特開2018-204805(P2018-204805A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱重工サーマルシステムズ株式会社の特許一覧
特開2018-204805冷凍ユニット、冷凍システム、および冷媒回路の制御方法
<>
  • 特開2018204805-冷凍ユニット、冷凍システム、および冷媒回路の制御方法 図000003
  • 特開2018204805-冷凍ユニット、冷凍システム、および冷媒回路の制御方法 図000004
  • 特開2018204805-冷凍ユニット、冷凍システム、および冷媒回路の制御方法 図000005
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2018-204805(P2018-204805A)
(43)【公開日】2018年12月27日
(54)【発明の名称】冷凍ユニット、冷凍システム、および冷媒回路の制御方法
(51)【国際特許分類】
   F25B 43/00 20060101AFI20181130BHJP
   F25B 1/00 20060101ALI20181130BHJP
【FI】
   F25B43/00 B
   F25B1/00 101E
   F25B1/00 304Z
【審査請求】未請求
【請求項の数】9
【出願形態】OL
【全頁数】15
(21)【出願番号】特願2017-107271(P2017-107271)
(22)【出願日】2017年5月31日
(71)【出願人】
【識別番号】516299338
【氏名又は名称】三菱重工サーマルシステムズ株式会社
(74)【代理人】
【識別番号】100100077
【弁理士】
【氏名又は名称】大場 充
(74)【代理人】
【識別番号】100136010
【弁理士】
【氏名又は名称】堀川 美夕紀
(74)【代理人】
【識別番号】100130030
【弁理士】
【氏名又は名称】大竹 夕香子
(74)【代理人】
【識別番号】100203046
【弁理士】
【氏名又は名称】山下 聖子
(72)【発明者】
【氏名】大村 峰正
(72)【発明者】
【氏名】村上 健一
(72)【発明者】
【氏名】川西 章夫
(72)【発明者】
【氏名】池田 將樹
(57)【要約】
【課題】気液分離器に溜まった冷凍機油の粘度増大による圧縮機への油戻り性悪化を避ける。
【解決手段】冷凍ユニット1は、気液分離器14と、熱交換器12を経て減圧部13へと向かう冷媒の少なくとも一部を気液分離器14へと流入させるバイパス経路15と、バイパス経路15を開閉するバイパス弁16と、バイパス弁16を制御する制御部20とを備える。気液分離器14は、内部に溜まって冷媒の液相に溶解した冷凍機油を回収して圧縮機11へと戻す油戻し機構142を有する。冷媒の液相および冷凍機油の混合溶液の低温側二層分離温度は、冷凍ユニット1に定められている規定蒸発温度の下限未満である。制御部20は、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁16を制御することで、バイパス経路15を開くか、あるいはバイパス経路15を流れる前記冷媒の流量を増やす、バイパス措置を行う。
【選択図】図1
【特許請求の範囲】
【請求項1】
冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、および前記冷媒を減圧させる減圧部を含む冷媒回路を有し、前記減圧部を経た前記冷媒を熱利用先へと供給する冷凍ユニットであって、
前記熱利用先および前記圧縮機の間に介在する気液分離器と、
前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、
前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、
前記バイパス弁を制御する制御部と、を備え、
前記気液分離器は、前記冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して前記圧縮機へと戻す油戻し機構を有し、
前記冷媒の液相および前記冷凍機油の混合溶液の低温側二層分離温度が、前記冷凍ユニットに定められている規定蒸発温度の下限未満であり、
前記制御部は、前記冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて前記バイパス弁を制御することで、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やす、バイパス措置を行う、
ことを特徴とする冷凍ユニット。
【請求項2】
前記条件に用いる指標は、前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度であり、
前記制御部は、
前記飽和温度が規定値に対して低い場合に、前記バイパス弁を制御することで、前記バイパス措置を行う、
請求項1に記載の冷凍ユニット。
【請求項3】
前記制御部は、
前記条件に基づいて、所定の時間毎に、前記バイパス措置を間欠的に行う、
請求項1または2に記載の冷凍ユニット。
【請求項4】
前記制御部は、
前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ前記圧縮機における前記冷凍機油の液位が規定液位に対して低い場合に、前記バイパス措置を行う、
