特開2019-113510(P2019-113510A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人大阪大学の特許一覧
<>
  • 特開2019113510-測定装置 図000006
  • 特開2019113510-測定装置 図000007
  • 特開2019113510-測定装置 図000008
  • 特開2019113510-測定装置 図000009
  • 特開2019113510-測定装置 図000010
  • 特開2019113510-測定装置 図000011
  • 特開2019113510-測定装置 図000012
  • 特開2019113510-測定装置 図000013
  • 特開2019113510-測定装置 図000014
  • 特開2019113510-測定装置 図000015
  • 特開2019113510-測定装置 図000016
  • 特開2019113510-測定装置 図000017
  • 特開2019113510-測定装置 図000018
  • 特開2019113510-測定装置 図000019
  • 特開2019113510-測定装置 図000020
  • 特開2019113510-測定装置 図000021
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2019-113510(P2019-113510A)
(43)【公開日】2019年7月11日
(54)【発明の名称】測定装置
(51)【国際特許分類】
   G01J 9/02 20060101AFI20190621BHJP
   G02F 2/00 20060101ALI20190621BHJP
【FI】
   G01J9/02
   G02F2/00
【審査請求】未請求
【請求項の数】6
【出願形態】OL
【全頁数】19
(21)【出願番号】特願2017-249555(P2017-249555)
(22)【出願日】2017年12月26日
【新規性喪失の例外の表示】特許法第30条第2項適用申請有り ▲1▼公開日:平成29年8月24日 刊行物:2017年 電子情報通信学会技術研究報告 一般社団法人 電子情報通信学会 公開者:五十嵐浩司、及び、浦川直樹 ▲2▼開催日:平成29年8月31日 集会名、開催場所: 2017年8月期 光通信システム研究会 北海道大学 札幌キャンパス(北海道札幌市北区北8条西5丁目) 公開者:五十嵐浩司、及び、浦川直樹
(71)【出願人】
【識別番号】504176911
【氏名又は名称】国立大学法人大阪大学
(74)【代理人】
【識別番号】100168583
【弁理士】
【氏名又は名称】前井 宏之
(72)【発明者】
【氏名】五十嵐 浩司
(72)【発明者】
【氏名】浦川 直樹
【テーマコード(参考)】
2K102
【Fターム(参考)】
2K102BA40
2K102BD09
2K102DA04
2K102EB11
2K102EB20
2K102EB22
(57)【要約】
【課題】光信号の複素電界振幅波形を測定可能な測定装置を提供する。
【解決手段】測定装置1は、局所光出力器11、光回路12、第1変換部13、第2変換部14及び信号処理回路15を備え、周期性を有する被測定光OSを測定する。局所光出力器11は、互いに波長が異なる局所光LOを逐次出力する。光回路12は、局所光LOに対する被測定光OSのサイン成分に対応するビートを示す第1光信号と、局所光LOに対する被測定光OSのコサイン成分に対応するビートを示す第2光信号とを出力する。第1変換部13は光回路12の出力をアナログ電気信号に変換し、第2変換部14は第1変換部13の出力をデジタル信号に変換する。第1変換部13の出力は、被測定光OSのスペクトル波形の一部に対応する帯域分割成分を示す。信号処理回路15は、第2変換部14の出力を信号処理して、互いに周波数帯域が異なる帯域分割成分を取得し、帯域分割成分を合成する。
【選択図】図1
【特許請求の範囲】
【請求項1】
局所光を出力する局所光出力器と、
周期性を有する被測定光、及び前記局所光を入力して、前記局所光に対する前記被測定光のサイン成分に対応するビートを示す第1光信号と、前記局所光に対する前記被測定光のコサイン成分に対応するビートを示す第2光信号とを出力する光回路と、
前記光回路の出力をアナログ電気信号に変換する第1変換部と、
前記第1変換部の出力をデジタル信号に変換する第2変換部と、
前記第2変換部の出力を信号処理して、前記被測定光の複素電界振幅波形を測定する信号処理回路と
を備え、
前記局所光出力器は、互いに波長が異なる前記局所光を逐次出力し、
前記第1変換部の出力は、前記被測定光のスペクトル波形の一部に対応する帯域分割成分を示し、
前記信号処理回路は、互いに周波数帯域が異なる前記帯域分割成分を取得し、前記帯域分割成分を合成する、測定装置。
【請求項2】
前記信号処理回路は、
前記第2変換部の出力を周波数領域にフーリエ変換し、
前記フーリエ変換後の前記帯域分割成分を強度成分と位相成分とに分割し、
前記位相成分を周波数に対して微分して一次微分位相成分を取得し、
隣接する前記帯域分割成分間で前記一次微分位相成分がつながるように、前記一次微分位相成分の定数成分を調整し、
隣接する前記帯域分割成分間で、前記強度成分、及び前記定数成分が調整された前記一次微分位相成分をつなげる、請求項1に記載の測定装置。
【請求項3】
前記局所光出力器は、隣接する前記帯域分割成分間で領域が一部重なるように前記局所光の波長を変化させ、
前記信号処理回路は、
隣接する前記帯域分割成分間において領域が重なるオーバーラップ部分を検出し、
隣接する前記帯域分割成分のうちの一方から前記オーバーラップ部分を除去する、請求項1又は請求項2に記載の測定装置。
【請求項4】
前記信号処理回路は、隣接する前記帯域分割成分間の相互相関を求め、前記相互相関に基づき、前記オーバーラップ部分を検出する、請求項3に記載の測定装置。
【請求項5】
前記信号処理回路は、前記帯域分割成分の位相成分を周波数に対して微分して一次微分位相成分を取得し、隣接する前記帯域分割成分間の前記一次微分位相成分の相互相関を求める、請求項4に記載の測定装置。
