(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2017-124959(P2017-124959A)
(43)【公開日】2017年7月20日
(54)【発明の名称】気体分子吸蔵ナノ材料、ナノ材料組成物及びナノ材料組成物の製造方法
(51)【国際特許分類】
C01B 32/152 20170101AFI20170623BHJP
C01B 32/158 20170101ALI20170623BHJP
B01J 20/20 20060101ALI20170623BHJP
B01J 20/28 20060101ALI20170623BHJP
B82Y 30/00 20110101ALI20170623BHJP
【FI】
C01B31/02 101F
B01J20/20 A
B01J20/28 Z
B01J20/20 C
B82Y30/00
【審査請求】未請求
【請求項の数】15
【出願形態】OL
【全頁数】10
(21)【出願番号】特願2016-6321(P2016-6321)
(22)【出願日】2016年1月15日
(71)【出願人】
【識別番号】594033813
【氏名又は名称】株式会社大成化研
(74)【代理人】
【識別番号】100127203
【弁理士】
【氏名又は名称】奈良 泰宏
(74)【代理人】
【識別番号】100127708
【弁理士】
【氏名又は名称】木暮 隆一郎
(72)【発明者】
【氏名】松原 賢政
【テーマコード(参考)】
4G066
4G146
【Fターム(参考)】
4G066AA04B
4G066AB05B
4G066AB06B
4G066AB07B
4G066BA16
4G066BA20
4G066CA27
4G066CA35
4G066CA37
4G066CA38
4G066CA39
4G066CA51
4G146AA11
4G146AA13
4G146AA15
4G146AB06
4G146AC02A
4G146AD32
4G146CB10
4G146CB12
4G146CB20
4G146CB24
4G146CB32
4G146CB35
(57)【要約】
【課題】充分な量の気体分子を供給できる上、汎用的な分散媒への分散性を高めることにより様々な用途に適用できる気体分子吸蔵ナノ材料、これを含むナノ材料組成物及びナノ材料組成物の製造方法を提供することを目的とする。
【解決手段】本発明の一実施形態の気体分子吸蔵ナノ材料は、炭素含有ナノ材料からなる母材と、前記母材内に吸蔵された気体分子とを含み、前記気体分子の吸蔵量が前記母材100質量部に対して1質量部以上の気体分子吸蔵ナノ材料である。本発明の一実施形態のナノ材料組成物は、前記気体分子吸蔵ナノ材料と、分散媒とを含有するナノ材料組成物である。本発明の一実施形態のナノ材料組成物の製造方法は、炭素含有ナノ材料からなる母材、気体分子及び分散媒を混合する混合工程と、前記混合工程により得られた混合物を10MPa以上で加圧する加圧工程とを備える。
【選択図】なし
【特許請求の範囲】
【請求項1】
炭素含有ナノ材料からなる母材と、
前記母材内に吸蔵された気体分子と
を含み、
前記気体分子の吸蔵量が前記母材100質量部に対して1質量部以上である気体分子吸蔵ナノ材料。
【請求項2】
前記炭素含有ナノ材料が、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン及びフラーレンからなる群より選択される少なくとも1種である請求項1に記載の気体分子吸蔵ナノ材料。
【請求項3】
前記炭素含有ナノ材料がカーボンナノチューブである請求項2に記載の気体分子吸蔵ナノ材料。
【請求項4】
前記カーボンナノチューブの平均直径が0.01nm以上500nm以下である請求項3に記載の気体分子吸蔵ナノ材料。
【請求項5】
前記カーボンナノチューブが多層カーボンナノチューブである請求項3又は請求項4に記載の気体分子吸蔵ナノ材料。
【請求項6】
前記炭素含有ナノ材料の表面の少なくとも一部が極性基で修飾されている請求項1から請求項5のいずれか1項に記載の気体分子吸蔵ナノ材料。
【請求項7】
前記極性基が、水酸基、カルボニル基及びカルボキシ基からなる群より選択される少なくとも1種である請求項6に記載の気体分子吸蔵ナノ材料。
【請求項8】
