特開2015-231691(P2015-231691A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社リコーの特許一覧
特開2015-231691画像形成装置、ヒータ制御方法、およびヒータ制御プログラム
<>
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000003
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000004
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000005
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000006
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000007
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000008
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000009
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000010
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000011
  • 特開2015231691-画像形成装置、ヒータ制御方法、およびヒータ制御プログラム 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2015-231691(P2015-231691A)
(43)【公開日】2015年12月24日
(54)【発明の名称】画像形成装置、ヒータ制御方法、およびヒータ制御プログラム
(51)【国際特許分類】
   B41J 2/01 20060101AFI20151201BHJP
   H05B 3/00 20060101ALI20151201BHJP
【FI】
   B41J2/01 125
   B41J2/01 401
   H05B3/00 310C
   B41J2/01 123
【審査請求】未請求
【請求項の数】8
【出願形態】OL
【全頁数】25
(21)【出願番号】特願2014-119083(P2014-119083)
(22)【出願日】2014年6月9日
(71)【出願人】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100089118
【弁理士】
【氏名又は名称】酒井 宏明
(72)【発明者】
【氏名】林 智明
【テーマコード(参考)】
2C056
3K058
【Fターム(参考)】
2C056EA05
2C056EB39
2C056EC38
2C056HA42
2C056HA44
3K058AA42
3K058AA46
3K058AA51
3K058BA18
3K058CA03
3K058CA24
3K058DA01
(57)【要約】
【課題】ゼロクロス信号の波形乱れを回避してゼロクロス信号をより正しく検知することができること。
【解決手段】本実施の形態の一態様である画像形成装置において、電圧ピーク検知部81は、印刷対象物上の処理液を乾燥するヒータへ給電する交流電源の電源電圧ピーク値を検知する。ゼロクロス信号生成回路83は、電源電圧のゼロクロスポイントを示すゼロクロス信号を生成する。無効期間決定部84は、電源電圧ピーク値に応じてゼロクロス信号検知の無効期間を決定する。ゼロクロス信号判定部85は、無効期間のゼロクロス信号を無効とし、無効期間以外の期間のゼロクロス信号を検知する。駆動信号出力部87は、ゼロクロス信号の検知に基づき、ヒータの給電制御の制御信号をヒータの駆動部に出力する。
【選択図】図5
【特許請求の範囲】
【請求項1】
ヒータの給電を行う交流電源の電源電圧のピーク値を検知する電源電圧ピーク検知手段と、
前記電源電圧のゼロクロスポイントを検知し、検知した前記ゼロクロスポイントを示すゼロクロス信号を生成するゼロクロス信号生成手段と、
前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値に応じて、前記電源電圧のピーク値の変化に伴いタイミングを変化させる前記ゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に、前記ゼロクロス信号の検知を無効とする無効期間を決定する無効期間決定手段と、
前記無効期間に前記ゼロクロス信号生成手段によって入力された前記ゼロクロス信号を無効とし、前記無効期間以外の期間に前記ゼロクロス信号生成手段によって入力された前記ゼロクロス信号を、正常波形のゼロクロス信号と判定して検知するゼロクロス信号判定手段と、
前記正常波形のゼロクロス信号に基づいて、前記ヒータの給電を制御する制御信号を前記ヒータの駆動部に出力する制御信号出力手段と、
を備えたことを特徴とする画像形成装置。
【請求項2】
前記電源電圧のピーク値の範囲と前記無効期間の時間幅を示す設定無効時間とを対応付けたデータテーブルを記憶する記憶手段を備え、
前記無効期間決定手段は、前記データテーブルの中から、前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値に対応する前記設定無効時間を抽出し、抽出した前記設定無効時間を有する前記無効期間を決定することを特徴とする請求項1に記載の画像形成装置。
【請求項3】
前記電源電圧の周波数を検知する周波数検知手段を備え、
前記データテーブルは、前記電源電圧のピーク値の範囲と前記設定無効時間と前記電源電圧の周波数とを対応付けたデータテーブルであり、
前記無効期間決定手段は、前記データテーブルの中から、前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値と、前記周波数検知手段によって検知された前記電源電圧の周波数とに対応する前記設定無効時間を抽出し、抽出した前記設定無効時間を有する前記無効期間を決定することを特徴とする請求項2に記載の画像形成装置。
【請求項4】
前記無効期間決定手段は、前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値をもとに、前記無効期間の時間幅を算出し、算出した前記時間幅を有する前記無効期間を決定することを特徴とする請求項1に記載の画像形成装置。
【請求項5】
前記電源電圧の周波数を検知する周波数検知手段を備え、
前記無効期間決定手段は、前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値と、前記周波数検知手段によって検知された前記電源電圧の周波数とをもとに、前記無効期間の時間幅を算出し、算出した前記時間幅を有する前記無効期間を決定することを特徴とする請求項4に記載の画像形成装置。
【請求項6】
前記無効期間決定手段は、前記ゼロクロス信号の立ち下がりのタイミングから次の立ち下がりよりも所定時間前のタイミングまでの期間に前記無効期間を決定することを特徴とする請求項1〜5のいずれか一つに記載の画像形成装置。
【請求項7】
ヒータの給電を行う交流電源の電源電圧のピーク値を検知する電源電圧ピーク検知ステップと、
前記電源電圧のゼロクロスポイントを検知し、検知した前記ゼロクロスポイントを示すゼロクロス信号を生成するゼロクロス信号生成ステップと、
前記電源電圧ピーク検知ステップによって検知された前記電源電圧のピーク値に応じて、前記電源電圧のピーク値の変化に伴いタイミングを変化させる前記ゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に、前記ゼロクロス信号の検知を無効とする無効期間を決定する無効期間決定ステップと、
前記無効期間に入力された前記ゼロクロス信号を無効とし、前記無効期間以外の期間に入力された前記ゼロクロス信号を、正常波形のゼロクロス信号と判定して検知するゼロクロス信号判定ステップと、
前記正常波形のゼロクロス信号に基づいて、前記ヒータの給電を制御する制御信号を前記ヒータの駆動部に出力する制御信号出力ステップと、
を含むことを特徴とするヒータ制御方法。
【請求項8】
画像形成装置が備えるコンピュータに、
ヒータの給電を行う交流電源の電源電圧のピーク値を検知する電源電圧ピーク検知ステップと、
前記電源電圧のゼロクロスポイントを検知し、検知した前記ゼロクロスポイントを示すゼロクロス信号を生成するゼロクロス信号生成ステップと、
前記電源電圧ピーク検知ステップによって検知された前記電源電圧のピーク値に応じて、前記電源電圧のピーク値の変化に伴いタイミングを変化させる前記ゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に、前記ゼロクロス信号の検知を無効とする無効期間を決定する無効期間決定ステップと、
前記無効期間に入力された前記ゼロクロス信号を無効とし、前記無効期間以外の期間に入力された前記ゼロクロス信号を、正常波形のゼロクロス信号と判定して検知するゼロクロス信号判定ステップと、
前記正常波形のゼロクロス信号に基づいて、前記ヒータの給電を制御する制御信号を前記ヒータの駆動部に出力する制御信号出力ステップと、
を実行させるためのヒータ制御プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像形成装置、ヒータ制御方法、およびヒータ制御プログラムに関する。
【背景技術】
【0002】
インクジェット印刷装置等の液体吐出方式の画像形成装置においては、一般に、色材を含むインクが液滴化してウェブ等の印刷対象物に吐出され、これにより、印刷対象物に画像が形成されている。なお、印刷対象物に対する画像形成は、文字や図形等の意味を持つ画像を印刷対象物に印刷することのみならず、パターン等の意味を持たない画像を印刷対象物に印刷することをも意味する。また、ウェブは、紙または樹脂フィルム等の液体を付着可能である長尺な帯状の印刷対象物である。
【0003】
