が、分析対象にかかわる複数の指標の時系列データを取得する。ここではm個(mは2以上の整数)の指標E1〜Emの時系列データが取得されたとする。時系列データの取得先や取得方法はいかなるものでもよく、例えば、補助記憶装置に格納されているデータを読み込んでもよいし、LAN又はインターネットを介して外部の記憶装置やコンピュータからデータを取得してもよい。図3は時系列データの一例を模式的に示している。各グラフの横軸が時間軸であり、縦軸が指標の値である。
【0028】
続いて、因果関係評価部11が、m個の指標E1〜Emの中から選択される2つの指標の組(Ei,Ej)のそれぞれについて、以下に述べる処理を行う(ステップS21)。ここで、Eiが原因指標、Ejが結果指標を表し、指標番号を表す添え字i、jは、i=1〜m、j=1〜m、i≠jを満たす。
【0029】
まず因果関係評価部11は、遅延時間sを最小値sminに設定する(ステップS22)。そして、因果関係評価部11は、原因指標Eiと時間s後の結果指標Ejのあいだの因果強度を求める(ステップS23)。本実施形態では、前述した数式により計算される移動エントロピーTEijを因果強度として用いる。なお、このときに、逆方向の移動エントロピー、すなわち、時間s後の指標Ejから指標Eiへの移動エントロピーTEjiを計算し、もし逆方向の移動エントロピーの方が大きい場合(TEji>TEij)には、2つの指標(Ei,Ej)のあいだには指標Eiが原因、指標Ejが結果となる因果関係はないと判断し、因果強度をゼロにするとよい。
【0030】
原因指標Eiと結果指標Ejのあいだに因果関係が認められた場合(因果強度がゼロでない場合)は(ステップS24;YES)、因果関係評価部11は、原因指標Eiと時間s後の結果指標Ejの相関係数を計算する(ステップS25)。相関係数の計算方法は公知のため説明を省略する。
【0031】
以上のステップS23〜S25の処理を、sの値を時間ステップ幅Δsずつ増やしながら繰り返し実行し(ステップS26)、遅延時間の最大値smaxまで処理を終えたら(ステップS27)、次の指標の組の処理へと移行する(ステップS28;NO)。そして、2つの指標の全通りの組について因果関係の評価を終えたら(ステップS28;YES
)、因果関係データ出力部12が因果関係データを生成し(ステップS29)、処理を終了する。
【0032】
<因果関係のデータ構造>
図4は、因果関係データのデータ構造の一例を模式的に示している。因果関係データは、因果関係を表現する対象(分析対象)を特定するための対象識別情報と、m個の指標それぞれの指標識別情報と、2つの指標の組ごとの因果関係情報とを含んでいる。
【0033】
対象識別情報には、分析対象の名称、IDなどが記述される。対象識別情報は、この因果関係データが何の因果関係を表しているのかを特定するために参照される情報ゆえ、他の分析対象との区別さえできればどのような内容を記述してもかまわない。指標識別情報は、指標又は事象を特定するための名称、IDなどが記述される。指標識別情報は、各指標が何を表しているのかを特定するために参照される情報ゆえ、指標同士の区別さえできればどのような内容を記述してもかまわない。
【0034】
因果関係情報はm×mの2次元配列で構成されており(図4は、m=6の例である)、要素番号(i,j)のセルに原因指標iと結果指標jのあいだの因果関係情報が格納される。要素番号(3,4)の因果関係情報Ark(3,4)のデータ記述例を以下に示す。
【0035】
Ark(3,4) = {
Causality = 0.58;
Delay = 3;
Co_CoEf = -0.7
}
【0036】
Causalityは、原因指標iと結果指標jのあいだの最大の因果強度(移動エントロピー
)を表す強度情報であり、Delayは、因果強度が最大となる遅延時間を表す時間情報であ
る。Co_CoEfは、原因指標iの増減に対する結果指標jの変化の方向(正の相関か負の相
関か)を表す相関情報である。この例では、Delayの単位として「日」を用い、相関情報
として、原因指標iとDelay後の結果指標jとのあいだの相関係数を用いている。すなわ
ち、上記例の因果関係情報Ark(3,4)からは、原因指標3と結果指標4とのあいだには因
果関係が存在し、その因果の方向は指標3→指標4であること、因果強度は0.58であること、原因指標3の影響が結果指標4に伝播するのに3日かかる(遅れる)こと、原因指標3と結果指標4とのあいだには負の相関があり、その強さは0.7であることなどが分かる。
