特開2019-38000(P2019-38000A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ファナック株式会社の特許一覧
特開2019-38000レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法
<>
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000003
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000004
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000005
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000006
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000007
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000008
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000009
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000010
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000011
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000012
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000013
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000014
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000015
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000016
  • 特開2019038000-レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法 図000017
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2019-38000(P2019-38000A)
(43)【公開日】2019年3月14日
(54)【発明の名称】レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法
(51)【国際特許分類】
   B23K 26/046 20140101AFI20190215BHJP
   B23K 26/00 20140101ALI20190215BHJP
   B23K 26/042 20140101ALI20190215BHJP
【FI】
   B23K26/046
   B23K26/00 M
   B23K26/042
【審査請求】有
【請求項の数】6
【出願形態】OL
【全頁数】18
(21)【出願番号】特願2017-160490(P2017-160490)
(22)【出願日】2017年8月23日
(71)【出願人】
【識別番号】390008235
【氏名又は名称】ファナック株式会社
【住所又は居所】山梨県南都留郡忍野村忍草字古馬場3580番地
(74)【代理人】
【識別番号】100099759
【弁理士】
【氏名又は名称】青木 篤
(74)【代理人】
【識別番号】100123582
【弁理士】
【氏名又は名称】三橋 真二
(74)【代理人】
【識別番号】100112357
【弁理士】
【氏名又は名称】廣瀬 繁樹
(72)【発明者】
【氏名】和泉 貴士
【テーマコード(参考)】
4E168
【Fターム(参考)】
4E168CA01
4E168CB11
4E168EA19
4E168EA24
4E168KA15
4E168KA17
(57)【要約】
【課題】レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整する。
【解決手段】レーザ加工方法は、レーザ加工前に、外部光学系12が温められた状態で測定されていて小径穴Sを通過したレーザ光のエネルギ量である第一測定値と、第一測定値に関して外部光学系12の汚染の種類に応じて予め定めた第一基準値(データベースD1)とに基づいて、焦点移動量を計算するステップと、計算した焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、を含む。
【選択図】図5
【特許請求の範囲】
【請求項1】
光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、
レーザ加工前に、
(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、
(b)前記外部光学系を温めた後、前記レーザ光除去部とは異なる場所に配置されていて小径穴を有する板の表面に焦点位置を合わせる指令及び前記小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、
(c)前記外部光学系が温められた状態で、前記板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、
(d)前記外部光学系が温められた状態で前記小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、
(e)前記外部光学系が温められた状態で測定された前記第一測定値と、前記第一測定値に関して前記外部光学系の汚染の種類に応じて予め定めた第一基準値とに基づいて、焦点移動量を計算するステップと、
(f)計算した前記焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、
含むことを特徴とするレーザ加工方法。
【請求項2】
光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、
レーザ加工前に、
(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工時に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、
(b)前記外部光学系を温めた後、前記レーザ光除去部とは異なる場所に配置されていて小径穴を有する板の表面に焦点位置を合わせる指令及び前記小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、
(c)前記外部光学系が温められた状態で、前記板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、