このような液体吐出方式の画像形成では、インクの液滴によって印刷対象物に形成されるドットがひげ状に乱れるフェザリング、異なる色の複数のインク滴が互いに隣接して用紙等の印刷対象物に打たれた場合に、これら複数のインク滴の各色が相互に混ざり合って色境界が不鮮明になるカラーブリード等の不具合が生じることがある。さらには、印刷対象物に吐出した液滴(インク)が乾燥するまでに時間がかかるという問題がある。
【0004】
これらを解決するために、従来、インクと反応してインクの滲み防止を促す処理液が、インク滴を吐出する前の印刷対象物に塗布される。例えば、処理液は、所定の処理液塗布装置により、順次搬送されるウェブに塗布ローラ等を用いて塗布され、あるいは、液体吐出ヘッドからミスト状に吐出されて、ウェブに塗布される。その後、ウェブ面上の処理液は、処理液塗布装置からプリンタ内へウェブが搬送される前に乾燥させる必要がある。何故ならば、処理液が乾燥していない状態のウェブがプリンタ内へ搬送されてしまった場合、プリンタ内の搬送ローラにウェブ面上の処理液が意図せず付着する等の問題が生じるからである。この問題を解消するために、処理液塗布装置には、通常、ウェブ面上の処理液を乾燥する乾燥機構が設けられている。
【0005】
処理液塗布装置の乾燥機構は、一般に、処理液を加熱して乾燥するためのヒータを備えている。乾燥機構のヒータは、トライアック等のスイッチング制御素子を介して商用交流電源に接続され、この商用交流電源から電力の供給を受けている。また、このようなヒータを熱源とする乾燥機構には、例えばサーミスタ等の温度検知素子が設けられている。乾燥機構の温度(具体的にはヒータ部分の温度)は、温度検知素子によって検知される。
【0006】
一方、画像形成装置のエンジンコントローラは、上述した温度検知素子によって検知された乾燥機構の温度情報をもとに、スイッチング制御素子のオン状態とオフ状態とを切り換える制御(以下、オンオフ制御と称する)を、波数制御または位相制御によって行う。エンジンコントローラは、このようなスイッチング制御素子のオンオフ制御を通じて、乾燥機構のヒータへの給電または給電の遮断を行い、これにより、乾燥機構の温度が一定の目標温度に保たれるようにヒータの駆動制御(温度制御)を行う。なお、波数制御は、スイッチング制御素子のオンオフ制御、すなわち、ヒータのオンオフ状態の切り換えを、商用交流電源の半波単位で行う電力制御方式である。位相制御は、商用交流電源の1半波内における任意の位相角のタイミングにおいて、スイッチング制御素子をオン状態に制御し、すなわち、ヒータをオン状態にし、これにより、ヒータに電力を供給する電力制御方式である。
【0007】
上述した商用交流電源から乾燥機構のヒータへの給電を制御するためには、ゼロクロス回路が必要である。ゼロクロス検知回路は、商用交流電源の交流電圧(以下、電源電圧と適宜略す)におけるゼロクロスポイントを示すゼロクロス信号を生成する回路である。具体的には、ゼロクロス検知回路は、商用交流電源の電源電圧値を監視し、この監視している電源電圧値が所定の閾値以下となったタイミングを、電源電圧値が0[V]を通過するタイミング、すなわち、ゼロクロスポイントとして検知する。ゼロクロス検知回路は、この検知したゼロクロスポイントのタイミングにおいて信号レベルを変化させて、ゼロクロス信号を生成する。
【0008】
エンジンコントローラは、上述したゼロクロス検知回路によって生成出力されるゼロクロス信号をもとに、ヒータに供給される実効電流を検知する。また、エンジンコントローラは、このようなゼロクロス信号をもとに、スイッチング制御素子のオンオフ制御、すなわち、ヒータに対する電力供給のオンオフ状態の切換制御を行う。
【0009】
なお、上述したヒータへの給電制御に関する従来技術として、例えば、商用交流電源の電流値が閾値以下の時に出力される電源電流検知信号の波形中心の前後に所定時間の非マスキング区間を設け、この非マスキング区間以外の区間(マスキング区間)内のゼロクロス信号を無効とし、且つ、この非マスキング区間内にゼロクロス検知回路から出力されたゼロクロス信号のエッジをゼロクロスポイントとし、このゼロクロスポイントのタイミングにヒータへの給電制御を行うものがある(特許文献1参照)。
【発明の概要】
【発明が解決しようとする課題】
【0010】
ところで、商用交流電源からヒータへの給電制御は、例えば位相制御の場合、商用交流電源の1半波内の位相角を制御することにより、ヒータをオン状態に切り換えるタイミングをゼロクロスポイントに制御して行われる。このようなヒータへの給電制御においては、電源電圧のゼロクロスポイントを正確に検知する必要がある。
【0011】
しかしながら、商用交流電源の電源電圧の波形(以下、電圧波形と適宜略す)は、必ずしも理想的な正弦波形になるとは限らず、使用する地域や施設、使用される条件等に起因して様々に変化する。例えば、商用交流電源の電圧波形に歪みを生じさせる要因として、同一の商用交流電源または画像形成装置内に対し、大電力を消費する機器が接続された場合、起動時や停止時に高レベルのノイズを発生する機器が接続された場合、雷等のサージが混入した場合、あるいは、商用交流電源または画像形成装置に瞬断が生じた場合等、様々、挙げられる。
【0012】
このような電圧波形の歪みまたは電源ノイズを含む商用交流電源に画像形成装置が接続された場合、この画像形成装置内のゼロクロス検知回路は、商用交流電源の電源電圧のゼロクロスポイントを正確に検知することが困難となって、ゼロクロスポイントではないタイミングにゼロクロス信号を生成出力してしまう虞がある。この結果、ゼロクロス信号に波形の乱れが生じてしまい、これに起因して、画像形成装置のエンジンコントローラは、上述した乾燥機構のヒータに対する給電制御(電力供給のオンオフ状態の切換制御)を正しく行うことができなくなる。ついには、ヒータに供給する電力を制御不能な状態に陥るといった事態が発生してしまう。
【0013】
上述したような問題を招来するゼロクロス信号の波形乱れの対策として、従来、商用交流電源から画像形成装置に電源電圧が印加される期間のうちのゼロクロスポイントを除く期間、すなわち、ゼロクロス信号が発生しない期間を、所定期間に固定して決定し、この決定した固定の期間、ゼロクロス信号を無効とする方法がとられている。しかし、ゼロクロス信号の波形乱れは、ゼロクロス信号の立ち上がりまたは立下りの近傍において発生し易く、また、ゼロクロス信号の立ち上がりおよび立下りの各タイミングは、商用交流電源の電源電圧のピーク値(以下、電源電圧ピーク値と称する)に応じて変化してしまう。このことから、上述したようにゼロクロス信号を無効とする期間を固定して決定する従来手法では、ゼロクロス信号の波形乱れを回避することは困難である。
【0014】
本発明は、上記に鑑みてなされたものであって、ゼロクロス信号の波形乱れを回避してゼロクロス信号をより正しく検知することができる画像形成装置、ヒータ制御方法、およびヒータ制御プログラムを提供することを目的とする。
【課題を解決するための手段】
【0015】
上述した課題を解決し、目的を達成するために、本発明は、ヒータの給電を行う交流電源の電源電圧のピーク値を検知する電源電圧ピーク検知手段と、前記電源電圧のゼロクロスポイントを検知し、検知した前記ゼロクロスポイントを示すゼロクロス信号を生成するゼロクロス信号生成手段と、前記電源電圧ピーク検知手段によって検知された前記電源電圧のピーク値に応じて、前記電源電圧のピーク値の変化に伴いタイミングを変化させる前記ゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に、前記ゼロクロス信号の検知を無効とする無効期間を決定する無効期間決定手段と、前記無効期間に前記ゼロクロス信号生成手段によって入力された前記ゼロクロス信号を無効とし、前記無効期間以外の期間に前記ゼロクロス信号生成手段によって入力された前記ゼロクロス信号を、正常波形のゼロクロス信号と判定して検知するゼロクロス信号判定手段と、前記正常波形のゼロクロス信号に基づいて、前記ヒータの給電を制御する制御信号を前記ヒータの駆動部に出力する制御信号出力手段と、を備えたことを特徴とする。
【発明の効果】
【0016】
本発明によれば、ゼロクロス信号の波形乱れを回避してゼロクロス信号をより正しく検知することができ、検知したゼロクロス信号に基づいて、ヒータに供給する電力を正しく制御することができるという効果を奏する。
【図面の簡単な説明】
【0017】
図1図1は、本実施の形態にかかる画像形成装置の一構成例を示すブロック図である。
図2図2は、本実施の形態におけるエンジン部の一構成例を示す図である。
図3図3は、本実施の形態における処理液塗布装置の一構成例を示す図である。
図4図4は、本実施の形態における処理液の乾燥機構の一構成例を示す図である。
図5図5は、本実施の形態におけるヒータ制御部の一構成例を示すブロック図である。
図6図6は、本実施の形態におけるゼロクロス信号検知の無効期間の決定に用いるデータテーブルの一例を示す図である。
図7図7は、本実施の形態にかかる画像形成装置のヒータ制御方法の一例を示すフローチャートである。
図8図8は、本実施の形態のヒータ制御における処理タイミングの一例を示すタイミングチャートである。
図9図9は、従来のゼロクロス信号検知処理を説明する図である。
図10図10は、本実施形態のゼロクロス信号検知処理を説明する図である。
【発明を実施するための形態】
【0018】
以下に添付図面を参照して、画像形成装置、ヒータ制御方法、およびヒータ制御プログラムの実施の形態を詳細に説明する。なお、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、各図面において、同一構成部分には同一符号が付されている。
【0019】
(画像形成装置の構成)
まず、本実施の形態にかかる画像形成装置の構成について説明する。図1は、本実施の形態にかかる画像形成装置の一構成例を示すブロック図である。図1に示すように、本実施の形態にかかる画像形成装置1は、制御部10と、インターフェース(I/F)部20と、FCU30と、エンジン部100とを備える。制御部10には、PCI(Peripheral Component Interface)バス等を介して、I/F部20と、FCU30と、エンジン部100とが接続される。また、画像形成装置1には、ケーブル等を介して交流電源40が接続される。