【0037】
なお、前述したステップS24において、指標iとjのあいだに因果関係なしと判断された場合には、Ark(i,j)にはNULLが設定される。また、i=jとなるセルのArk(i,j)にもNULLが設定される。
【0038】
因果関係情報として、因果強度の最大値とそのときの遅延時間及び相関係数だけを記述するのでなく、第1から第nのn個(nは2以上の整数)の遅延時間と、それぞれに対応する因果強度及び相関係数の情報を記述するようにしてもよい。要素番号(3,4)の因果関
係情報Ark(3,4)のデータ記述例を以下に示す。
【0039】
Ark(3,4) = {
Causality[] = {0.02, 0.13, 3.2, ...};
Co_CoEf[] = {-0.2, -0.13, -0.7, ...}
}
【0040】
この記述例では、強度情報(Causality[])と相関情報(Co_CoEf[])のデータを1次元配列で保持している。配列の要素番号が遅延時間(単位は「日」)に対応している。すなわち、Causality[0]=0.02が遅延0日(遅延なし)の場合の因果強度、Causality[1]=0.13が遅延1日の場合の因果強度、・・・を表し、Co_CoEf[0]=-0.2が遅延0日の場合の相関
係数、Co_CoEf[1]=-0.13が遅延1日の場合の相関係数、・・・を表している。なお、遅延時間の単位(時間ステップ幅)を任意に設定したい場合には、以下のデータ記述例のように遅延時間の配列Delay[]を保持してもよい。
【0041】
Ark(3,4) = {
Causality[] = {0.02, 0.13, 3.2, ...};
Delay[] = {0, 2, 5, ...};
Co_CoEf[] = {-0.2, -0.13, -0.7, ...}
}
【0042】
このようなデータ構造によれば、時間遅れを伴った複雑な因果関係を有する対象の挙動を明確に表すことが可能となる。また、複数の事象(指標)が絡む因果関係のなかから、強い因果関係をもつ事象(指標)の組を容易に発見することができる。しかも、因果の伝播遅延も考慮できるため、従来手法に比べてより適切な因果関係の把握が可能である。さらに、2つの事象(指標)のあいだの相関係数も保持しているので、相関の正負や相関の強さも表現可能である。このような情報があると、例えば、相関の正負や相関の強さを拘束条件とした因果関係の探索や絞り込みが容易に実施でき、対象の挙動の分析や予測に有用である。
【0043】
図5は、因果関係データ出力部12による因果ネットワークの表示例である。この有向グラフにおいて、各ノードが指標に対応しており、2つのノードのあいだをリンクするアークが2つのノードのあいだの因果関係及び因果の方向を示している(アークの基端側が原因ノード、矢印側が結果ノード)。各ノード上には指標識別情報が表示され、各アーク上には因果強度、遅延時間、相関係数が表示される。また、有向グラフの上部には対象識別情報が表示される。このような因果ネットワークをみれば、指標同士の因果関係の有無、因果の方向、因果強度、因果の伝播にかかる時間、相関の正負及び高さなどを容易に把握することができる。
【0044】
なお、上記処理では一つの分析対象の時系列データから因果関係を求めたが、複数の分析対象それぞれの時系列データから因果関係を求めることもできる。例えば、複数の被験者のバイタルデータを分析したり、同じ設計の複数の生産ラインのデータを分析したりすることが想定される。同種の分析対象であれば基本的な挙動(ふるまい)は共通しているので、因果関係の有無、因果の方向、相関の正負などの関係はほぼ同じと考えられるが、因果強度と遅延時間については個体差が現れる可能性がある。そこで、複数の分析対象の時系列データから因果関係を求める場合には、分析対象ごとに因果強度、遅延時間、相関係数などを計算し、さらに、それらの値の最大値、最小値、平均値、分散、標準偏差などの統計情報を因果関係データの中に保持するとよい。その場合の因果関係情報のデータ記述例を以下に示す。
【0045】
Ark(3,4) = {
Causality[] = {2.2, 3.5, 3.0, ...};
Causality_Max = 4.4;
Causality_Ave = 2.8;
Causality_Var = 0.89;
Delay[] = {3, 2, 4, ...};
Delay_Max = 5;
Delay_Ave = 3.1;
Delay_Var = 1.88;