前記気体分子が、H2、N2、O2、CH4、CO、CO2及び希ガスからなる群より選択される少なくとも1種である請求項1から請求項7のいずれか1項に記載の気体分子吸蔵ナノ材料。
【請求項9】
請求項1から請求項8のいずれか1項に記載の気体分子吸蔵ナノ材料と、
分散媒と
を含有するナノ材料組成物。
【請求項10】
前記分散媒が、水及び有機溶媒の少なくとも一方を含む請求項9に記載のナノ材料組成物。
【請求項11】
前記分散媒がアルコールである請求項9に記載のナノ材料組成物。
【請求項12】
前記分散媒が、水、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノール、1−ペンタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、スチレン、酢酸エチル、トルエン、キシレン、メチルエチルケトン、アセトン及びエンジンオイルからなる群より選択される少なくとも1種である請求項9に記載のナノ材料組成物。
【請求項13】
炭素含有ナノ材料からなる母材、気体分子及び分散媒を混合する混合工程と、
前記混合工程により得られた混合物を10MPa以上で加圧する加圧工程と
を備えるナノ材料組成物の製造方法。
【請求項14】
前記加圧工程において100MPa以下で加圧する請求項13に記載のナノ材料組成物の製造方法。
【請求項15】
前記加圧工程において加熱しながら加圧する請求項13又は請求項14に記載のナノ材料組成物の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、気体分子が吸蔵された気体分子吸蔵ナノ材料、これを含むナノ材料組成物及びナノ材料組成物の製造方法に関するものである。
【背景技術】
【0002】
近年、炭素含有材料に気体分子を吸蔵させた気体分子吸蔵材料を様々な用途に適用する検討が行われており、気体分子吸蔵材料の製造方法についても種々検討されている。
【0003】
例えば、下記特許文献1の実施例では、炭素含有材料である活性炭をタンク内に収納した後、このタンク内に水素ガスを供給することにより、水素分子を吸蔵させた活性炭を得る方法が提案されている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2001−220101号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかし、上記特許文献1に記載された方法では、活性炭に充分な量の水素分子を吸蔵させることが困難であるため、例えば燃料電池自動車の動力源等のように大量の燃料(水素ガス)が必要な用途には適用できない場合がある。また、炭素含有材料として用いた活性炭は、水等の汎用的な分散媒に分散しにくいため、例えば流体として使用する用途等に適用することが困難である。
【0006】
そこで、本発明においては、充分な量の気体分子を供給できる上、汎用的な分散媒への分散性を高めることにより様々な用途に適用できる気体分子吸蔵ナノ材料、これを含むナノ材料組成物及びナノ材料組成物の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
(1)本発明の気体分子吸蔵ナノ材料は、炭素含有ナノ材料からなる母材と、前記母材内に吸蔵された気体分子とを含み、前記気体分子の吸蔵量が前記母材100質量部に対して1質量部以上の気体分子吸蔵ナノ材料である。
【0008】
前記(1)の気体分子吸蔵ナノ材料によれば、気体分子の吸蔵量が母材100質量部に対して1質量部以上であるため、大量の気体分子を必要とする用途に気体分子供給源として適用しても充分な量の気体分子を供給できる。また、母材として軽量かつサイズが小さい炭素含有ナノ材料を用いるため、水等の汎用的な分散媒に容易に分散させることができる。よって、流体として使用する用途等にも適用できるため、様々な用途への展開が可能となる。
【0009】
なお、前記「ナノ材料」とは、一次元(縦方向、横方向及び高さ方向のうち最小となる一辺)の平均長さが1000nmより小さい物質を指す。また、前記「平均長さ」とは、電子顕微鏡で観察されるナノ材料の単体の一次元長さの平均値であり、例えば電子顕微鏡で任意に10個のナノ材料の単体を選択し、これらの単体の一次元長さを平均した値である。
【0010】