【請求項6】
前記信号処理回路は、
前記帯域分割成分の複素共役を取得し、
前記帯域分割成分と前記複素共役とを乗算する、請求項1から請求項5のいずれか1項に記載の測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、測定装置に関する。
【背景技術】
【0002】
光スペクトル波形(光信号の周波数成分の波形)の測定は、光信号対雑音比(Optical Signal to Noise Ratio:OSNR)の解析等に不可欠であり、光信号分析において重要な測定の一つである。光スペクトル波形の測定装置として、コヒーレント光スペクトラムアナライザ(Coherent Optical Spectrum Analyzer:COSA)が提案されている(例えば、非特許文献1参照)。コヒーレント光スペクトラムアナライザは、コヒーレント検波を用いて光スペクトル波形を測定する光スペクトラムアナライザである。コヒーレント光スペクトラムアナライザは、局所光として波長可変レーザ光を用い、局所光の周波数を掃引することにより光スペクトル波形全体を測定する。
【先行技術文献】
【非特許文献】
【0003】
【非特許文献1】D.M.Baney、B.Szafraniec、A.Motamedi、「Coherent Optical spectrum analyzer」、IEEE Photonics Technology Letters、2002年3月、第14巻、第3号、p355−357
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、既知のコヒーレント光スペクトラムアナライザでは、光信号の強度成分と位相成分とのうち、強度成分のみを測定可能であり、位相成分を測定することができなかった。したがって、光信号の複素電界振幅波形を測定することができなかった。
【0005】
本発明は上記課題に鑑みてなされたものであり、その目的は、光信号の複素電界振幅波形を測定することができる測定装置を提供することにある。
【課題を解決するための手段】
【0006】
本発明に係る測定装置は、局所光出力器と、光回路と、第1変換部と、第2変換部と、信号処理回路とを備える。前記局所光出力器は、局所光を出力する。前記光回路は、周期性を有する被測定光、及び前記局所光を入力して、第1光信号及び第2光信号を出力する。前記第1光信号は、前記局所光に対する前記被測定光のサイン成分に対応するビートを示す。前記第2光信号は、前記局所光に対する前記被測定光のコサイン成分に対応するビートを示す。前記第1変換部は、前記光回路の出力をアナログ電気信号に変換する。前記第2変換部は、前記第1変換部の出力をデジタル信号に変換する。前記信号処理回路は、前記第2変換部の出力を信号処理して、前記被測定光の複素電界振幅波形を測定する。前記局所光出力器は、互いに波長が異なる前記局所光を逐次出力する。前記第1変換部の出力は、前記被測定光のスペクトル波形の一部に対応する帯域分割成分を示す。前記信号処理回路は、互いに周波数帯域が異なる前記帯域分割成分を取得し、前記帯域分割成分を合成する。
【0007】
ある実施形態において、前記信号処理回路は、前記第2変換部の出力を周波数領域にフーリエ変換し、前記フーリエ変換後の前記帯域分割成分を強度成分と位相成分とに分割する。その後、前記信号処理回路は、前記位相成分を周波数に対して微分して一次微分位相成分を取得する。また、前記信号処理回路は、隣接する前記帯域分割成分間で前記一次微分位相成分がつながるように、前記一次微分位相成分の定数成分を調整する。そして、前記信号処理回路は、隣接する前記帯域分割成分間で、前記強度成分、及び前記定数成分が調整された前記一次微分位相成分をつなげる。
【0008】
ある実施形態において、前記局所光出力器は、隣接する前記帯域分割成分間で領域が一部重なるように前記局所光の波長を変化させる。前記信号処理回路は、隣接する前記帯域分割成分間において領域が重なるオーバーラップ部分を検出し、隣接する前記帯域分割成分のうちの一方から前記オーバーラップ部分を除去する。
【0009】
ある実施形態において、前記信号処理回路は、隣接する前記帯域分割成分間の相互相関を求め、前記相互相関に基づき、前記オーバーラップ部分を検出する。
【0010】
ある実施形態において、前記信号処理回路は、前記帯域分割成分の位相成分を周波数に対して微分して一次微分位相成分を取得し、隣接する前記帯域分割成分間の前記一次微分位相成分の相互相関を求める。
【0011】
ある実施形態において、前記信号処理回路は、前記帯域分割成分の複素共役を取得し、前記帯域分割成分と前記複素共役とを乗算する。
【発明の効果】
【0012】
本発明によれば、光信号の複素電界振幅波形を測定することができる。
【図面の簡単な説明】
【0013】
図1】本発明の実施形態1に係る測定装置を示す図である。
図2】本発明の実施形態1に係る光回路及び第1変換部の構成を示す図である。
図3】(a)は、被測定光の時間軸波形を示す図である。(b)は、被測定光のスペクトル波形を示す図である。
図4】本発明の実施形態1に係る帯域分割測定及びスペクトル合成の原理を示す図である。
図5】コヒーレント検波に起因する位相雑音を示す図である。
図6】(a)は、本発明の実施形態2に係る位相雑音抑制処理を示すブロック図である。(b)は、本発明の実施形態2に係る位相雑音抑制処理を示す図である。(c)は、本発明の実施形態2に係る位相雑音抑制処理の結果を示す図である。
図7】本発明の実施形態3に係る遅延補償処理を示すブロック図である。
図8】本発明の実施形態4に係る周波数揺らぎ補償処理の原理を示す図である。
図9】本発明の実施形態4に係る相互相関強度の波形を示す図である。
図10】本発明の実施形態5に係る信号処理を示すブロック図である。
図11】本発明の実施形態5に係る一次微分位相成分の相互相関強度の波形を示す図である。
図12】本発明の他の実施形態に係る測定装置を示す図である。
図13】(a)は、本発明の実施例に係る測定装置を示す図である。(b)は、本発明の実施例に係る被測定光及び局所光を示す図である。