Co_CoEf[] = {0.5, 0.32, 0.3, ...}
}
【0046】
この記述例では、強度情報(Causality[])、時間情報(Delay[])、相関情報(Co_CoEf[])のデータを1次元配列で保持している。配列の要素番号が分析対象の番号に対応し
ている。すなわち、0番目の分析対象の因果強度はCausality[0]=2.2、遅延時間はDelay[0]=3、相関係数はCo_CoEf[0]=0.5である。そして、統計情報として、すべての分析対象のなかでの因果強度の最大値(Causality_Max)、平均値(Causality_Ave)、分散(Causality_Var)と、遅延時間の最大値(Delay_Max)、平均値(Delay_Ave)、分散(Delay_Var)を保持している。
【0047】
このようなデータ構造によれば、因果強度や因果の伝播遅延に個体差がある場合でも、対象(対象群)の挙動を明確に表すことが可能となる。また、複数の対象における統計情報を保持しているので、例えば、指標XとYは強い因果関係があるが遅延時間の個体差が大きいとか、指標AとBは因果強度のばらつきも遅延時間のばらつきも非常に大きいので指標AとBのあいだの因果関係の信頼性は低いなどの新たな発見が得られる可能性がある。
【0048】
<因果ネットワークの応用例:健康管理支援システム>
上述した因果ネットワーク(因果関係データ)は、さまざまな対象の挙動(ふるまい)の分析や予測に応用可能である。以下、一例として、ヒトの健康管理に関わる指標の因果分析への応用例を説明する。
【0049】
近年、健康に対する関心が高まり、個人で食事や運動の記録をつけたり、血圧や体重等のバイタルデータの測定値を記録するなどして、健康管理に役立てる人が増えている。しかし、それらの情報を蓄積しても、医学や生理学の専門知識の無い人が、各々の数値のあいだの関係性(因果関係)を見出したり、健康管理に役立つ知見を得たりするのは容易でない。しかも、バイタルデータの変化の仕方や、食事や運動の影響がバイタルデータの変化に現れるまでのタイムラグは人によってさまざまであることも、健康管理の難しさの一因となっている。以下に述べる健康管理支援システムは、上述した因果ネットワークを作成し、ユーザに提示することで、ユーザ自身による健康管理を容易化するためのものである。
【0050】
<システム構成>
図6は、本実施形態に係る健康管理支援システム6(以下、単に「本システム6」ともいう。)の全体構成を示す機能ブロック図である。
【0051】
本システム6は、複数の指標記録部60、データ送信部61、データ蓄積部62、因果ネットワーク生成部63、データ取得部64、グラフ描画部65、支援メッセージ生成部66、支援メッセージパターン記憶部67、描画合成部68、出力部69などの機能ブロックを有している。これらの機能ブロックは、一つの装置で構成することもできるし、有線又は無線で相互に通信可能な複数の装置で構成することもできる(具体的な装置構成例については後述する。)。
【0052】
指標記録部60は、ユーザから計測あるいは入力された各種の指標を記録する機能ブロックである。健康に関わるものであればどのような指標を記録してもよい。一例を挙げると、ユーザが実施する活動(動き又は行為)のうち健康に対して影響を与え得る指標として、歩数、歩行距離、運動時間、運動量(消費カロリー)、活動量(運動強度と時間の積
)、睡眠時間、休養時間・回数、摂取カロリー、塩分摂取量、薬の用量、サプリメントの摂取量などがある。また、ユーザ又はユーザから採取されたものから計測される指標として、血圧、脈拍、体重、体脂肪率、体脂肪量、筋肉率、筋肉量、腹囲、BMI、コレステロールレベル、血糖値、尿糖値、体温などがある。他にも医療や薬にかかる費用なども健康に間接的に関わるひとつの指標として捉えることもできる。各指標の値はユーザが手入力する構成でもよいし、歩数計や血圧計のような計測器により指標記録部60を構成し、指標値を自動で計測・記録できるようにしてもよい。
【0053】
データ送信部61は、指標記録部60によって記録された各指標のデータを、データ蓄積部62に対して送信し登録する機能ブロックである。データ蓄積部62は、データ送信部61を介して受け付けた各指標のデータを時系列に記憶し管理するデータベースである。また、因果ネットワーク生成部63によって生成された因果関係データもデータ蓄積部62に保存される。なお、本システムが複数のユーザに利用される場合には、ユーザ毎にデータを収集し蓄積する必要があるため、ユーザを識別するためのユーザIDとともに各指標の時系列データ及び因果関係データを管理するとよい。