(d)前記外部光学系が温められた状態で前記小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、
(g)前記板の表面より上方及び下方へ焦点位置を移動する指令を行うステップと、
(h)前記上方及び下方に焦点位置を合わせた状態でそれぞれ前記低い出力のレーザ光を出射する指令を行うステップと、
(i)前記上方及び下方に焦点位置を合わせた状態でそれぞれ前記小径穴を通過したレーザ光のエネルギ量を第三測定値として測定するステップと、
(j)前記板の表面に焦点位置を合わせた状態で測定された前記第一測定値と、前記板の表面より上方及び下方に焦点位置を合わせた状態でそれぞれ測定された前記第三測定値と、を含んでいて、前記外部光学系の汚染の種類及びレベルに応じたグラフを作成するステップと、
(k)前記グラフから焦点位置を計算し、計算した前記焦点位置と前記板の表面に合わせるように指令した焦点位置との差分に基づいて、焦点移動量を計算するステップと、
(f)計算した前記焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、
を含むことを特徴とするレーザ加工方法。
【請求項3】
さらに、
(m)前記外部光学系を温める前に、前記小径穴を有する板の表面に焦点位置を合わせる指令及び前記小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、
(n)前記外部光学系を温める前に、前記板を溶融又は変形させない程度に低い出力でレーザ光を出射する指令を行うステップと、
(o)前記外部光学系が温められていない状態で前記小径穴を通過したレーザ光のエネルギ量を第二測定値として測定するステップと、
(p)前記外部光学系が温められていない状態で測定された前記第二測定値と、前記外部光学系の汚染の種類に応じて予め定めた第二基準値とに基づいて、前記外部光学系におけるウインドの汚染を判定するステップと、
を含む、請求項1又は2に記載のレーザ加工方法。
【請求項4】
さらに、(q)焦点位置を補正した後、再び前記外部光学系を温めるステップから前記焦点位置を補正するステップまでを繰返すことにより、補正量が正しいか否かを判定するステップを含む、請求項1から3のいずれか1項に記載のレーザ加工方法。
【請求項5】
さらに、(r)繰返しても前記補正量が正しくない場合に、レーザ加工時の出力条件を上げるステップを含む、請求項4に記載のレーザ加工方法。
【請求項6】
光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、
レーザ加工前に、
(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工時に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、
(b)外部光学系を温めた後、レーザ光除去部とは異なる場所に配置されていて小径穴を有し且つレーザ光を吸収可能な板の表面に焦点位置を合わせる指令及び前記小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、
(c)前記外部光学系が温められた状態で、前記板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、
(d)前記外部光学系が温められた状態で前記小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、
(s)前記外部光学系が温められた状態で前記板に吸収されたレーザ光のエネルギ量を第二測定値として測定するステップと、
(t)前記小径穴を通過したレーザ光のエネルギ量である前記第一測定値と、前記外部光学系の汚染の種類に応じて予め定めた第一基準値とを比較することにより、外部光学系の汚染の有無を判定するステップと、
(u)前記板に吸収されたレーザ光のエネルギ量である前記第二測定値と、前記外部光学系の汚染の種類に応じて予め定めた第二基準値とを比較することにより、前記外部光学系におけるウインドのみの汚染を判定するステップと、
(v)前記小径穴を通過したレーザ光のエネルギ量である前記第一測定値と、前記外部光学系の汚染の種類に応じて予め定められていて前記第一基準値より低い第三基準値とを比較することにより、前記外部光学系におけるレンズのみの汚染を判定するステップと、
(w)前記外部光学系におけるレンズのみが汚染している場合に、前記板に吸収されたレーザ光のエネルギ量である前記第二測定値と、前記外部光学系の汚染レベルに応じて予め定めた第四基準値と、前記第四基準値に応じて予め定めた焦点移動量とに基づいて、焦点移動量を計算するステップと、
(f)計算した前記焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、
を含むことを特徴とするレーザ加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、レーザ加工方法に関し、特にレーザ加工前に光学系の汚染の種類及びレベルに応じて焦点シフトを調整するレーザ加工方法に関する。
【背景技術】
【0002】
レーザ光を被加工物に照射して被加工物のレーザ加工を行うレーザ加工装置は、レーザ光をレンズで所定の焦点位置に集光し、集光したレーザ光を被加工物に照射する。斯かるレーザ加工装置では、レーザ発振器からレーザ光を導光してワーク表面に集光する外部光学系が汚染してレーザ光を吸収すると、いわゆる熱レンズ効果によって曲率を変えて焦点位置を移動させる。また、汚れ方によっては、外部光学系の透過率も変化させる。焦点位置の変化及び透過率の変化が発生すると、加工不具合が発生するため、外部光学系が汚染されていないかを確認する必要がある。このことが自動運転の妨げになっている。
【0003】
斯かる課題を解決するため、外部光学系に温度センサや散乱光センサを取付けることで外部光学系の汚染を検出するものが公知である。特許文献1には、外部光学系ではないものの、レーザ発振器の出射ミラーのコーティング層の劣化等を判定可能なレーザ加工装置が開示されている。出射ミラーは、劣化によってレーザビームを吸収し、熱負荷状態になって曲率を変化させ、いわゆる熱レンズ効果によって平行光を集光する傾向になる。レーザ加工装置は、出射ミラーの後方に配置されたアパーチャと、アパーチャの後方に配置されたビームパワー測定センサと、を備えることにより、ビームパワーが基準値より大きい場合に出射ミラーの劣化を判定する。
【0004】
特許文献2には、レーザ加工前ではないものの、加工後に外部光学系の熱レンズ効果による焦点ずれを検出可能なレーザ加工装置が開示されている。熱レンズ効果により焦点ずれが生じると、レーザ照射径が大きくなるため、レーザ加工装置は、小開口を有する測定基準面を備えることにより、小開口の周囲から放射される放射光のレベルに基づいて焦点ずれを検出する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】国際公開第2009/066370(A1)号パンフレット
