特開2019-220525(P2019-220525A)IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大日本印刷株式会社の特許一覧

<>
  • 特開2019220525-配線基板および配線基板の製造方法 図000003
  • 特開2019220525-配線基板および配線基板の製造方法 図000004
  • 特開2019220525-配線基板および配線基板の製造方法 図000005
  • 特開2019220525-配線基板および配線基板の製造方法 図000006
  • 特開2019220525-配線基板および配線基板の製造方法 図000007
  • 特開2019220525-配線基板および配線基板の製造方法 図000008
  • 特開2019220525-配線基板および配線基板の製造方法 図000009
  • 特開2019220525-配線基板および配線基板の製造方法 図000010
  • 特開2019220525-配線基板および配線基板の製造方法 図000011
  • 特開2019220525-配線基板および配線基板の製造方法 図000012
  • 特開2019220525-配線基板および配線基板の製造方法 図000013
  • 特開2019220525-配線基板および配線基板の製造方法 図000014
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2019-220525(P2019-220525A)
(43)【公開日】2019年12月26日
(54)【発明の名称】配線基板および配線基板の製造方法
(51)【国際特許分類】
   H05K 1/02 20060101AFI20191129BHJP
   H01L 21/3205 20060101ALI20191129BHJP
   H01L 21/768 20060101ALI20191129BHJP
   H01L 23/522 20060101ALI20191129BHJP
   H05K 3/42 20060101ALI20191129BHJP
【FI】
   H05K1/02 C
   H01L21/88 J
   H05K3/42 610B
【審査請求】未請求
【請求項の数】8
【出願形態】OL
【全頁数】11
(21)【出願番号】特願2018-115259(P2018-115259)
(22)【出願日】2018年6月18日
(71)【出願人】
【識別番号】000002897
【氏名又は名称】大日本印刷株式会社
(74)【代理人】
【識別番号】110000408
【氏名又は名称】特許業務法人高橋・林アンドパートナーズ
(72)【発明者】
【氏名】小岩 進雄
【テーマコード(参考)】
5E317
5E338
5F033
【Fターム(参考)】
5E317AA21
5E317AA24
5E317BB01
5E317BB04
5E317BB11
5E317BB12
5E317BB13
5E317BB14
5E317BB15
5E317CC33
5E317CC38
5E317CD25
5E338AA02
5E338AA16
5E338AA18
5E338BB13
5E338BB25
5E338EE32
5F033GG04
5F033JJ07
5F033JJ11
5F033JJ13
5F033JJ14
5F033LL08
5F033MM17
5F033MM20
5F033MM30
5F033PP27
5F033QQ07
5F033QQ13
5F033QQ73
5F033QQ76
5F033RR04
5F033SS11
5F033SS15
5F033SS25
5F033SS27
5F033TT07
5F033TT08
5F033WW10
5F033XX33
(57)【要約】      (修正有)
【課題】貫通孔の一部に空間領域が存在する配線基板、またはその製造方法を提供する。
【解決手段】配線基板1は、貫通孔106を含む基板10と、貫通孔106に設けられて、貫通孔106の側面に接する第1領域と、少なくとも貫通孔106の開口面1064、1066に位置し、かつ、第1領域よりも金属材料の結晶粒径が大きい第2領域と、を含み、貫通孔106に中空領域22が存在するように設けられた金属構造体20と、を有する。中空領域22は、第2領域によって囲まれていてもよい。第2領域は、貫通孔106の開口面1064、1066を塞いでいてもよい。
【選択図】図1
【特許請求の範囲】
【請求項1】
貫通孔を含む基板と、