【0054】
因果ネットワーク生成部63は、図1に示した因果ネットワーク生成システム1と同じ機能をもつブロックである。因果ネットワーク生成部63は、データ蓄積部62から読み込んだ各指標の時系列データから因果関係データを生成する。生成した因果関係データはデータ蓄積部62に格納される。
【0055】
データ取得部64は、データ蓄積部62から因果関係データや指標の時系列データを取得する機能ブロックである。グラフ描画部65、支援メッセージ生成部66、支援メッセージパターン記憶部67、描画合成部68、および出力部69は、健康管理に関する支援情報をユーザに提供する情報提供部を構成する機能ブロック群である。グラフ描画部65は、因果関係データに基づき因果ネットワーク(有向グラフ)を生成したり、各指標の時系列データのグラフを生成する。また、支援メッセージ生成部66は、因果関係データや各指標の時系列データに基づき、支援メッセージパターン記憶部67に登録されたメッセージテンプレートを用いて、支援メッセージの生成を行う。生成されたグラフと支援メッセージは、描画合成部68によって合成され、出力部69によって表示装置や外部端末などに出力される。支援情報の具体的な生成処理およびグラフや支援メッセージの具体例については後述する。
【0056】
<装置構成の例>
図6の健康管理支援システムは、さまざまな装置構成を採り得る。図7図8に装置構成の具体例を示す。
【0057】
図7(a)は、一つの装置70により健康管理支援システムを構成した例である。この装置70は、CPU(中央演算処理装置)、主記憶装置(メモリ)、補助記憶装置(ハードディスク、半導体ディスクなど)、入力装置(キーボード、マウス、タッチパネルなど)、表示装置(液晶モニタなど)、通信IFを有する汎用のパーソナル・コンピュータにより構成可能である。あるいは、タブレット端末、スマートフォン、PDA(携帯情報端末)のようにパーソナル・コンピュータと同等の機能を提供するデバイスにより装置70を構成することもできるし、ボードコンピュータを内蔵する専用機にて装置70を構成することもできる。図7(a)の構成の場合は、ユーザが入力装置を操作して各指標のデータ入力を行い、支援情報は表示装置に出力される。
【0058】
図7(b)は、装置70に対し、歩数計71、血圧計72などの計測器を組み合わせた例である。歩数計71や血圧計72で計測されたデータは、有線(例えばUSB)又は無線(例えばBluetooth(登録商標)、WiFi)により装置70に伝送される。
この構成の場合、歩数計71及び血圧計72は図6の指標記録部60に該当し、歩数計71及び血圧計72に内蔵されたデータ通信機能が図6のデータ送信部61に該当する。支援情報は、装置70の表示装置に出力してもよいし、歩数計71や血圧計72に送信し、歩数計71や血圧計72の表示部に出力してもよい。
【0059】
図8(a)は、クラウドコンピューティングの一例であり、オンラインストレージ80により図6のデータ蓄積部62を構成した例である。図8(a)の構成では、ユーザが操作する端末81が、図6のデータ送信部61、因果ネットワーク生成部63、データ取得部64、および情報提供部の機能を有しており、歩数計71や血圧計72で計測したデータのアップロード、時系列データのダウンロード、因果ネットワークの生成、支援情報の生成・表示などを実行する。端末81は、図7に示した装置70と同様、パーソナル・コンピュータ、タブレット端末、スマートフォン、専用機などで構成可能である。なお、歩数計71や血圧計72がインターネットアクセス可能な場合には、歩数計71や血圧計72からオンラインストレージ80にデータを直接アップロードしてもよい。
【0060】
図8(b)もクラウドコンピューティングの一例である。図8(a)との違いは、クラウドサーバ82が、図6のデータ蓄積部62、因果ネットワーク生成部63、データ取得部64、および情報提供部の機能を担う点である。ユーザが操作する端末83の側には、クラウドサーバ82に対して支援情報の要求を行う要求部、クラウドサーバ82から受信した支援情報を表示する表示部などの機能をもたせるだけでよい。ユーザの識別は、例えば、支援情報の要求のなかにユーザIDを含めるとか、ユーザIDによる認証を行えばよい。図8(b)の構成によれば、端末側に必要なリソース(データ容量、演算能力など)を軽減し、端末83の構成を簡易にできるため、特にタブレット端末やスマートフォンなどのアプリにより健康管理支援を行うサービスに好適である。