(2)前記(1)の気体分子吸蔵ナノ材料において、前記炭素含有ナノ材料としては、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン及びフラーレンからなる群より選択される少なくとも1種が好ましい。この構成によれば、炭素骨格により形成された網目の空隙内に気体分子を捕捉できるため、気体分子の吸蔵性能をより向上させることができる。
【0011】
(3)前記(2)の気体分子吸蔵ナノ材料において、前記炭素含有ナノ材料としてはカーボンナノチューブが好ましい。カーボンナノチューブは、安定な筒状構造をもつ炭素材料であるため、その内部に気体分子を取り込むことができる。その結果、気体分子の吸蔵性能を更に向上させることができる。
【0012】
(4)前記(3)の気体分子吸蔵ナノ材料において、前記カーボンナノチューブの平均直径としては0.01nm以上500nm以下が好ましい。この構成によれば、気体分子の吸蔵性能を更に向上させつつ、分散媒への分散性をより向上させることができる。なお、前記「平均直径」は、電子顕微鏡で観察されるカーボンナノチューブの単体の直径の平均値であり、例えば電子顕微鏡で任意に10個のカーボンナノチューブの単体を選択し、これらのカーボンナノチューブの直径を平均した値である。
【0013】
(5)前記(3)又は(4)の気体分子吸蔵ナノ材料において、前記カーボンナノチューブとしては多層カーボンナノチューブが好ましい。この構成によれば、母材の径方向の中央部の空間だけでなく、カーボンナノチューブ層間の隙間にも気体分子を吸蔵できるため、気体分子の吸蔵性能を更に向上させることができる。なお、前記「多層カーボンナノチューブ」とは、グラファイト層を2層以上重ねて筒状に巻いた構造を有するカーボンナノチューブを指す。
【0014】
(6)前記(1)から(5)の気体分子吸蔵ナノ材料において、前記炭素含有ナノ材料の表面の少なくとも一部が極性基で修飾されていてもよい。この構成の場合、分散媒として水、アルコール等の極性媒体を使用すると、分散性をより向上させることができる。
【0015】
(7)前記(6)の気体分子吸蔵ナノ材料において、前記極性基が、水酸基、カルボニル基及びカルボキシ基からなる群より選択される少なくとも1種であるとよい。この構成によれば、水、アルコール等の極性媒体への分散性を更に向上させることができる。なお、カルボニル基で修飾される場合としては、カーボンナノチューブ表面にカルボニル基が付加される場合だけでなく、カーボンナノチューブ表面の活性点(欠陥)への酸素原子の付加によりカルボニル基が形成される場合も含む。また、カルボキシ基で修飾される場合としては、カーボンナノチューブ表面にカルボキシ基が付加される場合だけでなく、カーボンナノチューブ表面の活性点(欠陥)への酸素原子の付加によりカルボニル基が形成された後、このカルボニル基への水酸基の付加によりカルボキシ基が形成される場合も含む。
【0016】
(8)前記(1)から(7)の気体分子吸蔵ナノ材料において、前記気体分子としては、H
2、N
2、O
2、CH
4、CO、CO
2及び希ガスからなる群より選択される少なくとも1種であることが好ましい。これらの気体分子は汎用性が高いため、用途展開がより容易となる。
【0017】
(9)本発明のナノ材料組成物は、上述した本発明の気体分子吸蔵ナノ材料と、分散媒とを含有するナノ材料組成物である。
【0018】
前記(9)のナノ材料組成物によれば、上述した本発明の気体分子吸蔵ナノ材料を含むため、大量の気体分子を必要とする用途に気体分子供給源として適用しても充分な量の気体分子を供給できる。また、気体分子を吸蔵させる母材として軽量かつサイズが小さい炭素含有ナノ材料を用いるため、分散媒に容易に分散させることができる。これにより、流体として使用する用途への適用が容易となるため、様々な用途への展開が可能となる。
【0019】
(10)前記(9)のナノ材料組成物において、前記分散媒が、水及び有機溶媒の少なくとも一方を含んでいてもよい。
【0020】
(11)前記(9)のナノ材料組成物において、前記分散媒がアルコールであってもよい。
【0021】
(12)前記(9)のナノ材料組成物において、前記分散媒が、水、メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、t−ブタノール、1−ペンタノール、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、スチレン、酢酸エチル、トルエン、キシレン、メチルエチルケトン、アセトン及びエンジンオイルからなる群より選択される少なくとも1種であってもよい。
