特開2021-6837(P2021-6837A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ キヤノン株式会社の特許一覧
<>
  • 特開2021006837-画像形成装置 図000026
  • 特開2021006837-画像形成装置 図000027
  • 特開2021006837-画像形成装置 図000028
  • 特開2021006837-画像形成装置 図000029
  • 特開2021006837-画像形成装置 図000030
  • 特開2021006837-画像形成装置 図000031
  • 特開2021006837-画像形成装置 図000032
  • 特開2021006837-画像形成装置 図000033
  • 特開2021006837-画像形成装置 図000034
  • 特開2021006837-画像形成装置 図000035
  • 特開2021006837-画像形成装置 図000036
  • 特開2021006837-画像形成装置 図000037
  • 特開2021006837-画像形成装置 図000038
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2021-6837(P2021-6837A)
(43)【公開日】2021年1月21日
(54)【発明の名称】画像形成装置
(51)【国際特許分類】
   G03G 15/00 20060101AFI20201218BHJP
   G03G 21/00 20060101ALI20201218BHJP
   G03G 21/20 20060101ALI20201218BHJP
   G03G 15/02 20060101ALI20201218BHJP
   G03G 9/097 20060101ALI20201218BHJP
   G03G 9/093 20060101ALI20201218BHJP
【FI】
   G03G15/00 303
   G03G21/00 510
   G03G21/20
   G03G15/02 102
   G03G21/00 318
   G03G9/097 372
   G03G9/093
【審査請求】未請求
【請求項の数】33
【出願形態】OL
【全頁数】51
(21)【出願番号】特願2019-120445(P2019-120445)
(22)【出願日】2019年6月27日
(71)【出願人】
【識別番号】000001007
【氏名又は名称】キヤノン株式会社
(74)【代理人】
【識別番号】100126240
【弁理士】
【氏名又は名称】阿部 琢磨
(74)【代理人】
【識別番号】100124442
【弁理士】
【氏名又は名称】黒岩 創吾
(72)【発明者】
【氏名】平田 祐一郎
(72)【発明者】
【氏名】縣 伸一
(72)【発明者】
【氏名】山内 恒
【テーマコード(参考)】
2H134
2H200
2H270
2H500
【Fターム(参考)】
2H134GA01
2H134GB02
2H134GB06
2H134GB07
2H134HD17
2H134KA28
2H134KA30
2H134KA33
2H134KA40
2H134KB13
2H134KB20
2H134KG01
2H134KG03
2H134KG07
2H134KG08
2H134KH01
2H134KH04
2H134KH06
2H134LA01
2H134LA02
2H200FA01
2H200FA02
2H200FA03
2H200FA07
2H200FA08
2H200FA18
2H200FA20
2H200GA12
2H200GA23
2H200GA34
2H200GA42
2H200GA49
2H200GA60
2H200GB12
2H200GB22
2H200HA02
2H200HA29
2H200HA30
2H200HB12
2H200HB22
2H200JA02
2H200JC03
2H200NA02
2H200PA03
2H200PA05
2H200PA18
2H200PA22
2H200PA26
2H200PB05
2H200PB24
2H200PB27
2H200PB28
2H200PB33
2H200PB34
2H200PB35
2H270KA08
2H270KA19
2H270KA70
2H270LA03
2H270LA04
2H270LA26
2H270LA28
2H270LA29
2H270LA71
2H270LA79
2H270LA80
2H270LA87
2H270LA93
2H270LA95
2H270LD05
2H270LD09
2H270LD11
2H270MA01
2H270MA08
2H270MA15
2H270MA31
2H270MA40
2H270MB28
2H270MB30
2H270MB35
2H270MB43
2H270MB46
2H270MC01
2H270MH01
2H270ND13
2H270PA83
2H270RB03
2H270RC03
2H270RC05
2H270RC08
2H270RC10
2H270RC14
2H270ZC03
2H270ZC04
2H270ZC05
2H500AA10
2H500CA15
2H500CA16
2H500CA34
2H500CA36
2H500EA52D
2H500EA60A
2H500FA01
(57)【要約】
【課題】 画像流れの発生状態を検知し、適切なタイミングで感光体表面に金属石鹸を供給し、維持することによって画像流れの発生を抑制する。
【解決手段】 記録材にトナー像を形成するための画像形成動作と、トナー収容部に収容されたトナーを現像部材から像担持体の表面に供給することによって像担持体の表面に金属石鹸を塗布する塗布動作と、を実行可能に制御する制御部と、帯電部材に帯電電圧が印加された時に帯電部材から像担持体に流れる電流の電流値と、画像形成装置が使用されている環境に関する情報と、画像形成動作の実行時間に関する情報と、に基づいて塗布動作を実行するか否かを判定する判定部と、を有する。
【選択図】 図8
【特許請求の範囲】
【請求項1】
記録材にトナー像を形成する画像形成装置において、
回転可能な像担持体であって、
前記像担持体の表面を帯電する帯電部材と、
金属石鹸を含有するトナーを収容するトナー収容部と、
前記像担持体と対向する現像部において前記帯電部材によって帯電された前記像担持体の前記表面に前記トナーを供給してトナー像を形成する現像部材と、
前記帯電部材に帯電電圧を印加する電圧印加部と、
記録材に前記トナー像を形成するための画像形成動作と、前記トナー収容部に収容された前記トナーを前記現像部材から前記像担持体の表面に供給することによって前記像担持体の表面に前記金属石鹸を塗布する塗布動作と、を実行可能に制御する制御部と、
前記帯電部材に前記帯電電圧が印加された時に前記帯電部材から前記像担持体に流れる電流の電流値と、前記画像形成装置が使用されている環境に関する情報と、前記画像形成動作の実行時間に関する情報と、に基づいて前記塗布動作を実行するか否かを判定する判定部と、を有することを特徴とする画像形成装置。
【請求項2】
前記電流を検知する電流検知部と、を有し、
前記判定部は、前記画像形成動作において前記電流検知部によって検知された前記電流の電流値に基づいて前記塗布動作を実行するか否かを判定することを特徴とする請求項1に記載の画像形成装置。
【請求項3】
前記電流値を予測する予測部と、を有し、
前記判定部は、前記画像形成動作において前記予測部によって予測された前記電流値に基づいて前記塗布動作を実行するか否かを判定することを特徴とする請求項1に記載の画像形成装置。
【請求項4】
前記予測部は、前記環境に関する情報に基づいて前記電流値を予測することを特徴とする請求項3に記載の画像形成装置。
【請求項5】
前記予測部は、前記像担持体の膜厚に関する情報に基づいて前記電流値を予測することを特徴とする請求項3または4に記載の画像形成装置。
【請求項6】
前記情報は、前記像担持体の回転数、帯電電圧を印加した時間のうち少なくとも1つを用いて算出されることを特徴とする請求項5に記載の画像形成装置。
【請求項7】
前記環境に関する情報である温度と湿度のうち少なくとも一方を検知する環境検知部を有することを特徴とする請求項1乃至6のいずれか一項に記載の画像形成装置。
【請求項8】
前記環境検知部で検知された前記環境に関する情報から絶対湿度を算出することを特徴とする請求項7に記載の画像形成装置。
【請求項9】
前記実行時間に関する情報は、前記画像形成動作によってトナー像を印字した記録材の枚数であることを特徴とする請求項1乃至8のいずれか一項に記載の画像形成装置。
【請求項10】
前記実行時間に関する情報は、前記塗布動作を実行した後にリセットされることを特徴とする請求項1乃至9のいずれか一項に記載の画像形成装置。
【請求項11】
前記電流値に基づいて前記像担持体の前記表面に付着する放電生成物の付着量を算出することを特徴とする請求項1乃至10のいずれか一項に記載の画像形成装置。
【請求項12】
前記付着量と、前記像担持体の表面に生成された前記放電生成物によって前記トナー像に影響を及ぼさない範囲の前記電流値である付着防止量と、から、前記付着量と前記付着防止量の差分を演算する演算部と、
前記演算部によって演算された演算値を記憶する記憶部と、を有し、
前記記憶部に記憶した前記演算値が閾値を超えたときに前記塗布動作を実行することを特徴とする請求項11に記載の画像形成装置。
【請求項13】
前記演算値は、前記差分と記録材の枚数の積であることを特徴とする請求項12に記載の画像形成装置。
【請求項14】
前記演算値は、前記塗布動作を実行した後にリセットされることを特徴とする請求項12または13に記載の画像形成装置。
【請求項15】
前記閾値は、前記環境に関する情報に応じて変更されることを特徴とする請求項12乃至14のいずれか一項に記載の画像形成装置。
【請求項16】
前記現像部材の使用情報に基づいて、前記付着防止量と前記閾値を変更することを特徴とする請求項12乃至15のいずれか一項に記載の画像形成装置。
【請求項17】
前記使用情報は、前記トナー収容部に収容される前記トナーの量の情報であることを特徴とする請求項16に記載の画像形成装置。
【請求項18】
前記使用情報は、前記現像部材の回転数であることを特徴とする請求項16又は17に記載の画像形成装置。
【請求項19】
前記制御部は、前記現像部材の表面移動速度が前記像担持体の表面移動速度より大きくなるように、前記像担持体の回転速度と前記現像部材の回転速度のうち少なくとも一方を制御し、前記塗布動作における前記現像部材の表面移動速度と前記像担持体の表面移動速度との速度差の方が前記画像形成動作における前記速度差より大きくなるように制御することを特徴とする請求項1乃至18のいずれか一項に記載の画像形成装置。
【請求項20】
前記帯電部材に前記帯電電圧を印加する前記電圧印加部を第1の電圧印加部としたとき、前記現像部材に現像電圧を印加する第2の電圧印加部と、を有し、
前記現像部における前記帯電部材によって帯電された前記像担持体の表面の表面電位と、前記第2の電圧印加部によって前記現像部材に印加される前記現像電圧と、の差をバックコントラストとしたときに、前記制御部は、前記塗布動作における前記バックコントラストが前記画像形成動作におけるバックコントラストより大きくなるように制御することを特徴とする請求項1乃至19のいずれか一項に記載の画像形成装置。
【請求項21】
前記塗布動作において、前記現像部材は前記現像部において前記像担持体と接触することを特徴とする請求項1乃至20のいずれか一項に記載の画像形成装置。
【請求項22】
前記現像部材は、前記画像形成動作と前記塗布動作とで異なる表面移動速度で回転することを特徴とする請求項1乃至21のいずれか一項に記載の画像形成装置。
【請求項23】
前記像担持体は、前記画像形成動作と前記塗布動作とで異なる表面移動速度で回転することを特徴とする請求項1乃至22のいずれか一項に記載の画像形成装置。
【請求項24】
前記像担持体の回転軸線方向において、前記像担持体の表面の十点平均面粗さ(Rz)の範囲が0.10≦Rz≦0.70(μm)であり、且つ前記像担持体の前記表面の凹凸の平均間隔(Sm)の範囲が0<Sm≦70(μm)であることを特徴とする請求項1乃至23のいずれか一項に記載の画像形成装置。
【請求項25】
前記トナーは、有機ケイ素重合体を含有し、
前記有機ケイ素重合体のケイ素原子に直接結合している炭素原子が1個以上3個以下であることを特徴とする請求項1乃至24のいずれか一項に記載の画像形成装置。
【請求項26】
前記有機ケイ素重合体が、R−SiO3/2(Rは炭素数1以上6以下の炭化水素基を示す)で表される部分構造を有することを特徴とする請求項25に記載の画像形成装置。
【請求項27】
前記Rが炭素数1以上3以下の炭化水素基であることを特徴とする請求項26に記載の画像形成装置。
【請求項28】
前記現像部材と接触して接触部を形成し、前記接触部において前記トナーを供給するトナー供給部材と、
前記トナー供給部材にトナー供給電圧を印加する第3の電圧印加部と、を有し、
前記制御部は、前記塗布動作において、前記金属石鹸に前記トナー供給部材から前記現像部材に向かう方向の静電気力が作用する向きの電位差が前記接触部に形成されるように前記第2の電圧印加部と前記第3の電圧印加部と、を制御することを特徴とする請求項20に記載の画像形成装置。
【請求項29】
前記像担持体と接触して転写部を形成し、前記転写部において前記像担持体の表面に形成された前記トナー像を担持する中間転写体と、
前記中間転写体に担持された前記トナー像を記録材に転写する転写部材と、
前記像担持体の回転方向において前記像担持体における前記転写部の下流側で、且つ前記帯電部の上流側の前記像担持体の表面を露光する露光ユニットと、を有し、
前記制御部は、前記塗布動作における前記露光ユニットの露光量が、前記画像形成動作における前記露光ユニットの露光量より小さくなるように制御することを特徴とする請求項1乃至28のいずれか一項に記載の画像形成装置。
【請求項30】
前記塗布動作において前記露光ユニットによる露光を行わないことを特徴とする請求項29に記載の画像形成装置。
【請求項31】
前記金属石鹸は、金属種が、亜鉛、カルシウム、マグネシウムのうち少なくとも一種であることを特徴とする請求項1乃至30のいずれか一項に記載の画像形成装置。
【請求項32】
前記金属石鹸は、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウムのうち少なくとも一種であることを特徴とする請求項1乃至31のいずれか一項に記載の画像形成装置。
【請求項33】
前記金属石鹸は、粒径が0.15μm以上2.0μm以下であることを特徴とする請求項1乃至32のいずれか一項に記載の画像形成装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、画像形成装置及び画像形成装置に着脱可能なプロセスカートリッジに関するものである。ここで、画像形成装置とは、電子写真画像形成方式を用いて記録材(記録媒体)に画像を形成するものである。画像形成装置の例としては、複写機、プリンタ(レーザービームプリンタ、LEDプリンタ等)、ファクシミリ装置、ワードプロセッサ、及び、これらの複合機(マルチファンクションプリンタ)などが含まれる。
【背景技術】
【0002】
従来、電子写真方式の画像形成装置において用いられる電子写真感光体(以下、単に「感光体」ともいう。)としては、低価格及び高生産性の利点から、有機感光体が普及している。これは、光導電性物質(電荷発生物質や電荷輸送物質)として有機材料を用いた感光層(有機感光層)が支持体上に設けられて構成される。
【0003】
感光体には、帯電、露光、現像、転写、クリーニングのそれぞれの工程において、電気的外力や機械的外力が直接加えられるため、これら外力に対する耐久性が要求される。具体的には、これら外力による表面の傷や摩耗の発生に対する耐久性、すなわち、耐傷性及び耐摩耗性が要求される。
【0004】
しかしながら、感光体の摩耗を抑制すると、感光体表面がリフレッシュされにくくなり、特に高湿環境下において、「画像流れ」と呼ばれる静電潜像のボケが生じやすくなる。画像流れは、主に、帯電による感光体表面での放電によって発生するオゾンやNOxなどの放電生成物が感光体の表面に付着することによって、感光体の表面抵抗が低下することが原因で発生する。感光体の摩耗を抑制するために、感光体の表面の摩擦係数を低くし高硬度とすると、表面が削れにくくなることで、表面に付着した放電生成物が除去されにくい。その結果として、感光体の表面に付着した放電生成物が高湿環境下で吸湿して低抵抗化し、感光体の表面の電荷保持能力を低下させ、画像流れが発生することがある。
【0005】
画像流れの発生を抑制する方法として、特許文献1では、現像剤中に金属石鹸を含有させ、現像剤担持体から感光体表面に金属石鹸を供給する方法が提案されている。この方法では、金属石鹸であるステアリン酸亜鉛を現像剤担持体により感光体の表面に供給し、感光体の表面をステアリン酸亜鉛で被覆することで放電生成物の付着を抑制し、画像流れの発生を防止している。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2005−121833号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献1の方法によって感光体上に供給された金属石鹸が、感光体の回転によってクリーニング手段などの感光体に接触している部材に掻き取られてしまう。特に、現像剤担持体が感光体と離間した状態での感光体の回転動作後や、現像装置の寿命後半で現像剤中の金属石鹸量が減少した場合に、積極的に金属石鹸を供給する必要がある。しかし、上記のような場合に、感光体の表面に塗布されている金属石鹸量が分からず、放電生成物の量を把握することが出来ないため画像流れが発生することがあった。