図14】本発明の実施例に係る帯域分割成分のスペクトル波形、帯域分割成分の一次微分した位相成分の波形、相互相関強度の波形、及びオーバーラップ領域の帯域幅のそれぞれの測定結果を示す図である。
図15】(a)は、本発明の実施例に係るスペクトル合成波形を示す図である。(b)は、本発明の実施例に係るコンスタレーション波形の測定結果を示す図である。
図16】(a)は、比較例に係るスペクトル波形の測定結果を示す図である。(b)は、比較例に係るコンスタレーション波形の測定結果を示す図である。
【発明を実施するための形態】
【0014】
以下、図面を参照して本発明の実施形態を説明する。但し、本発明は以下の実施形態に限定されるものではない。なお、図中、同一又は相当部分については同一の参照符号を付して説明を繰り返さない。また、説明が重複する箇所については、適宜説明を省略する場合がある。
【0015】
[実施形態1]
図1は、本実施形態に係る測定装置1を示す図である。図1に示すように、測定装置1は、局所光出力器11と、光回路12と、第1変換部13と、第2変換部14と、信号処理回路15とを備える。
【0016】
測定装置1は、被測定光OSを測定する。ここで、被測定光OSは、周期性を有する光信号であり、測定装置1は、複数回にわたって被測定光OSを測定する。具体的には、測定装置1は、被測定光OSの全周波数帯域の測定が完了するまで、被測定光OSの測定を繰り返す。被測定光OSは、例えば、光パルス列又は疑似ランダムビット列(Pseudo−Random Bit Sequence:PRBS)を示す光信号である。
【0017】
局所光出力器11は、被測定光OSの測定時に、互いに波長が異なる局所光LOを逐次出力する。詳しくは、局所光出力器11は、繰り返し入力される被測定光OSごとに、局所光LOの波長を変更する。換言すると、局所光出力器11は、被測定光OSの測定ごとに、局所光LOの周波数を変更する。局所光出力器11は、例えば、波長可変レーザである。
【0018】
光回路12は、被測定光OS及び局所光LOを入力して、第1光信号及び第2光信号を出力する。本実施形態において、被測定光OSは単一偏波の光信号であり、被測定光OSの偏波は局所光LOの偏波と一致している。第1光信号は、局所光LOに対する被測定光OSのサイン成分(実相成分)に対応するビート(うなり)を示し、第2光信号は、局所光LOに対する被測定光OSのコサイン成分(虚相成分)に対応するビート(うなり)を示す。
【0019】
詳しくは、光回路12は、局所光LOを用いて、第1局所光LO1と、第1局所光LO1との位相差が90度の第2局所光LO2とを生成する。光回路12は、被測定光OSと第1局所光LO1とを干渉させ、第1光信号として、干渉後の被測定光OS及び第1局所光LO1を出力する。また、光回路12は、被測定光OSと第2局所光LO2とを干渉させ、第2光信号として、干渉後の被測定光OS及び第2局所光LO2を出力する。光回路12は、例えば、位相ダイバーシティ光90度ハイブリッド回路である。
【0020】
第1変換部13は、第1光信号及び第2光信号(光回路12の出力)の各々をアナログ電気信号に変換する。本実施形態において、第1変換部13は、第1バランスフォトダイオード(Balanced photodiode:BPD)13a及び第2バランスフォトダイオード13bを備える。バランスフォトダイオードは、光電変換回路の一例である。
【0021】
第1バランスフォトダイオード13aは、第1光信号を第1アナログ電気信号に変換する。具体的には、干渉後の被測定光OS及び第1局所光LO1を第1アナログ電気信号に変換する。第1アナログ電気信号は、被測定光OSと局所光LOとの干渉光の同相成分(In−Phase成分:I成分)を示す。第2バランスフォトダイオード13bは、第2光信号を第2アナログ電気信号に変換する。具体的には、干渉後の被測定光OS及び第2局所光LO2を第2アナログ電気信号に変換する。第2アナログ電気信号は、被測定光OSと局所光LOとの干渉光の直交成分(Quadrature成分:Q成分)を示す。
【0022】
第2変換部14は、第1アナログ電気信号及び2アナログ電気信号(第1変換部13の出力)の各々をデジタル信号に変換する。本実施形態において、第2変換部14は、第1アナログデジタル変換器(Analog−digital converter:ADC)14a及び第2アナログデジタル変換器14bを備える。第1アナログデジタル変換器14aは、第1アナログ電気信号を第1デジタル信号に変換する。第2アナログデジタル変換器14bは、第2アナログ電気信号を第2デジタル信号に変換する。第1デジタル信号はI成分を示し、第2デジタル信号はQ成分を示す。
【0023】
信号処理回路15は、第2変換部14の出力(第1デジタル信号及び第2デジタル信号)を信号処理して、被測定光OSの複素電界振幅波形を測定する。具体的には、信号処理回路15は、演算処理により、第2変換部14の出力(時間領域の測定信号)を周波数領域にフーリエ変換して、周波数領域の波形(スペクトル波形)を示すデータを取得する。また、信号処理回路15は、演算処理により、スペクトル波形を逆フーリエ変換して、時間領域の波形を示すデータを取得する。そして、信号処理回路15は、時間領域の波形のデータから、被測定光OSの複素電界振幅波形を測定する。信号処理回路15は、例えば、汎用のパーソナルコンピュータ、又はDSP(digital signal processor)である。
【0024】
詳しくは、本実施形態において、第1バランスフォトダイオード13a及び第2バランスフォトダイオード13bの周波数帯域幅は、被測定光OSの周波数帯域幅よりも狭い。したがって、1回の測定で測定される被測定光OSの周波数帯域は、被測定光OSの全周波数帯域の一部である。この結果、第1変換部13の出力(第1アナログ信号及び第2アナログ信号)、及び第2変換部14の出力(第1デジタル信号及び第2デジタル信号)は、被測定光OSのスペクトル波形(周波数軸波形)の一部に対応する帯域分割成分を示す。なお、以下の説明において、周波数帯域幅を「帯域幅」と記載する場合がある。同様に、周波数帯域を「帯域」と記載する場合がある。