【0022】
(13)本発明のナノ材料組成物の製造方法は、炭素含有ナノ材料からなる母材、気体分子及び分散媒を混合する混合工程と、前記混合工程により得られた混合物を10MPa以上で加圧する加圧工程とを備えるナノ材料組成物の製造方法である。
【0023】
前記(13)のナノ材料組成物の製造方法によれば、上述した本発明のナノ材料組成物を容易かつ確実に製造することができる。
【0024】
(14)前記(13)のナノ材料組成物の製造方法の加圧工程においては、100MPa以下で加圧することが好ましい。この構成によれば、母材の過剰な破壊を防止できるため、気体分子の吸蔵性能の低下を抑制できる。
【0025】
(15)前記(13)又は(14)のナノ材料組成物の製造方法の加圧工程においては、加熱しながら加圧してもよい。この構成によれば、気体分子の吸蔵量を容易に調整できる。
【発明の効果】
【0026】
本発明の気体分子吸蔵ナノ材料及びナノ材料組成物によれば、充分な量の気体分子を供給できる上、汎用的な分散媒への分散性を高めることにより様々な用途に適用できる。また、本発明のナノ材料組成物の製造方法によれば、前記本発明のナノ材料組成物を容易かつ確実に製造できる。
【発明を実施するための形態】
【0027】
以下、本発明の好適な実施形態について説明する。
【0028】
<気体分子吸蔵ナノ材料>
本発明の一実施形態に係る気体分子吸蔵ナノ材料は、炭素含有ナノ材料からなる母材と、この母材内に吸蔵された気体分子とを含み、気体分子の吸蔵量が母材100質量部に対して1質量部以上の気体分子吸蔵ナノ材料である。
【0029】
本実施形態に係る気体分子吸蔵ナノ材料によれば、気体分子の吸蔵量が母材100質量部に対して1質量部以上であるため、大量の気体分子を必要とする用途に気体分子供給源として適用しても充分な量の気体分子を供給できる。また、母材として軽量かつサイズが小さい炭素含有ナノ材料を用いるため、水等の汎用的な分散媒に気体分子吸蔵ナノ材料を容易に分散させることができる。よって、流体として使用する用途等にも適用できるため、様々な用途への展開が可能となる。
【0030】
本実施形態で使用される炭素含有ナノ材料の一次元(縦方向、横方向及び高さ方向のうち最小となる一辺)の平均長さは、1000nm未満であり、分散媒への分散性をより向上させる観点から500nm以下が好ましく、300nm以下がより好ましく、100nm以下が更に好ましく、50nm以下が特に好ましい。また、気体分子の吸蔵性能をより向上させる観点から、前記平均長さは、0.01nm以上が好ましく、0.1nm以上がより好ましく、1nm以上が更に好ましい。
【0031】
なお、本実施形態で使用される炭素含有ナノ材料は、一次元の平均長さが1000nmより小さい分子等の単体であってもよく、この単体が集合した集合体であってもよい。例えば炭素含有ナノ材料として、一次元の平均長さが1000nmより小さい分子(ナノサイズ分子)の集合体を用いる場合、後述する気体分子は、ナノサイズ分子の内部に吸蔵されていてもよく、ナノサイズ分子間の隙間に吸蔵されていてもよい。
【0032】
上記炭素含有ナノ材料としては、気体分子を吸蔵し、分散媒に分散できるものであれば特に限定されず、例えば炭素材料、セルロース等の天然高分子材料、ポリエステル等の合成高分子材料等が使用できる。また、炭素含有ナノ材料の形状についても特に限定されず、粒子状、繊維状等の様々な形状のものを使用できる。なお、炭素含有ナノ材料は、1種単独で用いてもよく、複数種を組み合わせて用いてもよい。
【0033】
特に炭素含有ナノ材料として、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン及びフラーレンからなる群より選択される少なくとも1種を用いることが好ましい。前記特定の材料は、炭素骨格により形成された網目の空隙内に気体分子を捕捉できるため、気体分子の吸蔵性能をより向上させることができる。中でもカーボンナノチューブを用いると、その安定な筒状構造内に気体分子を取り込むことができるため、気体分子の吸蔵性能を更に向上させることができる。
【0034】