【0008】
以上の状況を鑑みて、本発明の目的は、適切なタイミングで感光体表面に金属石鹸を供給し、維持することによって画像流れの発生を抑制することが可能な画像形成装置を提供することである。
【課題を解決するための手段】
【0009】
この目的を達成するため、本発明の画像形成装置は、記録材にトナー像を形成する画像形成装置において、回転可能な像担持体であって、前記像担持体の表面を帯電する帯電部材と、金属石鹸を含有するトナーを収容するトナー収容部と、前記像担持体と対向する現像部において前記帯電部材によって帯電された前記像担持体の前記表面に前記トナーを供給してトナー像を形成する現像部材と、前記帯電部材に帯電電圧を印加する電圧印加部と、記録材に前記トナー像を形成するための画像形成動作と、前記トナー収容部に収容された前記トナーを前記現像部材から前記像担持体の表面に供給することによって前記像担持体の表面に前記金属石鹸を塗布する塗布動作と、を実行可能に制御する制御部と、前記帯電部材に前記帯電電圧が印加された時に前記帯電部材から前記像担持体に流れる電流の電流値と、前記画像形成装置が使用されている環境に関する情報と、前記画像形成動作の実行時間に関する情報と、に基づいて前記塗布動作を実行するか否かを判定する判定部と、を有することを特徴とする。
【発明の効果】
【0010】
本発明によると、適切なタイミングで感光体表面に金属石鹸を供給し、維持することによって画像流れの発生を抑制することが出来る。
【図面の簡単な説明】
【0011】
図1】実施例1における画像形成装置の概略断面図である。
図2】実施例1におけるプロセスカートリッジの断面図である。
図3】実施例1における画像形成装置の制御様態を示す制御ブロック図である。
図4】実施例1における電流検知部の制御様態を示す制御ブロック図である。
図5】実施例1におけるトナーの断面図である。
図6】実施例1における帯電電流値の耐久推移のグラフである。
図7】実施例1における環境違いの帯電電流値の耐久推移のグラフである。
図8】実施例1における金属石鹸塗布動作のフローチャート図である。
図9】実施例2における金属石鹸塗布動作のフローチャート図である。
図10】実施例3における金属石鹸塗布動作のフローチャート図である。
図11】実施例4における感光体表面を研磨した後の感光体表面図である。
図12】実施例4における感光体表面を研磨する研磨装置の概略図である。
図13】実施例5における有機ケイ素化合物を含む表層の表層厚さの概念図である。
【発明を実施するための形態】
【0012】
以下、図面を参照して、この発明を実施するための形態を実施例に基づいて例示的に詳しく説明する。ただし、この実施例に記載されている構成部品の寸法、材質、形状、その相対位置等は、発明が適用される装置の構成や各種条件により適宜変更されるから、特に特定的な記載が無い限りは、発明の範囲をそれらのみに限定する趣旨のものではない。
【実施例1】
【0013】
1.画像形成装置
電子写真画像形成装置の一実施例の全体構成について説明する。図1は、実施例1の画像形成装置100の概略断面図である。実施例1の画像形成装置100は、インライン方式、中間転写方式を採用したフルカラーレーザプリンタである。画像形成装置100は、画像情報にしたがって、記録材S(たとえば、記録用紙、プラスチックシート、布など)にフルカラー画像を形成することが出来る。画像情報は、画像形成装置100に接続された画像読み取り装置(不図示)、或いは、画像形成装置100に通信可能に接続されたパーソナルコンピュータなどのホスト機器300から、画像形成装置100に入力される。
【0014】
画像形成装置100は、複数の画像形成部として、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色の画像を形成するための第1、第2、第3、第4の画像形成部SY、SM、SC、SKを有する。
【0015】
実施例1では、画像形成装置100は、複数の像担持体として、鉛直方向と交差する方向に併設された4個のドラム型の電子写真感光体(以下、感光体1)を有し、感光体1と画像形成部が一体化されて、プロセスカートリッジ7を形成している。
静電潜像を担持する像担持体としての感光体1は、駆動手段(不図示)により回転駆動される。帯電部材たる帯電ローラ2は、導電性芯金と導電性ゴム層からなる単層ローラであって、外径φ7.5mm、体積抵抗率10〜10Ω・cmである。そして、後述する高圧電源としての帯電電圧印加部である帯電高圧71によって、帯電ローラ2に−1000Vの帯電電圧を印加することで、感光体1の表面は−500Vに一様に帯電される。帯電ローラ2にはVd+VthからなるDC(直流)電圧が印加されており、放電によって感光体1の表面上を帯電電位Vdで一様に帯電する。この時のVdを暗部電位といい、−500Vである。Vthは放電開始電圧であり、印加する帯電電圧が小さいときは、感光体1の表面上の表面電位は放電によっては増加しないが、放電開始電圧Vthから放電により表面電位が増加し始める。つまり、本実施例における放電開始電圧Vthは−500Vである。
【0016】
帯電ローラ2によって感光体1の表面を帯電した後、感光体1の表面には第1の露光部としての露光ユニット30からレーザ光が照射される。露光ユニット30は、画像情報に基づきレーザを照射して、感光体1の表面上に静電潜像を形成する露光手段である。レーザ光が照射された感光体1の表面は明部電位であるVlとして−100Vへと表面電位が変化し、静電潜像が形成される。
【0017】
図2は、感光体1の長手方向(回転軸線方向)に沿って見た実施例1のプロセスカートリッジ7の断面図である。プロセスカートリッジ7は、現像ユニット3と感光体ユニット13によって構成されている。現像ユニット3には、現像部材たる現像ローラ4、トナー供給部材たるトナー供給ローラ(以下、「供給ローラ」という)5がそれぞれ配置されている。不図示の駆動モータの駆動力を受けることによって、現像ローラ4は図2中矢印D方向に、供給ローラ5は図2中矢印R方向に、それぞれ回転を始める。そして、現像電圧印加部としての現像高圧72から現像ローラ4に現像電圧として−300Vの電圧が印加されることで、感光体1の表面上に形成された静電潜像、すなわち、上記のVl部に対して現像ローラ4によって現像剤(トナー)が供給されて現像される。
【0018】
感光体1の表面に現像された現像剤像(トナー像)は、図1に示した中間転写ベルト31に転写される。各画像形成部の感光体1に対向して、感光体1上のトナー像を記録材Sに転写するための中間転写体としての無端状のベルトで形成された中間転写ベルト31は、各画像形成部の感光体1に当接し、図1中矢印B方向(反時計方向)に循環移動(回転)する。
【0019】
中間転写ベルト31の内周面側には、各感光体1に対向するように、一次転写手段としての転写部材たる一次転写ローラ32がそれぞれ配置されている。そして、一次転写ローラ32に、一次転写電圧印加部としての一次転写電圧電源(一次転写高圧)73から、トナーの正規の帯電極性とは逆極性の電圧が印加される。これによって、感光体1上のトナー像が中間転写ベルト31上に転写(一次転写)される。本実施の形態におけるトナーの極性は、正規極性を負極性としている。したがって、一次転写電圧として正極性の電圧が印加されることで一次転写を行うことが出来る。
【0020】
また、中間転写ベルト31の外周面側において二次転写手段としての二次転写ローラ33が配置されている。そして、二次転写ローラ33に、二次転写電圧印加部としての二次転写電圧電源(二次転写高圧)74から、トナーの極性とは逆極性の電圧が印加される。これによって、中間転写ベルト31上のトナー像が記録材Sに転写(二次転写)される。例えば、フルカラー画像形成時には、上述のプロセスが、画像形成部SY、SM、SC、SKにおいて順次行われ、中間転写ベルト31上に各色のトナー像が順次に重ね合わせて一次転写される。その後、中間転写ベルト31の移動と同期して記録材Sが二次転写部へと搬送される。そして、記録材Sを介して中間転写ベルト31に当接している二次転写ローラ33の作用によって、中間転写ベルト31上の4色トナー像は、一括して記録材S上に二次転写される。
【0021】
トナー像が転写された記録材Sは、定着装置34に搬送される。定着装置34において記録材Sに熱および圧力を加えることで、記録材Sにトナー像が定着され、記録材Sは画像形成装置100の外に排出される。
【0022】
一方、中間転写ベルト31にトナーを転写した後の感光体1の表面電位は、一次転写電圧を受けたことにより不均一となっている。そこで、第2の露光部としての前露光手段である前露光ユニット27で感光体1の表面を全面露光(全面光照射)することにより、前回の画像形成によって不均一となった感光体1の表面電位を一様に均す。即ち、感光体1の表面の残留電荷を除去するように感光体1の表面に光を照射する。前露光ユニット27は、中間転写ベルト31と感光体1の当接位置である転写部よりも感光体1の回転方向下流側で、帯電ローラ2と感光体1の当接位置である帯電部よりも感光体1の回転方向上流側の間に配設され、その対向部である感光体1の表面を露光する。前露光ユニット27の光源としてはLED、ハロゲンランプ等を用いることが出来る。使用する光源は特に限定されないが、駆動電圧が低く、また装置の小型化が容易という観点から、LEDを用いるのが好ましいため、本実施例では、前露光光源としてLEDを用いた。
【0023】
又、一次転写ローラ32によって転写されずに感光体1の表面に残存したトナーは、感光体1と接触するクリーニングブレード8によって感光体1の表面から掻き取られ、クリーニングブレード8の下方に設けられた廃トナー収容室9へ収容される。二次転写ローラ33で記録材Sに転写されず、中間転写ベルト31上に残留したトナーはクリーニング装置としての中間転写体用クリーニング装置35に搬送され、除去される。
【0024】
2.画像形成装置の制御様態
図3は、本実施例における画像形成装置100の要部の概略制御態様を示すブロック図である。図4は本実施例の特徴である、帯電電流検知手段としての電流検知部36の制御に関わる態様を示した図である。制御部202は画像形成装置100の動作を制御する手段であり、各種の電気的情報信号の授受をする。また、各種のプロセス機器やセンサから入力する電気的情報信号の処理、各種のプロセス機器への指令信号の処理を行う。コントローラ200は、ホスト装置との間で各種の電気的な情報の授受をすると共に、画像形成装置100の画像形成動作を所定の制御プログラムや参照テーブルに従って、インターフェース201を介して制御部202で統括的に制御する。制御部202は、様々な演算処理を行う演算部であって中心的素子であるCPU155を有し、記憶素子であるRAM、ROM33や記憶手段としてのメモリ15、環境検知を行う環境検知部としての環境センサ16などと接続されて構成される。さらに、後述する金属石鹸塗布動作の実行可否を判定する判定部156や帯電電流値の予測を行う予測部157を有する。実施例1の構成においては予測部157を設置しなくてもよい。RAMには、センサの検知結果、カウンタのカウント結果、演算結果などが格納され、ROM33には制御プログラム、予め実験などにより得られたデータテーブルなどが格納されている。制御部202には、画像形成装置100における各制御対象、センサ、カウンタなどが接続されている。制御部202は、各種の電気的情報信号の授受や、各部の駆動のタイミングなどを制御して、所定の画像形成シーケンスの制御などを行う。例えば、感光体1の表面にトナー像を形成するために以下の高圧電源ならびに装置を制御する。帯電電源としての帯電高圧71、現像電源としての現像高圧72、トナー供給電圧を供給する供給ローラ5の電源としての供給高圧75、トナー規制部材たる現像ブレード6の電源としての現像ブレード高圧76、露光ユニット30などの制御を行う。さらに、記録材Sにトナー像を形成するための、一次転写電源としての一次転写高圧73、二次転写電源としての二次転写高圧74、転写部を通過した感光体1の表面を露光する前露光ユニット27などの制御を行う。その他、現像ローラ4と感光体1の当接離間を司る接離機構50の制御を行う。本実施例において、制御部202は、詳しくは後述する金属石鹸塗布動作を行うために、上記高圧などを制御する。
【0025】
本実施例では、プロセスカートリッジ7には記憶部としてのメモリ15を設ける。メモリ15としては、例えば、接触不揮発性メモリ、非接触不揮発性メモリ、電源を有する揮発性メモリなど、任意の形態を用いることが出来る。実施例1では、非接触不揮発性メモリ15がプロセスカートリッジ7に搭載されている。非接触不揮発性メモリ15は、メモリ側の情報伝達手段であるアンテナ(図示せず)を有し、無線で画像形成装置100本体が備えたCPU155と通信することで、情報の読み出し及び書き込みが可能である。実施形態1では、CPU155は画像形成装置100本体側の情報伝達手段、メモリ15の情報の読み書き手段の機能を備えている。このメモリ15には、後述する初期の帯電電流値と帯電電流値の閾値が記憶される。
【0026】
3.プロセスカートリッジの概略構成
実施例1の画像形成装置100に装着されるプロセスカートリッジ7の全体構成について、図2を用いて詳細に説明する。プロセスカートリッジ7は、画像形成装置100に設けられた不図示の装着ガイド、位置決め部材などの装着手段を介して、画像形成装置100に着脱可能となっている。実施例1では、各色用のプロセスカートリッジ7はすべて同一形状を有しており、各色用のプロセスカートリッジ7内には、それぞれイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色のトナー10が収容されている。実施例1では、プロセスカートリッジ7について説明するが、現像ユニット3が単独で画像形成装置100に着脱可能とする現像カートリッジを有する構成としても良い。
【0027】
尚、実施例1では、収容しているトナー10の種類(色)を除いて、各色用のプロセスカートリッジ7の構成及び動作は実質的に同一である。
【0028】
プロセスカートリッジ7は、現像ローラ4等を備えた現像ユニット3と、感光体1を備えた感光体ユニット13とを有する。
【0029】
本実施形態では、現像ユニット3と感光体ユニット13を一体化してプロセスカートリッジ7としているが、これに限らず、それぞれを現像カートリッジ、感光体カートリッジとして画像形成装置100に着脱自在な構成としてもよい。
【0030】
現像ユニット3は、現像室3aとトナー収容部3bに大別される。トナー収容部3bには、トナー10を現像室3aに搬送するためのトナー搬送部材22が設けられており、図中矢印Gの方向へ回転することによってトナー10を現像室3aへと搬送している。
【0031】
現像室3aには、感光体1と接触して図示矢印D方向に回転するトナー担持体としての現像ローラ4が設けられている。実施例1では、現像ローラ4と感光体1とは、対向する現像部において互いの表面が同一方向に移動するようにそれぞれ回転する。
【0032】
また、現像室3aの内部には、トナー収容部3bから搬送されたトナー10を現像ローラ4に供給する供給ローラ5と、供給ローラ5によって供給された現像ローラ4上のトナー10のコート量規制及び電荷付与を行うトナー規制部材6が配置されている。
【0033】
現像ローラ4、供給ローラ5、トナー規制部材6には高圧電源からそれぞれ独立した電圧が印加される。供給ローラ5によって現像ローラ4に供給されたトナー10は、現像ローラ4とトナー規制部材6との間での摺擦により摩擦帯電され、電荷を付与されると同時に層厚が規制される。規制された現像ローラ4上のトナー10は、現像ローラ4の回転により、感光体1との対向部に搬送され、感光体1上の静電潜像をトナー像として現像、可視化する。
【0034】
本発明では、現像ローラ4に印加される所定のDC電圧(現像電圧:Vdc)を−300Vとした。また、供給ローラ5に電圧(供給電圧:Vr=−250V)を印加することで、供給ローラ5と現像ローラ4との電位差(ΔVr)を調整し、現像ローラ4へのトナー10の供給量を調整することが出来る。本実施例ではΔVr=Vdc−Vrを−50Vとした。
【0035】
実施例1では、感光体1上の静電潜像をトナー像として現像、可視化する際、現像ローラ4は感光体1の周面上に接触するようにして回転駆動される。これは、後述するトナーに外添された金属石鹸を感光体1上に供給しやすくするためである。ただし、金属石鹸を供給することが出来る構成であれば、現像ローラ4と感光体1とが接触する構成に限られない。
【0036】
ここで、以降の説明においては、電位や印加電圧に関し、負極性側に絶対値が大きい(例えば−500Vに対して−1000V)ことを電位が高いと称し、負極性側に絶対値が小さい(例えば−500Vに対して−300V)ことを電位が低いと称する。これは、本実施例における負帯電性を持つトナー10の正規極性を基準として考えるためである。
【0037】
また、本実施例での電圧は、アース電位(0V)との電位差として表現される。したがって、現像電圧=−300Vは、アース電位に対して、現像ローラ4の芯金に印加された現像電圧によって、−300Vの電位差を有したと解釈される。これは、帯電電圧などその他の電圧に関しても同様である。
【0038】