前記貫通孔に設けられた金属構造体であって、前記貫通孔の側面に接する第1領域と、少なくとも前記貫通孔の開口面に位置し、かつ前記第1領域よりも金属材料の結晶粒径が大きい第2領域と、を含み、前記貫通孔に中空領域が存在するように設けられた金属構造体と、
を有する配線基板。
【請求項2】
前記中空領域は、前記第2領域によって囲まれている
請求項1に記載の配線基板。
【請求項3】
前記第2領域は前記貫通孔の開口面を塞ぐ、
請求項1または請求項2に記載の配線基板。
【請求項4】
前記中空領域は、前記貫通孔の軸方向に交差する方向において、前記金属構造体よりも厚い部分を含む、
請求項1から請求項3のいずれか1項に記載の配線基板。
【請求項5】
前記中空領域は、前記貫通孔の軸方向において、前記金属構造体よりも厚い部分を含む、
請求項1から請求項4のいずれか1項に記載の配線基板。
【請求項6】
基板に含まれる貫通孔の側面に、電解めっき法により、第1電流密度で第1金属層を形成し、
前記第1金属層を形成した後、電解めっき法により、前記第1電流密度よりも大きい第2電流密度で、前記第1金属層と異なる第2金属層を形成する、
配線基板の製造方法。
【請求項7】
前記第2金属層は前記貫通孔の開口面を塞ぐ、
請求項6に記載の配線基板の製造方法。
【請求項8】
前記貫通孔の軸方向に交差する方向において、前記第1金属層が前記貫通孔内の空間領域よりも厚くなる前に、前記第1電流密度から前記第2電流密度に変更する、
請求項6または請求項7に記載の配線基板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、配線基板および配線基板の製造方法に関する。
【背景技術】
【0002】
MEMS(Micro Electro Mechanical Systems)技術を利用して貫通電極を含む配線基板を製造する技術が、従来から提案されている。特許文献1は、貫通電極の内部に樹脂を含む応力緩衝部を設けた貫通電極基板を開示している。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2012−142414号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1に記載の技術において、応力緩衝部は、応力に起因した動作不良の発生を抑えるための部材である。応力緩衝部は、電気信号の伝送に寄与することを目的とした部位とは異なる部位である。
【0005】
これに対し、本開示の実施形態における目的の一つは、貫通孔の一部に空間領域が存在する配線基板、またはその製造方法を提供することである。
【課題を解決するための手段】
【0006】
本開示の実施形態の一つである配線基板は、貫通孔を含む基板と、前記貫通孔に設けられた金属構造体であって、前記貫通孔の側面に接する第1領域と、少なくとも前記貫通孔の開口面に位置し、かつ前記第1領域よりも金属材料の結晶粒径が大きい第2領域と、を含み、前記貫通孔に中空領域が存在するように設けられた金属構造体と、を有する。
【0007】
本開示の実施形態の一つである配線基板において、前記中空領域は、前記第2領域によって囲まれている。
【0008】
本開示の実施形態の一つである配線基板において、前記第2領域は前記貫通孔の開口面を塞ぐ。
【0009】
本開示の実施形態の一つである配線基板において、前記中空領域は、前記貫通孔の軸方向に交差する方向において、前記金属構造体よりも厚い部分を含む。
【0010】
本開示の実施形態の一つである配線基板において、前記中空領域は、前記貫通孔の軸方向において、前記金属構造体よりも厚い部分を含む。
【0011】
本開示の実施形態の一つである配線基板の製造方法は、基板に含まれる貫通孔の側面に、電解めっき法により、第1電流密度で第1金属層を形成し、前記第1金属層を形成した後、電解めっき法により、前記第1電流密度よりも大きい第2電流密度で、前記第1金属層と異なる第2金属層を形成する。
【0012】
本開示の実施形態の一つである配線基板の製造方法において、前記第2金属層は前記貫通孔の開口面を塞ぐ。
【0013】
本開示の実施形態の一つである配線基板の製造方法において、前記貫通孔の軸方向に交差する方向において、前記第1金属層が前記貫通孔内の空間領域よりも厚くなる前に、前記第1電流密度から前記第2電流密度に変更する。
【図面の簡単な説明】
【0014】
図1】本開示の第1実施形態に係る配線基板の構成を示す部分側断面図である。
図2】本開示の第1実施形態に係る金属構造体の構成を示す側断面図である。
図3】本開示の第2実施形態に係る配線基板の製造方法の手順を示すフローチャートである。
図4】本開示の第2実施形態に係る配線基板の製造方法を説明する部分側断面図である。