炭素含有ナノ材料としてカーボンナノチューブを用いる場合、カーボンナノチューブの平均直径としては、気体分子の吸蔵性能を更に向上させる観点から、0.01nm以上が好ましく、0.1nm以上がより好ましく、1nm以上が更に好ましい。また、分散媒への分散性をより向上させる観点から、前記平均直径としては、500nm以下が好ましく、100nm以下がより好ましく、50nm以下が更に好ましい。
【0035】
また、炭素含有ナノ材料として多層カーボンナノチューブを用いると、母材の径方向の中央部の空間だけでなく、カーボンナノチューブ層間の隙間にも気体分子を吸蔵できるため、気体分子の吸蔵性能を更に向上させることができる。
【0036】
本実施形態で使用される炭素含有ナノ材料の表面の少なくとも一部は、極性基で修飾されていてもよい。この場合、分散媒として水、アルコール等の極性媒体を使用すると、分散性をより向上させることができる。
【0037】
上記極性基としては、水酸基、カルボニル基及びカルボキシ基からなる群より選択される少なくとも1種が好ましい。これらの基は、極性が高いため、極性媒体への分散性を更に向上させることができる。
【0038】
炭素含有ナノ材料の表面に極性基を導入する方法は、特に限定されず、例えば特開2014−15387号公報等に記載の公知の方法を採用できる。
【0039】
本実施形態において炭素含有ナノ材料からなる母材に吸蔵される気体分子としては、特に限定されないが、H
2、N
2、O
2、CH
4、CO、CO
2及び希ガスからなる群より選択される少なくとも1種であることが好ましい。これらの気体分子は汎用性が高いため、用途展開がより容易となる。なお、気体分子は、1種単独で吸蔵されていてもよく、複数種が吸蔵されていてもよい。
【0040】
上記炭素含有ナノ材料からなる母材に気体分子としてH
2を吸蔵させた場合は、例えば燃料電池の燃料として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0041】
上記炭素含有ナノ材料からなる母材に気体分子としてN
2を吸蔵させた場合は、例えば窒素を養分とする植物に好適な植物育成剤や不活性ガス源として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0042】
上記炭素含有ナノ材料からなる母材に気体分子としてO
2を吸蔵させた場合は、例えば助燃剤として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0043】
上記炭素含有ナノ材料からなる母材に気体分子としてCH
4を吸蔵させた場合は、例えば燃料となるメタンガスを安定して輸送するための媒体として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0044】
上記炭素含有ナノ材料からなる母材に気体分子としてCOを吸蔵させた場合は、例えば錯体の配位子等の合成用原料の供給源として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0045】
上記炭素含有ナノ材料からなる母材に気体分子としてCO
2を吸蔵させた場合は、例えば光合成によりバイオ燃料を蓄積する微細藻類へのCO
2の供給源として本実施形態の気体分子吸蔵ナノ材料を適用できる。
【0046】
上記炭素含有ナノ材料からなる母材に気体分子として希ガスを吸蔵させた場合は、例えば不活性ガス源として本実施形態の気体分子吸蔵ナノ材料を適用できる。前記希ガスとしては、例えばヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が挙げられる。
【0047】
上記炭素含有ナノ材料からなる母材への気体分子の吸蔵量としては、母材100質量部に対して1質量部以上であり、充分な量の気体分子を供給する観点から2質量部以上が好ましく、5質量部以上がより好ましく、10質量部以上が更に好ましく、20質量部以上が特に好ましい。また、気体分子を安定して吸蔵させる観点から、気体分子の吸蔵量としては、母材100質量部に対して30質量部以下が好ましい。
【0048】
なお、「気体分子の吸蔵量」の測定(算出)方法は、母材の構成材料や吸蔵させる気体分子により異なるが、例えば炭素材料に酸素を吸蔵させる場合は、気体分子吸蔵ナノ材料を乾燥させた試料について、公知の元素分析方法により測定される各元素の含有比から算出することができる。