感光体ユニット13には、軸受(不図示)を介して感光体1が回転可能に取り付けられている。感光体1は、不図示の駆動モータの駆動力を受けることによって、図2中の矢印A方向に回転駆動される。また、感光体ユニット13には、感光体1の周面上に接触するように、帯電ローラ2、板状弾性体としてのクリーニングブレード8が配置されている。クリーニングブレード8は一端が板状金属板金に固定されており、他方の自由端が感光体1に当接し、感光体1との当接部であるクリーニングニップを形成する。クリーニングブレード8により感光体1の表面を摺擦し、転写工程で残留したトナー10や微粒子を掻き取り、廃トナー収容室9に収容することによって、帯電ローラ2の汚染や感光体1へのトナー10の連れ周りによる画像弊害を防止する。
【0039】
4.感光体の構成
本実施形態において、電子写真感光体1は支持体を有する。支持体は、導電性を有する導電性支持体であることが好ましい。また、支持体の形状としては、円筒状、ベルト状、シート状などが挙げられる。中でも、円筒状支持体であることが好ましい。また、支持体の表面に、陽極酸化などの電気化学的な処理や、ブラスト処理、切削処理などを施してもよい。
【0040】
支持体の材質としては、金属、樹脂、ガラスなどが好ましい。金属としては、アルミニウム、鉄、ニッケル、銅、金、ステンレスや、これらの合金などが挙げられる。中でも、アルミニウムを用いたアルミニウム製支持体であることが好ましい。また、樹脂やガラスには、導電性材料を混合または被覆するなどの処理によって、導電性を付与してもよい。
【0041】
本実施形態において、直径24mm、長さ257.5mmのアルミニウムシリンダー(JIS−A3003、アルミニウム合金)を支持体(導電性支持体)とした。本実施形態において、支持体の上に、導電層を設けてもよい。導電層を設けることで、支持体表面の傷や凹凸を隠蔽することや、支持体表面における光の反射を制御することが出来る。
【0042】
本実施例において、支持体の上に、導電層を設けてもよい。導電層を設けることで、支持体表面の傷や凹凸を隠蔽することや、支持体表面における光の反射を制御することが出来る。導電層は、導電性粒子と、樹脂と、を含有することが好ましい。導電性粒子の材質としては、金属酸化物、金属、カーボンブラックなどが挙げられる。金属酸化物としては、酸化亜鉛、酸化アルミニウム、酸化インジウム、酸化ケイ素、酸化ジルコニウム、酸化スズ、酸化チタン、酸化マグネシウム、酸化アンチモン、酸化ビスマスなどが挙げられる。金属としては、アルミニウム、ニッケル、鉄、ニクロム、銅、亜鉛、銀などが挙げられる。
【0043】
これらの中でも、導電性粒子として、金属酸化物を用いることが好ましく、特に、酸化チタン、酸化スズ、酸化亜鉛を用いることがより好ましい。
【0044】
導電性粒子として金属酸化物を用いる場合、金属酸化物の表面をシランカップリング剤などで処理したり、金属酸化物にリンやアルミニウムなど元素やその酸化物をドーピングしたりしてもよい。
【0045】
また、導電性粒子は、芯材粒子と、その粒子を被覆する被覆層とを有する積層構成としてもよい。芯材粒子としては、酸化チタン、硫酸バリウム、酸化亜鉛などが挙げられる。被覆層としては、酸化スズなどの金属酸化物が挙げられる。
【0046】
また、導電性粒子として金属酸化物を用いる場合、その体積平均粒径が、1nm以上500nm以下であることが好ましく、3nm以上400nm以下であることがより好ましい。
【0047】
樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン樹脂、フェノール樹脂、アルキッド樹脂などが挙げられる。
【0048】
また、導電層は、シリコーンオイル、樹脂粒子、酸化チタンなどの隠蔽剤などをさらに含有してもよい。
【0049】
導電層の平均膜厚は、1μm以上50μm以下であることが好ましく、3μm以上40μm以下であることが特に好ましい。
【0050】
導電層は、上述の各材料および溶剤を含有する導電層用塗布液を調製し、この塗膜を形成し、乾燥させることで形成することが出来る。塗布液に用いる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤などが挙げられる。導電層用塗布液中で導電性粒子を分散させるための分散方法としては、ペイントシェーカー、サンドミル、ボールミル、液衝突型高速分散機を用いた方法が挙げられる。
【0051】
本実施例においては、以下の材料を用意した。
・金属酸化物粒子としての酸素欠損型酸化スズ(SnO)で被覆されている酸化チタン(TiO)粒子(平均一次粒径230nm)214部
・結着材料としてのフェノール樹脂(フェノール樹脂のモノマー/オリゴマー)(商品名:プライオーフェンJ−325、大日本インキ化学工業(株)製、樹脂固形分:60質量%)132部
・溶剤としての1−メトキシ−2−プロパノール98部を、直径0.8mmのガラスビーズ450部
これらを用いたサンドミルに入れ、回転数:2000rpm、
分散処理時間:4.5時間、冷却水の設定温度:18℃の条件で分散処理を行い、分散液を得た。この分散液からメッシュ(目開き:150μm)でガラスビーズを取り除いた。続いて、表面粗し付与材としてのシリコーン樹脂粒子(商品名:トスパール120、モメンティブ・パフォーマンス・マテリアルズ(株)製、平均粒径2μm)を分散液に添加した。シリコーン樹脂粒子の添加量は、ガラスビーズを取り除いた後の分散液中の金属酸化物粒子と結着材料の合計質量に対して10質量%になるようにした。また、分散液中の金属酸化物粒子と結着材料の合計質量に対して0.01質量%になるように、レベリング剤としてのシリコーンオイル(商品名:SH28PA、東レ・ダウコーニング(株)製)を分散液に添加した。次に、メタノールと1−メトキシ−2−プロパノールの混合溶剤(質量比1:1)を分散液に添加し、攪拌することによって、導電層用塗布液を調製した。混合溶剤の添加量は、分散液中の金属酸化物粒子と結着材料と表面粗し付与材の合計質量(すなわち、固形分の質量)が分散液の質量に対して67質量%になるようにした。この導電層用塗布液を支持体上に浸漬塗布し、これを30分間150℃で加熱することによって、膜厚が30.0μmの導電層を形成した。
【0052】
本実施例では、支持体または導電層の上に、下引き層を設けてもよい。下引き層を設けることで、層間の接着機能が高まり、電荷注入阻止機能を付与することが出来る。下引き層は、樹脂を含有することが好ましい。また、重合性官能基を有するモノマーを含有する組成物を重合することで硬化膜として下引き層を形成してもよい。樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、アクリル樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン樹脂、フェノール樹脂、ポリビニルフェノール樹脂、アルキッド樹脂、ポリビニルアルコール樹脂、ポリエチレンオキシド樹脂、ポリプロピレンオキシド樹脂、ポリアミド樹脂、ポリアミド酸樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、セルロース樹脂などが挙げられる。
【0053】
重合性官能基を有するモノマーが有する重合性官能基としては、イソシアネート基、ブロックイソシアネート基、メチロール基、アルキル化メチロール基、エポキシ基、金属アルコキシド基、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、カルボン酸無水物基、炭素−炭素二重結合基などが挙げられる。
【0054】
また、下引き層は、電気特性を高める目的で、電子輸送物質、金属酸化物、金属、導電性高分子などをさらに含有してもよい。これらの中でも、電子輸送物質、金属酸化物を用いることが好ましい。
【0055】
電子輸送物質としては、キノン化合物、イミド化合物、ベンズイミダゾール化合物、シクロペンタジエニリデン化合物、フルオレノン化合物、キサントン化合物、ベンゾフェノン化合物、シアノビニル化合物、ハロゲン化アリール化合物、シロール化合物、含ホウ素化合物などが挙げられる。電子輸送物質として、重合性官能基を有する電子輸送物質を用い、上述の重合性官能基を有するモノマーと共重合させることで、硬化膜として下引き層を形成してもよい。
【0056】
金属酸化物としては、酸化インジウムスズ、酸化スズ、酸化インジウム、酸化チタン、酸化亜鉛、酸化アルミニウム、二酸化ケイ素などが挙げられる。金属としては、金、銀、アルミなどが挙げられる。
【0057】
また、下引き層は、添加剤をさらに含有してもよい。
【0058】
下引き層の平均膜厚は、0.1μm以上50μm以下であることが好ましく、0.2μm以上40μm以下であることがより好ましく、0.3μm以上30μm以下であることが特に好ましい。
【0059】
下引き層は、上述の各材料および溶剤を含有する下引き層用塗布液を調製し、この塗膜を形成し、乾燥および/または硬化させることで形成することが出来る。塗布液に用いる溶剤としては、アルコール系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤などが挙げられる。
【0060】
本実施例においては、以下の材料を用意した。
・下記式(E)で示される電子輸送物質4部
・ブロックイソシアネート(商品名:デュラネートSBN−70D、旭化成ケミカルズ(株)製)5.5部
・ポリビニルブチラール樹脂(エスレックKS−5Z、積水化学工業(株)製)0.3部
・触媒としてのヘキサン酸亜鉛(II)(三津和化学薬品(株)製)0.05部
これらを、テトラヒドロフラン50部と1−メトキシ−2−プロパノール50部の混合溶媒に溶解して下引き層用塗布液を調製した。この下引き層用塗布液を導電層上に浸漬塗布し、これを30分間170℃で加熱することによって、膜厚が0.7μmの下引き層を形成した。
【0061】
【化1】
【0062】
続いて、電荷発生層に関して説明する。電荷発生層は、電荷発生物質と、樹脂と、を含有することが好ましい。
【0063】
電荷発生物質としては、アゾ顔料、ペリレン顔料、多環キノン顔料、インジゴ顔料、フタロシアニン顔料などが挙げられる。これらの中でも、アゾ顔料、フタロシアニン顔料が好ましい。フタロシアニン顔料の中でも、オキシチタニウムフタロシアニン顔料、クロロガリウムフタロシアニン顔料、ヒドロキシガリウムフタロシアニン顔料が好ましい。
【0064】
電荷発生層中の電荷発生物質の含有量は、電荷発生層の全質量に対して、40質量%以上85質量%以下であることが好ましく、60質量%以上80質量%以下であることがより好ましい。
【0065】
樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、メラミン樹脂、ポリウレタン樹脂、フェノール樹脂、ポリビニルアルコール樹脂、セルロース樹脂、ポリスチレン樹脂、ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂などが挙げられる。これらの中でも、ポリビニルブチラール樹脂がより好ましい。
【0066】
また、電荷発生層は、酸化防止剤、紫外線吸収剤などの添加剤をさらに含有してもよい。具体的には、ヒンダードフェノール化合物、ヒンダードアミン化合物、硫黄化合物、リン化合物、ベンゾフェノン化合物、などが挙げられる。
【0067】
電荷発生層の平均膜厚は、0.1μm以上1μm以下であることが好ましく、0.15μm以上0.4μm以下であることがより好ましい。
【0068】
電荷発生層は、上述の各材料および溶剤を含有する電荷発生層用塗布液を調製し、この塗膜を形成し、乾燥させることで形成することが出来る。塗布液に用いる溶剤としては、アルコール系溶剤、スルホキシド系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤などが挙げられる。
【0069】
本実施例においては、CuKα特性X線回折より得られるチャートにおいて、7.5°および28.4°の位置にピークを有する結晶形のヒドロキシガリウムフタロシアニン10部とポリビニルブチラール樹脂(商品名:エスレックBX−1、積水化学工業社製)5部を用意した。これらをシクロヘキサノン200部に添加し、直径0.9mmのガラスビーズを用いたサンドミル装置で6時間分散し、これにシクロヘキサノン150部と酢酸エチル350部をさらに加えて希釈して電荷発生層用塗布液を得た。得られた塗布液を下引き層上に浸漬塗布し、95℃で10分間乾燥することにより、膜厚が0.20μmの電荷発生層を形成した。なお、X線回折の測定は、次の条件で行ったものである。
【0070】
[粉末X線回折測定]
使用測定機:理学電気(株)製、X線回折装置RINT−TTRII
X線管球:Cu
管電圧:50KV
管電流:300mA
スキャン方法:2θ/θスキャン
スキャン速度:4.0°/min
サンプリング間隔:0.02°
スタート角度(2θ):5.0°
ストップ角度(2θ):40.0°
アタッチメント:標準試料ホルダー
フィルター:不使用
インシデントモノクロ:使用
カウンターモノクロメーター:不使用
発散スリット:開放
発散縦制限スリット:10.00mm
散乱スリット:開放
受光スリット:開放
平板モノクロメーター:使用
カウンター:シンチレーションカウンター
続いて、電荷輸送層について説明する。電荷輸送層は本実施例における表面層である。電荷輸送層は、電荷輸送物質と、樹脂と、を含有することが好ましい。電荷輸送物質としては、例えば、多環芳香族化合物、複素環化合物、ヒドラゾン化合物、スチリル化合物、エナミン化合物、ベンジジン化合物、トリアリールアミン化合物や、これらの物質から誘導される基を有する樹脂などが挙げられる。これらの中でも、トリアリールアミン化合物、ベンジジン化合物が好ましい。
【0071】
【化2】
【0072】
【化3】
【0073】
(式中のRは水素原子または、メチル基を表わす。nは2以上5以下の整数である。)
本実施例のように、電荷輸送層が表面層であるときは、電荷輸送層は電荷輸送物質として上記式(A−1)で示される構造、および上記式(A−2)で示される構造の両方を有することが好ましい。
【0074】
樹脂としては、ポリエステル樹脂、ポリカーボネート樹脂、アクリル樹脂、ポリスチレン樹脂などが挙げられる。これらの中でも、ポリカーボネート樹脂、ポリエステル樹脂が好ましい。ポリエステル樹脂としては、特にポリアリレート樹脂が好ましい。
【0075】
電荷輸送層が表面層であるとき、電荷輸送層中における式(A−1)および(A−2)の構造単位の合計の割合は60質量%以上であることが好ましい。
【0076】
後述する実施例3に示したように、電荷輸送層が表面層でないとき、電荷輸送層中の電荷輸送物質の含有量は、電荷輸送層の全質量に対して、25質量%以上70質量%以下であることが好ましく、30質量%以上55質量%以下であることがより好ましい。また、電荷輸送物質と樹脂との含有量比(質量比)は、4:10〜20:10が好ましく、5:10〜12:10がより好ましい。
【0077】
また、電荷輸送層は、酸化防止剤、紫外線吸収剤、可塑剤、レベリング剤、滑り性付与剤、耐摩耗性向上剤などの添加剤を含有してもよい。具体的には、ヒンダードフェノール化合物、ヒンダードアミン化合物、硫黄化合物、リン化合物、ベンゾフェノン化合物、シロキサン変性樹脂、シリコーンオイル、フッ素樹脂粒子、ポリスチレン樹脂粒子、ポリエチレン樹脂粒子、シリカ粒子、アルミナ粒子、窒化ホウ素粒子などが挙げられる。
【0078】
電荷輸送層の平均膜厚は、5μm以上50μm以下であることが好ましく、8μm以上40μm以下であることがより好ましく、10μm以上30μm以下であることが特に好ましい。
【0079】
電荷輸送層は、上述の各材料および溶剤を含有する電荷輸送層用塗布液を調製し、この塗膜を形成し、乾燥させることで形成することが出来る。塗布液に用いる溶剤としては、アルコール系溶剤、ケトン系溶剤、エーテル系溶剤、エステル系溶剤、芳香族炭化水素系溶剤が挙げられる。これらの溶剤の中でも、エーテル系溶剤または芳香族炭化水素系溶剤が好ましい。
【0080】
本実施例においては、以下の材料を用意した。
・下記式(C−1)で示される化合物(電荷輸送物質(正孔輸送性化合物))6部
・下記式(C−2)で示される化合物(電荷輸送物質(正孔輸送性化合物))3部
・下記式(C−3)で示される化合物(電荷輸送物質(正孔輸送性化合物))1部
・ポリカーボネート(商品名:ユーピロンZ400、三菱エンジニアリングプラスチックス(株)製)10部
・(C−4)と(C−5)の共重合ユニットを有するポリカーボネート樹脂0.02部(x/y=9/1:Mw=20000)
これらをo−キシレン25部/安息香酸メチル25部/ジメトキシメタン25部の混合溶剤に溶解させることによって電荷輸送層用塗布液を調製した。この電荷輸送層用塗布液を電荷発生層上に浸漬塗布して塗膜を形成し、塗膜を30分間120℃で乾燥させることによって、膜厚が16μmの電荷輸送層を形成した。
【0081】
【化4】
【0082】
【化5】
【0083】
【化6】
【0084】
【化7】
【0085】
【化8】
【0086】
このようにして、支持体、下引き層、電荷発生層、電荷輸送層をこの順に有する円筒状(ドラム状)の感光体1として、感光体aを製造した。
【0087】
以上のように、本実施例の感光体1は円筒状で導電性を有する金属支持体と、支持体の下引き層としての導電層と、下引き層上に形成される感光層(電荷発生層、電荷輸送層)からなっている。感光体1は、OPC(有機光半導体)、アモルファスセレン、アモルファスシリコン等の感光材料を、アルミニウムやニッケルなどで形成された外径φ24mmの支持体としてのシリンダ上のドラム基体上に設けて構成したものである。
【0088】
5.トナーの構成