【0020】
制御部10は、画像形成装置1全体の制御を行い、描画、通信、および信号の入出力を制御する。例えば、制御部10は、I/F部20を介した画像形成装置1と外部装置との通信を制御し、FCU30の動作を制御する。また、制御部10は、エンジン部100の動作を制御するエンジンコントローラとしての機能を有する。
【0021】
I/F部20は、USB(Universal Serial Bus)、IEEE1394(the Institute of Electrical and Electronics Engineers 1394)等の信号入出力のインターフェースである。
【0022】
FCU(Facsimile Control Unit)30は、ファクシミリ通信を制御するユニットであり、メモリ(図示せず)を有する。このメモリは、例えば、画像形成装置1の電源がオフのときに受信したファクシミリデータを一時的に格納するために利用される。交流電源40は、画像形成装置1全体、具体的には制御部10およびエンジン部100に電力を供給する商用交流電源である。
【0023】
エンジン部100は、PCIバスに接続可能なプリンタエンジン等であり、例えば、白黒プロッタ、1ドラムカラープロッタ、4ドラムカラープロッタ、スキャナまたはファックスユニット等である。また、このエンジン部100には、プロッタ等のいわゆるエンジン部分に加えて、誤差拡散やガンマ変換などの画像処理部分が含まれる。さらに、このエンジン部100には、印刷対象物に処理液を塗布してインクジェット印刷時の不具合(フェザリング、カラーブリード等)を防止する前処理を行う前処理部分等が含まれる。
【0024】
(画像形成装置の制御部の構成)
つぎに、画像形成装置1の制御部10の構成について説明する。図1に示すように、制御部10は、CPU11と、ROM13と、RAM14と、不揮発性メモリ(NVRAM)15と、ASIC(Application Specific Integrated Circuit)16と、ハードディスクドライブ(HDD)17と、操作パネル18とを備える。
【0025】
CPU11は、画像形成装置1の全体制御を行うものであり、PCIバス等を介してROM13、RAM14、NVRAM15、ASIC16、HDD17、および操作パネル18と接続される。CPU11は、ROM13に格納されたプログラムを実行して、例えば、I/F部20を介した信号入出力を制御し、且つ、FCU30およびエンジン部100の各動作を制御する。
【0026】
また、CPU11は、ヒータ制御部12を有する。ヒータ制御部12は、エンジン部100において実行される印刷対象物の前処理の際、印刷対象物に塗布された処理液を加熱乾燥するヒータの駆動を制御する。
【0027】
ROM13は、プログラムやデータの格納用メモリとして用いる読み出し専用のメモリである。ROM13には、CPU11が実行するプログラムと、その他の固定データとが格納されている。RAM14は、プログラムやデータの展開用メモリ、プリンタの描画用メモリ等として用いる書き込みおよび読み出し可能なメモリである。NVRAM15は、交流電源40から画像形成装置1に電力が供給されている時は勿論、この画像形成装置1への電力供給が遮断されている期間においても、画像データ等の各種格納データを保持する。
【0028】
ASIC16は、画像処理用のハードウェア要素を有する画像処理用途向けのICである。ASIC16は、例えば、PCIターゲットおよびAGPマスタと、ASIC16の中核をなすアービタ(ARB)と、コピー用画像バッファや符号バッファ等として用いるローカルメモリを制御するメモリコントローラと、ハードウェアロジック等によって画像データの回転等を行う複数のDMAC(Direct Memory Access Controller)と、エンジン部100との間でPCIバスを介したデータ転送をおこなうPCIユニットとからなる。ASIC16は、画像データに対する各種信号処理、画像の並び替え等を行う画像処理、その他、画像形成装置1全体を制御するための入出力信号の処理を行う。
【0029】
HDD17は、画像データの蓄積、プログラムの蓄積、フォントデータの蓄積、フォームの蓄積等を行うためのストレージである。また、HDD17は、ヒータ制御部12がエンジン部100のヒータ駆動制御を行う際に用いるデータテーブル等を記憶する記憶手段として機能する。操作パネル18は、ユーザによる操作に応じて、画像形成装置1に必要な情報(例えば画像形成装置1の操作情報)の入力および表示を行うデバイスである。
【0030】
(エンジン部の構成)
つぎに、本実施の形態におけるエンジン部100の構成について説明する。図2は、本実施の形態におけるエンジン部の一構成例を示す図である。図2において、破線矢印は、印刷対象物の搬送方向を示している。本実施の形態にかかる画像形成装置1のエンジン部100は、例えば図2に示すように、供給装置110と、処理液塗布装置120と、第1のインクジェットプリンタ130と、反転装置140と、第2のインクジェットプリンタ150と、後処理装置160とを備える。
【0031】
供給装置110は、紙または樹脂フィルム等の帯状の印刷媒体を巻回してなるロール体をセットされ、このロール体から、印刷対象物の一例であるウェブ5を繰り出す。供給装置110は、繰り出したウェブ5を処理液塗布装置120に順次供給する。
【0032】
処理液塗布装置120は、フェザリングおよびカラーブリード等のインクジェット印刷時の不具合を防止するための前処理を印刷対象物に施す前処理装置として機能する。具体的には、処理液塗布装置120は、供給装置110から送り込まれたウェブ5の被印刷面(例えば表裏両面)に所定の処理液を塗布する。また、処理液塗布装置120は、ヒータ等を備えた乾燥機構70を備え、ウェブ5に塗布した処理液を乾燥機構70によって乾燥させる。このようにして、処理液塗布装置120は、ウェブ5に対する前処理(インクジェット印刷前の事前処理)を達成する。処理液塗布装置120は、前処理後のウェブ5を第1のインクジェットプリンタ130に向けて送出する。
【0033】
第1のインクジェットプリンタ130は、前処理後のウェブ5を処理液塗布装置120から順次送り込まれる。第1のインクジェットプリンタ130は、受け入れたウェブ5を順次搬送するとともに、このウェブ5の表裏両面のうちの一面(例えば表面)にインク滴を吐出する。これにより、第1のインクジェットプリンタ130は、このウェブ5の被印刷面に所望の画像を形成する。なお、この第1のインクジェットプリンタ130によってウェブ5に形成された画像は、図1に示した制御部10のCPU11によって印刷制御された画像である。第1のインクジェットプリンタ130は、このような片面印刷後のウェブ5を反転装置140に向けて順次送出する。
【0034】
反転装置140は、片面印刷後のウェブ5を第1のインクジェットプリンタ130から順次送り込まれる。反転装置140は、受け入れたウェブ5を順次搬送するとともに、このウェブ5の表裏を反転させる。反転装置140は、反転処理後のウェブ5を第2のインクジェットプリンタ150に向けて順次送出する。
【0035】
第2のインクジェットプリンタ150は、反転処理後のウェブ5を反転装置140から順次送り込まれる。第2のインクジェットプリンタ150は、受け入れたウェブ5を順次搬送するとともに、このウェブ5の表裏両面のうちの残りの面(例えば裏面)にインク滴を吐出する。これにより、第2のインクジェットプリンタ150は、このウェブ5の被印刷面に所望の画像を形成する。なお、この第2のインクジェットプリンタ150によってウェブ5に形成された画像は、第1のインクジェットプリンタ130の場合と同様、CPU11によって印刷制御された画像である。第2のインクジェットプリンタ150は、このような両面印刷後のウェブ5を後処理装置160に向けて順次送出する。
【0036】
後処理装置160は、両面印刷後のウェブ5を第2のインクジェットプリンタ150から順次送り込まれる。後処理装置160は、受け入れたウェブ5を順次搬送するとともに、このウェブ5に対して所定の後処理を行う。これにより、後処理装置160は、両面印刷された印刷物を製造する。後処理装置160は、製造した印刷物を順次搬出する。
【0037】
(処理液塗布装置の構成)
つぎに、本実施の形態における処理液塗布装置120の構成について説明する。図3は、本実施の形態における処理液塗布装置の一構成例を示す図である。図3において、破線矢印は、印刷対象物の搬送方向を示している。
【0038】
図3に示すように、本実施の形態における処理液塗布装置120は、ウェブ5の搬送経路を確保し且つこの搬送経路に沿ってウェブ5を円滑に搬送するための機構を備える。具体的には、処理液塗布装置120は、ガイドローラ51a〜51iと、フィードインローラ52と、フィードインニップローラ53と、パスシャフト54と、エッジガイド55と、テンションシャフト56とを備える。また、処理液塗布装置120は、インフィードローラ57と、フィードニップローラ58,64と、第1のダンサーユニット59と、アウトフィードローラ63と、第2のダンサーユニット65とを備える。さらに、処理液塗布装置120は、ウェブ5の表裏両面に所定の処理液60を各々塗布するための表面側処理液塗布部61および裏面側処理液塗布部62と、ウェブ5に塗布した処理液60を乾燥させるための乾燥機構70とを備える。
【0039】
ガイドローラ51a〜51iは、各々、ローラ端部に軸受け(図示せず)を有し、処理液塗布装置120内において回転自在に軸支される。ガイドローラ51a〜51iは、図3に示すように、処理液塗布装置120内におけるウェブ5の搬送経路に沿って複数箇所に各々設置される。これらのガイドローラ51a〜51iの各々は、回転しながらウェブ5をその搬送経路の上流側から下流側へ案内する。
【0040】
フィードインローラ52は、モータ等の駆動源(図示せず)の作用によって回転する駆動ローラである。このフィードインローラ52には、ばね(図示せず)の引張力によってフィードインニップローラ53が押し付けられている。フィードインローラ52は、フィードインニップローラ53と協働してウェブ5を挟持しながら、回転駆動によってウェブ5をその搬送経路の上流側から下流側へ順次搬送する。これにより、フィードインローラ52は、図2に示した供給装置110から処理液塗布装置120の内部にウェブ5を引き込むことができる。