【0049】
<ナノ材料組成物>
次に、本発明の一実施形態に係るナノ材料組成物について説明する。本実施形態のナノ材料組成物は、上述した実施形態の気体分子吸蔵ナノ材料と、分散媒とを含有するナノ材料組成物である。
【0050】
本実施形態のナノ材料組成物によれば、上述した実施形態の気体分子吸蔵ナノ材料を含むため、大量の気体分子を必要とする用途に気体分子供給源として適用しても充分な量の気体分子を供給できる。また、気体分子を吸蔵させる母材として軽量かつサイズが小さい炭素含有ナノ材料を用いるため、分散媒に容易に分散させることができる。これにより、例えば燃料電池の燃料のような流体として使用する用途への適用が容易となるため、様々な用途への展開が可能となる。なお、以下において、上述した実施形態の気体分子吸蔵ナノ材料と重複する内容については説明を省略する。
【0051】
上記分散媒としては、気体分子吸蔵ナノ材料と反応しないものが使用でき、例えば後述するナノ材料組成物の製造方法における加圧工程後に気体分子吸蔵ナノ材料の分散状態を維持できる媒体等が挙げられる。具体的には、水、有機溶媒、これらの混合溶媒等が挙げられる。
【0052】
上記有機溶媒としては、アルコール類(メタノール、エタノール、n−プロパノール、iso−プロパノール、n−ブタノール、iso−ブタノール、sec−ブタノール、t−ブタノール、1−ペンタノール、ベンジルアルコール等)、多価アルコール類(エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール等)、多価アルコールエーテル類(エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブテルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、エチレングリコールモノフェニルエーテル、プロピレングリコールモノフェニルエーテル等)、アミン類(エタノールアミン、ジエタノールアミン、トリエタノールアミン、N−メチルジエタノールアミン、N−エチルジエタノールアミン、モルホリン、N−エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等)、アミド類(ホルムアミド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、複素環類(2−ピロリドン、N−メチル−2−ピロリドン、シクロヘキシルピロリドン、2−オキサゾリドン、1,3−ジメチル−2−イミダゾリジノン等)、スルホキシド類(ジメチルスルホキシド等)、スルホン類(スルホラン等)、低級ケトン類(アセトン、メチルエチルケトン等)、その他、トルエン、キシレン、スチレン、酢酸エチル、テトラヒドロフラン、尿素、アセトニトリル、エンジンオイルなどを使用することができる。
【0053】
本実施形態のナノ材料組成物には、必要に応じて分散剤を添加してもよい。分散剤としては、ポリビニルアルコール、ポリエチレンオキサイド、ポリビニルピロリドン、ポリアクリル酸アルカリ金属塩等の水溶性樹脂や、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース等のセルロース類が好ましく、これらの中でもカルボキシメチルセルロースがより好ましい。これらの分散剤は、1種単独で用いてもよく、複数種を組み合わせて用いてもよい。
【0054】
また、本実施形態のナノ材料組成物には、その他の分散剤として、アニオン性界面活性剤、カチオン性界面活性剤、ノニオン性界面活性剤、両性界面活性剤等の界面活性剤を添加してもよい。
【0055】
上記アニオン性界面活性剤としては、芳香族スルホン酸系界面活性剤(ドデシルベンゼンスルホン酸塩等のアルキルベンゼンスルホン酸塩、ドデシルフェニルエーテルスルホン酸塩など)、モノソープ系アニオン性界面活性剤、エーテルサルフェート系界面活性剤、フォスフェート系界面活性剤、カルボン酸系界面活性剤などが挙げられる。
【0056】
上記カチオン性界面活性剤としては、第4級アルキルアンモニウム塩、アルキルピリジニウム塩、アルキルアミン塩、ポリエチレンイミン、ポリビニルアミン、ポリアリルアミン、ポリビニルピリジン、ポリアクリルアミド等が挙げられる。