実施例1に用いたトナー10の模式図を図5に示す。実施例1では、母粒子45aに流動性の担保と帯電性の改善のため無機ケイ素45bを外添した無機粒子外添トナー45を用いている。実施例1で使用するトナーは、負に帯電極性をもつ非磁性1成分の粒重合トナーであり、平均粒径は7μmである。
【0089】
さらに、画像流れの抑制を目的として、無機ケイ素45bに加えて金属石鹸45cが外添される。金属石鹸45cを感光体1に供給して保護膜を形成することにより、放電生成物などの付着を軽減することが出来る。放電生成物は水分を含むと抵抗が下がる。そのため、放電生成物が付着する感光体1の表面は低抵抗になる。金属石鹸45cを感光体1の表面に供給することによって、感光体1の表面抵抗が低くなることにより生じる画像流れの発生を抑制することが出来る。
【0090】
金属石鹸45cは、長鎖脂肪酸と、ナトリウム・カリウム以外の金属塩の総称である。具体的には、ステアリン酸、ミリスチン酸、ラウリン酸、リシノール酸、オクチル酸などの脂肪酸と、リチウム、マグネシウム、カルシウム、バリウム、亜鉛などの金属種との金属塩が挙げられ、このうちの一種を使用するとよい。実施例1では、金属石鹸45cとして、ステアリン酸亜鉛を外添する。尚、金属石鹸45cの種類としてはこれに限定されるものではなく、ステアリン酸鉛、ステアリン酸カドミウム、ステアリン酸バリウム、ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシウム、ラウリル酸亜鉛、ミリスチン酸亜鉛なども適宜可能である。金属石鹸45cの外添量は0.6wt%以下が望ましい。外添量が多いほど画像流れの抑制には効果があるが、過剰に外添するとトナーの流動性が悪化し、画像後半の画像濃度が低くなる。これは、ベタ黒画像を出力する際に、後端に近づくにつれて追従性が悪くなるベタ追従性不良と呼ばれる現象である。金属石鹸45cの平均粒径は、0.15μm以上2.0μm以下であることが好ましい。金属石鹸45cの平均粒径が0.15μmより小さくなると、感光体1の表面に塗布されにくくなる。特に、後述する感光体1の表面に溝がある状態においては顕著となる。一方、粒径が2.0μmより大きくなると、現像ユニット3内のトナー規制部材6などを通過することが出来ずに現像室3a内に取り残され、感光体1の表面に供給されにくくなる。
【0091】
金属石鹸45cの平均粒径の測定方法を説明する。金属石鹸45cを0.5gに10mLのエタノールを加え、日本精機株式会社製の超音波分散器を用いて5分間超音波分散を行った。次に、測定溶媒としてエタノールを循環させる。そして、日機装株式会社製マイクロトラック レーザー回折・散乱式粒度分布測定装置(SPA型)に、得られた金属石鹸45cの分散液を粒子の散乱光量積算値に関連する値であるDV(回折光量)値が0.6〜0.8になるまで添加した。そして、この状態における粒度分布を測定し、50%径である累積中位径として得られるメジアン径を平均粒径とした。
【0092】
上記平均粒径の金属石鹸45cは、例えば、脂肪酸塩水溶液と無機金属塩の水溶液又は分散液を反応させる複分解法を用いて製造するとよい。
【0093】
本実施例においては、平均粒径が0.60μmのステアリン酸亜鉛を用いた。金属石鹸45cとしてのステアリン酸亜鉛はトナーと逆極性に帯電させることでトナー粒子に付着されており、非画像形成時に感光体1上に供給される。
【0094】
次に、トナー粒子の製造方法について説明する。トナー粒子の製造方法は公知の手段を用いることができ、混練粉砕法や湿式製造法を用いることが出来る。粒子径の均一化や形状制御性の観点からは湿式製造法が好ましい。さらに、湿式製造法としては懸濁重合法、溶解懸濁法、乳化重合凝集法、乳化凝集法などを用いてもよい。
【0095】
本実施例においては、懸濁重合法について説明する。懸濁重合法においては、まず、結着樹脂を生成するための重合性単量体、及び必要に応じて着色剤などその他の添加剤をボールミル、超音波分散機のような分散機を用いてこれらを均一に溶解又は分散させた重合性単量体組成物を調製する。この工程を重合性単量体組成物の調製工程という。このとき、必要に応じて多官能性単量体や連鎖移動剤、また、離型剤としてのワックスや荷電制御剤、可塑剤などを適宜加えることが出来る。懸濁重合法における重合性単量体として、以下に示すビニル系重合性単量体が好適に例示出来る。
【0096】
スチレン;α−メチルスチレン、β−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、2,4−ジメチルスチレン、p−n−ブチルスチレン、p−tert−ブチルスチレン、p−n−ヘキシルスチレン、p−n−オクチルスチレン、p−n−ノニルスチレン、p−n−デシルスチレン、p−n−ドデシルスチレン、p−メトキシスチレン、p−フェニルスチレンのようなスチレン誘導体;メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、iso−プロピルアクリレート、n−ブチルアクリレート、iso−ブチルアクリレート、tert−ブチルアクリレート、n−アミルアクリレート、n−ヘキシルアクリレート、2−エチルヘキシルアクリレート、n−オクチルアクリレート、n−ノニルアクリレート、シクロヘキシルアクリレート、ベンジルアクリレート、ジメチルフォスフェートエチルアクリレート、ジエチルフォスフェートエチルアクリレート、ジブチルフォスフェートエチルアクリレート、2−ベンゾイルオキシエチルアクリレートのようなアクリル系重合性単量体;メチルメタクリレート、エチルメタクリレート、n−プロピルメタクリレート、iso−プロピルメタクリレート、n−ブチルメタクリレート、iso−ブチルメタクリレート、tert−ブチルメタクリレート、n−アミルメタクリレート、n−ヘキシルメタクリレート、2−エチルヘキシルメタクリレート、n−オクチルメタクリレート、n−ノニルメタクリレート、ジエチルフォスフェートエチルメタクリレート、ジブチルフォスフェートエチルメタクリレートのようなメタクリル系重合性単量体;メチレン脂肪族モノカルボン酸エステル類;酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酪酸ビニル、安息香酸ビニル、蟻酸ビニルのようなビニルエステル;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルのようなビニルエーテル;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトン。
【0097】
次に、上記重合性単量体組成物を、予め用意しておいた水系媒体中に投入し、高せん断力を有する撹拌機や分散機により、重合性単量体組成物からなる液滴を所望のトナー粒子のサイズに形成する。この工程を造粒工程という。造粒工程における水系媒体は分散安定剤を含有していることがトナー粒子の粒径制御、粒度分布のシャープ化、製造過程におけるトナー粒子の合一を抑制するために好ましい。分散安定剤としては、一般的に立体障害による反発力を発現させる高分子と、静電気的な反発力で分散安定化を図る難水溶性無機化合物とに大別される。難水溶性無機化合物の微粒子は、酸やアルカリにより溶解するため、重合後に酸やアルカリで洗浄することにより溶解させて容易に除去することが出来るため、好適に用いられる。
【0098】
難水溶性無機化合物の分散安定剤としては、マグネシウム、カルシウム、バリウム、亜鉛、アルミニウム、リンのいずれかが含まれているものが好ましく用いられる。より好ましくは、マグネシウム、カルシウム、アルミニウム、リンのいずれかが含まれていることが望まれる。具体的には、以下のものが挙げられる。
【0099】
リン酸マグネシウム、リン酸三カルシウム、リン酸アルミニウム、リン酸亜鉛、炭酸マグネシウム、炭酸カルシウム、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、メタケイ酸カルシウム、硫酸カルシウム、硫酸バリウム、ヒドロキシアパタイド。
【0100】
上記分散安定剤に有機系化合物、例えばポリビニルアルコール、ゼラチン、メチルセルロース、メチルヒドロキシプロピルセルロース、エチルセルロース、カルボキシメチルセルロースのナトリウム塩、デンプンを併用しても構わない。これら分散安定剤は、重合性単量体100質量部に対して、0.01質量部以上2.00質量部以下使用することが好ましい。
【0101】
さらに、これら分散安定剤の微細化のため、重合性単量体100質量部に対して、0.001質量部以上0.1質量部以下の界面活性剤を併用してもよい。具体的には市販のノニオン、アニオン、カチオン型の界面活性剤が利用出来る。例えばドデシル硫酸ナトリウム、テトラデシル硫酸ナトリウム、ペンタデシル硫酸ナトリウム、オクチル硫酸ナトリウム、オレイン酸ナトリウム、ラウリル酸ナトリウム、ステアリン酸カリウム、オレイン酸カルシウムが好ましく用いられる。
【0102】
造粒工程の後、あるいは造粒工程を行いながら、好ましくは50℃以上90℃以下の温度に設定して、重合性単量体組成物に含まれる重合性単量体の重合を行い、トナー粒子分散液を得る。この工程を重合工程という。重合工程では容器内の温度分布が均一になる様に攪拌操作を行うことが好ましい。重合開始剤を添加する場合、任意のタイミングと所要時間で行うことが出来る。また、所望の分子量分布を得る目的で重合反応後半に昇温してもよく、さらに、未反応の重合性単量体、副生成物などを系外に除去するために反応後半、または反応終了後に、一部水系媒体を蒸留操作により留去してもよい。蒸留操作は常圧又は減圧下で行うことが出来る。
【0103】
懸濁重合法において使用する重合開始剤としては、一般的に油溶性開始剤が用いられる。例えば、以下のものが挙げられる。
【0104】
2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス−2,4−ジメチルバレロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリルのようなアゾ化合物;アセチルシクロヘキシルスルホニルパーオキサイド、ジイソプロピルパーオキシカーボネート、デカノニルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、プロピオニルパーオキサイド、アセチルパーオキサイド、tert−ブチルパーオキシ−2−エチルヘキサノエート、ベンゾイルパーオキサイド、tert−ブチルパーオキシイソブチレート、シクロヘキサノンパーオキサイド、メチルエチルケトンパーオキサイド、ジクミルパーオキサイド、tert−ブチルヒドロパーオキサイド、ジ−tert−ブチルパーオキサイド、tert−ブチルパーオキシピバレート、クメンヒドロパーオキサイドのようなパーオキサイド系開始剤。
【0105】
重合開始剤は必要に応じて水溶性開始剤を併用してもよく、以下のものが挙げられる。
【0106】
過硫酸アンモニウム、過硫酸カリウム、2,2’−アゾビス(N,N’−ジメレンイソブチロアミジン)塩酸塩、2,2’−アゾビス(2−アミノジノプロパン)塩酸塩、アゾビス(イソブチルアミジン)塩酸塩、2,2’−アゾビスイソブチロニトリルスルホン酸ナトリウム、硫酸第一鉄又は過酸化水素。
【0107】
これらの重合開始剤は単独又は複数を併用して使用でき、重合性単量体の重合度を制御するために、連鎖移動剤、重合禁止剤等をさらに添加し用いることも可能である。
【0108】
無機シリカの水洗移行量は、ヘンシェルミキサー(日本コークス工業株式会社製)を使用し、外添条件である外添添加量とはねの先端の回転速度(周速)とはねの回転している時間(時間)を変更することで対応した。以下、表1にトナーaの外添条件を示す。尚、外添条件である周速、時間についての詳細は特開2016−38591号公報の記載の通りである。また、本実施例に用いたトナーaにはステアリン酸亜鉛を0.20wt%外添した。
【0109】
【表1】
【0110】
6.放電生成物による感光体への影響
画像形成装置100を用いて画像形成動作を実行する際に、帯電ローラ2での放電を行うとオゾンやNOx等の放電生成物が発生し、感光体1の表面に付着することがある。放電生成物は、感光体1に当接するクリーニングブレード8などによって掻き取られるが、付着する量が掻き取る量より多い場合、繰り返しの画像形成動作によって、徐々に感光体1の表面に蓄積していく。接触帯電方式では、コロナ帯電器を用いたコロナ帯電方式と比べて放電量は少なく、放電生成物の発生量は少ない。しかし、放電生成物の発生位置が感光体1と帯電ローラ2との間の微小な空隙であるため、放電生成物の発生が少量であっても、放電生成物が感光体1の表面に付着しやすい。そして、感光体1の表面に放電生成物が付着すると吸湿し、感光体1の表面の電気抵抗が低下する。抵抗の低下により、帯電ローラ2による放電での感光体1上の電位形成に影響し、所望のVd、Vlを形成することが出来ない。すると、画像形成を適切に行うことが出来ず、画像弊害が発生する。主な画像弊害としては、画像の一部もしくは全域で潜像なまりにより発生する白抜けや画像境界部の輪郭ボケ、電位のずれによるかぶりなどが挙げられる。また、画像流れが発生しているときには、帯電ローラ2による電位形成のための放電電流の発生に加えて、帯電ローラ2から感光体1の表面に生成された放電生成物に直接電流を注入してしまう。そのため、放電電流のみの正規な帯電電流よりも多い電流が流れる。帯電電流が多くなる現象は、放電生成物が付着し始めると生じ、画像流れが発生する前から注入電流として検知することが可能となる。この現象を本実施例において利用する。
【0111】
画像流れは、感光体1の摩耗を抑制すると、感光体1の表面がリフレッシュされにくくなり、特に高湿環境下において、静電潜像のボケが生じやすくなる。摩耗率として0.05μm/1000枚以下において画像流れが発生しやすい。
【0112】
そこで、放電生成物の影響を低減させるために、本実施例においては感光体1の表面に金属石鹸45cを供給して感光体1の表面に放電生成物が付着することを抑制する。
【0113】
7.金属石鹸塗布動作
実施例1では、前述したとおり、現像ローラ4が感光体1に接触することで現像部において現像ニップを形成している。また、現像ローラ4の表面と感光体1の表面との間に表面移動速度差を設けることで、現像ニップ部でトナー10が回転し、感光体1へ金属石鹸45cが供給される。以下、感光体1の表面移動速度に対する現像ローラ4の表面移動速度の比をDD周速比と呼ぶ。感光体1に金属石鹸45cを塗布する上で、DD周速比を上げていくと画像流れが良化する傾向にある。これは、DD周速比が大きくなることでトナー10の転がりが多くなり、金属石鹸45cと感光体1との接触機会が増加するためであると考察することが出来る。また、DD周速比が100%以下では感光体1の単位面積当たりの現像ローラ4の接触面積が減少する方向なので、感光体1の表面への金属石鹸45cの供給量が減少するため、100%より大きいDD周速比であることが望ましい。すなわち、現像ローラ4の表面移動速度の方が、感光体1の表面移動速度より大きい状態であることが望ましい。尚、DD周速比は、感光体1の表面と現像ローラ4の表面との表面移動速度の違いを表現する1つの指標であり、例えばDD周速比に代わり表面移動速度差(DD周速差)を指標としてもよい。
【0114】
しかしながら、DD周速比が大きい状態で常に画像形成動作を実行していると、初期に金属石鹸45cを過剰供給してしまい、現像室3aやトナー収容部3bから金属石鹸45cが枯渇してしまう。それだけでなく、トナー10を摺擦する回数も増加してしまい、トナー10が劣化し、帯電性を阻害することになる。
【0115】
そこで、実施例1においては、通常の画像形成動作とは別に、金属石鹸塗布動作を用意し、金属石鹸塗布動作では、現像ローラ4を感光体1の表面に当接させた状態で回転させ、かつDD周速比を画像形成動作よりも大きくする。金属石鹸塗布動作中は、帯電電圧を印加して感光体1を暗部電位Vdになるように制御し、現像電圧を画像形成動作時と同じとすることで、いわゆる、ベタ白印字を実施する。
【0116】
本実施例においては、金属石鹸塗布動作は帯電電圧印加時に流れる帯電電流値に応じて実行可否を判定部156によって判断する。一例として、所定の帯電電流値の閾値を超えた場合に金属石鹸塗布動作を実行するように制御する。
【0117】
金属石鹸塗布動作中は、暗部電位Vdと現像電圧の電位差であるバックコントラストVbackを、通常の画像形成時より大きくするのが望ましい。トナー10の極性とは逆極性に帯電した金属石鹸45cが、Vbackの大きさが大きいほど電気的に感光体1の表面上へより多く付着するので、現像ローラ4上の金属石鹸45cを効率的に付着することが出来るためである。本実施例において、Vbackの設定は、通常の画像形成時は200Vに設定しているのに対して、金属石鹸塗布動作時には300Vとする。具体的には、現像電圧を−300Vから−200Vに設定する。もしくは、暗部電位Vdを−500Vから−600Vに設定するために、帯電電圧を−100V上乗せした−1100Vを帯電ローラ2に印加してもよい。
【0118】
また、金属石鹸塗布動作中は、前露光ユニット27の光量を画像形成動作時よりも小さくすることが好ましく、特にOFFにするとよい。金属石鹸塗布動作中の前露光量が小さい方が、画像流れが良好であるためである。このような傾向を示す原因としては、以下のような現象が考えられる。前露光量を小さくすることで感光体1の表面には除電されず残存した電荷による残電が残る。よって、正規極性とは逆極性の正極性の金属石鹸45cの感光体1に対する電気的付着力が強くなることで、感光体1の表面からはがれにくくなる。その状態で、クリーニングブレード8や現像ローラ4を感光体1上の金属石鹸45cが通過すると、金属石鹸45cが感光体1に物理的に押し込まれることにより強固に付着する。つまり、前露光量を画像形成動作時より小さくしたことで、金属石鹸塗布動作による金属石鹸45cの感光体1への保持能力を上げて、金属石鹸45cを感光体1へ強固に付着させることが出来ると考えられる。一方、感光体1の表面に露光する露光量を大きくすると、正極性の金属石鹸45cの感光体1に対する電気的付着力が弱まり、感光体1の表面からはがれやすくなることがある。