【0041】
供給装置110から処理液塗布装置120の内部に搬入されたウェブ5は、ガイドローラ51aを経由してフィードインローラ52に到達する。続いて、ウェブ5は、ばねの弾性力によってフィードインローラ52とフィードインニップローラ53との間に挟持されつつ、駆動源によるフィードインローラ52の回転駆動によって順次搬送される。フィードインローラ52およびフィードインニップローラ53から送出されたウェブ5は、図3に示すように、若干弛みながら搬送され、これにより、エアループALを形成している。エアループALを経たウェブ5は、パスシャフト54およびエッジガイド55の間を通るように搬送される。
【0042】
パスシャフト54は、ウェブ5の搬送方向に垂直な方向に複数(例えば2つ)配置される(この配置状態は図示せず)。これら複数のパスシャフト54は、ウェブ5をS字状に湾曲させながら送出する。また、パスシャフト54には、板状に形成された一対のエッジガイド55が設けられている。この一対のエッジガイド55の間隔は、ウェブ5の幅寸法と同寸に設定されている。これらのパスシャフト54およびエッジガイド55の作用により、ウェブ5の幅方向の搬送位置が規制され、この結果、ウェブ5の安定した走行(搬送)が可能となる。なお、エッジガイド55は、例えば螺子等の固定手段によってパスシャフト54に固定されている。このようなエッジガイド55の位置および間隔は、使用するウェブ5の幅寸法に応じて調整可能になっている。
【0043】
テンションシャフト56は、パスシャフト54およびエッジガイド55よりもウェブ5の搬送経路の下流側に固定配置される。テンションシャフト56は、ウェブ5をその搬送経路に沿って進行させながらウェブ5に張力を付与する。これにより、テンションシャフト56は、ウェブ5の安定した走行(搬送)に寄与する。テンションシャフト56を通過したウェブ5は、インフィードローラ57とフィードニップローラ58との間を通る。
【0044】
インフィードローラ57は、モータ等の駆動源(図示せず)の作用によって回転する駆動ローラである。フィードニップローラ58は、インフィードローラ57のロール軸方向に沿って複数配置されている(この配置状態は図示せず)。これら複数のフィードニップローラ58の各々は、ばね(図示せず)の引張力によってインフィードローラ57に押し付けられている。インフィードローラ57は、フィードニップローラ58と協働してウェブ5を挟持しながら、回転駆動によってウェブ5をその搬送経路の上流側から下流側へ順次搬送する。インフィードローラ57およびフィードニップローラ58から送出されたウェブ5は、図3に示すように、第1のダンサーユニット59に巻き掛けられる。
【0045】
第1のダンサーユニット59は、ダンサーローラ59aおよび可動フレーム59bを用いて構成される。ダンサーローラ59aは、ローラ端部に設けた軸受け(図示せず)を介して可動フレーム59bに回転自在に取り付けられる。第1のダンサーユニット59は、図3に示すように、ダンサーローラ59aにウェブ5を巻き掛けて、ウェブ5によって吊り下げられた状態になっている。このような状態の第1のダンサーユニット59は、ウェブ5をその搬送方向に送出しながら、重力方向Aに沿って移動可能になっている。
【0046】
図3には特に図示しないが、処理液塗布装置120内には、第1のダンサーユニット59の位置を検出する位置検出手段が設けられている。この位置検出手段の出力に応じてインフィードローラ57の駆動源を制御部10のCPU11(図1参照)が駆動制御することにより、第1のダンサーユニット59の位置が調整される。
【0047】
上述したダンサーユニット59を通過したウェブ5は、図3に示すように、ガイドローラ51bを経由して表面側処理液塗布部61内に搬送される。表面側処理液塗布部61は、ウェブ5の被印刷面である表裏両面のうちの表面に所定の処理液60を塗布するものである。例えば図3に示すように、表面側処理液塗布部61は、インクと反応してインクの滲み防止を促す処理液60を内部に有し、この処理液60をウェブ5に塗布する塗布ローラ61a等の複数の回転ローラを備える。表面側処理液塗布部61において、処理液60は、回転ローラによって汲みあげられて塗布ローラ61aに転写される。表面側処理液塗布部61は、塗布ローラ61aの外周面とウェブ5の表面とを接触させつつ塗布ローラ61aを回転させ、これにより、この塗布ローラ61aの外周面からウェブ5の表面に処理液60を転写して塗布する。
【0048】
上述したように表面に処理液60を塗布されたウェブ5は、表面側処理液塗布部61から送出された後、ガイドローラ51c,51dを順次経由して裏面側処理液塗布部62内に搬送される。裏面側処理液塗布部62は、ウェブ5の被印刷面である表裏両面のうちの裏面に処理液60を塗布するものである。例えば図3に示すように、裏面側処理液塗布部62は、表面側処理液塗布部61と同様に、処理液60を内部に有し、この処理液60をウェブ5に塗布する塗布ローラ62a等の複数の回転ローラを備える。裏面側処理液塗布部62において、処理液60は、回転ローラによって汲みあげられて塗布ローラ62aに転写される。裏面側処理液塗布部62は、塗布ローラ62aの外周面とウェブ5の裏面とを接触させつつ塗布ローラ62aを回転させ、これにより、この塗布ローラ62aの外周面からウェブ5の裏面に処理液60を転写して塗布する。
【0049】
上述したように裏面に処理液60を塗布されたウェブ5は、裏面側処理液塗布部62から送出された後、ガイドローラ51e,51fを順次経由して乾燥機構70内に搬送される。乾燥機構70は、ウェブ5に塗布された処理液60を乾燥させるものであり、図3に示すように、加熱搬送部71と、ヒータ駆動部75とを備える。加熱搬送部71は、処理液60を塗布されたウェブ5を受け入れ、受け入れたウェブ5を加熱しながら搬送する。これにより、加熱搬送部71は、ウェブ5の表裏両面の処理液60を乾燥させ、処理液60を乾燥させた後のウェブ5(以下、処理液乾燥後のウェブ5と適宜略す)を搬出する。ヒータ駆動部75は、図1に示したヒータ制御部12による制御に基づいて、加熱搬送部71のヒータに対する給電のオンオフ状態を切り換える。これにより、ヒータ駆動部75は、加熱搬送部71のヒータを駆動させ、あるいは、加熱搬送部71のヒータの駆動を停止させる。なお、乾燥機構70の構成の詳細については、後述する。
【0050】
乾燥機構70による処理液乾燥後のウェブ5は、加熱搬送部71から送出された後、図3に示すように、ガイドローラ51gを経由してアウトフィードローラ63とフィードニップローラ64との間を通る。アウトフィードローラ63は、モータ等の駆動源(図示せず)の作用によって回転する駆動ローラである。フィードニップローラ64は、アウトフィードローラ63のロール軸方向に沿って複数配置されている(この配置状態は図示せず)。これら複数のフィードニップローラ64の各々は、ばね(図示せず)の引張力によってアウトフィードローラ63に押し付けられている。アウトフィードローラ63は、フィードニップローラ64と協働してウェブ5を挟持しながら、回転駆動によってウェブ5をその搬送経路の上流側から下流側へ順次搬送する。アウトフィードローラ63およびフィードニップローラ64から送出されたウェブ5は、図3に示すように、第2のダンサーユニット65等に巻き掛けられる。
【0051】
第2のダンサーユニット65は、ダンサーローラ65a,65bおよび可動フレーム65cを用いて構成される。2つのダンサーローラ65a,65bは、各々、ローラ端部に設けた軸受け(図示せず)を介して可動フレーム65cに回転自在に取り付けられる。また、図3に示すように、第2のダンサーユニット65における上流側のダンサーローラ65aから下流側のダンサーローラ65bに至るウェブ5の搬送経路には、ガイドローラ51hが回転自在に設置される。このダンサーローラ65bよりもウェブ5の搬送経路の下流側には、ガイドローラ51iが回転自在に設置される。第2のダンサーユニット65は、図3に示すように、これら2つのガイドローラ51h,51iと2つのダンサーローラ65a,65bとにウェブ5を各々巻き掛けて、ウェブ5によって吊り下げられた状態になっている。この際、ウェブ5は、上流側のダンサーローラ65aからガイドローラ51hおよび下流側のダンサーローラ65bを順次経由してガイドローラ51iに至る搬送経路に亘り、W字形状に巻き掛けられている。このような状態の第2のダンサーユニット65は、ウェブ5をその搬送方向に送出しながら、重力方向Aに沿って移動可能になっている。
【0052】
図3には特に図示しないが、処理液塗布装置120内には、第2のダンサーユニット65の位置を検出する位置検出手段が設けられている。この位置検出手段の出力に応じてアウトフィードローラ63の駆動源を制御部10のCPU11(図1参照)が駆動制御することにより、第2のダンサーユニット65の位置が調整される。
【0053】
第2のダンサーユニット65から送出されたウェブ5は、上述したアウトフィードローラ63の回転駆動の作用によって順次搬送され、ガイドローラ51iを経由して処理液塗布装置120の外部に搬出される。その後、ウェブ5は、図2に示した第1のインクジェットプリンタ130内に搬送される。
【0054】
(乾燥機構の構成)
つぎに、上述した処理液塗布装置120(図3参照)が備える乾燥機構70の構成について説明する。図4は、本実施の形態における処理液の乾燥機構の一構成例を示す図である。本実施の形態における処理液塗布装置120の乾燥機構70は、図4に示すように、加熱搬送部71と、ヒータ駆動部75とを備える。加熱搬送部71は、ヒートローラ72a〜72jと、ヒータ73a〜73jと、温度検知部74a〜74jとを備える。
【0055】
複数(本実施の形態では10個)のヒートローラ72a〜72jおよびヒータ73a〜73jは、表裏両面に処理液60を塗布された後のウェブ5をその搬送経路に沿って搬送しながら、このウェブ5の表裏両面上の処理液60を加熱して乾燥するものである。
【0056】