図5】本開示の第2実施形態に係る配線基板の製造方法を説明する部分側断面図である。
図6】本開示の第2実施形態に係る配線基板の製造方法を説明する部分側断面図である。
図7】本開示の第2実施形態に係る配線基板の製造方法を説明する部分側断面図である。
図8】電解めっき法における電流密度と金属層の膜厚との関係を例示するグラフである。
図9】従来技術に係る配線基板の構成を示す部分側断面図である。
図10】従来技術に係る配線基板の構成を示す部分側断面図である。
図11】従来技術に係る配線基板の構成を示す部分側断面図である。
図12】従来技術に係る配線基板の構成を示す部分側断面図である。
【発明を実施するための形態】
【0015】
以下、本開示の各実施形態について、図面を参照し、説明する。ただし、本開示は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施形態の記載内容に限定して解釈されるものではない。
【0016】
図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本開示の解釈を限定するものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、B、Cのアルファベットを付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。
【0017】
本明細書および特許請求の範囲において、ある構造体の上に他の構造体を配置する態様を表現するにあたり、単に「上に」と表記する場合、特に断りの無い限りは、ある構造体に接するように、直上(上面)に他の構造体を配置する場合と、ある構造体の上方に、さらに別の構造体を介して他の構造体を配置する場合との両方を含むものとする。
【0018】
本明細書および特許請求の範囲において、ある構造体と他の構造体が重なるという表現は、これらの構造体の平面視において、少なくとも一部が重なるということを意味する。換言すると、これらの構造体のいずれか一方が他方の上、あるいは下に位置し、かつ、これらの構造体を上面から、あるいは下面から見た場合に、互いに少なくとも一部が重なるということを意味する。
【0019】
[第1実施形態]
図1は、本開示の第1実施形態である配線基板1の構成を示す部分側断面図である。配線基板1は、いわゆる貫通電極基板である。配線基板1は、多層配線基板、インターポーザと呼ばれる配線基板であってもよい。配線基板1は、基板10と、金属構造体20と、配線30とを有する。
【0020】
基板10は、第1面102と、第2面104と、貫通孔106と、を含む。第1面102には、配線30が配置されている。配線30は、例えば、第1面102に配置された電子部品(例えば、トランジスタ)の一部を構成してもよい。第2面104は、第1面102と対向する面である。第2面104は、第1面102は、表裏の関係にある。第2面104に配線が配置されてもよい。貫通孔106は、第1面102と第2面104とを貫通する孔である。貫通孔106(基板10)の開口面のうち、第1面102に隣接する開口面を「開口面1064」と称し、第2面104に隣接する開口面を「開口面1066」と称する。貫通孔106は、例えば円柱状であるが、直方体状、三角柱状、またはその他の形状であってもよい。
【0021】
以下、第1面102または第2面104に平行な一方向を「X方向」とし、X方向に交差する方向を「Y方向」として、各方向を説明する場合がある。X方向は、貫通孔106の径方向に対応する。Y方向は、貫通孔106の軸方向に対応する。
【0022】
基板10および貫通孔106のY方向における厚さは、例えば10μm以上800μm以下であるが、これに限定されない。貫通孔106の径は例えば10μm以上100μm以下であるが、これに限定されない。図1には、説明の便宜上、貫通孔106が1つだけ示されているが、基板10は2つ以上の貫通孔106を含んでもよい。
【0023】
本実施形態の基板10は、シリコン層108、およびシリコン層108を覆う酸化シリコン層110を含む。酸化シリコン層110は、貫通孔106の側面(内壁ともいう。)1062、および基板10の表面に設けられた絶縁層(絶縁膜)である。酸化シリコン層110の厚みは例えば0.1以上2μm以下であるが、これに限定されない。なお、基板10は、シリコンを含む基板に限定されない。基板10は、ガラス、セラミック、絶縁性樹脂またはその他の材料を含む基板であってもよい。
【0024】