【0119】
また、供給ローラ5の現像ローラ4に対する電位差ΔVr(=Vdc−Vr)を金属石鹸45cの極性と逆極性にすることが望ましい。すなわち、金属石鹸45cに供給ローラ5から現像ローラ4に向かう方向の静電気力が作用する向きの電位差が、供給ローラ5と現像ローラ4とが接触する接触部に形成されるように電位差ΔVrを制御するということである。ΔVrを金属石鹸45cが帯電された極性と逆極性にすることで現像ローラ4側に金属石鹸45cを移動させ、供給ローラ5側に金属石鹸45cが移動することを抑制することが出来るため、感光体1の表面上に多くの金属石鹸45cを供給することが出来る。本実施例では、ΔVr=−50V、金属石鹸45cは正極性に帯電しているので、金属石鹸45cは積極的に現像ローラ4側に移動することとなる。
【0120】
8.帯電電流量と画像流れの関係
本実施例では、帯電ローラ2に流れる帯電電流を検出する電流検知部36によって検知された帯電電流値を放電生成物の付着量とする。そして、予め決めた放電生成物付着防止量と、リアルタイムで検知された帯電電流の絶対値とから、両者の差分値(Δ)の正の値のみを加算した演算値に基づいて、金属石鹸塗布動作タイミングを決定する。ここで、正の値のみを加算する理由としては、負の場合には放電生成物の発生が画像流れの閾値以下となっているから加算する必要が無いためである。
【0121】
帯電ローラ2に流れる帯電電流を検出するため、本実施例では図4に示すように帯電電流検知部36を有する。帯電電流検知部36は、CPU155から信号を送られることで帯電ローラ2にDC電圧を印加しながら帯電電流値を検知する。
【0122】
次に、通常画像形成中に金属石鹸が供給されることによる効果である放電生成物付着防止量について説明する。放電生成物付着防止量は、次のような検討を行うことによって予め算出した結果をメモリ15に格納しておく。
【0123】
30℃/80%RH(H/H)の環境下で注入電流の差を利用して放電生成物付着防止量を算出する。注入電流が大きいほど感光体1上の放電生成物が多く、画像流れに影響する。注入電流を測定するために、放電開始電圧Vthよりも絶対値が小さい帯電電圧を印加する。それによって、放電の影響を除去することが出来るため、放電生成物による注入電流のみを抽出することが出来る。そこで、注入電流値を変えて画像形成動作を継続して行った際に、表2のような結果が得られる。具体的に画像流れの発生を確認するため、1%印字率で一日10000枚連続通紙後に一日機内で放置し、放置後の画像流れの発生の有無を比較した。一日放置後で評価する理由としては、感光体1の表面上に生成した放電生成物が、一日放置することで十分に吸湿し、感光体1の表面抵抗を下げる影響が顕著に出るからである。画像流れの発生有無を判断するためのサンプルは、ハーフトーン画像を1枚印字し評価した。評価指標は以下の通りである。
〇:発生なし 画像全域で潜像なまりによる白ぬけや画像境界部の輪郭ボケなし
×:発生 画像の一部もしくは全域で潜像なまりによる白抜けや画像境界部の輪郭ボケ発生
【0124】
【表2】
【0125】
表2の結果から、4μAの注入電流量であれば、画像流れを発生させない量の金属石鹸45cが感光体1の表面上に供給されていると判断される。この結果から、放電生成物付着を防止することが出来る注入電流量(以降、放電生成物付着防止量とする)を4μAとする。
【0126】
続いて、演算値について説明する。演算値は、帯電電流の絶対値から放電生成物付着防止量を差し引いた時の正の値のみを加算することで求める。この演算値が所定の閾値に到達したときに、金属石鹸塗布動作を実行する。上記条件で30℃/80%RH(H/H)の環境下で画像評価を行うと、以下の表3の結果が得られる。表3に示した帯電電流値は放電電流と注入電流の合算電流値であり、×が発生した時点での帯電電流値を示している。
【0127】
【表3】
【0128】
上の表3の結果を参照すると、画像形成中の帯電電流値に応じて、画像流れが発生するタイミングが異なる。画像形成動作を繰り返すことによって感光体1上への放電生成物の付着が徐々に発生し、構成3、構成4、構成5のいずれも、帯電電流値は画像形成動作に応じて増えた。この結果から放電生成物が蓄積していることが分かる。
【0129】
ここで、(帯電電流値のΔ=リアルタイムの帯電電流量−放電生成物付着防止量)×(画像形成枚数)がおおよそ一致している。×が発生した時点で放電生成物の量が閾値を超えていると判断されるため、放電生成物の量が一定量を超えてしまったタイミングの直前までに生成された放電生成物が閾値ということになる。したがって、帯電電流量と枚数との積が閾値を超えたところから、画像流れが発生することが分かる。すなわち、閾値は、帯電電流量と記録材Sの枚数で表される画像形成動作の実行時間に依存するということである。
構成3:(12μA−4μA)×15000=1.2×10
構成4:(17μA−4μA)×9000=1.2×10
構成5:(22μA−4μA)×6500=1.2×10
この結果から、30℃/80%RH環境下での演算値の閾値は1.2×10と設定することが出来る。30℃/80%RH環境においては、このタイミングに金属石鹸塗布動作を行うことによって、画像流れを発生させない構成にすることが可能である。
【0130】
図6に、30℃/80%RHの環境下で画像形成動作を行った場合における、構成3と構成4の演算値の推移を示す。点線が構成3を示し、実線が構成4を示す。画像形成動作を開始すると、構成に応じた帯電電流値と放電生成物付着防止量の演算結果から、演算値が上昇する。帯電電流値が低い構成3の方が演算値の傾きが小さい。このまま画像形成を継続したときに、画像流れが発生しない範囲に設定した演算値の閾値に到達する。このタイミングで金属石鹸塗布動作を実行する。
【0131】
次に、27℃/70%RH環境下での演算値の閾値を調査すると、表4のような結果が得られる。
【0132】
【表4】

【0133】
上の表4にあるように、画像形成中の帯電電流値に応じて、画像流れが発生するタイミングが異なる。これは表3と同様の結果であり、(帯電電流値のΔ)×(画像形成枚数)がおおよそ一致する。
【0134】
構成3:(12μA−4μA)×36000=2.9×10
構成4:(17μA−4μA)×22000=2.9×10
構成5:(22μA−4μA)×16000=2.9×10
この結果から、27℃/70%RH環境下での演算値の閾値は2.9×10と設定することが出来る。上述したように、画像流れは、放電生成物に水分が付着して感光体1の表面抵抗が低下することにより起きる現象である。そのため、使用環境の水分量は本現象に大きく影響を及ぼす。これにより、27℃/70%RH環境下での演算値の閾値は、30℃/80%RH環境下の閾値よりも大きな値に設定することが可能である。
【0135】
図7に、27℃/70%RHの環境下で画像形成動作を行った場合における、構成3と構成4の演算値の推移を示す。点線が構成3を示し、実線が構成4を示す。画像形成動作を開始すると、構成に応じた帯電電流値と放電生成物付着防止量の演算結果から、演算値が上昇する。帯電電流値が低い構成3の方が演算値の傾きが小さい。このまま画像形成を継続したときに、画像流れが発生しない範囲に設定した演算値の閾値に到達する。このタイミングで金属石鹸動作を実行する。
【0136】
27℃/70%RH環境においては、このタイミングに金属石鹸塗布動作を行えば、画像流れを発生させない構成にすることが可能である。
【0137】
以上の結果から、閾値は、帯電電流量と記録材Sの枚数で表される画像形成動作の実行時間と温度/湿度に依存するということである。なお、画像形成動作の実行時間は、帯電電圧の印加時間や露光時間など放電生成物に関わるパラメータを考慮してもよい。
【0138】
次に、27℃/70%RHや30℃/80%RHの環境を判断するための、環境センサ16について詳細に説明する。
【0139】
環境センサ16で温度を算出する場合、制御部202は、CPU155を介して環境センサ16からCPU155へ入力された電圧をAD変換することでAD値を取得している。また、環境センサ16による検知結果は、10bitのAD値として取得される。
【0140】
AD値は10msec間隔でサンプリングされ、サンプリングされたAD値を0.1℃単位の環境温度に変換する。尚、本実施例において、環境センサ16はカートリッジ7に設ける構成を採用したが、画像形成装置100に設けるように構成してもよい。
【0141】
この環境温度への変換を10回行なった時点(100msec毎)で、直前の100msecでサンプリングした環境温度10点のうち最大値と最小値とを2点ずつ除いた6点の平均値を求める。そして、この平均値を現在の温度値(0.1℃単位)として採用し、小数点第一位を四捨五入したものを現在の温度値(1℃単位)としてRAMに保持する。
【0142】
また、環境センサ16は、画像形成動作による昇温の影響で上昇する画像形成装置100内の温度を推定して、環境温度を補正する制御を行う。
【0143】
画像形成装置100内の昇温の影響を受けることで、実際の使用状況が環境の雰囲気温度とずれるため、環境センサ16は、環境温度を補正し、適正な値を採用するように制御している。
【0144】
一方、環境センサ16で湿度を算出する場合、制御部202は、ASICを介して環境センサ16からASICへ入力された電圧をAD変換することでAD値を取得している。環境湿度センサによる検知結果は、ASICのAD変換によって10bitのAD値として取得される。環境湿度(%)は、環境湿度センサAD値の平均と環境温度(℃)とから算出され、100msec間隔で更新される。
【0145】
環境湿度センサAD値を10msec間隔で10回サンプリングし、サンプリングした環境湿度センサAD値の最大値と最小値をそれぞれ2点ずつ除いた6点の平均値を求める。これにより、環境湿度センサAD平均値が算出される。
【0146】
そして、環境湿度センサAD平均値の5℃における環境湿度RH5(%)と、環境湿度センサAD平均値の50℃における環境湿度RH50(%)とを取得する。
【0147】
環境湿度(%)は、RH5(%)とRH50(%)と環境温度T(℃)とを用いて、以下の数式1によって算出される。
【0148】
(数式1)
環境湿度(%)=RH50+(50−T)×((RH5−RH50)/(50−5))
環境温度Tは小数点第一位までを有効数字とした値を用いる。また、環境湿度は小数点第一位を四捨五入したものとする。
算出された環境湿度(%)は、次の更新タイミングでRAMに保持される。
【0149】
続いて、環境湿度から絶対湿度(絶対水分量)を算出する。絶対湿度(g/m)は、環境温度T(℃)と環境湿度RH(%)とから決まる。
【0150】
また、絶対湿度(g/m)は、環境温度T(℃)における飽和水分量Wmax(g/m3)に基づいて取得される。
【0151】
絶対湿度(g/m)は、飽和水分量Wmax(g/m)と環境湿度RH(%)とを用いて以下の数式2によって算出される。
【0152】
(数式2)
絶対湿度(g/m)=Wmax×(RH/100)
絶対湿度の更新タイミングは、環境湿度の平均値算出タイミングと同一とする。
本実施例においては、環境に応じた演算値の閾値をメモリ15に格納し、環境センサ16で検知した結果から、演算値の閾値を決定する。
【0153】
本実施例では、環境センサ16により温度/湿度を測定した。画像流れは、放電生成物に水分が付着することで発生する問題であり、絶対湿度が高くなると画像流れが発生しやすくなる。そのため、本実施例のように絶対湿度を測定することが出来るような環境センサ16であることが望ましい。ただし、コストの観点から環境温度Tのみを測定することが出来るセンサや環境湿度RHのみを測定することが出来るセンサを用いたとしても、金属石鹸動作のタイミングを決定することは可能である。
【0154】
9.金属石鹸塗布動作の制御手順
次に、図8のフローチャートを参照して、本実施例における画像流れの発生を抑制する金属石鹸塗布動作の制御手順について説明する。実施例1では、制御部202によって金属石鹸塗布動作が実行される。
【0155】
プロセスカートリッジ7はメモリ15を具備しており、メモリ15には、演算値と上記記載の演算値の閾値が記憶されている。プリント信号が入力されると(S1)、画像形成装置本体100が備えたCPU155は、環境センサ16を用いて環境検知を行う(S2)。次に、メモリ15と通信を行い、演算値及び放電生成物付着防止量、使用環境での演算値閾値を読み込む(S3)。
【0156】
次に画像形成動作を開始する(S4)。このとき、CPU155は、画像形成中の帯電電流の検知を実施して所望の帯電電圧における現状の帯電電流値を測定する(S5)。この帯電電流の絶対値から放電生成物付着防止量を差し引き、正の値になるか判断する(S6)。
【0157】
正の値でない場合、連続プリントの要求があるかを判断し(S10)、要求がない場合はプリント終了動作に移行し(S11)、要求がある場合は、連続プリントの要求がなくなるまで、S4〜S10の動作を繰り返す。
【0158】
正の値の場合、S3で読み込んだ演算値に帯電電流の絶対値から放電生成物付着防止量を差し引いた値を加算し、演算値の更新を行う(S7)。
【0159】
S7で更新した演算値が、S3で読み込んだ使用環境での演算値の閾値を超えているかを判断する(S8)。
【0160】
現状の演算値が設定された閾値を超えていない場合、連続プリントの要求があるかを判断し(S10)、要求がない場合はプリント終了動作に移行し(S11)、要求がある場合は、連続プリントの要求がなくなるまで、S4〜S10の動作を繰り返す。
【0161】
現状の演算値が設定された閾値を超えた場合、金属石鹸塗布を動作するタイミングとなり、金属石鹸塗布動作を実行する(S9)。金属石鹸塗布成動作が終了すると、連続プリントの要求があるかを判断し(S10)、要求がない場合はプリント終了動作に移行し(S11)、要求がある場合は、連続プリントの要求がなくなるまで、S4〜S10の動作を繰り返す。金属石鹸塗布動作を実行した後は、プリント枚数、演算値をリセットする。
【0162】
尚、金属石鹸塗布動作時間は2秒〜30秒の間が好ましい。最低でも感光体1の1回転よりも長い時間を行う必要がある。金属石鹸塗布動作時間が長すぎてもダウンタイムが発生するため、適宜設定することが好ましい。金属石鹸塗布動作を実行している間に帯電電流検知部36によって電流検知を行いながら、検知される帯電電流値が放電生成物付着防止量を下回ることを確認して、金属石鹸塗布動作を終了させてもよい。
【0163】
本実施例では、画像形成中の帯電電流を測定することで、画像パターンによる放電生成物量への影響も考慮して、金属石鹸塗布動作のタイミングを決定した。このことにより、より適切なタイミングで金属塗布動作を実行することができる。ただし、画像形成中の帯電電流量を測定しない場合においても、事前に表3や表4を調査しておくことで金属石鹸塗布動作の実行タイミングを決定することは可能である。
【0164】
10.金属石鹸塗布動作の効果
本実施例に記載の金属石鹸塗布動作を実行した時の効果を確認した。比較例1、比較例2、実施例1の金属石鹸塗布動作のDD周速比および電圧設定は表5に記載の通りである。また、金属石鹸塗布動作と、金属石鹸塗布動作を実行する際に行う帯電電流検知の実行可否を表6に示した。
【0165】
【表5】
【0166】
【表6】
【0167】
表5、表6に記載の通り、比較例1は実施例1に記載の金属石鹸塗布動作を実行しない。比較例2は、帯電電流検知を実行せずに金属石鹸塗布動作を所定枚数(本実施例においては100枚)ごとに5秒間実行した。一方、実施例1は、予め決めた放電生成物付着防止量と、リアルタイムで検知された帯電電流の絶対値とから、両者の差分値(Δ)の正の値のみを加算した演算値に基づいて、金属石鹸塗布動作タイミングを決定する。結果、電流値が閾値を超えた場合に金属石鹸塗布動作を実施し、初期の帯電電流値になるまで金属石鹸塗布動作を実行し続けた。
【0168】
以下に、実際の効果確認の結果を示す。実施例1、比較例1、比較例2の画像流れの発生を確認するため、1%印字率で一日10000枚連続通紙後に一日機内で放置し、放置後の画像流れの発生の有無を比較した。一日放置後で評価する理由としては、感光体1の表面上に生成した放電生成物が、一日放置することで十分に吸湿し、感光体1の表面抵抗を下げる影響が顕著に出るからである。画像流れの発生有無を判断するためのサンプルは、ハーフトーン画像を1枚印字し評価した。評価指標は以下の通りである。
〇:発生なし 画像全域で潜像なまりによる白ぬけや画像境界部の輪郭ボケなし
×:発生 画像の一部もしくは全域で潜像なまりによる白抜けや画像境界部の輪郭ボケ発生
通紙及びサンプルの出力環境は30℃/80%RHで行った。全通紙量は120000枚まで行なった。結果を表7に示す。
【0169】
【表7】
【0170】
表7に示すように、比較例1では、20000枚までは良好なものの、40000枚で画像流れが発生している。初期は、金属石鹸45cがトナー10と共に供給されるため画像流れは良好だが、画像形成を繰り返していくと、供給可能な金属石鹸45cの量に比べて、感光体1の表面に留まる金属石鹸45cの方が少なくなる。そのため、画像形成動作のみでは金属石鹸45cの供給が間に合わなくなったため画像流れが発生したと考えられる。