ヒートローラ72a〜72jは、各々、回転自在に軸支された筒状体である。これらのヒートローラ72a〜72jは、自身の外周面に巻き掛けられるウェブ5との接触面積を可能な限り多くするために、例えば図4に示すように、ウェブ5の搬送経路に沿って千鳥状に配置される。これにより、ヒートローラ72a〜72jの各々とウェブ5との接触角は、例えば100[°]程度に大きくなる。
【0057】
ヒータ73a〜73jは、ウェブ5に塗布された処理液60を加熱乾燥するための熱源である。ヒータ73a〜73jは、図4に示すように、ヒートローラ72a〜72jに各々設けられる。ヒータ73a〜73jは、ヒートローラ72a〜72jを各々加熱して、ヒートローラ72a〜72jの各温度を所定の目標温度(例えば100[℃])に相当する温度まで上昇させる。このように昇温したヒートローラ72a〜72jは、各々、外周面にウェブ5を巻き掛けるように接触させながらロール軸周りに回転して、ウェブ5をその搬送経路の上流側から下流側へ順次送出する。ヒータ73a〜73jは、これらの昇温したヒートローラ72a〜72jを介してウェブ5を加熱し、これにより、このウェブ5の表裏両面上の処理液60を乾燥させる。
【0058】
温度検知部74a〜74jは、ヒートローラ72a〜72jの各温度を各々検知するヒートローラ温度検知手段として機能する。温度検知部74a〜74jは、放射温度計等を用いて構成され、図4に示すように、ヒートローラ72a〜72jの近傍に各々配置される。温度検知部74a〜74jは、上述したようにヒータ73a〜73jによって加熱昇温されるヒートローラ72a〜72jの各表面温度を、時系列に沿って連続的または断続的に各々測定して検知する。その都度、温度検知部74a〜74jは、検知したヒートローラ72a〜72jの各表面温度を、電気信号の送信によってヒータ制御部12(図1参照)に知らせる。
【0059】
ヒータ駆動部75は、ヒータ73a〜73jの各駆動のオンオフ状態を切り換えるものである。ヒータ駆動部75は、スイッチング制御素子等を用いて構成され、画像形成装置1に電力を供給する交流電源40(図1参照)とヒータ73a〜73jとをオンオフ可能に接続する。ヒータ駆動部75は、図1に示した制御部10のヒータ制御部12による制御に基づき、交流電源40とヒータ73a〜73jとを給電可能に接続し、または、この交流電源40とヒータ73a〜73jとの接続を遮断する。これにより、ヒータ駆動部75は、ヒータ73a〜73jの各駆動状態を、交流電源40から電力を供給されて駆動する状態(オン状態)と、交流電源40からの電力供給を遮断されて駆動停止する状態(オフ状態)との何れかに切り換える。
【0060】
また、乾燥機構70は、図4に示すように加熱搬送部71を開閉可能な構造を有する。例えば、乾燥機構70は、ウェブ5上の処理液60の乾燥時以外の期間、加熱搬送部71を開状態にすることにより、ヒートローラ72a〜72jをウェブ5から離間させる。これにより、乾燥機構70は、加熱し過ぎによるウェブ5の収縮を防止することができる。
一方、乾燥機構70は、ウェブ5上の処理液60を乾燥させる期間、加熱搬送部71を閉状態にすることにより、ヒートローラ72a〜72jの各々とウェブ5との接触面積を可能な限り多くする。これにより、乾燥機構70は、ウェブ5上の処理液60の乾燥を促進することができる。
【0061】
(ヒータ制御部の構成)
つぎに、本実施の形態におけるヒータ制御部12の構成について説明する。図5は、本実施の形態におけるヒータ制御部の一構成例を示すブロック図である。ヒータ制御部12は、本実施の形態にかかる画像形成装置1の制御部10(図1参照)におけるヒータ制御手段として機能するものであり、図2〜4に示した処理液塗布装置120内の乾燥機構70のヒータ73a〜73jを駆動制御する。図5に示すように、ヒータ制御部12は、電圧ピーク検知部81と、周波数検知部82と、ゼロクロス信号生成回路83と、無効期間決定部84と、ゼロクロス信号判定部85と、タイミングカウンタ86と、駆動信号出力部87とを備える。
【0062】
電圧ピーク検知部81は、図1に示した交流電源40の電源電圧ピーク値を検知する電源電圧ピーク検知手段として機能する。本実施の形態において、交流電源40は、上述したように、印刷対象物の一例であるウェブ5に塗布された処理液60を加熱して乾燥する乾燥機構70のヒータ73a〜73j(図3,4参照)に対し給電を行うものである。電圧ピーク検知部81は、このような交流電源40の電源電圧値を時系列に沿って連続的または断続的に監視し、これによって取得した各電源電圧値をもとに、交流電源40の電源電圧ピーク値を検知する。その都度、電圧ピーク検知部81は、検知した電源電圧ピーク値を示す電気信号を無効期間決定部84に出力する。
【0063】
周波数検知部82は、交流電源40の電源電圧の周波数を検知する周波数検知手段として機能する。具体的には、周波数検知部82は、交流電源40の電源電圧の周波数(以下、電源周波数と称する)を時系列に沿って連続的または断続的に監視し、これにより、この交流電源40の電源周波数を検知する。その都度、周波数検知部82は、検知した電源周波数を示す電気信号を無効期間決定部84に出力する。
【0064】
ゼロクロス信号生成回路83は、交流電源40の電源電圧のゼロクロスポイントを示すゼロクロス信号を生成するゼロクロス信号生成手段として機能する。具体的には、ゼロクロス信号生成回路83は、交流電源40の電源電圧値を時系列に沿って連続的または断続的に監視する。ゼロクロス信号生成回路83は、電源電圧値に対して設定された閾値に基づき、この監視している電源電圧値が0[V]を通過するタイミングを含む所定の期間を、この交流電源40の電源電圧のゼロクロスポイントとして検知する。その都度、ゼロクロス信号生成回路83は、検知したゼロクロスポイントを示すゼロクロス信号を生成し、生成したゼロクロス信号をゼロクロス信号判定部85に出力する。
【0065】
無効期間決定部84は、ゼロクロス信号の検知を無効とする無効期間を決定するゼロクロス信号検知無効期間決定手段として機能する。無効期間決定部84は、電圧ピーク検知部81によって検知された電源電圧ピーク値に応じて、ゼロクロス信号検知の無効期間(以下、無効期間と適宜略す)を決定する。ここで、ゼロクロス信号の信号レベルが変化するタイミング、すなわち、ゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングは、交流電源40の電源電圧ピーク値の変化に伴って変化する。無効期間決定部84は、このように電源電圧ピーク値の変化に伴いタイミングを変化させるゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に無効期間を決定する。
【0066】
具体的には、本実施の形態において、無効期間決定部84は、電圧ピーク検知部81から交流電源40の電源電圧ピーク値を取得し、周波数検知部82から交流電源40の電源電圧の周波数(電源周波数)を取得する。また、無効期間決定部84は、図1に示したHDD17からデータテーブルを読み出す。図6は、本実施の形態におけるゼロクロス信号検知の無効期間の決定に用いるデータテーブルの一例を示す図である。図6に示すように、このデータテーブルは、電源周波数と、電源電圧ピーク値の範囲と、無効期間の時間幅を示す設定無効時間とを対応付けたものである。
【0067】
無効期間決定部84は、このデータテーブルの中から、電圧ピーク検知部81によって検知された電源電圧ピーク値と周波数検知部82によって検知された電源周波数とに対応する設定無効時間を抽出する。この電源電圧ピーク値と電源周波数とに対応する設定無効時間は、例えば図6に示す設定無効時間t1〜t16のうちのいずれかである。無効期間決定部84は、このように抽出した設定無効時間の時間幅を有する無効期間を、上述したゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に決定する。その都度、無効期間決定部84は、決定した無効期間を示す電気信号をゼロクロス信号判定部85に送信する。
【0068】
ゼロクロス信号判定部85は、ゼロクロス信号生成回路83によって生成出力されたゼロクロス信号の中から、正常波形のゼロクロス信号を判定して検知するゼロクロス信号判定手段として機能する。具体的には、ゼロクロス信号判定部85は、無効期間決定部84によって決定された無効期間に、ゼロクロス信号生成回路83によって入力されたゼロクロス信号を無効とする。一方、ゼロクロス信号判定部85は、この無効期間以外の期間に、ゼロクロス信号生成回路83によって入力されたゼロクロス信号を、検知すべき正常波形のゼロクロス信号と判定する。ゼロクロス信号判定部85は、このように正常波形のゼロクロス信号であると判定したゼロクロス信号生成回路83からの入力信号(ゼロクロス信号)を検知する。その都度、ゼロクロス信号判定部85は、ゼロクロス信号を検知した旨を示す電気信号をタイミングカウンタ86に送信する。
【0069】
タイミングカウンタ86および駆動信号出力部87は、ゼロクロス信号判定部85によって検知された正常波形のゼロクロス信号に基づいて、図4に示した乾燥機構70のヒータ73a〜73jの給電を制御する制御信号をヒータ駆動部75に出力する制御信号出力手段を構成する。
【0070】
タイミングカウンタ86は、ヒータ73a〜73jを駆動制御するタイミングを決定するためのカウントを行うヒータ駆動タイミングカウンタとして機能する。具体的には、タイミングカウンタ86は、予め設定された初期のカウント値(以下、デフォルト値と称する)を有する。タイミングカウンタ86は、ゼロクロス信号判定部85からゼロクロス信号検知の旨の電気信号を受信したタイミングにおいて、カウント開始の旨を示す電気信号を駆動信号出力部87に送信するとともに、ヒータ駆動制御のタイミングを決定すべくカウントを開始する。この際、タイミングカウンタ86は、例えば、基準クロックをカウントする等して、デフォルト値から零値に向かいカウントダウンする。タイミングカウンタ86は、カウントダウンの結果、カウント値が零値となったタイミングに、カウント完了の旨を示す電気信号を駆動信号出力部87に送信する。
【0071】