請求項2または3に記載の冷凍ユニット。
【請求項5】
前記制御部は、
前記バイパス措置の開始から規定時間が経過したならば、あるいは、前記バイパス措置により前記圧縮機における前記冷凍機油の液位が少なくとも前記規定液位まで達したならば、
前記バイパス弁を制御することで、前記バイパス措置を終了する、
請求項4に記載の冷凍ユニット。
【請求項6】
前記制御部は、
前記圧縮機へと吸入される前記冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ前記圧縮機における前記冷凍機油の過熱度が規定過熱度に対して高い場合に、前記バイパス措置を行う、
請求項2、3、および5のいずれか一項に記載の冷凍ユニット。
【請求項7】
前記制御部は、
前記バイパス措置の開始から規定時間が経過したならば、あるいは、前記バイパス措置により前記圧縮機における前記冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、
前記バイパス弁を制御することで、前記バイパス措置を終了する、
請求項4または6に記載の冷凍ユニット。
【請求項8】
冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、前記冷媒を減圧させる減圧部、および前記冷媒を蒸発させる蒸発器を有する冷凍システムであって、
前記蒸発器および前記圧縮機の間に介在する気液分離器と、
前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、
前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、
前記バイパス弁を制御する制御部と、を備え、
前記気液分離器は、前記冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して前記圧縮機へと戻す油戻し機構を有し、
前記冷媒の液相および前記冷凍機油の混合溶液の低温側二層分離温度が、前記冷凍システムに定められている規定蒸発温度の下限未満であり、
前記制御部は、前記冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて前記バイパス弁を制御することで、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やす、バイパス措置を行う、
ことを特徴とする冷凍システム。
【請求項9】
冷媒を圧縮する圧縮機、前記冷媒と空気との間で熱交換させる熱交換器、および前記冷媒を減圧させる減圧部を含む冷媒回路の制御方法であって、
前記冷媒回路は、前記減圧部を経た前記冷媒が供給される熱利用先および前記圧縮機の間に介在する気液分離器と、前記熱交換器を経て前記減圧部へと向かう前記冷媒の少なくとも一部を前記気液分離器へと流入させるバイパス経路と、前記バイパス経路を開閉するか、あるいは前記バイパス経路を流れる前記冷媒の流量を調整するバイパス弁と、を含んで構成されており、
冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて、前記バイパス経路を開くか、あるいは前記バイパス経路を流れる前記冷媒の流量を増やすように前記バイパス弁を制御することで、
前記気液分離器に備えられた油戻し機構により、前記冷媒の液相に溶解した状態で前記気液分離器の内部に溜まった前記冷凍機油を回収して前記圧縮機へと戻す、
ことを特徴とする冷媒回路の制御方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、冷凍サイクルを構成する冷凍ユニット、それを備えた冷凍システム、および冷媒回路の制御方法に関する。
【背景技術】
【0002】
冷凍機や空気調和機等の冷凍システムは、圧縮機および凝縮器を含む熱源側のユニットと、蒸発器を含む熱利用側のユニット(冷凍ケースや室内空調機等)とを備えている。熱源側のユニットの圧縮機から吐出されて凝縮器により凝縮した冷媒は、熱利用側のユニットへと流出し、蒸発器を経て熱源側のユニットへと戻る。
【0003】
熱源側のユニット(以下、冷凍ユニット)には、圧縮機を液圧縮から保護するため、圧縮機へと吸入される冷媒から液冷媒を分離させる気液分離器が備えられることが多い(例えば、特許文献1,2)。
特許文献1では、圧縮機内部の冷凍機油の粘度増大による潤滑性の低下を避けるため、圧縮機のケーシングにヒータを設け、冷凍機油の粘度増大を防いでいる。
【0004】
圧縮機の摺動部の潤滑のために用いられる冷凍機油は、圧縮機から吐出される冷媒と共に熱利用側のユニットへと流出する。その冷凍機油を圧縮機へと戻すため、気液分離器内部の底に液冷媒に溶解した状態で溜まった冷凍機油をピックアップホールのあいたU字管やキャピラリチューブ等の油戻し機構により吸い上げて回収するようにしている。吸い上げられた冷凍機油は、圧縮機へと戻される。
【0005】
特許文献2では、圧縮機から吐出される冷媒の吐出温度、または圧縮機へと吸入される冷媒の吸入温度あるいは過熱度が設定値以上となった場合に、凝縮器により凝縮液化した液冷媒の一部を、蒸発器を経たガス冷媒と共に気液分離器を介して圧縮機へ吸入させることで、圧縮機へ吸入されるガス冷媒の温度の上昇を抑制している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2010−210208号公報