【0061】
<処理例1>
健康管理支援システム6により実行される、因果ネットワークの分析処理の一例について説明する。前提として、ユーザがある程度の期間(例えば1月以上)にわたり、食事(摂取カロリー)、運動(消費カロリー)、塩分摂取量、体重、血圧、医療費の6項目の指標の記録を行い、その時系列データがデータ蓄積部62にすでに蓄積されているものとする。また、この6項目の指標の時系列データに基づき因果ネットワーク生成部63によって因果ネットワークが生成され(具体的な処理は図2を参照)、その因果関係データがすでにデータ蓄積部62に蓄積されているものとする。
【0062】
図9のフローチャートに沿って処理の流れを説明する。まず、データ取得部64が、データ蓄積部62から因果関係データを取得する(ステップS90)。図10(a)は、因果関係データの例であり、図10(b)は因果関係データを元に描画した因果ネットワーク(有向グラフ)の例である。図10(b)に示すように、すべての指標の因果関係を表そうとすると非常に複雑なネットワークが生成され、指標同士の関係や注目すべき個所がわかりにくい。
【0063】
そこでグラフ描画部65が、次に述べる部分ネットワークの作成機能を提供する。まず、グラフ描画部65が、6項目の指標のなかから注目指標を選択する(ステップS91)。注目指標はどれを選んでもよい。例えば、ユーザ自身が因果分析を行いたい指標を指定してもよいし、グラフ描画部65が他の指標との因果関係が集中している指標を注目指標に選んでもよい。ここでは、「指標5:血圧」が注目指標に選ばれたものとする。次に、グラフ描画部65は、因果強度と相関係数の閾値を設定する(ステップS92)。閾値は、医学的エビデンスやユーザ自身の過去のデータなどから決めればよい。あるいは、注目指標と他の5つの指標との因果強度や相関係数のばらつきに基づき閾値を設定してもよい。続いて、グラフ描画部65は、因果強度及び/又は相関係数の値がステップS92で設
定した閾値に満たないアーク(因果関係)を切断し、注目指標である「指標5:血圧」に連結した指標のみ残し、他の指標のノードは削除する(ステップS93)。
【0064】
上記操作により、図10(c)に示すような、注目指標(血圧)に関連する部分ネットワークが生成される。この例では、血圧に影響を与える因子として「指標4:体重」と「指標2:運動」が検出され、血圧が影響を与える因子として「指標6:医療費」が検出されている。実線のアークは正の相関、破線のアークは負の相関を示している。また、各アークには付加情報として、因果強度、遅延時間、相関係数などの情報が示されている。
【0065】
ステップS94では、支援メッセージ生成部66が、部分ネットワークで抽出された各指標の名称、因果強度、遅延時間、相関の正負などの情報を基に、健康管理に関わる支援メッセージを生成する。支援メッセージパターン記憶部67に以下のようなテンプレートが用意されている。
【0066】
テンプレート例:
T1:<FC>の<C>が、もっとも<FT>の<C>に影響を与えているようです。
T2:あなたは<FC>の<C>によって<FT>が<C>するようで、<AD>日後に<FC>の効果が現れるタイプのようです。
T3:<FT>が<C>すると、<FE>が<C>する傾向がありますね。気をつけましょう。
【0067】
テンプレート内に埋め込まれている「<」と「>」で挟まれた文字列は、支援メッセージを生成する際に、以下の文字列で置き換えられる。
<FT>:注目指標の名称
<FE>:注目指標が影響を与える指標の名称
<FC>:注目指標に影響を与える指標の名称
<C>:正の相関の場合は「増加」、負の相関の場合は「減少」
<AD>:遅延時間Delayの値
【0068】
図10(c)の例の場合であれば、テンプレートT1〜T3を用いて次のような支援メッセージが生成される。
「体重の増加が、もっとも血圧の増加に影響を与えているようです。」
「あなたは運動の増加によって血圧が減少するようで、3日後に運動の効果が現れるタイプのようです。」
「血圧が増加すると、医療費が増加する傾向がありますね。気をつけましょう。」
【0069】
ステップS95では、部分ネットワークのグラフ(図10(c))と支援メッセージが表示装置に表示される。このような支援情報をみることで、ユーザは指標同士がどのように関係しているのかを容易に把握でき、自身の健康管理に役立てることができる。
【0070】
<処理例2>