金属構造体20は、貫通孔106に設けられ、第1面102と第2面104とを電気的に接続させる。金属構造体20は貫通電極と呼ばれる。金属構造体20は、配線30と電気的に接続されてもよい。金属構造体20は、例えば銅を用いて形成されるが、白金、金、銀、ニッケル、ロジウム、ルテニウム、イリジウムまたはその他の金属のうちの一種または二種以上を用いて形成されてもよい。
【0025】
金属構造体20は、貫通孔106に中空領域22が存在するように設けられている。すなわち、配線基板1は、金属構造体20によって囲まれた中空領域22を貫通孔106に含む。中空領域22は、金属構造体20のうち、側面1062に接する領域と、開口面1064に接する領域と、開口面1066に接する領域とによって囲まれた空間領域である。図1では、中空領域22の断面形状を、概略的に、頂点に相当する部分がやや丸みを帯びたほぼ矩形形状で図示してある。中空領域22は、例えば全体としてほぼ直方体状であるが、球状またはその他の形状であってもよい。
【0026】
中空領域22は、貫通電極における一般的なボイドとは異なる概念の空間領域である。ボイドとは、貫通孔の側面から貫通孔の中心軸に向かって金属層が成長してその中心軸付近で一体化する際に生じた、金属層の内部の気泡が残存する領域をいう。
【0027】
図2は、金属構造体20の構成を示す側断面図である。金属構造体20は、第1領域24と、第2領域26とを含む。図2では、第1領域24および第2領域26をそれぞれ均一の厚さで図示しているが、厚さは不均一であってもよい。
【0028】
第1領域24は、側面1062に接する領域である。第1領域24は、中空領域22の位置から見て側面1062側に位置する領域を含む。第1領域24は、金属構造体20のうち、側面1062に接する筒状の領域に相当する。
【0029】
第2領域26は、少なくとも開口面1064および開口面1066に位置する領域である。第2領域26は、中空領域22の位置から見て、開口面1064側および開口面1066側に位置する領域を含む。第2領域26は、本実施形態では、金属構造体20のうちの第1領域24とは異なる領域である。
【0030】
本実施形態では、中空領域22は、第2領域26によって囲まれた空間領域である。また、第2領域26は、開口面1064および開口面1066を塞ぐ。ただし、第2領域26は、必ずしも中空領域22を密閉する必要はない。例えば、第2領域26は、開口面1064および開口面1066の少なくとも一方を介して、中空領域22を外部の空間領域に通じさせる孔を含んでもよい。
【0031】
ここで、金属構造体20のうち、側面1062に接する領域のX方向における厚さ(肉厚)を「DA」とし、中空領域22のX方向における厚さを「DX」とした場合、DX>DAという関係を満たしてもよい。本実施形態では、DAは、第1領域24の厚さと、第2領域26の厚さとを合算した厚さである。すなわち、中空領域22は、X方向において金属構造体20よりも厚い領域を含んでもよい。
【0032】
また、第2領域26のうち、開口面1064側の領域のY方向における厚さを「DB」とし、開口面1066側の領域のY方向における厚さを「DC」とし、中空領域22のY方向における厚さを「DY」とした場合、DY>DB、およびDY>DCの少なくとも一方の関係を満たしてもよい。すなわち、中空領域22は、Y方向において金属構造体20(本実施形態では、第2領域26)よりも厚い領域を含んでもよい。DBおよびDCは、例えば数μmであるが、これに限られない。なお、第1領域24および第2領域26のそれぞれについて、所定の方向における厚さが不均一である場合、平均値、最大値、最小値またはその他の値のいずれによって該方向における厚さが特定されてもよい。
【0033】
第2領域26は、第1領域24よりも、金属材料の結晶粒径が大きい領域である。ここでいう結晶粒径は、例えば平均結晶粒径である。第1領域24の金属材料の平均結晶粒径はおよそ3μm、第2領域26の金属材料の平均結晶粒径はおよそ5μmである。平均結晶粒径は、例えばASTM D112−13「Standard Test Methods for Determining Average Grain Size(平均結晶粒度決定のための標準試験方法)」により特定されるが、これに限られない。金属材料の結晶粒径は、平均結晶粒径によって特定されなくてもよく、例えば最大結晶粒径またはその他の結晶粒径によって特定されてもよい。
【0034】
金属材料の結晶粒径の差異により、第1領域24は、第2領域26よりも機械的強度が高い場合がある。換言すると、第2領域26は、第1領域24よりも機械的強度が低い場合がある。
【0035】