【0025】
局所光出力器11は、互いに帯域が異なる帯域分割成分を信号処理回路15が取得できるように局所光LOの波長(周波数)を変化させる。具体的には、局所光出力器11は、被測定光OSの全帯域(スペクトル波形)が複数の帯域に分割されるように、局所光LOの波長を変化させる。
【0026】
信号処理回路15は、フーリエ変換により、各帯域分割成分の時間軸波形をスペクトル波形に変換する。また、信号処理回路15は、デジタル領域において、帯域分割成分のスペクトル波形を合成して、被測定光OSのスペクトル波形を再生する。具体的には、信号処理回路15は、演算処理により各帯域分割成分を逐次的に測定し、測定した帯域分割成分のデータをデジタル領域において合成する。以下、帯域分割成分を測定することを「帯域分割測定」と記載し、帯域分割成分を合成することを「スペクトル合成」と記載する場合がある。また、帯域分割成分を合成して得られるスペクトル波形を「スペクトル合成波形」と記載する場合がある。
【0027】
信号処理回路15は、スペクトル合成波形を演算処理して、被測定光OSの複素電界振幅波形を測定する。具体的には、スペクトル合成波形を逆フーリエ変換して被測定光OSの時間軸波形を測定し、被測定光OSの時間軸波形をリサンプリングしてコンスタレーション波形を測定する。
【0028】
以上、図1を参照して本実施形態の測定装置1について説明した。本実施形態によれば、被測定光OSの帯域を分割して、複素電界振幅波形を測定する。したがって、帯域幅が狭い光電変換器や低速なデジタルアナログ変換器を使用して、複素電界振幅波形を測定することができる。
【0029】
続いて図2を参照して、光回路12及び第1変換部13の構成の一例について説明する。図2は、本実施形態に係る光回路12及び第1変換部13の構成を示す図である。
【0030】
図2に示すように、本実施形態に係る光回路12は、位相ダイバーシティ光90度ハイブリッド回路であり、第1光分離部121と、第2光分離部122と、90度位相シフト部123と、第1光干渉部124と、第2光干渉部125とを備える。
【0031】
第1光分離部121は、被測定光OSを2つに分離する。一方の被測定光OSは、第1光干渉部124に入力される。他方の被測定光OSは、第2光干渉部125に入力される。
【0032】
第2光分離部122は、局所光LOを2つに分離する。一方の局所光LOは、第1局所光LO1として第1光干渉部124に入力される。他方の局所光LOは、90度位相シフト部123に入力される。
【0033】
90度位相シフト部123は、他方の局所光LOの位相を90度シフトして第2局所光LO2を出力する。第2局所光LO2は、第2光干渉部125に入力される。
【0034】
第1光干渉部124は、被測定光OSと第1局所光LO1とを互いに干渉させて出力する。第2光干渉部125は、被測定光OSと第2局所光LO2とを互いに干渉させて出力する。
【0035】
続いて、第1バランスフォトダイオード13aについて説明する。図2に示すように、第1バランスフォトダイオード13aは、第1フォトダイオード131と、第2フォトダイオード132と、差動増幅器133とを備える。第1フォトダイオード131は、第1局所光LO1と干渉した後の被測定光OSをアナログ信号に変換する。第2フォトダイオード132は、被測定光OSと干渉した後の第1局所光LO1をアナログ信号に変換する。差動増幅器133は、第1フォトダイオード131の出力と第2フォトダイオード132の出力との差を増幅する。差動増幅器133の出力は、被測定光OSと局所光LOとの干渉光のI成分を示す。なお、第2バランスフォトダイオード13bの構成は、第1バランスフォトダイオード13aと同様であるため、その説明は割愛する。
【0036】
続いて図3(a)、及び図3(b)を参照して、被測定光OSのスペクトル波形について説明する。図3(a)は、被測定光OSの時間軸波形を示す図である。図3(b)は、被測定光OSのスペクトル波形を示す図である。図3(a)及び図3(b)に示すように、被測定光OSが周期性を有する場合、被測定光OSのスペクトル波形は、周波数軸上で離散するコム成分からなるコム状の波形となる。
【0037】
続いて図1及び図4を参照して、本実施形態に係る帯域分割測定及びスペクトル合成について説明する。図4は、本実施形態に係る帯域分割測定及びスペクトル合成の原理を示す図である。ここでは、被測定光OSのスペクトル波形を6分割する場合を例に帯域分割測定を説明する。
【0038】
図4において、グラフ41は、被測定光OSのスペクトル波形X(f)を示す。グラフ42は、6つの局所光LO(1stLO〜6thLO)のスペクトル波形XLO(f1)〜XLO(f6)を示す。詳しくは、互いに異なるタイミングで局所光出力器11から逐次的に出力される各局所光LOのスペクトル波形XLO(fk)を示す。なお、XLO(fk)は、k回目の測定時に局所光出力器11から出力される局所光LOのスペクトル波形を示す。グラフ43は、被測定光OSのスペクトル合成波形を示す。
【0039】
図4に示すように、6つの局所光LO(1stLO〜6thLO)は、互いに周波数が異なる。具体的には、局所光出力器11は、被測定光OSの全帯域が複数の帯域に分割されるように、局所光LOの周波数を変化させる。この結果、信号処理回路15は、互いに帯域が異なる帯域分割成分Xk(f)を逐次的に取得する。なお、Xk(f)は、k回目の測定時に測定される帯域分割成分を示す。
【0040】
信号処理回路15は、演算処理により各帯域分割成分Xk(f)を逐次的に測定し、測定した帯域分割成分Xk(f)をデジタル領域において合成する。図4に示す例では、信号処理回路15は、6つの帯域分割成分X1(f)〜X6(f)を合成する。詳しくは、信号処理回路15は、以下の式(1)に基づいて、6つの帯域分割成分をスペクトル合成する。
1(f−f1)+X2(f−f2)+・・・+X6(f−f6) (1)
【0041】
なお、帯域分割成分Xk(f)は、複数のコム成分を測定できる帯域幅Bを有する必要がある。好ましくは、帯域分割成分Xk(f)の帯域幅Bは、以下の式(2)に示す条件を満たす。式(2)において、f0は、被測定光OSの繰り返し周波数である。