【特許文献2】特開2016−2580号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
外部光学系は時間と共に劣化する。その結果、集光点でレーザパワーの損失が発生する。軽度の汚染であっても、焦点位置が移動するため、レーザ加工の品質に著しい劣化を招く。この場合、速やかに光学部品を交換するか又はクリーニングする必要がある。しかしながら、加工不具合が発生した後に光学部品のメンテナンスを行うのでは、自動運転時に大量の不良部品が発生するという問題がある。他方、外部光学系に温度センサや散乱光センサを取付ける方式では、後付けができないという問題がある。さらに、全ての外部光学系が汚染を検知できるセンサに対応している訳ではないため、ユーザの選択の自由を狭めている。
【0007】
加えて、今までの技術では、レンズの汚染による焦点シフトの不具合と、ウインドの汚染による透過率変化の不具合とを分離できていなかった。焦点シフトのみの場合には、焦点位置の補正を行い、軽度の透過率変化の場合には、出力条件の変更を行い、焦点シフト及び透過率変化が同時に起こった場合には、双方のパラメータを調整することにより、光学系が汚染していたとしても自動運転を継続できて、光学系のクリーニング又は交換の時期を延長できることが望ましい。
【0008】
そこで、レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを調整できる技術が求められている。
【課題を解決するための手段】
【0009】
本開示の一態様は、光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、レーザ加工前に、(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工時に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、(b)外部光学系を温めた後、レーザ光除去部とは異なる場所に配置されていて小径穴を有する板の表面に焦点位置を合わせる指令及び小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、(c)外部光学系が温められた状態で、板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、(d)外部光学系が温められた状態で小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、(e)外部光学系が温められた状態で測定された第一測定値と、第一測定値に関して外部光学系の汚染の種類に応じて予め定めた第一基準値と、に基づいて、焦点移動量を計算するステップと、(f)計算した焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、含む、レーザ加工方法を提供する。
本開示の他の態様は、光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、レーザ加工前に、(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工時に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、(b)外部光学系を温めた後、レーザ光除去部とは異なる場所に配置されていて小径穴を有する板の表面に焦点位置を合わせる指令及び小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、(c)外部光学系が温められた状態で、板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、(d)外部光学系が温められた状態で小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、(g)板の表面より上方及び下方へ焦点位置を移動する指令を行うステップと、(h)上方及び下方に焦点位置を合わせた状態でそれぞれ低い出力のレーザ光を出射する指令を行うステップと、(i)上方及び下方に焦点位置を合わせた状態でそれぞれ小径穴を通過したレーザ光のエネルギ量を第三測定値として測定するステップと、(j)板の表面に焦点位置を合わせた状態で測定された第一測定値と、板の表面より上方及び下方に焦点位置を合わせた状態でそれぞれ測定された第三測定値と、を含んでいて、外部光学系の汚染の種類及びレベルに応じたグラフを作成するステップと、(k)グラフから焦点位置を計算し、計算した焦点位置と板の表面に合わせるように指令した焦点位置との差分に基づいて、焦点移動量を計算するステップと、(f)計算した焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、を含む、レーザ加工方法を提供する。
本開示の別の態様は、光学系の汚染による焦点移動量を測定し、焦点位置を補正した上で、ワークをレーザ加工するレーザ加工装置において実行されるレーザ加工方法であって、レーザ加工前に、(a)レーザ発振器からレーザ光を導光してワークの表面に集光するための外部光学系を温めるべく、レーザ光を除去可能なレーザ光除去部に向けて、レーザ加工時に使用する程度に高い出力でレーザ光を出射する指令を行うステップと、(b)外部光学系を温めた後、レーザ光除去部とは異なる場所に配置されていて小径穴を有し且つレーザ光を吸収可能な板の表面に焦点位置を合わせる指令及び小径穴の中心にレーザ光の光軸を合わせる指令を行うステップと、(c)外部光学系が温められた状態で、板を溶融又は変形させない程度に低い出力のレーザ光を出射する指令を行うステップと、(d)外部光学系が温められた状態で小径穴を通過したレーザ光のエネルギ量を第一測定値として測定するステップと、(s)外部光学系が温められた状態で板に吸収されたレーザ光のエネルギ量を第二測定値として測定するステップと、(t)小径穴を通過したレーザ光のエネルギ量である第一測定値と、外部光学系の汚染の種類に応じて予め定めた第一基準値とを比較することにより、外部光学系の汚染の有無を判定するステップと、(u)板に吸収されたレーザ光のエネルギ量である第二測定値と、外部光学系の汚染の種類に応じて予め定めた第二基準値とを比較することにより、外部光学系におけるウインドのみの汚染を判定するステップと、(v)小径穴を通過したレーザ光のエネルギ量である第一測定値と、外部光学系の汚染の種類に応じて予め定められていて第一基準値より低い第三基準値と、を比較することにより、外部光学系におけるレンズのみの汚染を判定するステップと、(w)外部光学系におけるレンズのみが汚染している場合に、板に吸収されたレーザ光のエネルギ量である第二測定値と、外部光学系の汚染レベルに応じて予め定めた第四基準値と、第四基準値に応じて予め定めた焦点移動量とに基づいて、焦点移動量を計算するステップと、(f)計算した焦点移動量に基づいて、レーザ加工時における焦点位置を補正するステップと、を含む、レーザ加工方法を提供する。