【特許文献2】実開平5−79357号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
冷凍ユニットや冷凍システムには、規定の冷媒蒸発温度が与えられている。この規定蒸発温度の範囲内で蒸発温度を設定可能である。
冷凍システムの使用目的や気温等に応じて設定された蒸発温度が冷凍機油の粘度に大きな影響を及ぼす程に低ければ、気液分離器において液冷媒に溶解した状態で溜まる冷凍機油の粘度が大きくなり、気液分離器に備えられた油戻し機構への冷凍機油の吸い上げが鈍化する。そのため、気液分離器から圧縮機への冷凍機油の戻りが悪化してしまう。
ここで、油戻し機構の孔径は、圧縮機における冷凍機油の液冷媒による希釈率が、潤滑性を確保できる適正値以下となるように設計されている。冷凍機油の粘度が増大している低温設定時の油戻り性を良くするため、油戻し機構の孔径を大きくすると、通常の粘度のときに、冷凍機油が液冷媒と共に圧縮機へと戻り過ぎてしまう。
【0008】
上述の特許文献1と同様にヒータを使用して、気液分離器を加熱することで冷凍機油の粘度増大を防ぐことも考えられるが、ヒータの増設は、製造コストおよびランニングコストの増加に繋がる。
上述した特許文献2は、圧縮機へと吸入されるガス冷媒の温度が上昇するとガス冷媒に冷凍機油が溶け難くなるため、気液分離器に溜まった冷凍機油がガス冷媒により圧縮機へと運ばれなくなる現象に関するものであり、低温設定時における冷凍機油の粘度増大に対処するものではない。
【0009】
以上を踏まえ、本発明は、気液分離器に溜まった冷凍機油の粘度増大による圧縮機への油戻り性の悪化を避けることを目的とする。
【課題を解決するための手段】
【0010】
本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、および冷媒を減圧させる減圧部を含む冷媒回路を有し、減圧部を経た冷媒を熱利用先へと供給する冷凍ユニットであって、熱利用先および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、バイパス弁を制御する制御部と、を備える。
気液分離器は、冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して圧縮機へと戻す油戻し機構を有する。
冷媒の液相および冷凍機油の混合溶液の低温側二層分離温度は、冷凍ユニットに定められている規定蒸発温度の下限未満である。
制御部は、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁を制御することで、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やす、バイパス措置を行う。
【0011】
本発明の冷凍ユニットにおいて、条件に用いる指標は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度であり、制御部は、飽和温度が規定値に対して低い場合に、バイパス弁を制御することで、バイパス措置を行うことが好ましい。
【0012】
本発明の冷凍ユニットにおいて、制御部は、条件に基づいて、所定の時間毎に、バイパス措置を間欠的に行うことが好ましい。
【0013】
本発明の冷凍ユニットにおいて、制御部は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ圧縮機における冷凍機油の液位が規定液位に対して低い場合に、バイパス措置を行うことが好ましい。
【0014】
本発明の冷凍ユニットにおいて、制御部は、バイパス措置の開始から規定時間が経過したならば、あるいは、バイパス措置により圧縮機における冷凍機油の液位が少なくとも規定液位まで達したならば、バイパス弁を制御することで、バイパス措置を終了することが好ましい。
【0015】
本発明の冷凍ユニットにおいて、制御部は、圧縮機へと吸入される冷媒の圧力に対応する飽和温度が規定値に対して低く、かつ圧縮機における冷凍機油の過熱度が規定過熱度に対して高い場合に、バイパス措置を行うことが好ましい。
【0016】
本発明の冷凍ユニットにおいて、制御部は、バイパス措置の開始から規定時間が経過したならば、あるいは、バイパス措置により圧縮機における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、バイパス弁を制御することで、バイパス措置を終了することが好ましい。
【0017】
また、本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、冷媒を減圧させる減圧部、および冷媒を蒸発させる蒸発器を有する冷凍システムであって、蒸発器および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、バイパス弁を制御する制御部と、を備える。
気液分離器は、冷媒の液相に溶解した状態で内部に溜まった冷凍機油を回収して圧縮機へと戻す油戻し機構を有する。
冷媒の液相および冷凍機油の混合溶液の低温側二層分離温度は、冷凍システムに定められている規定蒸発温度の下限未満である。
制御部は、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁を制御することで、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やす、バイパス措置を行う。