B>2f0 (2)
【0042】
[実施形態2]
続いて図1図5、及び図6(a)〜図6(c)を参照して本発明の実施形態2について説明する。但し、実施形態1と異なる事項を説明し、実施形態1と同じ事項についての説明は割愛する。実施形態2は、信号処理回路15が位相雑音抑制処理を実行する点で実施形態1と異なる。位相雑音抑制処理は、帯域分割成分の位相雑音を抑制する処理であり、スペクトル合成前に実行される。
【0043】
図5は、コヒーレント検波に起因する位相雑音を示す図である。図5において、グラフ51は、局所光LOのスペクトル波形XLO(f)を示し、グラフ52は、被測定光OSのスペクトル波形X(f)を示す。詳しくは、図1を参照して説明した光回路12が受信する被測定光OSのスペクトル波形X(f)を示す。グラフ53は、図1を参照して説明した信号処理回路15が受信する被測定光OSのスペクトル波形を示す。
【0044】
コヒーレント検波において、被測定光OSと局所光LOとの間の位相揺らぎが局所光LOに付加される。この位相揺らぎは、時間とともに揺らぐランダムウォークの雑音である。ランダムウォークの位相揺らぎが局所光LOに付加された場合、局所光LOのスペクトル波形XLO(f)は、グラフ51に示すように半値幅δfのふくらみを有するローレンツ関数型波形となる。コヒーレント検波は、時間領域では被測定光OSと局所光LOとの乗算によってモデル化される。時間領域における乗算は、図5に示すように、周波数領域における畳み込み積分に対応する。したがって、信号処理回路15が受信する被測定光OSのスペクトル波形は、グラフ53に示すように、被測定光OSのスペクトル波形X(f)と局所光LOのスペクトル波形XLO(f)とを畳み込み積分した波形X(f)*XLO(f)となり、各コム成分は半値幅δfだけふくらんだ波形となる。なお、「*」は、畳み込み積分を示す。
【0045】
続いて図1図6(a)及び図6(b)を参照して、位相雑音抑制処理について説明する。図6(a)は本実施形態に係る位相雑音抑制処理を示すブロック図であり、図6(b)は本実施形態に係る位相雑音抑制処理を示す図である。本実施形態に係る信号処理回路15は、帯域分割成分Xk(f)の測定ごとに図6(a)及び図6(b)に示す処理を実行して位相雑音を抑制する。以下では、信号処理回路15が受信する信号を、「受信信号」と記載する場合がある。受信信号は、時間領域では、被測定光OSと局所光LOとを乗算した波形を示す。また、周波数領域では、被測定光OSと局所光LOとを畳み込み積分した波形を示す。
【0046】
図6(a)に示すように、信号処理回路15は、まず、受信信号Xk(t)・XLO(tk)を2つに分離して、具体的にはコピーして、一方の受信信号をフーリエ変換する。なお、Xk(t)は、k回目の測定時における帯域分割成分の時間軸波形を示す。XLO(tk)は、k回目の測定時における局所光LOの時間軸波形を示す。
【0047】
信号処理回路15は、フーリエ変換した受信信号Xk(f)*XLO(fk)に含まれるコム成分の1つをフィルタリングによって抽出する(図6(b)の左図を参照)。フィルタリングの帯域幅は、コム間隔f0に設定する。換言すると、被測定光OSの繰り返し周波数に設定する。次に、信号処理回路15は、抽出したコム成分の周波数を、その中心周波数が「0」を示すようにシフトする(図6(b)の中央図を参照)。
【0048】
信号処理回路15は、周波数シフトしたコム成分を逆フーリエ変換する。すなわち、周波数シフト及び逆フーリエ変換により、抽出したコム成分をベースバンド変換する。この結果、図6(b)の右図に示すように、位相雑音成分が抽出される。次に、信号処理回路15は、図6(a)に示すように、位相雑音成分の複素共役を演算処理によって求め、受信信号Xk(t)・XLO(tk)に複素共役を乗算する。この結果、受信信号の位相雑音が抑制される。信号処理回路15は、位相雑音を抑制した後の受信信号をフーリエ変換して、帯域分割成分Xk(f)を測定する。
【0049】
図6(c)は、位相雑音抑制処理の結果を示す図である。詳しくは、図6(c)の左図は、位相雑音抑制処理前の帯域分割成分のスペクトル波形を示し、図6(c)の右図は、位相雑音抑制処理後の帯域分割成分のスペクトル波形を示す。図6(c)の左図に示すように、位相雑音抑制処理前のコム成分は、位相雑音により、半値幅δfのふくらみを有する波形となる。一方、図6(c)の右図に示すように、位相雑音抑制処理が実行されることにより、コム成分からふくらみを除去することができる。なお、局所光LOや被測定光OSに用いるレーザ光のスペクトル線幅は、コム間隔f0に対して十分に小さい必要がある。
【0050】
以上、実施形態2について説明した。本実施形態において、信号処理回路15は、帯域分割成分Xk(t)・XLO(tk)の複素共役を取得し、帯域分割成分Xk(t)・XLO(tk)と複素共役とを乗算することにより、位相雑音を除去する。したがって、被測定光OSの複素電界振幅波形をより精度よく測定することが可能となる。また、コヒーレント検波に起因する位相雑音はランダムウォークの雑音であるため、帯域分割成分ごとに異なる位相雑音が付加される可能性がある。これに対し、本実施形態によれば、帯域分割成分ごとに位相雑音を抑制することができる。
【0051】
[実施形態3]
続いて図1、及び図7を参照して本発明の実施形態3について説明する。但し、実施形態1及び2と異なる事項を説明し、実施形態1及び2と同じ事項についての説明は割愛する。実施形態3は、信号処理回路15が遅延補償処理を実行する点で実施形態1及び2と異なる。遅延補償処理は、スペクトル合成前に実行される。遅延補償処理は、帯域分割成分間で被測定光OSに対する遅延が異なることに起因するスペクトル合成波形の劣化を抑制する処理である。
【0052】
各帯域分割成分は、被測定光OSと非同期に測定される。したがって、各帯域分割成分は異なる遅延τkを有する。換言すると、帯域分割成分ごとに遅延τkの値が異なる。しかし、時間遅延τkは、以下の式(3)及び式(4)に示すように、周波数領域では線形位相回転のみを生じさせ、強度に対して影響しない。