【発明の効果】
【0010】
本開示の一態様によれば、レーザ加工前に外部光学系の汚染の種類及びレベルに応じて焦点シフトを自動的に調整できる。ひいては、外部光学系に汚染があったとしても自動運転を継続できて、外部光学系のクリーニング又は交換の時期を延長できる。
【図面の簡単な説明】
【0011】
図1】外部光学系の汚染の種類を説明するための模式図である。
図2】汚染の種類に応じた焦点移動量と小径穴を通過したレーザ光のエネルギ量との関係を示すグラフである。
図3】一実施形態に係るレーザ加工装置の概略構成を示す概略図である。
図4】一実施形態に係るレーザ加工装置の構成を示すブロック図である。
図5】一実施形態に係るレーザ加工装置の動作を示すフローチャートである。
図6】外部光学系の汚染の種類に応じて予め定めた基準値を格納するデータベースを示す図である。
図7】正常時の加工条件及び補正後の加工条件を示す図である。
図8】一実施形態に係るウインド汚染の検出処理を示すフローチャートである。
図9】他の実施形態に係るレーザ加工装置の構成を示すブロック図である。
図10】他の実施形態に係るレーザ加工装置の動作を示すフローチャートである。
図11】別の実施形態に係るレーザ加工装置の概略構成を示す概略図である。
図12】別の実施形態に係るレーザ加工装置の構成を示すブロック図である。
図13】別の実施形態に係るレーザ加工装置の動作を示すフローチャートである。
図14】外部光学系の汚染の種類に応じて予め定めた基準値を格納するデータベースを示す図である。
図15】板に吸収されたレーザ光のエネルギ量に関して外部光学系の汚染レベルに応じて予め定めた基準値と、基準値に関連付けられた焦点移動量とを格納するデータベースを示す図である。
【発明を実施するための形態】
【0012】
以下、添付図面を参照して本開示の実施形態を詳細に説明する。各図面において、同一又は類似の構成要素には同一又は類似の符号が付与されている。また、以下に記載する実施形態は、特許請求の範囲に記載される発明の技術的範囲及び用語の意義を限定するものではない。
【0013】
本明細書における用語の定義について説明する。本明細書における用語「レンズ」とは、曲率を有する表面を備えた光学部品のことをいう。換言すれば、本明細書で使用するレンズは、汚染によってレーザ光を吸収した場合に、いわゆる熱レンズ効果による曲率の変化が大きい光学部品である。また、本明細書における用語「ウインド」とは、概ね平面から成る光学部品のことをいう。換言すれば、本明細書で使用するウインドは、汚染によってレーザ光を吸収した場合であっても、曲率の変化が小さい光学部品である。さらに、本明細書における用語「汚染」とは、単に塵埃が堆積した状態だけではなく、堆積した塵埃がレーザ光によって点々と焼付いた状態、又はミラー等に設けられている薄膜が剥がれ落ちて劣化した状態等も含む。
【0014】
図1は、外部光学系の汚染の種類を説明するための模式図である。外部光学系は、限定されないが、レーザ光をワーク表面に集光するためのレンズ1と、外部光学系の最も外側に配置されたウインド2と、を備えている。小径穴Sを有する板15の表面に焦点位置を合わせ且つ小径穴Sの中心にレーザ光の光軸を合わせた状態で外部光学系からレーザ光を出射した場合、レンズ1もウインド2も汚染されていない正常時には、レーザ光が小径穴Sの周囲の板15に遮られることなく小径穴Sを通過する。このため、板15の下方に配置されたエネルギ量測定部16によって測定されるレーザ光のエネルギ量は最大になる。これに対して、レンズ1のみが汚染しているレンズ汚染時には、レンズ1の熱レンズ効果により焦点位置が上方(又は下方)へ移動してレーザ光が小径穴Sの周囲の板15に遮られるため、エネルギ量測定部16によって測定されるレーザ光のエネルギ量は若干低下する。さらに、ウインド2のみが汚染しているウインド汚染時には、熱レンズ効果が発生せず焦点位置が移動しないため、レーザ光が小径穴Sの周囲の板15に遮られることはない。しかし、ウインド2の表面に塵埃が薄く堆積している場合には、ウインド2がレーザ光を吸収するため、エネルギ量測定部16によって測定されるエネルギ量は低下する。ウインド2の表面に塵埃が点々と焼付いている場合には、ウインド2がレーザ光を散乱するため、エネルギ量測定部16によって測定されるレーザ光のエネルギ量はやはり低下する。加えて、レンズ1及びウインド2の双方が汚染している場合には、レンズ1の熱レンズ効果によって焦点位置が移動してレーザ光が小径穴Sの周囲の板15に遮られると共に、ウインド2によってレーザ光が吸収又は散乱されるため、エネルギ量測定部16によって測定されるレーザ光のエネルギ量は最小となる。
【0015】
図2は、汚染の種類に応じた焦点移動量と小径穴を通過したレーザ光のエネルギ量との関係を示すグラフである。前述した通り、実線で示す正常時と比べ、破線で示すレンズ汚染時には、焦点位置が移動し且つ小径穴を通過したレーザ光のエネルギ量が若干低下する。また、一点鎖線で示すウインド汚染時には、焦点位置が移動しないものの小径穴を通過したレーザ光のエネルギ量が低下する。さらに、二点鎖線で示すレンズ及びウインド汚染時には、焦点位置が移動すると共に小径穴を通過したレーザ光のエネルギ量が最小となる。また、レンズの汚染によって焦点位置が移動すると、小径穴の周囲の板に吸収されたレーザ光のエネルギ量が増大する。本実施形態に係るレーザ加工装置は、斯かる物理現象を利用して、外部光学系の汚染の種類に応じて予め定めた基準値によって、又は、外部光学系の汚染の種類及びレベルに応じたグラフによって、レンズ汚染とウインド汚染との分離を行いつつ、焦点シフトを正確に調整する。
【0016】
図3は、本実施形態に係るレーザ加工装置10の概略構成を示す概略図である。レーザ加工装置10は、レーザ発振器11と、レーザ発振器11からレーザ光を導光してワークの表面に集光するための外部光学系12と、レーザ加工装置10の全体を制御する数値制御装置14と、を備えている。レーザ加工装置10は、さらに、加工テーブルの外側に配置されていて、例えば0.5mmの小径穴Sを有する板15と、小径穴Sを通過したレーザ光のエネルギ量を測定するエネルギ量測定部16と、板15とは異なる場所に配置されていてレーザ光を除去可能なレーザ光除去部17と、を備えている。エネルギ量測定部16は、小径穴Sを通過したレーザ光の熱量を測定する熱電対若しくはサーモパイルでもよく、又は、小径穴Sを通過したレーザ光のパワーを測定するパワーセンサでもよい。レーザ光除去部17は、アルマイト処理されたアルミ板でもよく、又は、レーザ光を別の場所へ反射するミラー等の光学系でもよい。
【0017】