また、タイミングカウンタ86は、温度検知部74a〜74jからヒートローラ72a〜72jの各表面温度を取得する。タイミングカウンタ86は、取得したヒートローラ72a〜72jの各表面温度と目標温度との偏差に応じて、ヒータ別に、カウント中のカウント値を増加または減少させる。これにより、タイミングカウンタ86は、ヒートローラ72a〜72jの各表面温度が目標温度となるように、カウント完了のタイミング、すなわち、ヒータ73a〜73jをオン状態にするタイミングをヒータ別に変更する。
【0072】
駆動信号出力部87は、タイミングカウンタ86からの入力信号をもとにヒータ73a〜73jを駆動制御する信号をヒータ駆動部75に出力するヒータ駆動信号出力手段として機能する。具体的には、駆動信号出力部87は、タイミングカウンタ86からカウント完了の旨を示す電気信号を受信したタイミングに、ヒータ駆動開始を指示する制御信号をヒータ駆動部75に出力する。これにより、駆動信号出力部87は、交流電源40からヒータ73a〜73jへの給電をヒータ駆動部75に行わせて、ヒータ73a〜73jの駆動状態をオン状態にする。一方、駆動信号出力部87は、タイミングカウンタ86からカウント開始の旨を示す電気信号を受信したタイミングに、ヒータ駆動停止を指示する制御信号をヒータ駆動部75に出力する。これにより、駆動信号出力部87は、交流電源40からヒータ73a〜73jへの給電の遮断をヒータ駆動部75に行わせて、ヒータ73a〜73jの駆動状態をオフ状態にする。
【0073】
ここで、本実施の形態にかかる画像形成装置1において実行されるヒータ制御プログラムは、図1に示したROM13等に予め組み込まれて提供される。CPU11は、ROM13等からヒータ制御プログラムを読み出して実行する。これにより、CPU11は、図5に示す電圧ピーク検知部81、周波数検知部82、ゼロクロス信号生成回路83、無効期間決定部84、ゼロクロス信号判定部85、タイミングカウンタ86、および駆動信号出力部87の各機能を実現して、これらの各機能をヒータ制御部12(コンピュータ)に実行させる。なお、ヒータ制御部12は、CPU11以外のハードウェア構成によって実現されてもよい。
【0074】
(ヒータ制御方法)
つぎに、本実施の形態にかかる画像形成装置1のヒータ制御方法について説明する。図7は、本実施の形態にかかる画像形成装置のヒータ制御方法の一例を示すフローチャートである。図8は、本実施の形態のヒータ制御における処理タイミングの一例を示すタイミングチャートである。本実施の形態にかかる画像形成装置1のヒータ制御方法は、CPU11がヒータ制御プログラムを実行して、図7に示すステップS101〜S109の各処理ステップをヒータ制御部12に適宜行わせることにより、実現される。
【0075】
すなわち、本実施の形態におけるヒータ制御方法において、ヒータ制御部12は、図7に示すように、ウェブ5に塗布された処理液60を乾燥する乾燥機構70のヒータ73a〜73j(図3,4参照)に対して給電を行う交流電源40の電源電圧を検知する(ステップS101)。このステップS101において、電圧ピーク検知部81は、交流電源40の電源電圧値を時系列に沿って連続的または断続的にモニタリングし、これによって取得した各電源電圧値をもとに、交流電源40の電源電圧ピーク値を検知する。また、周波数検知部82は、交流電源40の電源電圧の周波数(電源周波数)を時系列に沿って連続的または断続的にモニタリングし、これにより、この交流電源40の電源周波数を検知する。
【0076】
ついで、ヒータ制御部12は、検知した電源電圧のゼロクロス信号を生成する(ステップS102)。このステップS102において、ゼロクロス信号生成回路83は、交流電源40の電源電圧値を時系列に沿って連続的または断続的にモニタリングして、この交流電源40の電源電圧のゼロクロスポイントを検知する。続いて、ゼロクロス信号生成回路83は、検知したゼロクロスポイントを示すゼロクロス信号を生成する。この際、ゼロクロス信号生成回路83は、例えば図8に示すように、電源電圧が0[V]を通過する前後において信号レベルが変化するゼロクロス信号を生成する。
【0077】
つぎに、ヒータ制御部12は、ステップS101による電源電圧の検知結果に応じてゼロクロス信号検知の無効期間を決定する(ステップS103)。このステップS103において、無効期間決定部84は、少なくとも電源電圧ピーク値に応じて、ゼロクロス信号の検知を無効とする無効期間を、電源電圧ピーク値の変化に伴いタイミングを変化させるゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に決定する。
【0078】
具体的には、本実施の形態において、無効期間決定部84は、電圧ピーク検知部81によって検知された電源電圧ピーク値と、周波数検知部82によって検知された電源周波数とを取得する。また、無効期間決定部84は、HDD17からデータテーブルを読み出す。このデータテーブルは、例えば図6に示したように、電源周波数と電源電圧ピーク値の範囲と設定無効時間との対応関係を示すものである。無効期間決定部84は、このデータテーブルの中から、電圧ピーク検知部81による電源電圧ピーク値と周波数検知部82による電源周波数とに対応する設定無効時間を抽出する。ついで、無効期間決定部84は、この抽出した設定無効時間の時間幅を有する無効期間を、例えば図8に示すように、ゼロクロス信号の立ち下がりのタイミングから次の立ち下がりよりも所定時間前のタイミングまでの期間に決定する。すなわち、本実施の形態における無効期間は、ゼロクロス信号の立ち下がりのタイミングから、次の立ち下がり側に設定無効時間分、離間したタイミングまでの期間となる。また、このような無効期間以外の期間は、ゼロクロス信号の検知を有効とする有効期間となる。
【0079】
その後、ヒータ制御部12は、ヒータ73a〜73jの各表面温度をもとに、ヒータ駆動タイミングの変更が必要か否かを判断する(ステップS104)。このステップS104において、タイミングカウンタ86は、温度検知部74a〜74jからフィードバックされたヒートローラ72a〜72jの各表面温度を取得する。これらのヒートローラ72a〜72jの各表面温度と目標温度との偏差が所定値以上である場合、タイミングカウンタ86は、ヒータ駆動タイミングの変更が必要であると判断する。
【0080】
ヒータ駆動タイミングの変更が必要である場合(ステップS104,Yes)、ヒータ制御部12は、タイミングカウンタ86の値を変更して、ヒートローラ72a〜72jに対応するヒータ73a〜73jの駆動タイミングを適宜変更する(ステップS105)。一方、ヒータ駆動タイミングの変更が必要ではない場合(ステップS104,No)、ヒータ制御部12は、ステップS105を行わずにステップS106に進む。
【0081】
続いて、ヒータ制御部12は、ゼロクロス信号の検知の有無を判断する(ステップS106)。このステップS106において、ゼロクロス信号判定部85は、ゼロクロス信号生成回路83からゼロクロス信号を受信し、且つ、無効期間決定部84から無効期間または有効期間を示す電気信号を受信する。ゼロクロス信号判定部85は、無効期間決定部84からの入力信号に基づく無効期間に、ゼロクロス信号生成回路83から入力されたゼロクロス信号を無効とする。この場合、ゼロクロス信号判定部85は、ゼロクロス信号を検知しておらず(ステップS106,No)、ヒータ制御部12は、このステップS106を繰り返す。
【0082】
一方、ステップS106において、ゼロクロス信号判定部85は、無効期間決定部84からの入力信号に基づく有効期間に、ゼロクロス信号生成回路83から入力されたゼロクロス信号を有効とする。ついで、ゼロクロス信号判定部85は、この有効期間におけるゼロクロス信号を、検知すべき正常波形のゼロクロス信号と判定して検知し(ステップS106,Yes)、ゼロクロス信号を検知した旨を示す電気信号をタイミングカウンタ86に送信する。
【0083】
ステップS106においてゼロクロス信号を検知した場合、ヒータ制御部12は、乾燥機構70のヒータ駆動のためのカウントを開始する(ステップS107)。
【0084】
ステップS107において、タイミングカウンタ86は、ゼロクロス信号判定部85からゼロクロス信号検知の旨の電気信号を受信する。タイミングカウンタ86は、図8に示すように、この電気信号を受信したタイミング、すなわち、ゼロクロス信号検知のタイミングに、ヒータ駆動制御のタイミングを決定すべくカウントを開始する。この際、タイミングカウンタ86は、例えばデフォルト値から零値に向かってカウントダウンする。これと同時に、タイミングカウンタ86は、カウント開始の旨を示す電気信号を駆動信号出力部87に送信する。
【0085】
ステップS108においてカウントが完了していない場合(ステップS108,No)、タイミングカウンタ86は、例えばデフォルト値から零値に向かってカウントダウンを継続する。
【0086】
一方、ステップS108においてカウントが完了した場合(ステップS108,Yes)、ヒータ制御部12は、上述したステップS106において検知した正常波形のゼロクロス信号に基づいて、ヒータ73a〜73jの給電を制御する制御信号をヒータ駆動部75に出力して、ヒータ73a〜73jを駆動開始させる(ステップS109)。その後、ヒータ制御部12は、上述したステップS104に戻り、このステップS104以降の処理ステップを適宜繰り返す。
【0087】
ステップS109において、タイミングカウンタ86は、図8に示すようにカウント値が零値となったタイミングに、カウント完了の旨を示す電気信号を駆動信号出力部87に送信する。駆動信号出力部87は、タイミングカウンタ86からカウント完了の旨を示す電気信号を受信する。駆動信号出力部87は、図8に示すように、この電気信号を受信したタイミング、すなわち、カウント完了のタイミングに、ヒータ駆動開始(オン状態)を指示する制御信号をヒータ駆動部75に出力する。ヒータ駆動部75は、この制御信号に基づいてオンオフ制御され、この結果、交流電源40からヒータ73a〜73jへ給電して、ヒータ73a〜73jの駆動状態をオン状態にする。オン状態のヒータ73a〜73jには、例えば図8に示すように、タイミングカウンタ86によるカウント完了のタイミングからゼロクロス信号判定部85によるゼロクロス信号検知のタイミングまでの期間、交流電源40から電源電圧に応じた交流電流(ヒータ電流)が供給される。