k(f)=X(f)exp(j2πfτk) (3)
LOk−B/2≦f≦fLOk+B/2 (4)
【0053】
なお、式(3)において、Xk(f)は、k回目に測定される帯域分割成分のスペクトル波形を示す。X(f)は、被測定光OSのスペクトル波形を示す。τkは、k回目に測定される帯域分割成分の遅延を示す。また、式(4)において、fLOkは、k回目の測定時に出力される局所光LOの周波数を示す。Bは、帯域分割成分の帯域幅を示す。
【0054】
式(3)を振幅成分Ak(f)と位相成分Φk(f)とに分割すると、以下の式(5)となる。なお、振幅成分Ak(f)及び位相成分Φk(f)は実数である。
k(f)=Ak(f)exp[jΦk(f)] (5)
【0055】
位相成分Φk(f)を多項式展開すると、以下の式(6)となる。
【数1】
【0056】
式(6)において、時間遅延τkは一次項にのみ現れ、それ以外の項には影響を与えない。Φk(f)を周波数に対して微分すると、以下の式(7)となる。
【数2】
【0057】
式(7)は、一次微分した位相成分の波形を示す関数である。以下、一次微分した位相成分を「一次微分位相成分」と記載する場合がある。また、一次微分した位相成分の波形を「一次微分位相波形」と記載する場合がある。
【0058】
式(7)に示すように、一次微分位相成分の関数は、定数成分(2π[τk+Φ1])が時間遅延τkによって変化するのみであり、時間遅延τkが変化しても一次微分位相波形は変化しない。したがって、隣接する帯域分割成分間で一次微分位相成分が滑らかにつながるように、一次微分位相成分の定数成分を調整することにより、時間遅延τkの影響を除去することができる。
【0059】
続いて図1及び図7を参照して、遅延補償処理について説明する。図7は、本実施形態に係る遅延補償処理を示すブロック図である。本実施形態に係る信号処理回路15は、帯域分割成分Xk(f)の測定ごとに図7に示す処理を実行して、時間遅延τkの影響を除去する。
【0060】
図7に示すように、信号処理回路15は、帯域分割成分Xk(t−τk)を受信する。k回目の測定時における帯域分割成分Xk(t−τk)は、遅延成分τkを有する。遅延成分τkは、帯域分割成分間で異なる値を示す。
【0061】
信号処理回路15は、帯域分割成分Xk(t−τk)をフーリエ変換して、上記の式(5)及び式(6)に基づき、帯域分割成分のスペクトル波形Xk(f)を演算によって求める。そして、信号処理回路15は、フーリエ変換後の帯域分割成分、すなわち帯域分割成分のスペクトル波形Xk(f)を、振幅成分Ak(f)と位相成分Φk(f)とに分割する。
【0062】
次に信号処理回路15は、振幅成分Ak(f)の絶対値を演算により求める一方で、位相成分Φk(f)の位相角を演算により求める。そして、信号処理回路15は、上記の式(7)に基づき、位相成分Φk(f)の位相角を周波数に対して微分して、一次微分位相成分を取得する。
【0063】
信号処理回路15は、一次微分位相成分を取得すると、隣接する帯域分割成分間で一次微分位相成分が滑らかにつながるように、一次微分位相成分の定数成分を調整する。
【0064】
信号処理回路15は、振幅成分Ak(f)の絶対値と、定数成分が調整された一次微分位相成分とを、隣接する帯域分割成分間でつなげて、スペクトル合成を行う。
【0065】
以上、実施形態3について説明した。本実施形態において、信号処理回路15は、帯域分割成分間で被測定光OSに対する遅延τkが異なることに起因するスペクトル合成波形の劣化を抑制する。したがって、被測定光OSの複素電界振幅波形をより精度よく測定することが可能となる。
【0066】
[実施形態4]
続いて図1図8、及び図9を参照して本発明の実施形態4について説明する。但し、実施形態1〜3と異なる事項を説明し、実施形態1〜3と同じ事項についての説明は割愛する。実施形態4は、信号処理回路15が周波数揺らぎ補償処理を実行する点で実施形態1〜3と異なる。周波数揺らぎ補償処理は、スペクトル合成前に実行される。周波数揺らぎ補償処理は、局所光LOの周波数が揺らぐことに起因するスペクトル合成波形の劣化を抑制する処理である。
【0067】
本実施形態では、帯域分割測定を行うために、局所光LOの周波数を測定ごとに変化させる。但し、一般的なレーザ光の周波数確度は10MHz程度であるため、レーザ光の周波数fLOは揺らぎ成分ΔfLOを有する。このため、局所光LOにレーザ光を使用した場合、帯域分割成分の各コム成分の周波数も揺らぎ、スペクトル合成波形を劣化させる要因となる。
【0068】
続いて図1及び図8を参照して、周波数揺らぎ補償処理について説明する。図8は、本実施形態に係る周波数揺らぎ補償処理の原理を示す図である。詳しくは、図8は、1回目の測定時に測定された帯域分割成分X1(f)と、2回目の測定時に測定された帯域分割成分X2(f)とを合成する処理を示す。
【0069】
本実施形態に係る局所光出力器11は、図8に示すように、隣接する帯域分割成分間で領域が一部重なるように局所光LOの周波数(波長)を変化させる。また、本実施形態に係る信号処理回路15は、図8に示すように、隣接する帯域分割成分間において領域が重なるオーバーラップ部分(オーバーラップ成分)を検出し、隣接する帯域分割成分のうちの一方からオーバーラップ部分を除去する。信号処理回路15は、オーバーラップ部分を除去した後に、隣接する帯域分割成分を合成する。図8に示す例では、1回目の測定時に測定された帯域分割成分X1(f)からオーバーラップ部分を除去した後に、1回目の測定時に測定された帯域分割成分X1(f)と、2回目の測定時に測定された帯域分割成分X2(f)とを合成する処理を示している。
【0070】
以上、図1及び図8を参照して、周波数揺らぎ補償処理について説明した。本実施形態によれば、局所光LOの周波数が揺らぎ成分を有することに起因するスペクトル合成波形の劣化を抑制することができる。
【0071】
但し、局所光LOの周波数の揺らぎに起因して、測定ごとにオーバーラップ領域の帯域幅が揺らぐ可能性がある。例えば、帯域分割成分の帯域幅Bの半分の帯域幅(B/2)を有するオーバーラップ領域を設けた場合であっても、局所光LOの周波数の揺らぎ成分ΔfLOに起因して、測定ごとに、オーバーラップ領域の帯域幅が(B/2)±ΔfLOの範囲内で変化する可能性がある。