図4は、本実施形態に係るレーザ加工装置10の構成を示すブロック図である。レーザ加工装置10は、さらに、外部光学系12から出射するレーザ光の焦点位置及び光軸を移動させるための駆動制御部20と、ASIC、FPGA等の半導体集積回路又はコンピュータによって実行可能なプログラムで構成されていてレーザ加工前に焦点シフトを調整する焦点シフト調整部21と、種々のデータを記憶する記憶部22と、備えている。焦点シフト調整部21は、外部光学系12を温めるべく、レーザ光除去部17に向けて、レーザ加工に使用する程度に高い出力(例えば3500W)でレーザ光を出射する指令をレーザ発振器11に対して行う高出力指令部30と、外部光学系12を温めた後、板15の表面に焦点位置を合わせる指令及び小径穴Sの中心にレーザ光の光軸を合わせる指令を駆動制御部20に対して行う第一駆動指令部31と、外部光学系12が温められた状態で、板15を溶融又は変形させない程度に低い出力(例えば50W)のレーザ光を出射する指令をレーザ発振器11に対して行う第一低出力指令部32と、を備えている。焦点シフト調整部21は、さらに、外部光学系12が温められた状態でエネルギ量測定部16によって測定された第一測定値と、第一測定値に関して外部光学系12の汚染の種類に応じて予め定めた第一基準値(例えば正常時は50W、ウインド汚染時は40W、レンズ汚染時は35W、レンズ及びウインド汚染時は30W)とに基づいて、焦点移動量を計算する焦点移動量計算部33と、を備えている。
【0018】
図6は、外部光学系12の汚染の種類に応じて予め定めた基準値を格納するデータベースD1を示す図である。データベースD1は、正常時(汚染無し)と、ウインド汚染時と、レンズ汚染時と、レンズ及びウインド汚染時と、から成る第一基準値を含んでいる。第一基準値は、電圧値、温度、パワー等のうちいずれかのエネルギ量でよい。焦点移動量計算部33は、例えば外部光学系12が温められた状態で測定された第一測定値が36Wであった場合には、第一測定値がレンズ汚染時の第一基準値(35W)に最も近いため、図2で説明したレンズ汚染時のグラフを当てはめて焦点位置(例えば2mm)を計算し、計算した焦点位置(例えば2mm)と、板15の表面に合わせるように指令した焦点位置(例えば1mm)とを差分することにより、焦点移動量(例えば+1mm)を計算する。図4を再び参照すると、焦点シフト調整部21は、さらに、計算した焦点移動量(例えば+1mm)に基づいて、レーザ加工時の焦点位置を補正する焦点位置補正部34を備えている。焦点位置補正部34は、例えばレーザ加工時の焦点位置が1mmであった場合には、焦点移動量+1mm分だけ減じて、レーザ加工時の焦点位置を0mmに補正する。
【0019】
図7は、正常時の加工条件及び補正後の加工条件(1)〜(3)を示す図である。これら加工条件は、図示しないものの、図4に示す記憶部22に格納されている。加工条件(1)は、前述した焦点位置補正部34によってレーザ加工時の焦点位置が1mmから0mmに補正された場合を示している。加工条件(2)は、後述するが、出力条件が3000Wから3500Wに調整された場合を示している。加工条件(3)は、後述するが、焦点位置及び出力条件が0mm及び3500Wに調整された場合を示している。
【0020】
図4を再び参照すると、焦点シフト調整部21は、さらに、必須の構成ではないが、焦点位置を補正した後に、再び外部光学系12を温める処理から焦点位置を補正する処理までを繰返すことにより、補正量が正しいか否かを判定する補正量判定部35を備えている。斯かる繰返しにより、補正量は限りなく0に近づくため、補正量が正しいか否かを判定できる。焦点シフト調整部21は、さらに、必須の構成ではないが、斯かる繰返しによっても補正量が0に近づかない場合に、レーザ加工時の出力条件を上げる出力条件調整部36を備えている。斯かる繰返しによっても補正量が0に近づかない場合には、レンズだけではなく、ウインドも汚染している可能性が高い。このため、出力条件調整部36が、レーザ加工時の出力条件を上げることにより、補正量が0に近づく。焦点位置を1mmから0mmに補正すると共に、レーザ加工時の出力条件を3000Wから3500Wに補正した後の加工条件(3)は、前述した通り、図7に示されている。
【0021】
図4を再び参照すると、焦点シフト調整部21は、さらに、必須の構成ではないものの、ウインド2のみの汚染を判定する構成を有している。具体的には、焦点シフト調整部21は、外部光学系12を温める前に、小径穴Sを有する板15の表面に焦点位置を合わせる指令及び小径穴Sの中心にレーザ光の光軸を合わせる指令を駆動制御部20に対して行う第二駆動指令部37と、外部光学系12を温める前に、板15を溶融又は変形させない程度に低い出力(例えば50W)でレーザ光を出射する指令をレーザ発振器11に対して行う第二低出力指令部38と、外部光学系12が温められていない状態で測定された第二測定値と、外部光学系の汚染の種類に応じて予め定めた第二基準値と、に基づいて、外部光学系12におけるウインド2の汚染を判定するウインド汚染判定部39と、を備えている。焦点シフト調整部21は、さらに、外部光学系12におけるウインド2が汚染していると判定された場合に警告を行う警告部23を備えていてもよい。警告部23は、警告ランプでよく、又は、操作盤上で警告を表示するモニタでもよい。以上説明した第一測定値、第一基準値、補正量、出力条件、第二測定値、及び第二基準値は、記憶部22に格納される。
【0022】
図5は、本実施形態に係るレーザ加工装置10の動作を示すフローチャートである。以下、図4及び図5を参照して焦点シフトの調整処理について説明する。焦点シフト調整部21は、レーザ加工前に焦点シフトの調整を開始する。ステップS10では、高出力指令部30が、外部光学系12を温めるべく、レーザ光除去部17に向けて、レーザ加工に使用する程度に高い出力(例えば3500W)でレーザ光を出射する指令をレーザ発振器11に対して行う。ステップS11では、外部光学系12を温めた後、第一駆動指令部31が、板15の表面に焦点位置を合わせる指令及び小径穴Sの中心にレーザ光の光軸を合わせる指令を駆動制御部20に対して行う。ステップS12では、第一低出力指令部32が、外部光学系12が温められた状態で、板15を溶融又は変形させない程度に低い出力(例えば50W)のレーザ光を出射する指令をレーザ発振器11に対して行う。ステップS13では、エネルギ量測定部16が、外部光学系12が温められた状態で、小径穴Sを通過したレーザ光のエネルギ量を第一測定値(例えば36W)として測定する。ステップS14では、記憶部22が第一測定値を格納する。ステップS15では、焦点移動量計算部33が、外部光学系12が温められた状態でエネルギ量測定部16によって測定された第一測定値(例えば36W)と、第一測定値に関して外部光学系12の汚染の種類に応じて予め定めた第一基準値(例えば正常時は50W、ウインド汚染時は40W、レンズ汚染時は35W、レンズ及びウインド汚染時は30W)とに基づいて、焦点移動量(例えば+1mm)を計算する。ステップS16では、焦点位置補正部34が、計算した焦点移動量(例えば+1mm)に基づいて、レーザ加工時の焦点位置(例えば1mm)を補正する(例えば0mm)。ステップS17及びステップS18は、必須のステップではないが、補正量判定部35が、再び外部光学系を温めるステップS10から焦点位置を補正するステップS16までの処理を繰返すことにより、補正量が正しいか否か(すなわち補正量が0に近づいたか否か)を判定する。補正量が許容値α(αは0に近い値。