【0088】
ここで、従来のヒータ制御におけるゼロクロス信号の検知処理(以下、従来のゼロクロス信号検知処理と称する)では、ゼロクロス信号の誤検知を防止することが困難である。図9は、従来のゼロクロス信号検知処理を説明する図である。図9には、上述した交流電源40において想定される比較的高い電源電圧ピーク値Vp1を有する電源電圧(以下、電源電圧(大)と称する)および比較的低い電源電圧ピーク値Vp2を有する電源電圧(以下、電源電圧(小)と称する)の各波形が図示されている。また、電源電圧(大)のゼロクロス信号および電源電圧(小)のゼロクロス信号の各波形が図示されている。図9に示すように、電源電圧(大)のゼロクロス信号は、電源電圧(大)が立ち下がり閾値電圧Vthlに達するタイミングに立ち下がり、電源電圧(大)が立ち上がり閾値電圧Vthhに達するタイミングに立ち上がる。電源電圧(大)のゼロクロス信号幅Wbは、電源電圧(大)のゼロクロス信号の立ち下がりタイミングから立ち上がりタイミングまでの時間幅である。一方、電源電圧(小)のゼロクロス信号は、電源電圧(小)が立ち下がり閾値電圧Vthlに達するタイミングに立ち下がり、電源電圧(小)が立ち上がり閾値電圧Vthhに達するタイミングに立ち上がる。電源電圧(小)のゼロクロス信号幅Waは、電源電圧(小)のゼロクロス信号の立ち下がりタイミングから立ち上がりタイミングまでの時間幅である。なお、立ち下がり閾値電圧Vthlおよび立ち上がり閾値電圧Vthhは、図5に示したゼロクロス信号生成回路83に電源電圧値の閾値として設定される。
【0089】
従来のゼロクロス信号検知処理では、図9に示すように、電源電圧が0[V]となるポイントを中心として、その前後一定時間以外のゼロクロス信号を無効とするように、無効期間M1が決定される。この際、電源電圧ピーク値の変化が加味されていないため、比較的低い電源電圧ピーク値Vp2の電源電圧(小)に対応するゼロクロス信号幅Waを固定期間とし、この固定期間を除く時間幅T1の期間を、無効期間M1に固定して決定せざるを得ない。なお、ゼロクロス信号幅Waは、交流電源40の電源電圧ピーク値の低下に伴って長くなり、電源電圧ピーク値Vp2が交流電源40において想定される最も低い値(例えば255[V])である場合、最も長い時間幅(例えば2.7[ミリ秒])となる。
【0090】
このような固定の無効期間M1には、図9に示すように、電源電圧(小)のゼロクロス信号の立ち上がりのエッジ近傍領域90から次の立ち下がりのエッジ近傍領域90までの期間が含まれる。エッジ近傍領域90は、ゼロクロス信号の立ち上がりまたは立ち下がりの近傍領域である。一般に、ゼロクロス信号の波形乱れは、ゼロクロス信号のエッジ近傍領域90において発生し易い。
【0091】
しかし、上述した電源電圧ピーク値Vp2が、図9に示す比較的高い電源電圧ピーク値Vp1に変化した場合、これに伴ってゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングが変化する。すなわち、図9に示すように、電源電圧ピーク値Vp1を有する電源電圧(大)のゼロクロス信号の立ち下がりタイミングは、電源電圧(小)のゼロクロス信号の立ち下がりタイミングよりも遅くなる。この電源電圧(大)のゼロクロス信号の立ち上がりタイミングは、電源電圧(小)のゼロクロス信号の立ち上がりタイミングよりも早くなる。これにより、電源電圧(大)のゼロクロス信号幅Wbは、図9に示すように、電源電圧(小)のゼロクロス信号幅Waに比べて短くなる。例えば、電源電圧ピーク値Vp1が交流電源40において想定される最も高い値(例えば373[V])である場合、ゼロクロス信号幅Wbは、最も短い時間幅(例えば1.4[ミリ秒])となる。上述したようにゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングが変化した結果、無効期間M1の時間幅T1は、図9に示すように、電源電圧(大)のゼロクロス信号のエッジ近傍領域90を全くカバーできておらず、ゼロクロス信号の波形乱れを生じ易いエッジ近傍領域90が、無効期間M1以外の期間、すなわち、ゼロクロス信号検知の有効期間R1に存在することになる。このことから、エッジ近傍領域90のゼロクロス信号の検知を全く無効にすることができず、この結果、ゼロクロス信号の波形乱れに起因してゼロクロス信号を誤検知してしまう。ゼロクロス信号の誤検知は、上述したようにゼロクロス信号の検知に基づいてヒータ制御部12が行うヒータ駆動制御の精度を損なう。
【0092】
上述した従来のゼロクロス信号検知処理に対し、本実施の形態のヒータ制御におけるゼロクロス信号の検知処理(以下、本実施形態のゼロクロス信号検知処理と称する)では、以下に示す理由により、ゼロクロス信号の誤検知を精度よく防止することができる。図10は、本実施形態のゼロクロス信号検知処理を説明する図である。図10には、上述した図9と同様に、電源電圧ピーク値Vp1を有する電源電圧(大)の波形と、電源電圧ピーク値Vp2を有する電源電圧(小)の波形と、電源電圧(大)のゼロクロス信号および電源電圧(小)のゼロクロス信号の各波形とが図示されている。また、図10に示す立ち下がり閾値電圧Vthl、立ち上がり閾値電圧Vthh、ゼロクロス信号幅Wa,Wbは、図9に示したものと同様である。
【0093】
本実施形態のゼロクロス信号検知処理では、上述したヒータ73a〜73jに電力を供給する交流電源40の電源電圧ピーク値および電源周波数を検知し、検知した電源電圧ピーク値および電源周波数に応じて、図10に示すように、ゼロクロス信号検知の無効期間M2が決定される。この際、無効期間M2の時間幅T2は、例えば図6に示したデータテーブルに含まれる設定無効時間t1〜t16のうちの電源電圧ピーク値および電源周波数の検知結果に対応する設定無効時間に決定される。このような無効期間M2は、電源電圧ピーク値や電源周波数の変化に伴ってゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングが変化しても、電源電圧ピーク値および電源周波数の検知結果に応じて、変化後のゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングに追従するように変化する。
【0094】
例えば図10に示すように、無効期間M2は、電源電圧(小)の電源電圧ピーク値Vp2および電源周波数に応じて、電源電圧(小)のゼロクロス信号の立ち下がりタイミングから次の立ち下がりタイミング直前までの時間幅T2の期間に決定される。この無効期間M2には、電源電圧(小)のゼロクロス信号の立ち上がりのエッジ近傍領域90から次の立ち上がりのエッジ近傍領域90を経て次の立ち下がり直前までの期間が含まれる。すなわち、ゼロクロス信号の波形乱れを生じ易いエッジ近傍領域90の大部分(例えば75%)を、無効期間M2の期間でカバーすることができる。その後、電源電圧ピーク値Vp2が電源電圧ピーク値Vp1に変化(増加)した場合、図10に示すように、ゼロクロス信号の立ち下がりおよび立ち上がりの各タイミングは、上述した図9の場合と同様に変化する。これに伴い、電源電圧(大)のゼロクロス信号幅Wbは、図10に示すように、電源電圧(小)のゼロクロス信号幅Waに比べて短くなる。無効期間M2は、このようなゼロクロス信号の変化に追従して変化する。すなわち、図10に示すように、無効期間M2は、電源電圧(大)の電源電圧ピーク値Vp1の検知結果に応じて、電源電圧(大)のゼロクロス信号の立ち下がりタイミングから次の立ち下がりタイミング直前までの時間幅T2の期間に変更して決定される。この変更後の無効期間M2によって、波形乱れを生じ易いエッジ近傍領域90の大部分(例えば75%)を、無効期間M2の期間でカバーすることができる。
【0095】
上述したように、本実施形態の無効期間M2は、低い電源電圧ピーク値Vp2に対応してゼロクロス信号幅Waが最も長くなる場合であっても、高い電源電圧ピーク値Vp1に対応してゼロクロス信号幅Wbが最も短くなる場合であっても、常に、ゼロクロス信号のエッジ近傍領域90を漏れなく含む。このような無効期間M2を決定することにより、エッジ近傍領域90のゼロクロス信号の検知精度を向上することができる。この結果、無効期間M2以外の有効期間R2に正常波形のゼロクロス信号を検知できるとともに、ゼロクロス信号の波形乱れを回避できることから、ゼロクロス信号の誤検知を従来に比べて精度よく防止することができる。
【0096】
このような無効期間M2の時間幅T2として、例えば図6に示したデータテーブルの設定無効時間t1〜t16のうちの何れかが採用される。このデータテーブルには、図6に示したように、電源周波数の条件として、50[Hz]および60[Hz]が含まれ、電源電圧ピーク値の条件として、269[V]未満、269[V]以上〜283[V]未満、283[V]以上〜297[V]未満、297[V]以上〜312[V]未満、312[V]以上〜326[V]未満、326[V]以上〜340[V]未満、340[V]以上〜354[V]未満、354[V]以上が含まれる。また、このデータテーブルには、これらの電源周波数および電源電圧ピーク値の各条件別に、設定無効時間t1〜t16[秒]が各々対応付けられている。本実施形態のゼロクロス信号検知処理では、このデータテーブルのうち、電源周波数の検知結果に合う電源周波数の条件と電源電圧ピーク値の検知結果に合う電源電圧ピーク値の条件とに対応する設定無効時間(t1〜t16の何れか)を無効期間M2の時間幅T2として設定する。この際、無効期間M2の時間幅T2は、回路素子のばらつき分の時間(例えば1.3[ミリ秒])を考慮されてもよい。無効期間決定部84は、このような時間幅T2の無効期間M2を図10に示すように決定し、ゼロクロス信号の検知を無効とする期間、例えばゼロクロス信号の立ち下がり等の基準タイミングから設定無効時間が経過するまでの期間、無効期間M2を示す電気信号をゼロクロス信号判定部85に送信する。
【0097】