【0072】
これに対し、本実施形態に係る信号処理回路15は、隣接する帯域分割成分間の相互相関に基づき、オーバーラップ領域(オーバーラップ部分)を検出する。この結果、隣接する局所光LOの周波数の揺らぎに起因して、測定ごとにオーバーラップ領域の帯域幅が変化しても、オーバーラップ領域の帯域幅を正確に検出することが可能となる。
【0073】
続いて図1及び図9を参照して、オーバーラップ領域の検出処理について説明する。図9は、相互相関強度の波形を示す図である。信号処理回路15は、隣接する帯域分割成分の位相成分間の相互相関を、相互相関関数に基づいて求める。この相互相関の強度には、図9に示すように、オーバーラップ成分に起因する急峻なピークが生じる。ピーク値の位相φpは、オーバーラップ領域のデータ長に対応している。したがって、局所光LOの周波数揺らぎに起因してオーバーラップ領域が揺らぐ場合であっても、ピーク値の位相φpに基づき、オーバーラップ領域のデータ長(帯域幅)を正確に検出することができる。
【0074】
なお、本実施形態では、隣接する帯域分割成分のうち、先に測定された帯域分割成分からオーバーラップ部分を除去する処理を説明したが、隣接する帯域分割成分のうち、後で測定された帯域分割成分からオーバーラップ部分を除去してもよい。
【0075】
[実施形態5]
続いて図1図10、及び図11を参照して本発明の実施形態5について説明する。但し、実施形態1〜4と異なる事項を説明し、実施形態1〜4と同じ事項についての説明は割愛する。実施形態5は、実施形態2〜4において説明した3つの信号処理(位相雑音抑制処理、遅延補償処理、及び周波数揺らぎ補償処理)を信号処理回路15が実行する点で実施形態1〜4と異なる。
【0076】
図10は、本実施形態に係る信号処理を示すブロック図である。本実施形態に係る信号処理回路15は、図10に示す各処理を実行する。なお、周波数揺らぎ補償処理を実行するために、本実施形態に係る局所光出力器11は、実施形態4において説明したように、隣接する帯域分割成分間で領域が一部重なるように局所光LOの周波数(波長)を変化させる。
【0077】
図10に示すように、信号処理回路15は、各帯域分割成分の時間領域のデータX1(t)、X2(t)、X3(t)、・・・、XN(t)に対し、実施形態2において説明した位相雑音抑制処理を行う。その後、位相雑音抑制処理後の各帯域分割成分のデータをフーリエ変換して周波数領域のデータに変換し、各帯域分割成分の周波数領域のデータから、コム周波数間隔でピーク値を抽出する。
【0078】
次に、信号処理回路15は、実施形態3において説明した遅延補償処理のために、周波数領域における位相成分の一次微分を計算する。
【0079】
次に、信号処理回路15は、実施形態4において説明した周波数揺らぎ補償処理のために、隣接する帯域分割成分のデータ間における一次微分位相成分の相互相関を求める。そして、信号処理回路15は、相互相関強度のピーク値の位相φpに基づいて、オーバーラップ領域のデータ長を検出し、隣接する帯域分割成分のデータの一方からオーバーラップ領域のデータを除去する。
【0080】
次に、信号処理回路15は、隣接する帯域分割成分同士が滑らかにつながるように、一次微分位相成分の定数成分を調整する。具体的には、隣接する帯域分割成分のうち、後で測定された帯域分割成分の一次微分位相成分に含まれる定数成分を調整する。詳しくは、帯域分割成分の周波数及び位相をシフトすることにより、定数成分を調整する。定数成分の調整には、オーバーラップ領域内の測定値の平均を用いる。その後、信号処理回路15は、隣接する帯域分割成分の一次微分位相成分及び強度成分を合成する。
【0081】
なお、本実施形態では、実施形態4と異なり、一次微分位相成分の相互相関を求める。図11は、一次微分位相成分の相互相関強度の波形を示す図である。図11において、グラフ61は、k回目の測定で得た帯域分割成分の一次微分位相波形を示す。グラフ62は、k+1回目の測定で得た帯域分割成分の一次微分位相波形を示す。グラフ63は、一次微分位相成分の相互相関強度の波形を示す。
【0082】
グラフ63に示すように、隣接する帯域分割成分間の一次微分位相成分の相互相関強度波形にも、オーバーラップ成分に起因した急峻なピークが生じる。信号処理回路15は、以下の式(8)により、k回目の測定で得た帯域分割成分の一次微分位相成分と、k+1回目の測定で得た帯域分割成分の一次微分位相成分との相互相関を求める。換言すると、信号処理回路15は、図11に示すように、畳み込み積分によって一次微分位相成分の相互相関を求める。
【数3】
【0083】
以上、実施形態5について説明した。本実施形態によれば、位相雑音抑制処理、遅延補償処理、及び周波数揺らぎ補償処理を実行するため、スペクトル合成波形の劣化をより抑制することができる。
【0084】
以上、本発明の実施形態について図面を参照しながら説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。
【0085】
例えば、本発明による実施形態では、被測定光OSは単一偏波の光信号であったが、被測定光OSは単一偏波の光信号に限定されない。図12は、他の実施形態に係る測定装置1を示す図である。以下、図12に示す測定装置1について説明する。
【0086】
図12に示す測定装置1は、局所光出力器11と、2つの偏光ビームスプリッタ(Polarizing Beam Splitter:PBS)16と、2つの光回路12と、2つの第1変換部13と、2つの第2変換部14と、信号処理回路15とを備える。2つの偏光ビームスプリッタ16のうちの一方は、被測定光OSを垂直偏波と水平偏波とに分離し、他方は局所光LOを垂直偏波と水平偏波とに分離する。2つの光回路12のうちの一方は、被測定光OSの垂直偏波と局所光LOの垂直偏波とを入力し、他方は被測定光OSの水平偏波と局所光LOの水平偏波とを入力する。図12に示す測定装置1によれば、被測定光OSの垂直偏波及び水平偏波を、同一の局所光LOを用いてそれぞれコヒーレント検波して、各偏波成分の複素電界振幅を測定することができる。