例えば0.1)を超えている場合には(ステップS17のNO)、補正量が依然として0に近づいていないため、再び外部光学系を温めるステップS10から焦点位置を補正するステップS16までを繰返す。斯かる繰返しが2回目以降になった場合には、レンズのみが汚染しているのではなく、ウインドも汚染している可能性があるため、ステップS18では、出力条件調整部36が出力条件を上げてもよい(例えば50Wから55Wに調整する)。この際、出力条件調整部36は、レーザ加工時の出力条件を概ね同じ比率で上げる(例えば3000Wから3500Wに調整する)。ステップS17において、補正量が許容値α(例えば0.1)以下になった場合には(ステップS17のNO)、補正量が正しいため、ステップS19では、レーザ加工装置10がレーザ加工を開始する。斯かるレーザ加工装置10によれば、レーザ加工前に外部光学系12の汚染の種類及びレベルに応じて焦点シフトを自動的に調整できることとなる。ひいては、外部光学系12に汚染があったとしても自動運転を継続できて、外部光学系12のクリーニング又は交換の時期を延長できる。
【0023】
図8は、本実施形態に係るウインド汚染の検出処理を示すフローチャートである。図4及び図8を参照して、ウインド汚染の検出処理について説明する。ウインド汚染の検出処理は、レンズ1の汚染により熱レンズ効果が発生して焦点位置が移動しないように外部光学系12を温める前に行われる。このため、ウインド汚染の検出処理の後に、図5のステップS10へ戻り、レンズ汚染の検出処理が行われる。これにより、ウインド汚染とレンズ汚染との分離又は切り分けがより正確になる。ステップS20では、第二駆動指令部37が、外部光学系12を温める前に、小径穴Sを有する板15の表面に焦点位置を合わせる指令及び小径穴Sの中心にレーザ光の光軸を合わせる指令を駆動制御部20に対して行う。ステップS21では、第二低出力指令部38が、外部光学系12を温める前に、板15を溶融又は変形させない程度に低い出力(例えば50W)でレーザ光を出射する指令をレーザ発振器11に対して行う。ステップS22では、エネルギ量測定部16が、外部光学系が温められていない状態で小径穴Sを通過したレーザ光のエネルギ量を第二測定値として測定する。ステップS23では、記憶部22が第二測定値を格納する。ステップS24では、ウインド汚染判定部39がウインド2の汚染判定を開始する。ステップS25では、ウインド汚染判定部39が、外部光学系が温められていない状態で測定された第二測定値(例えば43W)と、外部光学系の汚染の種類に応じて予め定めた第二基準値(例えば40W)とを比較し、第二測定値が第二基準値より小さい場合には(ステップS25のYES)、熱レンズ効果による焦点位置の変化が無い状態で、小径穴Sを通過したレーザ光のエネルギ量が小さくなっているため、ウインド2が汚染していると判定する。このため、ステップS26では、警告部23がウインド2の汚染を警告し、オペレータに対してウインド2のクリーニングを促す。ウインド2の汚れが除去できた場合には、ステップS20に戻り、再びウインド汚染を検出する処理を繰返す。ウインド2の汚れが除去できない場合には、オペレータがウインド2を交換する。なお、ステップS26において、警告部23がウインド2の汚染を警告し、ウインドのメンテナンスを促すのではなく、出力条件調整部36が出力条件を上げて(例えば50Wから55Wに調整する)、ステップS20に戻り、再びウインド汚染の検出処理を継続してもよい。この際、出力条件調整部36は、レーザ加工時の出力条件を概ね同じ比率で上げる(例えば3000Wから3500Wに調整する)。レーザ加工時の出力条件のみを3000Wから3500Wに補正した後の加工条件(2)は、前述した図7に示されている。斯かるレーザ加工装置10によれば、ウインド汚染とレンズ汚染の分離又は切り分けがより正確になるため、レンズ汚染による焦点シフトをより正確に調整できることとなる。
【0024】
図9は、他の実施形態に係るレーザ加工装置40の概略構成を示す概略図である。レーザ加工装置40は、板15の表面に焦点位置を合わせて小径穴Sを通過したレーザ光のエネルギ量を第一測定値として測定するだけではなく、板15の表面より上方及び下方に焦点位置を合わせて小径穴Sを通過したレーザ光のエネルギ量を第三測定値として複数測定し、第一測定値と第三測定値とを含んでいて外部光学系の汚染の種類及びレベルに応じたグラフを作成することにより、グラフから焦点移動量を計算する構成を有する点で、図4で説明したレーザ加工装置10の構成とは異なる。以下では、レーザ加工装置10とは異なる構成について説明する。レーザ加工装置40は、ASIC、FPGA等の半導体集積回路又はコンピュータによって実行可能なプログラムで構成されていてレーザ加工前に焦点シフトを調整する焦点シフト調整部41を備えている。焦点シフト調整部41は、板15の表面より上方及び下方へ焦点位置を移動する指令を行う第三駆動指令部50と、上方及び下方に焦点位置を合わせた状態で板15を溶融又は変形させない程度に低い出力(例えば50W)のレーザ光を複数出射する指令を行う第三低出力指令部51と、板15の表面に焦点位置を合わせた状態で測定された第一測定値と、上方及び下方に焦点位置を合わせた状態で測定された複数の第三測定値と、を含んでいて外部光学系の汚染の種類及びレベルに応じたグラフを作成するグラフ作成部52と、グラフから焦点位置を計算し、計算した焦点位置と板15の表面に合わせるように指令した焦点位置との差分に基づいて、焦点移動量を計算する焦点移動量計算部53と、を備えている。複数の第三測定値及びグラフは、記憶部22に格納される。他の構成は、レーザ加工装置10と同一である。
【0025】
図10は、他の実施形態に係るレーザ加工装置40の動作を示すフローチャートである。以下、図9及び図10を参照して焦点シフトの調整処理について説明する。焦点シフト調整部41がレーザ加工前に焦点シフトの調整処理を開始する。ステップS30からステップS34までの処理は、図5で説明した焦点シフト調整部21のステップS10からステップS14までの処理と同一である。ステップS35では、第三駆動指令部50が、外部光学系12が温められた状態で、板15の表面より上方及び下方へ焦点位置を移動する指令を行う。ステップS36では、第三低出力指令部51が、上方及び下方に焦点位置を合わせた状態で板15を溶融又は変形させない程度に低い出力(例えば50W)のレーザ光を複数出射する指令を行う。ステップS37では、エネルギ量測定部16が、上方及び下方に焦点位置を合わせた状態で小径穴Sを通過したレーザ光のエネルギ量を第三測定値として複数測定する。ステップS38では、記憶部22が複数の第三測定値を格納する。ステップS39では、グラフ作成部52が、板15の表面に焦点位置を合わせた状態で測定された第一測定値と、板15の表面より上方及び下方に焦点位置を合わせた状態で測定された第三測定値と、を含んでいて、外部光学系の汚染の種類及びレベルに応じたグラフを作成する。ステップS40では、焦点移動量計算部53がグラフから焦点位置を計算し、計算した焦点位置と板15の表面に合わせるように指令した焦点位置との差分に基づいて、焦点移動量を計算する。ステップS41からステップS44までの処理は、図5で説明したステップS16からステップS19までの処理と同一である。斯かるレーザ加工装置40によれば、グラフに基づいて焦点位置をより正確に計算できるため、焦点シフトをより正確に調整できる。ひいては、外部光学系12に汚染があったとしても自動運転を継続できて、外部光学系12のクリーニング又は交換の時期を延長できる。