【0018】
さらに、本発明は、冷媒を圧縮する圧縮機、冷媒と空気との間で熱交換させる熱交換器、および冷媒を減圧させる減圧部を含む冷媒回路の制御方法であって、冷媒回路は、減圧部を経た冷媒が供給される熱利用先および圧縮機の間に介在する気液分離器と、熱交換器を経て減圧部へと向かう冷媒の少なくとも一部を気液分離器へと流入させるバイパス経路と、バイパス経路を開閉するか、あるいはバイパス経路を流れる冷媒の流量を調整するバイパス弁と、を含んで構成されており、冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいて、バイパス経路を開くか、あるいはバイパス経路を流れる冷媒の流量を増やすようにバイパス弁を制御することで、気液分離器に備えられた油戻し機構により、冷媒の液相に溶解した状態で気液分離器の内部に溜まって冷凍機油を回収して圧縮機へと戻す。
【発明の効果】
【0019】
本発明によれば、気液分離器における冷凍機油の粘度増大による油戻り性の悪化が想定される条件に基づいて、気液分離器に溜まった冷凍機油に、適時に、バイパス経路を通じて適量の冷媒の液相を混入させる。そのため、低温下であっても、気液分離器に溜まった冷凍機油と液冷媒との混合溶液全体としての粘度増大が抑制される。したがって、気液分離器にヒータを増設することなく、圧縮機における適正な冷凍機油の希釈率および気液分離器による液圧縮の役割を維持しつつ、油戻し機構により、低温設定時にも、気液分離器に溜まった冷凍機油を混合溶液として十分な量だけ回収して圧縮機へと戻すことができる。
【図面の簡単な説明】
【0020】
図1】第1実施形態に係る冷凍ユニットを示す模式図である。
図2】第2実施形態に係る冷凍ユニットを示す模式図である。
図3】第3実施形態に係る冷凍ユニットを示す模式図である。
【発明を実施するための形態】
【0021】
以下、添付図面を参照しながら、本発明の実施形態について説明する。
〔第1実施形態〕
図1に示す冷凍ユニット1(コンデンシングユニット)は、圧縮機11、熱交換器12、および減圧部13を含む熱源回路10と、気液分離器14と、バイパス経路15と、バイパス弁16と、制御部20とを備えている。これら熱源回路10の要素11〜13、気液分離器14、バイパス経路15、およびバイパス弁16を収容する筐体は室外に設置される。
冷凍ユニット1は、圧縮機11により圧縮された冷媒を、熱交換器12により熱源としての空気との間で熱交換させた後、膨張弁等の減圧部13により減圧させ、減圧部13を経た冷媒を室内の熱利用先Aへと供給する。
【0022】
熱利用先Aは、冷凍ユニット1の熱源回路10と共に冷凍サイクルを構成する図示しない蒸発器を含む。その蒸発器を備えた図示しない熱利用先ユニットと、冷凍ユニット1と、これらのユニット間を接続する配管とを含んで、冷凍システムが構成される。熱利用先ユニットは、例えば、店舗内に装備されて食品等を収容する冷蔵ケースや冷凍ケースに該当する。
【0023】
冷凍ユニット1には、規定の冷媒蒸発温度が与えられている。規定蒸発温度の範囲内で蒸発温度を設定可能である。
【0024】
本実施形態の冷凍システムには、例えば、R404A等のHFC系冷媒や、CO等の自然冷媒等、適宜な冷媒を使用することができる。
圧縮機11から吐出され、熱交換器12において外気と熱交換された冷媒は、熱利用先Aへと流出し、熱利用先Aの蒸発器を経て冷凍ユニット1へと戻る。
本実施形態の冷凍システムは、亜臨界サイクル、遷臨界サイクルのいずれにも適用可能である。熱交換器12は、亜臨界サイクルにおいて、流入したガス冷媒を空気との熱交換により凝縮液化させる凝縮器として機能する。一方、熱交換器12は、例えばCO冷媒を用いる場合である遷臨界サイクルにおいては、流入した超臨界状態の冷媒を空気との熱交換により冷却するガスクーラーとして機能する。
【0025】
圧縮機11のハウジング11Aには、内蔵する圧縮機構の軸受等の摺動部を潤滑するため、冷凍機油が封入される。冷凍機油としては、本実施形態の冷凍システムに使用される冷媒に対して相溶性を有するものを適宜に選定することができる。相溶性の観点より、例えば、COに対しては、エステル系合成油を選定することができる。選定可能なエステル系合成油の一例としては、JXTGエネルギー株式会社の製品である「ダイヤモンドフリーズMA68」が挙げられる。HFC系冷媒の一種であるR404Aに対しては、JXTGエネルギー株式会社の製品である「ダイヤモンドフリーズMA32R」を選定することができる。
冷凍機油は、冷媒に溶解するため、冷媒と共に圧縮機11から吐出され、熱交換器12、および減圧部13を経て熱利用先Aへと流出する。
【0026】
本実施形態は、熱源回路10、気液分離器14、バイパス経路15、およびバイパス弁16を含んで構成された冷媒回路の構成と、その冷媒回路を制御部20により制御する方法に主要な特徴を有する。
【0027】
圧縮機11へと吸入される冷媒は、圧縮機11を液圧縮から保護するため、熱利用先Aおよび圧縮機11の間に介在する気液分離器14へと受け入れられ、ガス冷媒と液冷媒とに分離される。
気液分離器14(アキュムレータ)は、熱利用先Aから戻った冷媒を受け入れるタンク141と、タンク141の内部の底に液冷媒と溶解した状態で溜まる冷凍機油を回収して圧縮機11へと戻す油戻し機構142とを備えている。