次に、健康管理支援システム6により実行される、データ分析処理と支援情報の生成・表示処理の具体例について説明する。前提として、ユーザがある程度の期間(例えば1月以上)にわたり、食事、歩数、体重、血圧、脈拍などの複数の指標の記録を行い、その時系列データ及び因果関係データがすでにデータ蓄積部62に蓄積されているものとする。以下、一例として、因果関係が見出された歩数と血圧の時系列データ及び因果関係データを用いて、ユーザの運動支援を行う処理を説明する。
【0071】
(1)ユーザ支援用グラフの生成
まずグラフ描画部65は、歩数の時系列データSt(t)および血圧の時系列データB
p(t)を用いて、横軸を時間[日」、縦軸を歩数[歩]および血圧[mmHg]とする折れ線グラフを作成する。図11(a)はグラフの一例であり、符号110が歩数のグラフ、符号111が血圧のグラフである。
【0072】
次に、グラフ描画部65は、因果関係データから歩数と血圧のあいだの時間遅れ量(遅延時間)sdを取得し、歩数のグラフ110を時間遅れ量sdだけ右にシフトする(又は、血圧のグラフ111をsdだけ左にシフトしてもよい)。図11(b)はシフト後のグラフの一例であり、符号112がsdだけ右にシフトした歩数のグラフを示している。以降、図11(b)に示すように時間遅れ量sd分だけ一方のグラフをシフトしたものを、「時間合わせした歩数と血圧のグラフ」とよぶ。
【0073】
続いて、グラフ描画部65は、時間合わせした歩数と血圧のグラフから、正の運動効果発現区間SP−posiおよび負の運動効果発現区間SP−negaを検出する。ここで、正の運動効果発現区間とは、時間合わせした歩数と血圧のグラフにおいて、歩数が増加し、血圧が減少している区間をいい、負の運動効果発現区間とは、同グラフにおいて、歩数が減少し、血圧が増加している区間をいう。正および負の運動効果発現区間の検出方法はさまざま考えられるが、図12に一例を示す。
【0074】
以降の説明において、Sday、Edayはそれぞれ計算開始日、計算終了日を示す変数であり、Db、Dsはそれぞれ血圧変化量、歩数変化量を示す変数である。Bp(t)、St(t)はそれぞれ、ある日tにおける血圧と歩数を示す(ただし、歩数St(t)は時間遅れ量sdだけシフトしたデータである)。また、以下の閾値についてはあらかじめ適当な値を設定しておくものとする。
【0075】
・ThSpan …変化量を算出するための最大期間(例えば7日)。
・ThDifBp …血圧が増加/減少したと判断する差分値(正の値、例えば3mmHg)。
・ThDifSt …歩数が増加/減少したと判断する差分値(正の値、例えば1000歩)。
【0076】
図12の処理が開始すると、グラフ描画部65は、計算開始日Sdayに1を代入し(ステップS800)、計算終了日EdayにSday+1を代入する(ステップS801)。計算終了日Edayの歩数・血圧のデータがあればステップS803に進み、歩数・血圧のデータが存在しなければステップS813に移行する(ステップS802)。
【0077】
ステップS803、S804において、グラフ描画部65は、下記式により、計算開始日Sdayと計算終了日Edayのあいだの血圧変化量Dbと歩数変化量Dsを計算する。
Db=Bp(Eday)−Bp(Sday)
Ds=St(Eday)−St(Sday)
【0078】
続いて、正の運動効果発現区間SP−posiの判定を行う(ステップS805)。具体的には、グラフ描画部65は、血圧変化量Dbが条件「Db<−1×ThDifBp」を満たし、かつ、歩数変化量Dsが条件「Ds>ThDifSt」を満たす場合に(ステップS805;YES)、SdayからEdayまでの区間をSP−posiとして記録し(ステップS806)、ステップS811に進む。DbとDsが上記条件を満たさない場合は(ステップS805;NO)、正の運動効果は発現していないと判定し、ステップS807に進む。
【0079】
ステップS807では、負の運動効果発現区間SP−negaの判定を行う。具体的に
は、グラフ描画部65は、血圧変化量Dbが条件「Db>ThDifBp」を満たし、かつ、歩数変化量Dsが条件「Ds<−1×ThDifSt」を満たす場合に(ステップS807;YES)、SdayからEdayまでの区間をSP−negaとして記録し(ステップS808)、ステップS811に進む。DbとDsが上記条件を満たさない場合は(ステップS807;NO)、負の運動効果は発現していないと判定し、ステップS809に進む。
【0080】