【0171】
比較例2においては、比較例1と比較すると60000枚延命したが、100000枚で画像流れが発生する結果となった。金属石鹸塗布動作を実行した分、比較例1に比べて延命した。これは、金属石鹸塗布動作において積極的に感光体1へ金属石鹸45cが供給され、画像流れを抑制する効果が発現したためと考えられる。しかし、初期から一律同じタイミングで金属石鹸塗布動作を実行してしまったため、金属石鹸45cが枯渇してくる終盤において、金属石鹸45cの必要量を感光体1の表面上に供給することが出来なかったためと考えられる。初期に余分に供給した金属石鹸45cは、クリーニングブレード8に掻き取られてしまい、比較例2のように効果を維持することが出来なかった。さらに、定期的に金属石鹸塗布動作を実行したために、スループットがダウンしてしまったという弊害も発生した。
【0172】
一方、実施例1においては120000枚に到達しても画像流れが良好であった。金属石鹸塗布動作の効果に加えて画像形成動作時に帯電電流検知を実行し、放電生成物付着防止量と、リアルタイムで検知された帯電電流の絶対値とから、両者の差分値(Δ)の正の値のみを加算した演算値に基づいて金属石鹸塗布動作を実行したことによる。その制御によって、適切なタイミングで金属石鹸45cが適量、感光体1上へ付着したため画像流れが良好となった。
【0173】
金属石鹸45cを外添したトナー10は画像流れに有効だが、画像形成を繰り返していくと供給可能な金属石鹸45cが不足し、適切なタイミングで電流検知を行わない場合には、十分に画像流れを抑制することが出来なかった。しかし、本実施例の構成において、トナー10に金属石鹸45cを含有させて、以下のような制御を行うことで、画像流れを抑制する。本実施例の画像形成装置100は、帯電ローラ2から感光体1に流れる電流を検知する帯電電流検知部36と、帯電電圧印加部71を制御する制御部202を有する。トナー10は金属石鹸45cを含有し、記録材Sにトナー像を形成するための画像形成動作と、感光体1の表面に金属石鹸45cを塗布するための塗布動作と、を実行する。制御部202は、画像形成動作時に帯電電流検知部36によって検知された電流の電流値に基づいて画像形成動作を実行した後に金属石鹸塗布動作を実行するように制御する。帯電電流検知部36によって検知される帯電ローラ2から感光体1に流れる電流の電流値が、所定の閾値を超えた場合に、金属石鹸塗布動作を実行する。また、金属石鹸塗布動作において、感光体1の表面移動速度と現像ローラ4の表面移動速度との速度比が画像形成動作における速度比より大きくなるように制御する。さらに、現像部における帯電ローラ2によって帯電された感光体1の表面の表面電位と、現像ローラ4に印加される現像電圧と、の差であるバックコントラストVbackは、金属石鹸塗布動作の方が画像形成動作より大きくする。すると、金属石鹸45cが不足してきた状態でも、感光体1への金属石鹸45c供給を補うことが出来、画像流れを長期にわたって抑制することが可能となった。
【0174】
一般的に、感光体の摩耗を抑制すると、感光体の表面がリフレッシュされ難くなり、高湿環境下で画像流れによる画像欠陥が生じる。金属石鹸45cを外添したトナーは画像流れに有効だが、画像形成を繰り返していくと供給可能な金属石鹸45cが不足していき画像流れを抑制することが出来なかった。しかし、本実施例の構成においては、電流検知を行い感光体1への金属石鹸塗布動作を演算値に基づいて適切なタイミングで補うことが出来、画像流れを抑制することが可能となった。
【0175】
尚、本実施例では、前露光OFFで帯電電流を検知して金属石鹸塗布動作を行ったが、金属石鹸塗布動作タイミングを決定することが出来れば良く、前露光ONで画像形成中に帯電電流を検知して、前露光ONのまま金属石鹸塗布動作を行っても良い。
また、本実施例においては、帯電電流検知部36を帯電ローラ2に接続して帯電電圧印加時に流れる電流を検知したが、感光体1と感光体1のアースとの間に電流検知部を接続して検知してもよい。
【0176】
また、本実施例では、放電生成物付着量、放電生成物付着防止量に電流値を使用したが、画像流れに相関関係を示すパラメータであればよい。
【実施例2】
【0177】
本実施例で適用する画像形成装置100の構成において、実施例1と同一部材には同一符号とし、説明を省略する。
【0178】
以下、本実施例では放電生成物付着防止量がトナーの使用具合に応じた適正な値に設定して演算値を演算部によって演算することで、より正確な金属石鹸塗布動作タイミングを決定する。以下に詳細を記載する。
【0179】
1.トナー残量と現像寿命
トナーの使用具合に応じてトナーに外添されている金属石鹸45cの残量は異なる。したがって、金属石鹸45cの効果がトナー10の劣化具合によって変わるため、現像ユニット3の使用情報を考慮して金属石鹸塗布動作を実行することにより画像流れを抑制することが出来る。本実施例では、このトナー10の劣化具合を推測するための使用情報としてのパラメータとして、現像ローラ4の寿命(以下、現像寿命とする。)とトナー残量を用いる。現像寿命とは、現像ローラ4の回転数に基づく残寿命の割合である。回転数は表面移動距離にも置き換えることが可能である。
【0180】
次に、これらのパラメータが金属石鹸45cの残量に影響する理由を説明する。
【0181】
現像ローラ4は表面にトナー10を担持して回転することによって摺擦を受け、トナー10はダメージを受ける。それによって、トナー10に外添されている金属石鹸45cがトナー10から外れる機会が増える。トナー残量が多い時には、トナー10が入れ替わることによって現像ローラ4の回転によるダメージは多くのトナー10に分散されるため、金属石鹸45cは外れにくい。逆にトナー残量が少ない時には、現像ローラ4の回転によるダメージは少ないトナー10で繰り返されるため、金属石鹸45cが外れる機会が多い。
【0182】
実施例1の表2に示したような手法を用いて、金属石鹸塗布動作の閾値と放電生成物付着防止量をトナー10の使用具合に応じて算出する。
【0183】
具体的な例としては、所定期間ごとに以下の表8のように示すことが出来る。
【0184】
【表8】
【0185】
表8に示した通り、トナー残量が多く、現像寿命が進んでいないときには、放電生成物による画像流れに対する余裕がまだある。つまり、相対的に感光体1の表面上の放電生成物量が少なく、且つ、トナー10の金属石鹸45cの効果が大きい。したがって、初期には放電生成物付着防止量を大きく設定することが出来る。一方、トナー残量が少なく、現像寿命が進んでいないような高印字画像を多数印字したケースでは、現像ローラ4の摺擦によるトナー劣化がそれほど進まない。もちろん、トナー残量の減少に応じて放電生成物付着防止量を小さくする必要があるが、金属石鹸45cの効果がそれほど失われないため、放電生成物付着防止量をそれなりに大きく設定することが出来る。しかし、トナー残量が多くても、現像寿命が進んでいる低印字状態では、現像ローラ4によるトナー10の摺擦はそれなりに発生する。そのため、現像寿命の方がトナー残量よりも放電生成物付着防止量の低下の影響を受けやすい。さらに、トナー残量が少なく、現像寿命が進んでいる状態では、金属石鹸45cの効果は最も小さくなってしまうため、放電生成物付着防止量は最小の1μAとなる。
【0186】
以上から、トナー残量と現像寿命に応じて所定期間における放電生成物付着防止量を変更することが好ましく、本実施例においてはトナー残量と現像寿命をメモリ15に格納する。
【0187】
表8に準じた制御を行うことにより、適正なタイミングで金属石鹸塗布動作を行うことが可能となる。
【0188】
2.金属石鹸塗布動作の制御手順
次に、図9のフローチャートを参照して、画像流れの発生を抑制する金属石鹸塗布動作の制御手順について説明する。本発明を実施するための形態では、制御部202によって金属石鹸塗布動作が実行される。
【0189】
プロセスカートリッジ7はメモリ15を具備しており、メモリ15には、演算値と上記記載の演算値の閾値が記憶されている。プリント信号が入力されると(S21)、画像形成装置本体100が備えたCPU155は、環境センサを用いて環境検知を行う(S22)。次に、メモリ15と通信を行い、現像寿命とトナー残量を読み込む(S23)。現像寿命とトナー残量の値から、放電生成物付着防止量、使用環境での演算値閾値を決定する(S24)。
【0190】
次に画像形成動作を開始する(S25)。このとき、CPU155は、画像形成中の帯電電流の検知を実施して所望の帯電電圧における現状の帯電電流値を測定する(S26)。この帯電電流の絶対値から放電生成物付着防止量を差し引き、正の値になるか判断する(S27)。
【0191】
正の値でない場合、連続プリントの要求があるかを判断し(S30)、要求がない場合はプリント終了動作に移行し(S31)、要求がある場合は、連続プリントの要求がなくなるまで、S25〜S31の動作を繰り返す。
【0192】
正の値の場合、S3で読み込んだ演算値に帯電電流の絶対値から放電生成物付着防止量を差し引いた値を加算し、演算値の更新を行う(S28)。
【0193】
S28で更新した演算値が、S23で読み込んだ使用環境での演算値の閾値を超えているかを判断する(S29)。
【0194】
現状の演算値が設定された閾値を超えていない場合、連続プリントの要求があるかを判断し(S31)、要求がない場合はプリント終了動作に移行し(S32)、要求がある場合は、連続プリントの要求がなくなるまで、S25〜S31の動作を繰り返す。
【0195】
現状の演算値が設定された閾値を超えた場合、金属石鹸塗布を動作するタイミングとなり、金属石鹸塗布動作を実行する(S30)。金属石鹸塗布成動作が終了すると、連続プリントの要求があるかを判断し(S31)、要求がない場合はプリント終了動作に移行し(S32)、要求がある場合は、連続プリントの要求がなくなるまで、S25〜S31の動作を繰り返す。金属石鹸塗布動作を実行した後は、プリント枚数、演算値をリセットする。
【0196】
本実施例の構成においては、電流検知を行い感光体1への金属石鹸塗布動作をトナー残量と現像寿命に基づいて適切なタイミングで行うことが出来、画像流れを抑制することが可能となった。
【実施例3】
【0197】
実施例1、2では帯電ローラ2に流れる帯電電流を検出する帯電電流値を用いたが、本実施例では、帯電電流値を検知することなく電流値予測機能を用いた結果を放電生成物付着量とすることを特徴とする。
【0198】
帯電電流量のうち、放電に寄与する放電電流量は、絶対湿度と感光体1の膜厚や転写電圧によって決まることが分かっている。そこで、本実施例においては、絶対湿度と感光体1の膜厚結果から、放電電流量を予測する。また、感光体1の膜厚の代わりに帯電ローラ2や感光体1の回転数をもとに予測することも可能である。
【0199】
本実施例では、絶対湿度と感光体1の膜厚の値から行う帯電電流値の予測を、図4に示した予測部157にて行う。
【0200】
1.金属石鹸塗布動作の制御手順
次に、図10のフローチャートを参照して、画像流れの発生を回避する金属石鹸塗布動作の制御手順について説明する。本発明を実施するための形態では、制御部50によって金属石鹸塗布動作が実行される。
【0201】
プロセスカートリッジ7はメモリ15を具備しており、メモリ15には、演算値と上記記載の演算値の閾値が記憶されている。プリント信号が入力されると(S41)、画像形成装置本体100が備えたCPU155は、環境センサを用いて環境検知を行う(S42)。次に、メモリ15と通信を行い、現像寿命とトナー残量、ドラム膜厚を読み込む(S43)。現像寿命とトナー残量の値から、放電生成物付着防止量、使用環境での演算値閾値を決定する(S44)。
【0202】
更に、CPU155は、環境情報とドラム膜厚から帯電電流値を予測し(S45)、次に画像形成動作を開始する(S46)。そして、画像形成動作によって生じる予測した帯電電流の絶対値(放電生成物付着量)から放電生成物付着防止量を差し引き、正の値になるかを判断する(S47)。
【0203】
正の値でない場合、連続プリントの要求があるかを判断し(S51)、要求がない場合はプリント終了動作に移行し(S52)、要求がある場合は、連続プリントの要求がなくなるまで、S46〜S51の動作を繰り返す。
【0204】
正の値の場合、S44で決定した演算値に予測した帯電電流の絶対値(放電生成物付着量)から放電生成物付着防止量を差し引いた値を加算し、演算値の更新を行う(S48)。
【0205】
S48で更新した演算値が、S44で決定した使用環境での演算値閾値を超えているかを判断する(S49)。
【0206】
現状の演算値が設定された閾値を超えていない場合、連続プリントの要求があるかを判断し(S51)、要求がない場合はプリント終了動作に移行し(S52)、要求がある場合は、連続プリントの要求がなくなるまで、S46〜S51の動作を繰り返す。
【0207】
現状の演算値が設定された閾値を超えた場合、金属石鹸塗布を動作するタイミングとなり、金属石鹸塗布動作を実行する(S50)。金属石鹸塗布動作が終了すると、連続プリントの要求があるかを判断し(S51)、要求がない場合はプリント終了動作に移行し(S52)、要求がある場合は、連続プリントの要求がなくなるまで、S46〜S51の動作を繰り返す。金属石鹸塗布動作を実行した後は、プリント枚数、演算値をリセットする。
【0208】
本実施例の構成においては、電流検知を行うことなく電流値予測機能を有した予測部によって予測した結果を放電生成物付着量とすることによって、感光体1への金属石鹸塗布動作を適切なタイミングで行うことが出来、画像流れを抑制することが可能となった。
【実施例4】
【0209】
実施例4においては、感光体1の表面に対して粗面化処理を行う。実施例1〜3では粗面化処理を行わない感光体1を用いた場合について説明してきたが、粗面化処理を行わない感光体1を用いた場合、クリーニングブレード8等によって感光体1の表面に塗布された金属石鹸45cが除去されてしまうことがある。これは、感光体1の表面に凹凸が無い場合に、感光体1の表面に金属石鹸45cを塗布したとしても留まるだけの溝などの引っ掛かりが無いことによる。したがって、実施例1〜3よりも高寿命な構成の場合、寿命後半で金属石鹸45cの供給能力が低下してくると、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来ない場合があった。
【0210】
そこで、実施例4の構成において、適切な粗面化処理を行なった感光体1を用いた場合、感光体1の表面に形成された溝に金属石鹸45cが埋まり、金属石鹸45cが除去されず感光体1の表面に残り続けることが出来る。よって、金属石鹸塗布動作の効果が持続し、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来る。
【0211】
上記のような効果を発現するためには、感光体1の表面に粗面化処理を施したときに、以下の条件を満たす感光体1を用いることによる。感光体1の周面の十点平均面粗さ(Rz)は0<Rz≦0.70(μm)であり(好ましくは、0.10≦Rz≦0.50(μm))、かつ周面の凹凸の平均間隔(Sm)は0<Sm≦70(μm)(好ましくは、5≦Sm≦70(μm))である。上記範囲とすることで、安定的に金属石鹸45cを感光体1の表面に維持することが可能であり、その結果、画像流れを長期にわたって抑制することが出来る。そこで、本実施例では、感光体1の表面に適切な凹凸を形成する粗面化処理を行うことにより、より高寿命な構成においても感光体1の耐久性を維持しつつ、簡易な構成によって、画像流れの発生を抑制する構成であることを特徴とする。
【0212】
1.感光体の粗面化処理
本実施例の感光体1は、金属石鹸45cの効果を持続させるため、表面に微小な凹凸を形成する粗面化処理を行っている。特許第4027407号公報によれば、感光体1の周面に、周面の略周方向に延びる幅が0.5μm以上40μm以下の範囲内にある溝が長手方向(母線方向、感光体1の回転軸方向)に複数並ぶように形成されている。
【0213】
図11に、感光体1の周面1aに形成される溝1bの状態の例を示す。図11に示すように、各溝1bは、それぞれ感光体1の周面1a上においてその周方向に延びる環状の溝であり、周面1aの母線方向において、互いに間隔を空けて並ぶように形成されている。すなわち、周面1aは、溝1bが形成されていない平坦部1cと、溝1bと、が母線方向に交互に形成された構成となっている。なお、周面1aにおいて溝1bが形成される領域は、少なくとも、クリーニングブレード8が当接する領域を含んでいればよく、必ずしも、周面1aの長手方向の全域に渡って形成する必要はない。
【0214】
なお、上記公報でも述べているように、溝1bは、図11に示すように周方向と同じ方向に延びるように形成される構成に限定されない。例えば、溝1bが周方向に対して10°の角度をもたせて形成される構成でもよい。また、溝1bが周方向に対して±30°の角度をもたせて形成された構成とし、角度の異なる溝1bが互いに交差するように構成してもよい。本実施形態において、「略周方向」とは、完全に周方向である場合とほぼ周方向である場合とを含み、ほぼ周方向とは、具体的には、周方向に対して±60°未満の方向である。
【0215】