タンク141内の底部に液冷媒が溜まるため、タンク141内の上部からガス冷媒が圧縮機11へと吸入される。
【0028】
油戻し機構142は、例えば、ピックアップホール142A(小さい孔)のあいたU字管や、キャピラリチューブを含んで構成されている。
油戻し機構142により、タンク141内に溜まった冷凍機油が吸い上げられ、ガス冷媒と共に圧縮機11に吸入されることで、圧縮機11のハウジング11Aの内部へと戻される。圧縮機11のハウジング11Aにも冷凍機油が液冷媒に溶解した状態で溜まっている。
油戻し機構142の孔径は、圧縮機11における冷凍機油の液冷媒による希釈率が、潤滑性を確保できる適正値以下となるように設計されている。
【0029】
さて、冷凍機油は、温度の低下により粘度が大きくなる。そのため、冷媒蒸発温度が冷凍機油の粘度に大きな影響を及ぼす程に低ければ、気液分離器14に溜まった冷凍機油の圧縮機11への油戻り性の悪化が想定される。この蒸発温度は、熱利用先ユニットの蒸発器の出口温度に相当する。
冷凍ユニット1の蒸発温度としては、例えば、−5℃〜−45℃に定められている。この温度範囲を規定蒸発温度と言うものとする。規定蒸発温度の範囲内で、冷凍ユニット1を含む冷凍システムの用途や気温等に応じて、ユーザーにより任意の蒸発温度を設定可能である。設定された蒸発温度のことを設定蒸発温度と言うものとする。
冷凍機油の粘度が大きくなり、油戻し機構142への冷凍機油の吸い上げが鈍化すると、気液分離器14から圧縮機11への冷凍機油の戻りが悪化してしまう。
【0030】
冷凍機油の粘度増大による気液分離器14から圧縮機11への油戻り性の悪化を避けるため、本実施形態の冷凍ユニット1は、適時に、バイパス経路15を通じて気液分離器14に液冷媒を混入する措置を取ることで、気液分離器14に溜まった冷凍機油と液冷媒との混合溶液の粘度増大を抑制する。
そのため、冷凍ユニット1は、熱交換器12を経た冷媒の一部を気液分離器14へと流入させるバイパス経路15と、バイパス経路15を開閉するバイパス弁16とを備えるとともに、制御部20により、気液分離器14における冷凍機油の粘度増大による油戻り性の悪化が想定される所定の条件に基づいてバイパス弁16を制御している。油戻り性の悪化が想定される条件に用いる指標としての吸入圧力飽和温度を得るため、本実施形態では、圧縮機11へと吸入される冷媒の圧力を検知する圧力センサ21を用いる。吸入圧力飽和温度は、設定蒸発温度に応じて変化する。
【0031】
バイパス経路15は、熱交換器12の出口側と気液分離器14の入口側とを接続する配管と、継手等からなる。
バイパス弁16は、電磁弁であり、制御部20から発せられる指令に応じて駆動されることで、バイパス経路15を開閉する。バイパス弁16によりバイパス経路15が開かれると、熱交換器12を経て、減圧部13へと向かう冷媒の一部が、バイパス経路15を通じて気液分離器14へと流入する。バイパス経路15を流れて気液分離器14へと到達した冷媒は、減圧され気液二相の状態となる。
【0032】
気液分離器14には、熱利用先Aの蒸発器を経た冷媒と、バイパス経路15を流れた冷媒とが流入する。気液分離器14のタンク141の内部に流入した冷媒は、当該冷媒の気相と液相との密度の違いにより分離し、気相よりも密度が大きい液相がタンク141の底に溜まる。
上述のように冷媒に溶解した状態で、冷凍機油も冷媒と共に冷媒回路を搬送されるため、熱利用先Aからの冷媒と、バイパス経路15からの冷媒とにそれぞれ含まれている冷凍機油も気液分離器14へと流入し、タンク141の底に溜まる。冷凍機油は、タンク141の底の液冷媒と混合し、液冷媒に溶解する。
【0033】
本実施形態では、バイパス経路15を流れた冷媒が、熱利用先Aから気液分離器14へと向かう冷媒と合流して気液分離器14へと流入する。これに限らず、バイパス経路15を流れた冷媒が熱利用先Aからの冷媒の流れとは合流しないで、気液分離器14へと直接流入するように構成することもできる。
【0034】
制御部20は、冷凍機油の粘度増大による油戻りの悪化が想定される場合に、バイパス経路15を開く指令をバイパス弁16に送り、バイパス経路15を開通させる。これをもってバイパス措置が開始される。
本実施形態において、制御部20は、圧力センサ21により検知された吸入圧力を用いて、吸入圧力に対応する飽和温度を演算する。そして、気液分離器14における吸入圧力飽和温度が規定値に対して低い場合は、油戻り性の悪化が想定されるため、バイパス弁16に指令を送ってバイパス経路15を開き、バイパス経路15を通じて気液分離器14へと冷媒を流入させる。
圧力センサ21は、本実施形態では気液分離器14の入口側に設置されているが、圧縮機11へと吸入される冷媒の圧力を代表する圧力を検知可能な適宜な位置に設けることができる。例えば、気液分離器14と圧縮機11との間や、バイパス経路15の末端付近等に圧力センサ21を設けることもできる。
【0035】
バイパス経路15を通じて気液分離器14へと流入した気液二相の冷媒の液相が、タンク141に溜まった混合容液に混入されると、混合溶液における液冷媒の比率が高まる。
したがって、規定蒸発温度の下限付近の低温下であっても、バイパス経路15を通じて冷媒の液相が混入されることで、気液分離器14内に溜まった冷凍機油と液冷媒との混合溶液全体としての粘度増大が抑制される。そのため、油戻し機構142により、タンク141に溜まった冷凍機油を混合溶液として十分な量だけ回収して圧縮機11へと戻すことができる。そのため、圧縮機11における潤滑不良や焼き付きを未然に防ぐことができる。