【0026】
図11は、別の実施形態に係るレーザ加工装置60の概略構成を示す概略図である。レーザ加工装置60は、小径穴Sを通過したレーザ光のエネルギ量を第一測定値として測定する第一エネルギ量測定部16と、板15の下面において小径穴Sの周囲に配置されていて板15に吸収されたレーザ光のエネルギ量を第二測定値として測定する第二エネルギ量測定部13と、を備えており、第一測定値と第二測定値とに基づいて、ウインド汚染とレンズ汚染との分離を詳細に行っている点で、図4及び図9で説明したレーザ加工装置10、40の構成とは異なる。第二エネルギ量測定部13は、板15に吸収されたレーザ光の熱量を測定する熱電対若しくはサーモパイルでもよく、又は、板15に吸収されたレーザ光のパワーを測定するパワーセンサでもよい。レーザ加工装置60は、さらに、図示しないものの、板15と第一エネルギ量測定部16との間に配設されていて板15に向かう反射光又は放射熱を遮蔽する遮蔽部を備えていてもよい。以下では、レーザ加工装置10、40とは異なる構成について説明する。
【0027】
図12は、別の実施形態に係るレーザ加工装置60の構成を示すブロック図である。レーザ加工装置60は、ASIC、FPGA等の半導体集積回路又はコンピュータによって実行可能なプログラムで構成されていてレーザ加工前に焦点シフトを調整する焦点シフト調整部61を備えている。焦点シフト調整部61は、さらに、小径穴Sを通過したレーザ光のエネルギ量である第一測定値と、外部光学系12の汚染の種類に応じて予め定めた第一基準値(例えば45W)とを比較することにより、外部光学系の汚染の有無を判定する汚染判定部70を備えている。焦点シフト調整部61は、さらに、板15に吸収されたレーザ光のエネルギ量である第二測定値と、外部光学系12の汚染の種類に応じて予め定めた第二基準値(例えば5W)とを比較することにより、外部光学系におけるウインド2のみの汚染を判定するウインド汚染判定部71と、ウインド2の汚染が小さい場合に、出力条件を上げる出力条件調整部72と、を備えている。焦点シフト調整部61は、さらに、小径穴Sを通過したレーザ光のエネルギ量である第一測定値と、外部光学系12の汚染の種類に応じて予め定められていて第一基準値より低い第三基準値(例えば42W)と、を比較することにより、外部光学系12におけるレンズ1のみの汚染を判定するレンズ汚染判定部73と、レンズ1のみが汚染していると判定した場合に、板15に吸収されたレーザ光のエネルギ量である第二測定値と、外部光学系12の汚染レベルに応じて予め定めた第四基準値(例えば1W〜8W)と、第四基準値に応じて予め定めた焦点移動量(例えば0.3mm〜12mm)と、に基づいて、焦点移動量を計算する焦点移動量計算部74と、を備えている。焦点シフト調整部61は、さらに、板15に吸収されたレーザ光のエネルギ量である第二測定値と、外部光学系12の汚染の種類に応じて予め定められていて第二基準値(例えば5W)より高い第五基準値(例えば7W)とを比較することにより、ウインド2の汚染によるレーザ光の吸収又は散乱を判定するウインド吸収散乱判定部75と、を備えている。第一測定値、第二測定値、第一基準値から第五基準値までは、記憶部22に格納される。
【0028】
図14は、外部光学系の汚染の種類に応じて予め定めた基準値を格納するデータベースD2を示す図である。データベースD2は、小径穴Sを通過したレーザ光のエネルギ量に関して、外部光学系の汚染の有無を判定するための第一基準値(例えば45W)と、レンズ1のみの汚染を判定するための第三基準値(例えば42W)と、を有している。また、データベースD2は、板15に吸収されたレーザ光のエネルギ量に関して、ウインド2のみの汚染を判定するための第二基準値(例えば5W)と、ウインド2の汚染によるレーザ光の吸収又は散乱を判定するための第五基準値(例えば7W)と、を有している。
【0029】
図15は、板に吸収されたレーザ光のエネルギ量に関して予め定めた基準値と、基準値に関連付けられた焦点移動量とを格納するデータベースD3を示す図である。データベースD3は、外部光学系12の汚染レベルに応じて予め定めた第四基準値(例えば1W〜8W)と、第四基準値に応じて予め定めた焦点移動量(例えば0.3mm〜12mm)とを有している。
【0030】
図13は、別の実施形態に係るレーザ加工装置60の動作を示すフローチャートである。以下、図12及び図13を参照して焦点シフトの調整処理について説明する。焦点シフト調整部61は、レーザ加工前に焦点シフトの調整を開始する。ステップS40及びステップS41の処理は、図5で説明した焦点シフト調整部21のステップS10及びステップS11までの処理と同一である。ステップS42では、第一エネルギ量測定部16が、板15に吸収されたレーザ光のエネルギ量を第一測定値として測定する。ステップS43では、記憶部22が第一測定値を格納する(M1)。ステップS45では、第二エネルギ量測定部13が、板15に吸収されたレーザ光のエネルギ量を第二測定値として測定する。ステップS46では、記憶部22が第二測定値を格納する(M2)。
【0031】
ステップS47では、汚染判定部70が、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)と、外部光学系12の汚染の種類に応じて予め定めた第一基準値(例えば45W)とを比較することにより、外部光学系の汚染の有無を判定する。ステップS47において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第一基準値(例えば45W)以上である場合には(ステップS47のNO)、外部光学系の汚染が無いと判定され、ステップS52において、レーザ加工装置60が、焦点位置を補正することなく、レーザ加工を開始する。ステップS47において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第一基準値(例えば45W)より小さい場合には(ステップS47のYES)、外部光学系の汚染が有ると判定され、ステップS48に進む。
【0032】