続いて、感光体1の表面を研磨する研磨方法について説明する。図12は、感光体1の表面を研磨する研磨装置の概略図である。研磨シート40は巻き取り機構(不図示)で矢印方向に巻き取られる。感光体1は矢印方向に回転する。バックアップローラー41は矢印方向に回転する。研磨条件としては、研磨シート40として理研コランダム社製の研磨シート(商品名:GC♯3000、基層シート厚:75μm)を用いた。そして、バックアップローラー41としては硬度20°のウレタンローラー(外径:50mm)を用い、侵入量:2.5mm、シート送り量:200〜400mm/sとして、研磨シート40の送り方向と感光体1の回転方向を同一として、5〜30秒間研磨した。研磨した後の感光体1の表面粗さは、表面粗さ測定機(商品名:SE700、SMB−9、(株)小坂研究所製)を用いて、下記の条件で測定した。感光体1の長手方向に、塗布上端から30、110、185mmの位置において測定し、120°手前に回転させた後、同様にして塗布上端から30、110、185mmの位置において測定した。更に、120°手前に回転させた後、同様にして測定し、計9点の測定を行った。測定条件は、測定長さ:2.5mm、カットオフ値:0.8mm、送り速さ:0.1mm/s、フィルタ特性:2CR、レベリング:直線(全域)とした。
【0216】
表9に、本実施例において用いる感光体1のRzとSmを示す。表9の感光体a〜fは上記粗面化処理条件の研磨時間などを変えて作製した。感光体gは粗面化処理を実施していない実施例1で用いた感光体1である。
【0217】
【表9】
【0218】
感光体1の周面の十点平均面粗さ(Rz)及び凹凸の平均間隔(Sm)は、JIS規格(JIS B 0601)を基準とし、(株)小坂研究所製の表面粗さ測定器サーフコーダSE3500型を用い、以下の条件で測定した。
【0219】
検出器:R2μm
0.7mNのダイヤモンド針
フィルタ:2CR
カットオフ値:0.8mm
測定長さ:2.5mm
送り速さ:0.1mm
なお、本実施例では、感光体1の母線方向の3箇所において、それぞれの箇所での円周方向について各4箇所の計12箇所を測定箇所とした。感光体1の周面の凹凸の平均間隔(Sm)とは、図11に示すように、周面1aの母線方向において並ぶ、複数の溝1bの母線方向(長手方向)における間隔、あるいは平坦部1cの母線方向(長手方向)における間隔、として定義することが出来る。
【0220】
2.粗面化処理を行った感光体における金属石鹸塗布動作への効果
次に、感光体1に形成される溝の役割について説明する。感光体1の表面に溝を形成することにより金属石鹸45cが溝に埋まり、金属石鹸45cが除去されず感光体1の表面に残り続けることが出来る。よって、金属石鹸塗布動作の効果が持続し、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来る。上記のような効果を発現するためには、感光体1の表面に粗面化処理を施したときに、以下の条件を満たす感光体1を用いることによる。感光体1の周面の十点平均面粗さ(Rz)は0<Rz≦0.70(μm)であり、かつ周面の凹凸の平均間隔(Sm)は0<Sm≦70(μm)である。上記範囲とすることで、安定的に金属石鹸45cを感光体1の表面に維持することが可能であり、その結果、画像流れを長期にわたって抑制することが出来る。
【0221】
表9の感光体eはRz=0.75(μm)であり、感光体1の表面に溝が深く形成されているため、溝を十分に埋めるまで多くの金属石鹸45cが必要となり、効果を発揮することが出来ない。一方、表9の感光体cのRz=0.68(μm)では結果が良好であったことから、Rzが0.70(μm)を超えると、粗面化処理の効果が弱まることが分かった。
【0222】
また、感光体fはSm=78.5(μm)であるため溝同士の間隔が広く、溝が存在していない部分が多いことでクリーニングブレード8によって金属石鹸45cが除去されてしまう影響が大きく出てしまう。したがって、金属石鹸塗布動作を実行しても感光体1の表面に金属石鹸45cを長期にわたって安定して維持することが出来ない。感光体dのSm=67.3(μm)では結果が良好であったことから、Smが70.0(μm)を超えると、粗面化処理の効果が弱まることが分かった。
【0223】
一方、感光体a〜dの条件で溝を形成することによって画像流れの抑制に顕著な効果があることが分かった。これは、感光体1の表面に適度な溝が適度な間隔で形成されていることによって、金属石鹸45cを感光体1の表面に保持することが出来た結果である。
【0224】
以上の結果から、本実施例における粗面化処理を施した感光体1の表面の凹凸形状を、周面の十点平均面粗さ(Rz)の範囲が0<Rz≦0.70(μm)であり、かつ周面の凹凸の平均間隔0<Sm≦70.0(μm)とする。さらに、好適には、周面の十点平均面粗さ(Rz)は0.10≦Rz≦0.50(μm)、かつ周面の凹凸の平均間隔(Sm)は5≦Sm≦70(μm)である。0.10≦Rz≦0.50(μm)、5≦Sm≦70(μm)とすることによって、凹凸が効果的に作用し、金属石鹸45cがさらに感光体1の表面に留まりやすくなる。上記条件の感光体1を用いることで、金属石鹸塗布動作の効果が持続する。その結果、安定的に金属石鹸45cを感光体1の表面に維持することが出来る構成となり、より高寿命な構成においても感光体の耐久性を維持しつつ、簡易な構成によって、画像流れの発生を抑制することが可能となった。
【実施例5】
【0225】
実施例1〜4では、図5に示したような無機ケイ素微粒子を外添したトナーを用いた場合について説明をしてきた。実施例4においては、トナーを変更し、有機ケイ素重合体を含有する表層を有する有機ケイ素重合体トナーを用いた場合について説明する。
【0226】
実施例1〜4のような無機ケイ素を外添したトナーを用いた場合、金属石鹸塗布動作のように感光体1と現像ローラ4の間の摺擦が多くなる動作が実行されると、無機ケイ素がトナーから外れてしまう。トナーから外れてしまった無機ケイ素はトナーと共に感光体1の表面に供給されてしまう。よって、高寿命な構成の場合、寿命後半で金属石鹸45cの塗布能力が低下してしまう。以上のような理由から、無機ケイ素を外添したトナーを用いると、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来ないことがある。
【0227】
しかしながら、本実施例のように有機ケイ素重合体トナーを用いた場合、機械的な摺擦によっても有機ケイ素重合体がトナーから外れにくく、金属石鹸塗布動作によって金属石鹸45cだけを効率よく感光体1に供給することが出来る。よって、金属石鹸塗布動作の効果が持続し、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来る。そのうえ、本来の無機シリカ外添の効果であるトナーの電荷やトナー物性値のコントロールを、表層の有機ケイ素重合体にて行うことが出来るため、画像に影響を及ぼすことも少ない。
【0228】
そこで、実施例5は、有機ケイ素重合体を含有する表層を有する有機ケイ素重合体トナーを使用することにより、高寿命な構成においても感光体1の耐久性を維持しつつ、簡易な構成によって、画像流れの発生を抑制する構成であることを特徴とする。なお、実施例1〜4と重複する部分については説明を割愛する。
【0229】
1.有機ケイ素重合体を表層に含有するトナー
実施例5では、トナー粒子、及び、トナー粒子の表面を被覆する、以下に記載した式(1)で示される構造を有する有機ケイ素重合体を有するトナーを用いる。
R−SiO3/2 (1)
(Rは炭素数1以上6以下の炭化水素基を示す。)
【0230】
トナー粒子の表面は、式(1)で示される構造を有する有機ケイ素重合体で被覆され、トナー粒子の最表面に存在する層である表層を有する。表層は従来のトナー粒子に比べてとても硬い。そのため、定着性の観点からトナー粒子表面の一部に表層が形成されていない部分を設けてもよい。有機ケイ素重合体を含有する表層の厚みが2.5nm以下である分割軸の数の割合(以下、表層の厚み2.5nm以下の割合ともいう)が、20.0%以下であることが好ましい。この条件は、トナー粒子の表面のうち少なくとも80.0%以上が、2.5nm以上の有機ケイ素重合体を含有する表層で構成されていることを近似している。すなわち、本条件を満たすと、有機ケイ素重合体を含有する表層が十分にトナー粒子の表面を被覆することとなる。より好ましくは表層の厚み2.5nm以下の割合が10.0%以下である。測定は透過型電子顕微鏡(TEM)を用いた断面観察により規定することが出来る。詳細は後述する。
【0231】
次に、式(1)で示される構造を有する有機ケイ素重合体に関して説明する。式(1)で示される構造を有する有機ケイ素重合体において、Si原子の4個の原子価のうち1個はRと、残り3個はO原子と結合している。O原子は、原子価2個がいずれもSiと結合している状態、つまり、シロキサン結合(Si−O−Si)を構成する。有機ケイ素重合体としてのSi原子とO原子を考えると、Si原子2個でO原子3個を有することになるため、−SiO3/2と表現される。さらに、トナー粒子のテトラヒドロフラン(THF)不溶分の29Si−NMRの測定で得られるチャートにおいて、有機ケイ素重合体の全ピーク面積に対する式(1)の構造に帰属されるピーク面積の割合が20%以上であることが好ましい。詳細な測定法は後述するが、これはトナー粒子に含まれる有機ケイ素重合体の中でR−SiO3/2で表される部分構造を、20%以上有していることを近似している。
【0232】
前述の通り、Si原子の4つの原子価のうち、3つが酸素原子と結合し、さらにそれら酸素原子が別のSi原子と結合することが、−SiO3/2の構造の意味である。もし、そのうち酸素1つがシラノール基であったとすると、その有機ケイ素重合体の構造はR−SiO2/2−OHで表現される。さらに、酸素2つがシラノール基であれば、その構造はR−SiO1/2(−OH)2となる。これら構造を比較すると、より多くの酸素原子がSi原子と架橋構造を形成するほうが、SiO2で表されるシリカ構造に近い。そのため−SiO3/2骨格が多いほど、トナー粒子表面の表面自由エネルギーを低くすることが出来るため、環境安定性及び耐部材汚染に優れた効果がある。また、式(1)で表される構造による耐久性と、式(1)中のRの疎水性及び帯電性により、表層よりも内部に存在する、染み出しやすい低分子量(=Mw:1000以下)の樹脂、及びガラス転移温度の低い(Tg:40℃以下)の樹脂のブリードが抑えられる。場合によっては離型剤のブリードも抑えられる。
【0233】
式(1)で示される構造のピーク面積の割合は、有機ケイ素重合体形成に用いる有機ケイ素化合物の種類及び量、並びに、有機ケイ素重合体形成時の加水分解、付加重合及び縮合重合の反応温度、反応時間、反応溶媒及びpHによって制御することが出来る。式(1)で表される構造において、Rは炭素数が1以上6以下の炭化水素基である。これにより帯電量が安定しやすい。特に環境安定性に優れている、炭素数が1以上6以下の脂肪族炭化水素基、又はフェニル基が好ましい。本発明の実施形態において、上記Rは炭素数が1以上3以下の脂肪族炭化水素基であることが、帯電性及びカブリ防止のさらなる向上のためにより好ましい。帯電性が良好であると、転写性が良く転写残トナーが少ないため感光体1と帯電ローラ2の汚染が良化する。炭素数が1以上3以下の脂肪族炭化水素基としては、メチル基、エチル基、プロピル基、又はビニル基が好ましく例示出来る。環境安定性と保存安定性の観点から、より好ましくは、Rはメチル基である。有機ケイ素重合体の製造例としては、ゾルゲル法が好ましい。ゾルゲル法は、液体原料を出発原料に用いて加水分解及び縮合重合させ、ゾル状態を経てゲル化する方法であり、ガラス、セラミックス、有機−無機ハイブリット、ナノコンポジットを合成する方法に用いられる。この製造方法を用いれば、表層、繊維、バルク体、微粒子などの種々の形状の機能性材料を液相から低温で作製することが出来る。トナー粒子の表層に存在する有機ケイ素重合体は、具体的には、アルコキシシランに代表されるケイ素化合物の加水分解及び縮重合によって生成されることが好ましい。この有機ケイ素重合体を含有する表層をトナー粒子に設けることによって、環境安定性が向上し、かつ、長期使用時におけるトナーの性能低下が生じにくく、保存安定性に優れたトナーを得ることが出来る。
【0234】
さらに、ゾルゲル法は、液体から出発し、その液体をゲル化することによって材料を形成しているため、様々な微細構造及び形状をつくることが出来る。特に、トナー粒子が水系媒体中で製造される場合には、有機ケイ素化合物のシラノール基のような親水基による親水性によってトナー粒子の表面に析出させやすくなる。上記微細構造及び形状は反応温度、反応時間、反応溶媒、pHや有機金属化合物の種類及び量などによって調整することが出来る。有機ケイ素重合体は、下記式(Z)で示される構造を有する有機ケイ素化合物の縮重合物であることが好ましい。
【0235】
【化9】

(式(Z)中、R1は、炭素数1以上6以下の炭化水素基を表し、R2、R3及びR4は、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基を表す。)
【0236】
R1の炭化水素基(好ましくはアルキル基)により疎水性を向上することができ、環境安定性に優れたトナー粒子を得ることが出来る。また、炭化水素基として芳香族炭化水素基であるアリール基、例えばフェニル基を用いることも出来る。R1の疎水性が大きい場合、様々な環境において帯電量変動が大きくなる傾向を示すことから、環境安定性を鑑みてR1は炭素数1以上3以下の脂肪族炭化水素基であることが好ましく、メチル基であることがより好ましい。すなわち、有機ケイ素重合体のケイ素原子に直接結合している炭素原子が1個以上3個以下であることが好ましい。R2、R3及びR4は、それぞれ独立して、ハロゲン原子、ヒドロキシ基、アセトキシ基、又は、アルコキシ基である(以下、反応基ともいう)。これらの反応基が加水分解、付加重合及び縮重合して架橋構造を形成し、耐部材汚染及び現像耐久性に優れたトナーを得ることが出来る。加水分解性が室温で穏やかであり、トナー粒子の表面への析出性と被覆性の観点から、炭素数1以上3以下のアルコキシ基であることが好ましく、メトキシ基やエトキシ基であることがより好ましい。また、R2、R3及びR4の加水分解、付加重合及び縮合重合は、反応温度、反応時間、反応溶媒及びpHによって制御することが出来る。
【0237】
本発明の実施形態に用いられる有機ケイ素重合体を得るには、上記に示す式(Z)中のR1を除く一分子中に3つの反応基(R2、R3及びR4)を有する有機ケイ素化合物(以下、三官能性シランともいう)を1種又は複数種を組み合わせて用いるとよい。上記式(Z)としては以下のものが挙げられる。
【0238】
メチルトリメトキシシラン、メチルトリエトキシシラン、メチルジエトキシメトキシシラン、メチルエトキシジメトキシシラン、メチルトリクロロシラン、メチルメトキシジクロロシラン、メチルエトキシジクロロシラン、メチルジメトキシクロロシラン、メチルメトキシエトキシクロロシラン、メチルジエトキシクロロシラン、メチルトリアセトキシシラン、メチルジアセトキシメトキシシラン、メチルジアセトキシエトキシシラン、メチルアセトキシジメトキシシラン、メチルアセトキシメトキシエトキシシラン、メチルアセトキシジエトキシシラン、メチルトリヒドロキシシラン、メチルメトキシジヒドロキシシラン、メチルエトキシジヒドロキシシラン、メチルジメトキシヒドロキシシラン、メチルエトキシメトキシヒドロキシシラン、メチルジエトキシヒドロキシシラン、のような三官能性のメチルシラン。
【0239】
エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリクロロシラン、エチルトリアセトキシシラン、エチルトリヒドロキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリクロロシラン、プロピルトリアセトキシシラン、プロピルトリヒドロキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリクロロシラン、ブチルトリアセトキシシラン、ブチルトリヒドロキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、ヘキシルトリクロロシラン、ヘキシルトリアセトキシシラン、ヘキシルトリヒドロキシシランのような三官能性のシラン。
【0240】
フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリクロロシラン、フェニルトリアセトキシシラン、フェニルトリヒドロキシシランのような三官能性のフェニルシラン。
【0241】
また、本実施例の効果を損なわない程度に、式(Z)で表される構造を有する有機ケイ素化合物とともに、以下を併用して得られた有機ケイ素重合体を用いてもよい。一分子中に4つの反応基を有する有機ケイ素化合物(四官能性シラン)、一分子中に2つの反応基を有する有機ケイ素化合物(二官能性シラン)又は1つの反応基を有する有機ケイ素化合物(一官能性シラン)。例えば、以下のようなものが挙げられる。
【0242】
ジメチルジエトキシシラン、テトラエトキシシラン、ヘキサメチルジシラザン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエメトキシシラン、3−(2−アミノエチル)アミノプロピルトリメトキシシラン、3−(2−アミノエチル)アミノプロピルトリエトキシシラン、ビニルトリイソシアネートシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルジエトキシメトキシシラン、ビニルエトキシジメトキシシラン、ビニルエトキシジヒドロキシシラン、ビニルジメトキシヒドロキシシラン、ビニルエトキシメトキシヒドロキシシラン、ビニルジエトキシヒドロキシシラン、のような三官能性のビニルシラン。
【0243】