【0036】
バイパス経路15を通じて気液分離器14内の冷凍機油に液冷媒を混入させるバイパス措置は、吸入圧力飽和温度が規定値に対して低い場合に、規定の時間に限り、実施するものとする。実施するにあたり、具体的な温度や時間の条件は適宜に定めることができる。
【0037】
本実施形態によるバイパス措置は、バイパス経路15を通じて気液分離器14内の冷凍機油に冷媒の液相を混入させることにより、気液分離器14内の混合溶液における冷凍機油の濃度が低下することに基づいている。かかるバイパス措置によれば、冷凍機油の単体でみれば粘度が増大する温度条件においても、混合溶液全体としての粘度の増大を抑えることができる。
【0038】
ここで、液冷媒と冷凍機油とが溶け合わずに二層に分離した状態、または乳濁した状態を二層分離といい、そのような状態になる温度のことを二層分離温度と称する。
冷凍機油と液冷媒との二層分離温度は、冷凍機油の濃度と温度との関係を示す二層分離温度曲線により表すことができる。二層分離温度曲線には、温度を上昇させていくと分離を開始する高温側の二層分離温度曲線(下に凸の曲線)と、温度を低下させていくと分離を開始する低温側の二層分離温度曲線(上に凸の曲線)とがある。
低温側の二層分離温度曲線を下回ると、液冷媒および冷凍機油の混合溶液は、濃度の均一な1つの相から濃度の異なる2つの相へと分離する。
上述のように冷媒の液相と冷凍機油との混合溶液全体として粘度の増大を抑えて、油戻り性を十分に担保するために、混合溶液が分離することなく、冷凍機油を液冷媒に均一に溶解させる。そのため、低温側の二層分離温度曲線の極大値(UCST:Upper Critical Solution Temperature)である低温側二層分離温度が、冷凍ユニットに定められている規定蒸発温度の下限未満となるように、冷媒および冷凍機油を選ぶものとする。低温側二層分離温度は、規定蒸発温度の下限に対して余裕を持って、例えば10℃以上低いことが好ましい。例えば、規定蒸発温度の下限が−45℃である場合は、低温側二層分離温度が−55℃以下となるような組み合わせの冷媒および冷凍機油を採用することが好ましい。低温側二層分離温度が−55℃以下となるような組み合わせの一例としては、CO冷媒および上述したダイヤモンドフリーズMA68を挙げることができる。
【0039】
ここに、バイパス措置を実施する条件の一例を示す。
制御部20は、圧力センサ21により検知される圧力を用いて演算することで得られた吸入圧力飽和温度を監視しながら、その吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、バイパス措置の開始から規定時間としての5分間に亘り、バイパス経路15を開くバイパス措置を実施する。つまり、低温設定時には、冷凍ユニット1を含む冷凍システムが運転される間、60分毎に間欠的に、バイパス措置を実施することで、圧縮機11への油戻りが滞ることなく、気液分離器14に溜まった冷凍機油を圧縮機11へとスムーズに戻せるようにする。
【0040】
冷凍ユニット1においては、例えば−5℃〜−45℃もの広い規定蒸発温度の範囲内で設定蒸発温度を変更可能である。そのため、規定蒸発温度における低い温度域においては、冷凍機油の粘度に大きな影響が及んで気液分離器14からの油戻り性に影響するとしても、それ以外の温度域では、油戻し機構142により十分に回収可能な適切な粘度であって、油戻り性に影響しない場合もある。
【0041】
仮に、低温設定時に冷凍機油の粘度が増大したときに、タンク141内から十分な量の冷凍機油を油戻し機構142に回収できるように、油戻し機構142のピックアップホール142Aの径や、油戻し機構に用いられたキャピラリチューブの径を大きくするとすれば、それ以外の温度域の設定時には、油戻し機構142により気液分離器14から圧縮機11へと液が戻り過ぎてしまう。液圧縮から圧縮機11を保護し、かつ、液冷媒により希釈された冷凍機油によって十分な潤滑性が得られるように、気液分離器14に溜まった冷凍機油を適切な量だけ圧縮機11へと戻す必要がある。
また、低温設定時にも、気液分離器14における冷凍機油の粘度が増大しないように、気液分離器14のタンク141の下部をヒータにより加熱することも考えられるが、ヒータの増設は、ヒータの制御装置も含めた冷凍ユニット1の製造コストの上昇、およびランニングコストの増加に繋がる。
【0042】
本実施形態によれば、気液分離器14における冷凍機油の粘度増大による油戻り性の悪化が想定される条件に基づいて、気液分離器14に溜まった冷凍機油にバイパス経路15を通じて冷媒の液相を混入させることで、気液分離器14にヒータを増設することなく、圧縮機11における適正な冷凍機油の希釈率および気液分離器14による液圧縮の役割を維持しつつ、低温設定時にも適切な量だけ冷凍機油を圧縮機11へとスムーズに戻すことができる。
【0043】
〔第2実施形態〕
次に、本発明の第2実施形態について説明する。
以下、第1実施形態と相違する事項を中心に説明する。第1実施形態と同様の構成には同じ符号を付している。後述する第3実施形態においても同様である。
【0044】
図2に示す第2実施形態の冷凍ユニット2は、第1実施形態の冷凍ユニット1と同様の構成の冷媒回路と、制御部22と、圧力センサ21および油面レベルセンサ23とを備える。