ステップS48では、ウインド汚染判定部71が、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)と、外部光学系12の汚染の種類に応じて予め定めた第二基準値(例えば5W)とを比較することにより、外部光学系におけるウインド2のみの汚染を判定する。ステップS48において、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)が第二基準値(例えば5W)以下である場合には(ステップS48のYES)、ウインド2のみが汚染していると判定され、ステップS49に進む。ステップS49では、図示しないウインド汚染大小判定部が、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)と、外部光学系12の汚染の種類に応じて予め定められていて第一基準値より低い第三基準値(例えば42W)とを比較することにより、外部光学系におけるウインド2の汚染の大小を判定する。なお、ウインド汚染大小判定部は必須の構成ではないことに留意されたい。ステップS49において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第三基準値(例えば42W)より小さい場合には(ステップS49のYES)、ウインドの汚染が大きいと判定され、ステップS50において、警告部23がウインドの交換を警告する。ステップS49において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第三基準値(例えば42W)以上である場合には(ステップS49のNO)、ウインドの汚染が小さいと判定され、ステップS51において、出力条件調整部72がレーザ加工時の出力条件を上げる。続いてステップS52では、レーザ加工装置60が、調整した出力条件でレーザ加工を開始する。
【0033】
ステップS48において、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)が第二基準値(例えば5W)より大きい場合には(ステップS48のYES)、レンズ1が汚染していると判定され、ステップS53に進む。ステップS53では、レンズ汚染判定部73が、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)と、外部光学系12の汚染の種類に応じて予め定められていて第一基準値より低い第三基準値(例えば42W)と、を比較することにより、外部光学系12におけるレンズ1のみの汚染を判定する。ステップS53において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第三基準値(例えば42W)以上である場合には(ステップS53のYES)、レンズ1のみが汚染していると判定され、焦点位置を調整するステップS54に進む。ステップS54では、焦点移動量計算部74が、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)と、外部光学系12の汚染レベルに応じて予め定めた第四基準値(例えば1W〜8W)と、第四基準値に応じて予め定めた焦点移動量(例えば0.3mm〜12mm)とに基づいて、焦点移動量(例えば+1mm)を計算すると共に、焦点位置補正部34が、計算した焦点移動量(例えば+1mm)に基づいて、レーザ加工時の焦点位置(例えば1mm)を補正する(例えば0mm)。次いで、再び外部光学系12を温めるステップS40に戻り、焦点シフト調整部61が、再び焦点シフトの調整処理を繰返す。これにより、補正量が正しければ、ステップS47において、外部光学系12の汚染が無いと判定され(ステップS47のNO)、レーザ加工装置60は、補正した焦点位置に基づいてレーザ加工を開始する。
【0034】
ステップS53において、小径穴Sを通過したレーザ光のエネルギ量である第一測定値(M1)が第三基準値(例えば42W)より小さい場合には(ステップS53のNO)、ステップS55に進む。ステップS55では、ウインド吸収散乱判定部75が、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)と、外部光学系12の汚染の種類に応じて予め定められていて第二基準値より高い第五基準値(例えば7W)とを比較することにより、ウインド2の汚染によるレーザ光の吸収又は散乱を判定する。ステップS55において、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)が第五基準値(例えば7W)以上である場合には(ステップS55のNO)、ウインド2の汚染によってレーザ光が散乱していると判定され、ステップS56において、警告部23が、レンズ1の汚染及びウインド2による散乱を警告する。ウインド2による散乱は、塵埃がウインド2に焼付いている可能性が高いため、オペレータに対してウインド2を確認させ、汚れが有れば、ウインド2の交換を促し、汚れが無ければ、レンズ1の確認を促す。ステップS55において、板15に吸収されたレーザ光のエネルギ量である第二測定値(M2)が第五基準値(例えば7W)より小さい場合には(ステップS55のYES)、ウインド2の汚染によってレーザ光が吸収されていると判定され、ステップS57において、警告部23が、レンズ1の汚染及びウインド2による吸収を警告する。ウインド2による吸収は、塵埃がウインド2の表面に堆積している可能性が高いため、オペレータに対してウインド2を確認させ、汚れが有れば、ウインド2のクリーニングを促し、汚れが無ければ、レンズ1の確認を促す。ウインド2の交換又はクリーニング及びレンズ1の確認が終わった後、焦点シフト調整部61は、再びレーザ加工前に焦点シフトの調整を開始する。斯かるレーザ加工装置60によれば、レーザ加工前に外部光学系12の汚染の種類及びレベルに応じて焦点シフトを自動的に調整できる。ひいては、外部光学系12に汚染があったとしても自動運転を継続できて、外部光学系12のクリーニング又は交換の時期を延長できる。
【0035】
前述した実施形態におけるコンピュータによって実行可能なプログラムは、コンピュータ読取り可能な非一時的記録媒体、CD−ROM等に記録して提供できる。本明細書において種々の実施形態について説明したが、本発明は、前述した種々の実施形態に限定されるものではなく、以下の特許請求の範囲に記載された範囲内において種々の変更を行えることを認識されたい。
【符号の説明】
【0036】
1 レンズ
2 ウインド
10 レーザ加工装置
11 レーザ発振器
12 外部光学系
13 第二エネルギ量測定部
14 数値制御装置
15 板
16 エネルギ量測定部(第一エネルギ量測定部)
17 レーザ光除去部
20 駆動制御部
21 焦点シフト調整部
22 記憶部
23 警告部
30 高出力指令部
31 第一駆動指令部
32 第一低出力指令部
33 焦点移動量計算部
34 焦点位置補正部
35 補正量判定部
36 出力条件調整部
37 第二駆動指令部
38 第二低出力指令部
39 ウインド汚染判定部
40 レーザ加工装置
41 焦点シフト調整部
50 第三駆動指令部
51 第三低出力指令部
52 グラフ作成部
53 焦点移動量計算部
60 レーザ加工装置
61 焦点シフト調整部
70 汚染判定部
71 ウインド汚染判定部
72 出力条件調整部
73 レンズ汚染判定部
74 焦点移動量計算部
75 ウインド吸収散乱判定部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15