金属材料の結晶粒径の差異により、第2領域26は、第1領域24よりも電気的な損失(電流損失)が少ない場合がある。これにより、第2領域26における金属材料の結晶粒径を、第1領域24における結晶粒径以下とした場合に比べて、金属構造体20全体での電気的な損失を小さくする効果が期待できる。
【0036】
[第2実施形態]
本開示の第2実施形態は、第1実施形態で説明した構成の配線基板の製造方法に関する。
【0037】
図3は、配線基板100の製造方法の手順を示すフローチャートである。図4から図7は、配線基板100の製造方法を説明する部分側断面図である。
【0038】
ステップS1において、図4に示すように、貫通孔106が基板10に形成される。貫通孔106は、例えば、第1面102にマスク材を配置し、そのマスク材をマスクとして、第1面102側から基板10のエッチングを行うことにより形成される。エッチングは、例えば、ボッシュプロセスまたは反応性イオンエッチングを用いた深掘りエッチングである。
【0039】
ステップS2において、図5に示すように、基板10に絶縁層が形成される(ステップS2)。具体的には、酸化シリコン層110が基板10に形成される。酸化シリコン層110は、例えば、プラズマCVD法、熱酸化法、熱CVD法、触媒CVD法(Cat(Catalytic)−CVD法またはホットワイヤCVD法)によって形成される。なお、ステップS2の処理は行われなくてもよい。
【0040】
ステップS3において、図6に示すように、第1金属層210が貫通孔106に形成される。第1金属層210は、電解めっき法により側面1062から金属層を成長させて形成される。ステップS3では、第1電流密度の電流で第1金属層210が形成される。電流は、パルス状の電流であってもよいし、パルス状でなくてもよい。ステップS3の処理により、図6に矢印Aで示すように、第1金属層210が貫通孔106の中心軸に向かって成長する。図6に示すように、Y方向における各位置において第1金属層210の厚さ(Y方向における厚さ)はほぼ同じである。このため、第1金属層210は、貫通孔106の形状に応じた筒状の金属層となる。図6に示すように、第1金属層210のX方向における厚さを「da」とし、貫通孔106内の空間領域1068のX方向における厚さを「dx」とする。図6に示す場合、dx>daである。
【0041】
ステップS4において、図7に示すように、第2金属層220が貫通孔106に形成される。第2金属層220は、電解めっき法により金属層を成長させて形成される点で、第1金属層210と共通する。一方で、第2金属層220は、第1電流密度よりも大きい第2電流密度の電流で形成される点で、第1金属層210とは異なる。電流は、パルス状の電流であってもよいし、パルス状でなくてもよい。ステップS4の処理により、図7に矢印B1,B2で示すように、第2金属層220が貫通孔106の中心軸に向かって成長する。例えばステップS3,S4では、X方向において第1金属層210が空間領域1068よりも厚くなる前に、すなわちdx>daの関係を満たす期間のうちに、第1電流密度から第2電流密度に変更される。
【0042】
ステップS4の処理は、例えば、第2金属層220が開口面1064および開口面1066を塞ぐまで行われる。例えば、第2電流密度で第2金属層220を形成する時間は、第1電流密度で第1金属層210を形成する時間よりも短い。ステップS4の処理が完了すると、貫通孔106の内部に、第1金属層210および第2金属層220を含む金属構造体200が完成する。金属構造体200は、貫通孔106に中空領域230が存在するように形成される。本実施形態では、中空領域230は、第2金属層220によって囲まれた領域である。なお、実際には、第1金属層210または第2金属層220の一部が貫通孔106の外部にはみ出すことがあるが、図6および図7ではその図示を省略してある。第2金属層220を形成した後研磨を経て、配線基板1が完成する。
【0043】
ところで、図7に示すように、Y方向における各位置において、第2金属層220のX方向における厚さが異なる。具体的には、第2金属層220のうち、開口面1064に近い領域、および開口面1066に近い領域(すなわち、基板10の表面付近)においては、これらの間の領域(例えば、Y方向において貫通孔106の中心付近)よりも第2金属層220の成長速度が高く、その結果、第2金属層220の膜厚が大きくなる。また、第2金属層220は、第1金属層210よりも大きい電流密度で形成されているため、金属材料の結晶粒径が第1金属層210よりも大きい。
【0044】