油面レベルセンサ23は、圧縮機11のハウジング11A内に、液冷媒に溶解した状態で溜まる冷凍機油の液位(油面レベル)を検知する。この液位を、冷凍機油の圧縮機11への戻り状況の指標として用いる。
【0045】
バイパス経路15が開いている間は、熱交換器12を経た冷媒の一部をバイパス経路15へと流入させる分だけ、熱利用先Aへと流れる冷媒の流量が減少し、冷媒回路全体を循環する冷媒流量が減少するため、冷凍能力が低下する。これを考慮し、本実施形態では、吸入圧力飽和温度に加え、圧縮機11内の検知された冷凍機油の液位にも関係する条件に基づいて、バイパス経路15を開閉する。
【0046】
以下、圧力センサ21および油面レベルセンサ23を用いる制御の一例を示す。
この制御では、圧縮機11に溜まった冷凍機油の液位が規定の第1液位を下回ったことを検知する第1油面レベルスイッチ231と、圧縮機11に溜まった冷凍機油の液位が、第1液位よりも高い、規定の第2液位を上回ったことを検知する第2油面レベルスイッチ232とから油面レベルセンサ23が構成されているものとする。第1油面レベルスイッチ231および第2油面レベルスイッチ232は、それぞれが対応する液位に応じて入り切りされる。
ここでは、バイパス措置を頻繁に繰り返すハンチングを避けるため、規定液位としての2つの液位(第1液位および第2液位)を制御に用いている。但し、1つの規定液位のみを用いてバイパス措置に係る制御を行うことも許容される。その場合は、1つの油面レベルスイッチのみで足りる。
【0047】
圧力センサ21により検知された圧力を用いて制御部22により演算した吸入圧力飽和温度が規定値以下、つまりは冷凍ユニット1の蒸発温度が低温に設定されており、かつ、圧縮機11における冷凍機油の液位が第1液位を下回ったために第1油面レベルスイッチ231がオン(またはオフ)となると、制御部22によりバイパス弁16が制御されることで、バイパス経路15が開かれる。これをもってバイパス措置が開始される。
【0048】
バイパス経路15を通じて気液分離器14へと流入した冷媒の液相が気液分離器14に溜まった冷凍機油へと混入されることで、油戻り性が良くなるので、潤滑不良や焼き付きの防止に足りる量の冷凍機油が圧縮機11へと戻る。
その後、圧縮機11に溜まった冷凍機油の液位が、第2液位にまで達し、第2油面レベルスイッチ232がオン(またはオフ)となれば、制御部22によりバイパス弁16が制御されることで、バイパス経路15が閉じられる。
バイパス経路15を通じて気液分離器14へと流入した冷媒の液相による冷凍機油の希釈が過度に進展するのを防ぐため、圧縮機11内の冷凍機油の液位が少なくとも第1液位にまで、好ましくは第2液位にまで達し、油戻り性の改善の必要がなくなった時点で、バイパス経路15を閉じてバイパス措置を終了し、それ以上の希釈進展を阻止することが好ましい。
【0049】
第2実施形態によれば、油面レベルセンサ23により検知可能な実際の油戻り状況に基づいて、油戻り性が悪化しつつあるために油戻り性の改善の必要がある場合にのみ、バイパス措置を限定的に実施することができる。そのため、冷凍能力の低下を抑えつつ、圧縮機11における潤滑不良や焼き付きを未然に防止することができる。
【0050】
上記第2実施形態における制御を次のように変更することもできる。
例えば、吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、圧縮機11に溜まっている冷凍機油の液位が規定液位に対して低い場合に限ってバイパス経路15が開かれるように、制御部22がバイパス弁16を制御するようにしてもよい。
その後、圧縮機11における冷凍機油の液位が少なくとも規定液位にまで達したならば、あるいは、バイパス経路15を開くバイパス措置の開始から、規定時間として、例えば5分間が経過したならば、バイパス弁16の制御によりバイパス経路15を閉じ、バイパス措置を終了することができる。
【0051】
〔第3実施形態〕
次に、本発明の第3実施形態について説明する。
図3に示す第3実施形態の冷凍ユニット3は、第1実施形態の冷凍ユニット1と同様の構成の冷媒回路と、制御部24と、圧力センサ21および温度センサ25とを備える。
本実施形態では、圧縮機11における冷凍機油の温度、またはその温度を推定可能な温度を制御に用いる。圧縮機11のハウジング11Aに溜まった冷凍機油の温度を検知するため、温度センサ25は、ハウジング11Aの下部外周部に設置される。
【0052】
制御部24は、温度センサ25により検知された温度と、圧力センサ21により検知された吸入圧力飽和温度との差から冷凍機油の過熱度(以下、油過熱度)を演算する。この油過熱度を、冷凍機油の圧縮機11への戻り状況の指標として用いる。
ここで、CO冷媒等のように、圧縮機11のハウジング11A内部の圧力が高圧に設定される場合、油過熱度は、吐出圧力に対応する飽和温度と、圧縮機11の冷凍機油の温度または推定温度との差から演算する。その場合は、圧縮機11の吐出側に設置した圧力センサにより検知された吐出圧力から飽和温度を演算する。
【0053】
本実施形態においても、冷凍能力を考慮し、油過熱度に基づいて油戻り性の改善の要請がある場合にのみ、バイパス措置を実施する。
以下、吸入圧力飽和温度と、油過熱度とを用いる制御の一例を示す。この制御では、圧縮機11の油過熱度について、油戻り性が悪化しつつあることを示す第1過熱度と、それよりも低い第2過熱度とが設定されているものとする。