その後、Edayを1だけインクリメントし(ステップS809)、EdayがThSpanに達するまでステップS802〜S809の処理を繰り返す(ステップS810)。すなわち、区間の長さを1日ずつ延ばしながら(最短で1日、最長でThSpan)、順次、運動効果発現区間に該当するかどうかの判定を行うのである。これにより、日ごとの歩数・血圧変化だけでなく、ある程度長い期間内でのマクロな変化傾向も評価できるため、運動効果発現区間の検出漏れを小さくできる。図13を用いて、区間の長さを変えることで運動効果発現区間として検出される例を説明する。
【0081】
図13は、正の運動効果発現区間SP−posiの検出例である。図13をみると、歩数St(t)は増加傾向にあり、血圧Bp(t)は減少傾向にある。しかし、区間「Sday〜(Eday−1)」は、歩数変化量Ds=St(Eday−1)−St(Sday)がDs>ThDifStという条件を満たさないため、SP−posiとは判定されない。しかし、その後の区間「Sday〜Eday」の判定処理において、血圧変化量Db=Bp(Eday−1)−Bp(Sday)が条件「Db<−1×ThDifBp」を満たし、かつ、歩数変化量Ds=St(Eday)−St(Sday)が条件「Ds>ThDifSt」を満たすため、区間「Sday〜Eday」が正の運動効果発現区間SP−posiとして検出されるのである。
【0082】
以上のように、計算開始日Sdayを起点とする区間について判定処理が終了したら、グラフ描画部65は、Sday=Eday+1により計算開始日Sdayを更新する(ステップS811)。更新後のSdayの歩数・血圧のデータが存在すれば、ステップS801に戻って処理を繰り返し、歩数・血圧のデータが存在しなければステップS813に移行する(ステップS812)。
【0083】
ステップS813では、グラフ描画部65は、検出された複数の運動効果発現区間のなかに連続するものがあれば、それら連続区間を結合する処理を行う。このとき、正の運動効果発現区間SP−posiと負の運動効果発現区間SP−negaのあいだは結合しない。図14に、連続区間の結合例を示す。図14の左側のグラフは、検出されたSP−posiとSP−negaを示し、右側のグラフは、連続区間が結合されたSP−posiとSP−negaを示す。なお、間隔なく隣り合う区間同士のみを結合してもよいが、区間同士の間隔が極めて短い(例えば1日〜数日程度)場合には連続区間とみなしそれらを結合するようにしてもよい。
【0084】
以上の処理を経て得られた情報を元に、グラフ描画部65は、ユーザに提示するためのユーザ支援用グラフを生成する。図15は、ユーザ支援用グラフの一例である。この例では、2つのグラフを表示する。左側のグラフは、歩数の時系列データをプロットした歩数グラフ150と血圧の時系列データをプロットした血圧グラフ151とともに、歩数グラフ150を時間遅れ量だけシフトしてプロットした運動効果グラフ152と、時間遅れ量(この例では3日)を示す情報153が描画されている。右側のグラフは、血圧グラフ151と運動効果グラフ152の上に、正の運動効果発現区間154と負の運動効果発現区間155を描画したものである。運動効果発現区間は複数存在する可能性があるが、そのすべてをグラフ上に描画してもよいし、代表的なもの(例えば区間の長さが最大のもの)だけをグラフ上に描画してもよい。なお、各要素のキャプションは任意に設定できる。
【0085】
(2)ユーザ支援用メッセージの生成
本実施形態では、一例として、ユーザが実施した運動の評価結果及び/又は今後のアドバイスを含む第1メッセージと、当該ユーザの運動効果の遅延特性(時間遅れ量)を含む第2メッセージの2種類のユーザ支援用メッセージを提示することとする。
【0086】
図16は、支援メッセージパターン記憶部67に格納されているテンプレートの一例を示す。支援メッセージパターン記憶部67には、第1メッセージ用の複数のテンプレートが登録された第1テーブル160と、第2メッセージ用の複数のテンプレートが登録された第2テーブル161とが含まれる。これらのテンプレートは、本システムにあらかじめ登録されていてもよいし、システム管理者やユーザがテンプレートを追加・編集・削除できるようにしてもよい。各々のテンプレートは、テンプレートの選択条件と対応付けて登録されている。選択条件は、例えば、因果強度TEmax、歩数St、血圧Bp、歩数変化量Ds、血圧変化量Db、時間遅れ量sdなどの値を用いて設定されるとよい。図16の例では、第1メッセージ用のテンプレートには、因果強度TEmaxの条件と血圧変化量Db又は歩数変化量Dsの条件とを組み合わせた選択条件が設定されており、第2メッセージ用のテンプレートには、因果強度TEmaxによる選択条件が設定されている。テンプレート内に埋め込まれている「<$」と「>」で挟まれた文字列は、ユーザ支援用メッセージを生成する際に実際の値に置換される部分である。