以上、説明したように、本実施の形態では、印刷対象物に塗布された処理液を乾燥するヒータに対して電力を供給する交流電源の電源電圧ピーク値を検知し、検知した電源電圧ピーク値に応じて、電源電圧ピーク値の変化に伴いタイミングが変化するゼロクロス信号の立ち下がりおよび立ち上がりを含む期間に、電源電圧のゼロクロス信号の検知を無効とする無効期間を決定し、無効期間内のゼロクロス信号を無効とし、無効期間以外の期間(有効期間)内のゼロクロス信号を、正常波形のゼロクロス信号と判定して検知し、検知した正常波形のゼロクロス信号に基づいて、ヒータに対する給電を制御する制御信号をヒータ駆動部に出力している。
【0098】
このため、ゼロクロス信号の立ち下がりおよび立ち上がりのタイミング変化等のゼロクロス信号のばらつきのパラメータとして支配的である電源電圧ピーク値を加味して、ゼロクロス信号検知の無効期間を決定することができる。この無効期間においてゼロクロス信号を無効とすることにより、ゼロクロス信号のエッジ近傍領域(立ち下がり近傍領域、立ち上がり近傍領域)で発生し易いゼロクロス信号の波形乱れを回避することができる。この結果、たとえゼロクロス信号のエッジ近傍領域にゼロクロス信号の波形乱れが発生した場合であっても、ゼロクロス信号の波形乱れに起因するゼロクロス信号の誤検知を防止できるとともに、検知すべき正常波形のゼロクロス信号をより正しく検知することができる。このように正しく検知したゼロクロス信号に基づいてヒータ駆動部を制御することにより、ゼロクロス信号の波形乱れの影響を受けることなく、上述したヒータに供給する電力を正しく制御することができる。
【0099】
また、本実施の形態では、電源電圧ピーク値の範囲と無効期間の時間幅を示す設定無効時間とを対応付けたデータテーブルを用い、このデータテーブルの中から、電源電圧ピーク値の検知結果に対応する設定無効時間を抽出し、抽出した設定無効時間を、ゼロクロス信号検知の無効期間の時間幅として設定している。このため、電源電圧ピーク値に応じて変化するゼロクロス信号の立ち下がりおよび立ち上がりを無効期間内に存在させるために必要な無効期間の時間幅を簡易に設定することができる。この結果、ゼロクロス信号の波形乱れが発生し易いエッジ近傍領域を漏れなく含む時間幅の無効期間を、電源電圧ピーク値に応じてフレキシブルに決定することができる。
【0100】
さらに、本実施の形態では、上述した交流電源の電源電圧の周波数(電源周波数)を検知し、電源電圧ピーク値の範囲と電源周波数と設定無効時間とを対応付けたデータテーブルを用い、このデータテーブルの中から、電源電圧ピーク値の検知結果と電源周波数の検知結果とに対応する設定無効時間を抽出し、抽出した設定無効時間を、ゼロクロス信号検知の無効期間の時間幅として設定している。このため、電源電圧ピーク値および電源周波数に応じて変化するゼロクロス信号の立ち下がりおよび立ち上がりを無効期間内に存在させるために必要な無効期間の時間幅を簡易に設定することができる。この結果、ゼロクロス信号の波形乱れが発生し易いエッジ近傍領域を漏れなく含む時間幅の無効期間を、電源電圧ピーク値および電源周波数に応じてフレキシブルに決定することができる。
【0101】
また、本実施の形態では、ゼロクロス信号の立ち下がりのタイミングから次の立ち下がりよりも所定時間前のタイミングまでの期間を、ゼロクロス信号検知の無効期間として決定している。このため、ゼロクロス信号の波形乱れが発生し易いエッジ近傍領域を漏れなく含む無効期間を精度よく決定することができ、この結果、ゼロクロス信号の波形乱れに起因するゼロクロス信号の誤検知を確実に防止することができる。
【0102】
一方、本実施の形態では、上述したように、電源電圧ピーク値等と設定無効時間とを対応付けたデータテーブル(図6参照)を用いてゼロクロス信号検知の無効期間を決定していたが、このデータテーブルを用いる代わりに、所定の計算式に基づいて無効期間を算出することができる。すなわち、本実施の形態において、図5に示した無効期間決定部84は、電圧ピーク検知部81によって検知された電源電圧ピーク値をもとに、ゼロクロス信号検知の無効期間の時間幅を算出し、算出した時間幅を有するゼロクロス信号検知の無効期間を決定することができる。これにより、無効期間決定部84は、ゼロクロス信号の波形乱れが発生し易いエッジ近傍領域を漏れなく含む時間幅の無効期間を、電源電圧ピーク値に応じて決定することができる。この結果、上述したデータテーブルを用いてゼロクロス信号検知の無効期間を決定した場合と同様の作用効果を奏することができる。
【0103】
また、無効期間を算出処理によって決定する実施の形態において、上述した交流電源の電源電圧の周波数(電源周波数)を検知する周波数検知手段を備えるようにし、電源電圧ピーク値および電源周波数の各検知結果に応じて無効期間を算出することができる。すなわち、本実施の形態において、無効期間決定部84は、電圧ピーク検知部81によって検知された電源電圧ピーク値と、周波数検知部82によって検知された電源周波数とをもとに、無効期間の時間幅を算出し、算出した時間幅を有するゼロクロス信号検知の無効期間を決定することができる。これにより、無効期間決定部84は、ゼロクロス信号の波形乱れが発生し易いエッジ近傍領域を漏れなく含む時間幅の無効期間を、電源電圧ピーク値および電源周波数に応じて決定することができる。この結果、上述したデータテーブルを用いてゼロクロス信号検知の無効期間を決定した場合と同様の作用効果を奏することができる。
【0104】
なお、上述した実施の形態では、交流電源40の電源電圧ピーク値および電源周波数を検知し、これらの検知した電源電圧ピーク値および電源周波数に応じて、ゼロクロス信号検知の無効期間を決定していたが、これに限定されず、電源周波数を用いずに電源電圧ピーク値の検知結果に応じてゼロクロス信号検知の無効期間を決定してもよい。具体的には、電源周波数が一定(例えば50[Hz]または60[Hz])の条件であれば、無効期間決定部84は、電圧ピーク検知部81によって検知された電源電圧ピーク値と上述したデータテーブルとを用い、あるいは、この検知された電源電圧ピーク値をもとに演算処理を行い、ゼロクロス信号無効の無効期間を決定してもよい。この場合、ヒータ制御部12は、電源周波数を検知する周波数検知部82を備えていなくてもよい。また、上述したデータテーブルは、電源電圧ピーク値の範囲と設定無効時間とを対応付けたものであってもよい。
【0105】
また、上述した実施の形態では、ヒータローラ72a〜72jの各表面温度を個別にモニタリングし、これらの各表面温度の検知結果と目標温度との偏差をもとに、ヒータ73a〜73jの駆動状態を個別に制御していたが、これに限定されず、ヒータ制御部12は、ヒータ駆動部の制御を通じ、ヒータローラ72a〜72jの各表面温度と目標温度との偏差をもとにヒータ73a〜73jの駆動状態を一括して制御してもよい。
【0106】
さらに、上述した実施の形態では、ウェブ5に塗布された処理液60を乾燥する乾燥機構70が10個のヒートローラ72a〜72jを備える構成としていたが、乾燥機構70が備えるヒートローラの個数は、10個に限定されない。乾燥機構70は、1個以上(望ましくは複数)のヒートローラを備えたものであってよい。また、乾燥機構70が備えるヒータおよび温度検知部の各個数は、上述した10個に限定されず、ヒートローラの個数と同数であってもよい。すなわち、本実施の形態において、乾燥機構70のヒートローラ、ヒータ、および温度検知部の各個数は特に問われない。
【0107】
また、上述した実施の形態では、CPU11が実行するプログラムを予めROM13等に格納していたが、これに限らず、本実施の形態にかかる画像形成装置1で実行されるプログラムは、インストール可能な形式または実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録して提供するように構成してもよい。
【0108】
さらに、本実施の形態にかかる画像形成装置1で実行されるプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成してもよい。さらに、本実施の形態にかかる画像形成装置1で実行されるプログラムをインターネット等のネットワーク経由で提供または配布するように構成してもよい。
【0109】
また、上述した実施の形態では、本発明の画像形成装置を、コピー機能、プリンタ機能、スキャナ機能およびファクシミリ機能のうち少なくとも2つの機能を有する複合機に適用した例を挙げて説明するが、複写機、プリンタ、スキャナ装置、ファクシミリ装置等の画像形成装置であればいずれにも適用することができる。
【0110】
また、上述した実施の形態により本発明が限定されるものではなく、上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。その他、上述した実施の形態に基づいて当業者等によりなされる他の実施の形態、実施例および運用技術等は全て本発明に含まれる。
【符号の説明】
【0111】
1 画像形成装置
5 ウェブ
10 制御部
11 CPU
12 ヒータ制御部
13 ROM
14 RAM
15 NVRAM
16 ASIC
17 HDD
18 操作パネル
20 I/F部
30 FCU
40 交流電源
51a〜51i ガイドローラ
52 フィードインローラ
53 フィードインニップローラ
54 パスシャフト
55 エッジガイド
56 テンションシャフト
57 インフィードローラ
58,64 フィードニップローラ
59 第1のダンサーユニット
59a,65a,65b ダンサーローラ
59b,65c 可動フレーム
60 処理液
61 表面側処理液塗布部
61a,62a 塗布ローラ
62 裏面側処理液塗布部
63 アウトフィードローラ
65 第2のダンサーユニット
70 乾燥機構
71 加熱搬送部
72a〜72j ヒートローラ
73a〜73j ヒータ
74a〜74j 温度検知部
75 ヒータ駆動部
81 電圧ピーク検知部
82 周波数検知部
83 ゼロクロス信号生成回路
84 無効期間決定部
85 ゼロクロス信号判定部
86 タイミングカウンタ
87 駆動信号出力部
90 エッジ近傍領域
M1,M2 無効期間
R1,R2 有効期間
【先行技術文献】
【特許文献】
【0112】
【特許文献1】特開2013−68803号公報
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10