本実施形態でも、ハンチングを避けるため、規定過熱度としての2つの液位(第1過熱度および第2過熱度)を制御に用いている。但し、1つの規定過熱度のみを用いてバイパス措置に係る制御を行うことも許容される。
【0054】
圧力センサ21により検知された圧力を用いて制御部24により演算した吸入圧力飽和温度が規定値以下でかつ、圧縮機11の油過熱度が第1過熱度に対して高ければ、制御部24によりバイパス弁16が制御されることで、バイパス経路15が開かれる。
【0055】
上記のバイパス措置により、圧縮機11の油過熱度が第2過熱度にまで抑制されたならば、制御部24によりバイパス弁16が制御されることで、バイパス経路15が閉じられる。
油過熱度が、少なくとも第1過熱度にまで、好ましくは第2過熱度にまで抑制されていれば、潤滑に足りる量の冷凍機油と液冷媒との混合溶液が圧縮機11内に溜まっているので、バイパス経路15を閉じて、それ以上の希釈進展を阻止することが好ましい。
【0056】
第3実施形態によれば、圧縮機11内部で液冷媒に溶解した冷凍機油の量を推定可能な油過熱度に基づいて、油戻り性の改善の必要がある場合にのみ、バイパス措置を限定的に実施することができる。そのため、冷凍能力の低下を抑えつつ、圧縮機11における潤滑不良や焼き付きを未然に防止することができる。
【0057】
上記第3実施形態における制御を次のように変更することもできる。
例えば、吸入圧力飽和温度が規定値としての−30℃以下であって、冷凍ユニット1の積算運転時間が60分に達する毎に、圧縮機11に溜まっている冷凍機油の過熱度が規定過熱度に対して高い場合に限ってバイパス経路15が開かれるように、制御部24がバイパス弁16を制御するようにしてもよい。
その後、圧縮機11における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、あるいは、バイパス経路15を開くバイパス措置の開始から例えば5分間が経過したならば、バイパス弁16の制御によりバイパス経路15を閉じ、バイパス措置を終了することができる。
【0058】
バイパス措置の開始条件と、バイパス措置の終了条件とに異なる指標を用いることもできる。例えば、圧縮機11における冷凍機油の液位が規定液位を下回ればバイパス措置を開始し、バイパス措置の開始から規定時間の経過後、あるいは、バイパス措置により圧縮機11における冷凍機油の過熱度が少なくとも規定過熱度にまで抑制されたならば、バイパス措置を終了するように制御することができる。
【0059】
上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
【0060】
本発明は、冷蔵・冷凍ケースを有する冷凍システムや、そのシステムを構成するコンデンシングユニットに限らず、空気調和機、コンテナ等に係る冷凍システムや、そのシステムを構成する冷凍ユニットにも適用することができる。
【0061】
バイパス弁16は、必ずしも開閉弁である必要はなく、バイパス経路15を流れる冷媒の流量を調整する流量調整弁として構成されていてもよい。
その場合は、例えば、次のような制御も可能となる。
冷凍機油の粘度に大きな影響を及ぼす程の低い温度には蒸発温度が設定されていないとしても、制御部20により、バイパス経路15に冷媒が少し流れるようにバイパス弁16の開度を制御する。そして、蒸発温度が低温に設定されているとき、気液分離器14から圧縮機11への油戻り性の悪化が想定される条件に基づいて、バイパス経路15を流れる冷媒の流量が増えるように制御部20によりバイパス弁16を制御する。そうすると、気液分離器14に溜まっている混合溶液へとバイパス経路15を通じて混入する液冷媒の量が増え、それに伴い混合溶液における冷凍機油の濃度が低下するため、圧縮機11へと戻される混合溶液全体としての粘度増大を抑制して油戻り性の悪化を避けることができる。
【0062】
バイパス経路15を流れる冷媒流量を増やすバイパス措置は、所定時間毎に間欠的に、あるいは、圧縮機11における冷凍機油の液位や油過熱度が示す冷凍機油の戻り状況に応じて、油戻り性を改善する必要性が認められる場合にのみ限定して行うのが好ましい。
バイパスさせる冷媒の流量を増やしてから所定の時間が経過すれば、あるいは油戻り状況からバイパスの必要性がなくなれば、バイパス弁16の制御により、バイパス経路15を流れる冷媒の流量を減少させるのが好ましい。
【0063】
上記各実施形態では、熱交換器12を経て減圧部13へと向かう冷媒の一部のみをバイパス経路15を通じて気液分離器14へと流入させているが、油戻り性を直ちに改善する必要がある場合には、熱交換器12を経て減圧部13へと向かう冷媒の全部を、バイパス経路15を通じて気液分離器14へと流入させることも許容される。この場合、バイパス弁16は、例えば、熱交換器12の出口側の主流から分岐するバイパス経路15の始端等に設けることができる。
【符号の説明】
【0064】
1〜3 冷凍ユニット
10 熱源回路
11 圧縮機
11A ハウジング
12 熱交換器
13 減圧部
14 気液分離器
15 バイパス経路
16 バイパス弁
20,22,24 制御部
21 圧力センサ
23 油面レベルセンサ
25 温度センサ
141 タンク
142 油戻し機構
142A ピックアップホール
231 第1油面レベルスイッチ
232 第2油面レベルスイッチ
A 熱利用先
図1
図2
図3