ここで、図8は、電解めっき法における電流密度と金属層の膜厚との関係を例示するグラフである。図8のグラフにおいて、横軸は電流密度に対応し、縦軸は金属層の膜厚に対応する。電流密度が閾値TH以下の領域では、電流密度の増加に対して、表面付近および中心付近における金属層の膜厚が線形的に増加する。また、基板10の表面付近と中心付近とで金属層の膜厚の差は小さい。このため、閾値TH以下の第1電流密度DK1で金属層が形成された場合、貫通孔の側面の各位置における膜厚の差異が小さい。
【0045】
これに対し、電流密度が閾値THよりも大きい領域では、基板10の表面付近では、電流密度の増加に対して膜厚が線形的に増加する。一方、中心付近では、電流密度の増加に対する膜厚の増加が小さく、電流密度が所定値を超えると膜厚が低下する。このような現象が生じる理由は、電解めっき法においては、電界が相対的に高い貫通孔の開口面付近に集中的に金属材料が析出し、貫通孔の中心付近に比べて金属層の成長速度が高くなるからである。このため、閾値THよりも大きい第2電流密度DK2で金属層が形成された場合、基板の表面付近の膜厚が、中心付近の膜厚よりも大きくなる。本開示の第2実施形態の配線基板100の製造方法においては、このような電流密度と金属層の膜厚(成長速度)との関係を利用して、金属構造体200が形成される。
【0046】
図9から図12は、従来技術に係る配線基板の構成を示す部分側断面図である。図9に示すように、基板10の貫通孔106の全体に金属層40Aが形成される場合、電解めっき法では、金属層40Aの形成に多くの時間を要する場合がある。これに対し、本実施形態では、金属構造体200の内部に、金属材料が存在しない中空領域230が存在するので、金属構造体200の形成に要する時間が短縮される効果が期待できる。
【0047】
図10に示すように、貫通孔106の側面に接する金属層40Bを、貫通孔106の一部に形成した場合、第1面102と第2面104とを通じさせる空間領域1070が存在する。空間領域1070の存在により、ウェハ加工が困難になる場合がある。例えば、開口部を塞がないと裏面にレジストが回り込んでしまう場合や真空チャックできない場合がある。これに対し、本実施形態では、中空領域230は、外部の空間領域に通じないまたはほぼ通じない。このため、ウェハ加工が容易になる効果が期待できる。
【0048】
図11に示すように、金属層40Bの内側の空間領域1070に樹脂層50が形成された場合、樹脂層50が不要になった段階で、基板10の表面の樹脂層50が除去される。この除去には、例えば、CMP(Chemical Mechanical Polishing)が用いられる。この除去の際に、基板10にストレスが加わり、基板10が破損してしまう可能性がある。これに対し、本実施形態では、樹脂層を除去する工程が不要であるから、基板10が破損する可能性が低くなる効果が期待できる。
【0049】
図12に示すように、金属層40Bの内側の空間領域1070に感光性の樹脂層60が形成される場合、樹脂層50が形成される場合に比べて、基板10に加わるストレスは軽減される。しかし、樹脂層60を形成するためのリソグラフィの工程が必要である。本実施形態では、感光性の樹脂層を形成する工程が不要である。
【0050】
なお、上述した各実施形態によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、または、当業者において容易に予測し得るものについては、当然に本開示によりもたらされるものと理解される。
【0051】
本開示の配線基板は、ノート型パーソナルコンピュータ、タブレット端末、携帯電話、スマートフォン、デジタルビデオカメラ、デジタルカメラ、またはその他の電気機器に搭載される半導体装置に用いられる。本開示の配線基板は上記の電子機器のほかにも、LED照明、デジタルサイネージデスクトップ型パーソナルコンピュータ、サーバ、カーナビゲーション、またはその他の電子機器に搭載される半導体装置にも広く用いることができる。
【符号の説明】
【0052】
1:配線基板、10:基板、20:金属構造体、22:中空領域、24:第1領域、26:第2領域、30:配線、40A:金属層、40B:金属層、50:樹脂層、60:樹脂層、100:配線基板、102:第1面、104:第2面、106:貫通孔、108:シリコン層、110:酸化シリコン層、200:金属構造体、210:第1金属層、220:第2金属層、230:中空領域、1062:側面、1064:開口面、1066:開口面、1068:空間領域、1070:空間領域
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12