【0087】
例えば、
SP−posi:2013年2月5日〜2013年2月12日
TEmax:0.53
sd:3
Db:14
Ds:2050
が得られている場合、支援メッセージ生成部66は、第1テーブル120から2番目のテンプレートを選択し、
「2013年2月5日〜2013年2月12日の期間に注目してください。とても頑張った分、14mmHgも血圧が下がっていますね!お見事!」
という第1メッセージを生成するとともに、第2テーブル121から1番目のテンプレートを選択し、
「あなたは3日程度で運動効果が現れるタイプです」
という第2メッセージを生成する。
【0088】
生成されたユーザ支援用メッセージは、描画合成部68によって、ユーザ支援用グラフの所定の領域に合成され、出力部69によって表示装置や外部端末などに出力される。図17は、支援情報の表示例である。画面上部に第1メッセージが表示され、左のグラフの上部に第2メッセージが表示されている。ユーザは、このような支援情報を見ることで、自分自身の運動効果の遅延特性を知ることができるとともに、運動に因る効果を直観的かつ納得性をもって確認することができる。
【0089】
以上述べた本システムによれば、運動に因る効果が現れるまでの時間遅れを考慮した健康管理支援が可能となる。特に、ユーザ本人の歩数及び血圧のデータから計算された因果強度や遅延時間を用いるので、ユーザが実施した運動とその効果との因果関係を分かりやすく提示し、運動継続に対するモチベーションを維持させることが可能となる。
【0090】
また、図17の画面を見れば、運動に因る効果が3日程度遅れて現れるという本人固有の生理学的特性を知ることができる。したがって、ユーザは、歩数の増減と血圧の変化のどこを見比べればよいかを理解でき、過去に行った運動の成果を確認したり、逆に怠けに
因る血圧の悪化に気づくことができる。また、自分自身の生理学的特性を考慮した健康管理(例えば、運動計画、歩数や血圧の目標設定など)が可能となる。
【0091】
また、図17の画面における運動効果グラフ(シフトした歩数グラフ)と血圧グラフを見比べることで、歩数の増減と血圧の変化の因果関係(負の相関)を直観的に理解できる。さらに、正の運動効果発現区間SP−posiの表示により、歩数の増加(過去の努力)が血圧の正の変化(つまり血圧の降下)に直接結びついていることを容易に把握できるため、運動の実施及び継続に対するモチベーションを得ることができる。加えて、負の運動効果発現区間SP−negaの表示により、歩数の減少(過去の怠け)が血圧の負の変化(つまり血圧の上昇)に直接結びついていることも容易に把握できる。これは、ユーザに反省を促し、運動の継続的な実施の必要性を気づかせる効果がある。
【0092】
上述した実施形態の構成は本発明の一具体例を示したものにすぎず、本発明の範囲を限定する趣旨のものではない。本発明はその技術思想を逸脱しない範囲において、種々の具体的構成を採り得るものである。上記実施形態では、原因指標と結果指標のあいだの相関情報として、線形回帰における相関係数を用いたが、他の手法により二つの指標のあいだの相関を評価することもできる。例えば、二つの指標XとYが線形の関係には無いが、非線形の式でフィッティングできる関係にある場合には、いずれかの指標に変換を施すことで線形問題に帰着させ、同じように二つの指標の相関係数を評価することも可能である。例えば、ロジスティック回帰などの回帰分析手法を好ましく利用できる。
【符号の説明】
【0093】
1:因果ネットワーク生成システム1、10:時系列データ取得部、11:因果関係評価部、12:因果関係データ出力部
6:健康管理支援システム、60:指標記録部、61:データ送信部、62:データ蓄積部、63:因果ネットワーク生成部、64:データ取得部、65:グラフ描画部、66:支援メッセージ生成部、67:支援メッセージパターン記憶部、68:描画合成部、69:出力部
70:装置、71:歩数計、72:血圧計
80:オンラインストレージ、81:端末、82:クラウドサーバ、83:端末
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17