【実施例】
【0087】
以下、実施例及び比較例を用いて本発明を更に具体的に説明する。なお、本発明は実施例の範囲に何ら限定されない。
【0088】
本実施例では、局所光LOの波長を逐次変化させながら被測定光OSを11回測定して、帯域分割測定を行った。図13(a)は、本実施例に係る測定装置100を示す図である。また、図13(b)は、本実施例に係る被測定光OS及び局所光LO(1stLO〜11thLO)を示す図である。本実施例に係る測定装置100は、図1を参照して説明した測定装置1と同様に構成した。具体的には、図13(a)に示すように、測定装置100は、第1波長可変レーザ101と、IQ変調器102と、任意波形発生器(Arbitrarily Waveform Generation:AWG)103と、第2波長可変レーザ104と、位相ダイバーシティ光90度ハイブリッド回路105と、2つのバランスフォトダイオード106と、オシロスコープ107とを備える。
【0089】
本実施例では、第1波長可変レーザ101、IQ変調器102、及び任意波形発生器103を用いて、被測定光OSとして、周期29−1の疑似ランダムビット列を示す単一偏波のQPSK(Quadrature Phase Shift Keying)信号を生成した。QPSK信号のボーレート(Baudrate)は、12.5Gボーとした。また、QPSK信号のスペクトル波形は、ナイキストパルス波形とした(図13(b)参照)。なお、IQ変調器102は、波形の同相成分(In−phase)、及び波形の直交位相成分(Quadrature)を変調する変調器である。
【0090】
本実施例では、第2波長可変レーザ104を用いて局所光LOを生成した。また、被測定光OSの測定ごとに、局所光LO(レーザ光)の周波数を1.25Hzずつ変化させた。なお、局所光LOのスペクトル線幅は、10kHzであった。
【0091】
本実施例では、バランスフォトダイオード106の帯域幅は40GHz(>12.5GHz)以上であった。このため、2つのバランスフォトダイオード106は、1回の測定で被測定光OSの全帯域(帯域幅12.5GHz)を出力できる。そこで、オシロスコープ107を用いて、デジタル領域で帯域幅を2.5GHzにフィルタリングすることにより、被測定光OSを11分割して、帯域分割測定を行った。なお、オシロスコープ107のアナログ帯域幅は8GHzであった。
【0092】
図14は、本実施例に係る帯域分割成分のスペクトル波形、帯域分割成分の一次微分位相波形、相互相関強度の波形、及びオーバーラップ領域の帯域幅のそれぞれの測定結果を示す図である。本実施例では、図13を参照して説明したオシロスコープ107のデジタル出力を汎用パーソナルコンピュータに入力して、帯域分割成分のスペクトル波形、帯域分割成分の一次微分位相波形、及び相互相関強度の波形を測定した。また、本実施例では、汎用パーソナルコンピュータを用いて、図10を参照して説明した信号処理を実行した。
【0093】
図14に示すように、相互相関強度の波形に急峻なピークが生じることを確認できた。なお、計算上、オーバーラップ領域の帯域幅は1.25GHzとなるが、実施形態4において説明したように、オーバーラップ領域の帯域幅には揺らぎが生じた。
【0094】
図15(a)は、本実施例に係るスペクトル合成波形を示す図である。図15(a)に示すように、スペクトル合成を行うことにより、被測定光OSのスペクトル波形を再生することができた。
【0095】
本実施例では更に、汎用パーソナルコンピュータを用いた演算処理により、スペクトル合成波形(周波数軸上で帯域分割成分を合成した波形)に対して逆フーリエ変換を行い、時間領域の波形に変換し、時間領域の波形をリサンプリングしてコンスタレーション波形を得た。図15(b)は、本実施例に係るコンスタレーション波形の測定結果を示す図である。
【0096】
図15(b)に示すように、QPSK信号の4種類の符号を十分に認識することができた。これは、被測定光OSのスペクトル波形が正確に再生できたことを示している。なお、図15(b)に示すコンスタレーション波形において、振幅方向の揺らぎσampは「0.235」であった。また、位相方向の揺らぎσθは「0.094rad」であった。
【0097】
図16(a)は、比較例に係るスペクトル波形の測定結果を示す図である。比較例では、実施例と異なり、オシロスコープ107による帯域幅のフィルタリングを行うことなく、被測定光OSの全帯域(帯域幅12.5GHz)を測定した。換言すると、1回の測定で、被測定光OSの全帯域を測定した。図15(a)及び図16(a)に示すように、帯域分割成分を合成した波形が、1回の測定で得た波形と比べて劣化していないことを確認できた。
【0098】
図16(b)は、比較例に係るコンスタレーション波形の測定結果を示す図である。図16(b)に示すコンスタレーション波形において、振幅方向の揺らぎσampは「0.232」であった。また、位相方向の揺らぎσθは「0.105rad」であった。したがって、図15(b)及び図16(b)に示すように、帯域分割成分を合成して得たコンスタレーション波形が、1回の測定で得たコンスタレーション波形と比べて劣化していないことを確認できた。
【産業上の利用可能性】
【0099】
本発明は、光信号の周波数成分の波形の測定に有用である。
【符号の説明】
【0100】
1 測定装置
11 局所光出力器
12 光回路
13 第1変換部
13a 第1バランスフォトダイオード
13b 第2バランスフォトダイオード
14 第2変換部
14a 第1アナログデジタル変換器
14b 第2アナログデジタル変換器
15 信号処理回路
100 測定装置
101 第1波長可変レーザ
102 IQ変調器
103 任意波形発生器
104 第2波長可変レーザ
106 バランスフォトダイオード
107 オシロスコープ
LO 局所光
LO1 第1局所光
LO2 第2局所光
OS 被測定光
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16