【0057】
上記ノニオン性界面活性剤としては、エーテル系ノニオン性界面活性剤(ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等)、エステル系ノニオン性界面活性剤(ポリオキシエチレンオレエート、ポリオキシエチレンジステアレート、ソルビタンラウレート、ソルビタンモノステアレート、ソルビタンモノオレエート、ソルビタンセスキオレエート等)、ソルビトールやグリセリン等の多価アルコール脂肪酸のアルキルエーテル、多価アルコール脂肪酸のアルキルエステル、アミノアルコール脂肪酸アミドなどが挙げられる。
【0058】
上記両性界面活性剤としては、アルキルベタイン系界面活性剤(ラウリルジメチルアミノ酢酸ベタイン、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、プロピルジメチルアミノ酢酸ベタイン等)、スルホベタイン系界面活性剤、アミンオキサイド系界面活性剤などが挙げられる。
【0059】
本実施形態のナノ材料組成物には、上述の成分以外にも、各種の水溶性樹脂や水分散性樹脂、タンパク質等の生体内の高分子、pH調整剤など、ナノ材料組成物の用途に応じて必要な成分を配合することが可能である。また、本実施形態のナノ材料組成物には、上述した炭素含有ナノ材料の表面に極性基を導入する際に用いる酸等の成分が含まれていてもよい。
【0060】
本実施形態のナノ材料組成物中の気体分子吸蔵ナノ材料の含有量は、用途に応じて適宜調整すればよく、例えば0.01質量%以上10質量%以下の範囲に調整すればよい。
【0061】
本実施形態のナノ材料組成物のpHは、特に限定されないが、環境負荷低減の観点から、2.5以上8.0以下の範囲が好ましい。ナノ材料組成物のpHは、例えば上述した炭素含有ナノ材料の表面に極性基を導入する際に用いた酸の残存量や、pH調整剤の添加量等により調整できる。
【0062】
<ナノ材料組成物の製造方法>
次に、本発明のナノ材料組成物の製造方法の一実施形態について説明する。本実施形態の製造方法は、炭素含有ナノ材料からなる母材、気体分子及び分散媒を混合する混合工程と、前記混合工程により得られた混合物を10MPa以上で加圧する加圧工程とを備える。
【0063】
本実施形態のナノ材料組成物の製造方法によれば、上述した実施形態のナノ材料組成物を容易かつ確実に製造することができる。なお、以下において、上述した実施形態の気体分子吸蔵ナノ材料及びナノ材料組成物と重複する内容については説明を省略する。
【0064】
本実施形態の製造方法では、10MPa以上の高圧処理により、炭素含有ナノ材料からなる母材内へ気体分子が吸蔵されると考えられる。また、分散媒として水、アルコール等の極性媒体を使用する場合は、10MPa以上の高圧処理により母材表面の一部が破壊されて欠陥が生じ、この欠陥部分に水酸基等の極性基が付加することにより、極性媒体への分散性が高まると考えられる。なお、前記水酸基等の極性基は、例えば高圧処理により極性媒体から生成すると考えられる。
【0065】
上記混合工程において、気体分子の混合量は、母材に吸蔵させる量に応じて適宜設定すればよい。なお、混合の順序は特に限定されず、炭素含有ナノ材料と分散媒とを混合させた混合物に気体分子を加えてもよく、分散媒に気体分子を加えた後、炭素含有ナノ材料を加えてもよい。また、分散媒に気体分子を高濃度で加えた液体を準備し、この液体に炭素含有ナノ材料を加えてもよい。
【0066】
上記加圧工程において、加圧条件は10MPa以上であり、気体分子の吸蔵量を高める観点から15MPa以上が好ましく、20MPa以上がより好ましい。一方、母材の過剰な破壊を防止し、気体分子の吸蔵性能の低下を抑制する観点から、加圧条件は100MPa以下が好ましい。なお、加圧時間は、炭素含有ナノ材料の種類、気体分子の種類、吸蔵量等に応じて適宜調整すればよい。
【0067】
また、上記加圧工程においては、加熱しながら加圧してもよい。これにより、気体分子の吸蔵量を容易に調整できる。この際の加熱温度としては、例えば25℃以上80℃以下の範囲とすればよい。
【産業上の利用可能性】
【0068】
本発明の気体分子吸蔵ナノ材料及びナノ材料組成物は、例えば種々の気体分子の供給源として使用でき、特に、燃料電池の燃料等の流体として使用する用途に好適である。