さらに、トナー粒子中の有機ケイ素重合体の含有量は0.5質量%以上10.5質量%以下であることが好ましい。有機ケイ素重合体の含有量が0.5質量%以上であることで、表層の表面自由エネルギーを更に小さくすることができ、流動性が向上し、部材汚染やカブリの発生を抑制することが出来る。10.5質量%以下であることで、チャージアップを発生し難くすることが出来る。有機ケイ素重合体の含有量は有機ケイ素重合体形成に用いる有機ケイ素化合物の種類及び量、有機ケイ素重合体形成時のトナー粒子の製造方法、反応温度、反応時間、反応溶媒及びpHによって制御することが出来る。有機ケイ素重合体を含有する表層とトナーコア粒子は、隙間なく接していることが好ましい。これにより、トナー粒子の表層よりも内部の樹脂成分や離型剤等によるブリードの発生が抑えられ、保存安定性、環境安定性及び現像耐久性に優れたトナーを得ることが出来る。表層には上記の有機ケイ素重合体の他に、スチレン−アクリル系共重合体樹脂、ポリエステル樹脂、ウレタン樹脂などの樹脂や各種添加剤などを含有させてもよい。
【0244】
2.NMR測定による部分構造の確認方法
次に、NMR測定によるトナー粒子の部分構造確認方法について説明する。上記に記載のトナー粒子のテトラヒドロフラン(THF)不溶分は、以下のように調製した。トナー粒子10.0gを秤量し、円筒濾紙(東洋濾紙製No.86R)に入れてソックスレー抽出器にかける。溶媒としてTHF200mLを用いて20時間抽出し、円筒濾紙中の濾物を40℃で数時間真空乾燥を行って得られたものをNMR測定用のトナー粒子のTHF不溶分とした。なお、外添剤などでトナー粒子の表面が処理されている場合は、下記方法によって外添剤を除去し、トナー粒子を得る。
【0245】
イオン交換水100mLにスクロース(キシダ化学製)160gを加え、湯せんをしながら溶解させ、ショ糖濃厚液を調製する。遠心分離用チューブ(容量50mL)に上記ショ糖濃厚液を31gと、コンタミノンN(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)を6mL入れ分散液を作製する。この分散液にトナー1.0gを添加し、スパチュラなどでトナーのかたまりをほぐす。
【0246】
遠心分離用チューブをシェイカーにて350spm(strokes per min)で20分間振とうする。振とう後、溶液をスイングローター用ガラスチューブ(容量50mL)に入れ替えて、遠心分離機(H−9R株式会社コクサン製)にて3500rpm、30分間の条件で分離する。この操作により、トナー粒子と外れた外添剤が分離する。トナーと水溶液が十分に分離されていることを目視で確認し、最上層に分離したトナーをスパチュラ等で採取する。採取したトナーを減圧濾過器で濾過した後、乾燥機で1時間以上乾燥し、トナー粒子を得る。この操作を複数回実施して、必要量を確保する。
【0247】
トナー粒子に含有される有機ケイ素重合体における、式(1)で表される部分構造の確認には以下の方法を用いる。式(1)のRで表される炭化水素基は、13C−NMRにより確認した。
【0248】
13C−NMR(固体)の測定条件≫
装置:JEOLRESONANCE製JNM−ECX500II
試料管:3.2mmφ
試料:NMR測定用のトナー粒子のテトラヒドロフラン不溶分150mg
測定温度:室温
パルスモード:CP/MAS
測定核周波数:123.25MHz(13C)
基準物質:アダマンタン(外部標準:29.5ppm)
試料回転数:20kHz
コンタクト時間:2ms
遅延時間:2s
積算回数:1024回
上記方法にて、ケイ素原子に結合しているメチル基(Si−CH)、エチル基(Si−C)、プロピル基(Si−C)、ブチル基(Si−C)、ペンチル基(Si−C11)、ヘキシル基(Si−C13)またはフェニル基(Si−C−)などに起因するシグナルの有無により、式(1)のRで表される炭化水素基を確認した。次に、トナー粒子に含有される有機ケイ素重合体における、式(1)の構造に帰属されるピーク面積の割合の算出方法を説明する。
【0249】
トナー粒子のTHF不溶分の29Si−NMR(固体)測定を、以下の測定条件で行う。
【0250】
29Si−NMR(固体)の測定条件≫
装置:JEOLRESONANCE製JNM−ECX500II
試料管:3.2mmφ
試料:NMR測定用のトナー粒子のテトラヒドロフラン不溶分150mg
測定温度:室温
パルスモード:CP/MAS
測定核周波数:97.38MHz(29Si)
基準物質:DSS(外部標準:1.534ppm)
試料回転数:10kHz
コンタクト時間:10ms
遅延時間:2s
積算回数:2000〜8000回
上記測定後に、トナー粒子のテトラヒドロフラン不溶分の、置換基及び結合基の異なる複数のシラン成分をカーブフィティングにて下記X1構造、X2構造、X3構造、及びX4構造にピーク分離して、それぞれピーク面積を算出する。
X1構造:(Ri)(Rj)(Rk)SiO1/2 式(2)
X2構造:(Rg)(Rh)Si(O1/2 式(3)
X3構造:RmSi(O1/2 式(4)
X4構造:Si(O1/2 式(5)
【0251】
【化10】
【0252】
【化11】
【0253】
【化12】
【0254】
【化13】

(式(2)、(3)及び(4)中のRi、Rj、Rk、Rg、Rh、Rmはケイ素に結合している、炭素数1〜3の炭化水素基などの有機基、ハロゲン原子、ヒドロキシ基、アセトキシ基又はアルコキシ基を示す。)
【0255】
本発明の実施形態においては、トナー粒子のTHF不溶分の29Si−NMRの測定で得られるチャートにおいて、前記有機ケイ素重合体の全ピーク面積に対する式(1)の構造に帰属されるピーク面積の割合が20%以上であることが好ましい。
【0256】
なお、上記式(1)で示される構造をさらに詳細に確認する必要がある場合、上記13C−NMR及び29Si−NMRの測定結果と共にH−NMRの測定結果によって同定してもよい。
【0257】
3.トナー粒子の断面観察による表層厚み測定方法
次に、透過型電子顕微鏡(TEM)を用いたトナー粒子の断面観察によって測定される、有機ケイ素重合体を含有する表層の厚みが2.5nm以下の割合の測定方法を説明する。本実施例において、トナー粒子の断面観察は以下の方法により行う。
【0258】
常温硬化性のエポキシ樹脂中にトナー粒子を十分分散させた後、40℃の雰囲気下で2日間硬化させる。得られた硬化物からダイヤモンド歯を備えたミクロトームを用い薄片状のサンプルを切り出す。このサンプルを透過型電子顕微鏡(JEOL製JEM−2800)(TEM)で1万〜10万倍の倍率に拡大し、トナー粒子の断面を観察する。結着樹脂と表層材料の原子量の違いを利用し、原子量が大きいとコントラストが明るくなることを利用して確認を行うことが出来る。材料間のコントラストを付けるためには四酸化ルテニウム染色法及び四酸化オスミウム染色法を用いる。測定に用いた粒子は、上記TEMの顕微鏡写真より得られたトナー粒子の断面から円相当径Dtemを求め、その値がトナー粒子の重量平均粒径D4の±10%の幅に含まれるものとする。
【0259】
上述のように、JEOL製JEM−2800を用い、加速電圧200kVでトナー粒子断面の暗視野像を取得する。次にGatan社製EELS検出器GIFQuantamを用い、ThreeWindow法によりマッピング像を取得して表層を確認する。
【0260】
次に、円相当径Dtemがトナー粒子の重量平均粒径D4の±10%の幅に含まれるトナー粒子1個について、トナー粒子断面の長軸Lと、長軸Lの中心を通りかつ垂直な軸L90の交点を中心にして、図13のようにトナー粒子断面を均等に16分割する。次に、中心からトナー粒子の表層へ向かう分割軸をそれぞれAn(n=1〜32)、分割軸の長さをRAn、表層の厚みをFRAnとする。そして、32本存在する各分割軸上における有機ケイ素重合体を含有する表層の厚みが2.5nm以下である分割軸の数の割合を求める。平均化するため、トナー粒子10個の測定を行い、トナー粒子1個あたりの平均値を計算する。
【0261】
TEM写真より得られたトナー粒子の断面から求めた円相当径(Dtem)は以下の方法で求める。まず、1つのトナー粒子に対して、TEM写真より得られるトナー粒子の断面から求めた円相当径Dtemを下記式に従って求める。
【0262】
[TEM写真より得られたトナー粒子の断面から求めた円相当径(Dtem)]=(RA1+RA2+RA3+RA4+RA5+RA6+RA7+RA8+RA9+RA10+RA11+RA12+RA13+RA14+RA15+RA16+RA17+RA18+RA19+RA20+RA21+RA22+RA23+RA24+RA25+RA26+RA27+RA28+RA29+RA30+RA31+RA32)/16
トナー粒子10個の円相当径を求め、粒子1個あたりの平均値を計算してトナー粒子の断面から求めた円相当径(Dtem)とする。
【0263】
有機ケイ素重合体を含有する表層の厚み2.5nm以下の割合は以下の式にて表される。
[有機ケイ素重合体を含有する表層の厚み(FRAn)が2.5nm以下である割合]=〔{有機ケイ素重合体を含有する表層の厚み(FRAn)が2.5nm以下である分割軸の数}/32〕×100
【0264】
この計算をトナー粒子10個に対して行い、得られた10個の表層の厚み(FRAn)が2.5nm以下である割合の平均値を求め、トナー粒子の表層の厚み(FRAn)が2.5nm以下である割合とした。
【0265】
4.トナー製造方法
以下に、実施例5に使用するトナーを具体的に説明するが、これらの実施例に制限されるものではない。実施例中及び比較例中の各材料の「部」は特に断りがない場合、全て質量基準である。
【0266】
始めに、水系媒体1の調製工程について説明する。反応容器中のイオン交換水1000.0部に、リン酸ナトリウム(ラサ工業社製・12水和物)14.0部を投入し、窒素パージしながら65℃で1.0時間保温した。T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、12000rpmにて攪拌しながら、イオン交換水10.0部に9.2部の塩化カルシウム(2水和物)を溶解した塩化カルシウム水溶液を一括投入し、分散安定剤を含む水系媒体を調製した。さらに、水系媒体に10質量%塩酸を投入し、pHを5.0に調整し、水系媒体1を得た。
【0267】
次に、表層用有機ケイ素化合物の加水分解工程について説明する。撹拌機、温度計を備えた反応容器に、イオン交換水60.0部を秤量し、10質量%の塩酸を用いてpHを3.0に調整した。これを撹拌しながら加熱し、温度を70℃にした。その後、表層用有機ケイ素化合物であるメチルトリエトキシシラン40.0部を添加して2時間以上撹拌して加水分解を行った。加水分解の終点は目視にて油水が分離せず1層になったことで確認を行い、冷却して表層用有機ケイ素化合物の加水分解液を得た。
【0268】
本実施例のように、有機ケイ素重合体を有する表層を形成する場合は、水系媒体中でトナー粒子を形成する場合には水系媒体中で後述する重合工程などを行いながら前述のように有機ケイ素化合物の加水分解液を添加して表層を形成させることが出来る。重合後のトナー粒子の分散液をコア粒子分散液として用いて、有機ケイ素化合物の加水分解液を添加し、表層を形成させてもよい。また、混練粉砕法など水系媒体以外の場合には得られたトナー粒子を水系媒体に分散してコア粒子分散液として用いて、前述のように有機ケイ素化合物の加水分解液を添加し、表層を形成させることが出来る。
【0269】
次に、重合性単量体組成物の調製工程について説明する。
・スチレン 60.0部
・C.I.ピグメントブルー15:3 6.5部
上記材料をアトライタ(三井三池化工機株式会社製)に投入し、さらに直径1.7mmのジルコニア粒子を用いて、220rpmで5.0時間分散させて、顔料分散液を調製した。顔料分散液に下記材料を加えた。
・スチレン 20.0部
・n−ブチルアクリレート 20.0部
・架橋剤(ジビニルベンゼン) 0.3部
・飽和ポリエステル樹脂 5.0部
(プロピレンオキサイド変性ビスフェノールA(2モル付加物)とテレフタル酸との重縮合物(モル比10:12)、ガラス転移温度Tg=68℃、重量平均分子量Mw=10000、分子量分布Mw/Mn=5.12)
・フィッシャートロプシュワックス(融点78℃) 7.0部
これを65℃に保温し、T.K.ホモミクサー(特殊機化工業株式会社製)を用いて、500rpmにて均一に溶解、分散し、重合性単量体組成物を調製した。
【0270】
次に、造粒工程について説明する。水系媒体1の温度を70℃、T.K.ホモミクサーの回転数を12000rpmに保ちながら、水系媒体1中に重合性単量体組成物を投入し、重合開始剤であるt−ブチルパーオキシピバレート9.0部を添加した。そのまま撹拌装置にて12000rpmを維持しつつ10分間造粒した。
【0271】
次に、重合工程について説明する。造粒工程の後、攪拌機をプロペラ撹拌羽根に換え150rpmで攪拌しながら70℃を保持して5.0時間重合を行い、85℃に昇温して2.0時間加熱することで重合反応を行ってコア粒子を得た。スラリーの温度を55℃に冷却してpHを測定したところ、pH=5.0だった。55℃で撹拌を継続したまま、表層用有機ケイ素化合物の加水分解液を20.0部添加してトナーの表層形成を開始した。そのまま30分保持した後に、水酸化ナトリウム水溶液を用いてスラリーを縮合完結用にpH=9.0に調整して更に300分保持し、表層を形成させた。
【0272】
最後に、洗浄、乾燥工程について説明する。重合工程終了後、トナー粒子のスラリーを冷却し、トナー粒子のスラリーに塩酸を加えpH=1.5以下に調整して1時間撹拌放置してから加圧ろ過器で固液分離し、トナーケーキを得た。これをイオン交換水でリスラリーして再び分散液とした後に、前述のろ過器で固液分離した。リスラリーと固液分離とを、ろ液の電気伝導度が5.0μS/cm以下となるまで繰り返した後に、最終的に固液分離してトナーケーキを得た。得られたトナーケーキは気流乾燥機フラッシュジェットドライヤー(セイシン企業製)にて乾燥を行い、更にコアンダ効果を利用した多分割分級機を用いて微粗粉をカットしてトナー粒子1を得た。乾燥の条件は吹き込み温度90℃、乾燥機出口温度40℃、トナーケーキの供給速度はトナーケーキの含水率に応じて出口温度が40℃から外れない速度に調整した。
【0273】
トナー粒子1の断面TEM観察においてケイ素マッピングを行い、表層にケイ素原子が存在すること、有機ケイ素重合体を含有するトナー粒子の表層の厚みが2.5nm以下である分割軸の数の割合が、20.0%以下であることを確認した。本実施例においては、得られたトナー粒子に対し、すくなくとも無機ケイ素を外添せずにそのまま実施例5のトナーとして用いた。
【0274】
トナー粒子の表面におけるトナー粒子の表面を被覆する、式(1)で示される構造を有する有機ケイ素重合体の固着率は、30%以上100%以下であることが好ましい。これは、有機ケイ素重合体が存在していない表層部の面積が増えることで、トナー同士の付着力が増加し、帯電性が変わってしまうためである。
【0275】
実施例5では、有機ケイ素重合体や無機ケイ素微粒子を母粒子に外添させるのではなく、有機ケイ素重合体をトナー粒子の表面に被覆させたトナーを用いている。外添させたトナーを使用した場合に比べて有機ケイ素重合体がトナーから外れにくい(固着率が高い)ため、金属石鹸45cだけを効率よく感光体1に供給することができ、金属石鹸45cによる画像流れ抑制効果をより維持することが可能となる。
【0276】
5.有機ケイ素重合体を用いたトナー粒子の効果確認
実施例5では、上記トナーの製造方法を用いて、トナー粒子の表面を被覆する有機ケイ素重合体の固着率が異なるように作製したトナーb〜eを用意した。固着率はトナーの作製条件により変わる。本実施例においては、重合工程における加水分解液を添加するときの条件、及び、添加後の保持時間を変えることにより固着率違いのトナーを作製した。尚、pH調整は塩酸及び水酸化ナトリウム水溶液で行った。表10にそれぞれの固着率違いのトナーを作製するための条件を示す。また、上記方法で作製したトナーb〜eは、実施例1と同様の方法で金属石鹸45cとしてステアリン酸亜鉛を0.20質量%外添している。ただし、トナーeに関しては、表層用有機ケイ素化合物の加水分解工程は行わなかった。代わりに、表層用有機ケイ素化合物のメチルトリエトキシシラン30部をモノマーのまま、重合性単量体組成物の調製工程で添加した。重合工程では、70℃に冷却してpH測定を行った後、加水分解液の添加を行わなかった。70℃で撹拌を継続したまま、水酸化ナトリウム水溶液を用いてスラリーを縮合完結用にpH=9.0に調整して更に300分保持して表層を形成させた。
【0277】
【表10】
【0278】
有機ケイ素重合体の固着率が高いと、有機ケイ素重合体が感光体1の表面の溝に供給されにくく、金属石鹸45cを感光体1の表面の溝に供給しやすい。これは、有機ケイ素重合体がトナーから外れにくく、金属石鹸塗布動作によって金属石鹸45cだけを効率よく感光体1に供給することが出来るためである。本実施例のトナーb〜dのように、有機ケイ素重合体の固着率を90%以上とすることによって、感光体1の表面上に金属石鹸45cを積極的に供給することが可能となる。有機ケイ素重合体の固着率が85%であるトナーeに比べて、金属石鹸塗布動作の効果がさらに大きい。よって、金属石鹸塗布動作による金属石鹸45cの画像流れ抑制効果が持続し、感光体1の表面に金属石鹸45cを長期にわたって安定して塗布することが出来る。
【0279】
実施例5の構成においては、有機ケイ素重合体を含有する表層を有する有機ケイ素重合体トナーを用いることで、金属石鹸塗布動作による金属石鹸45cの画像流れ抑制効果が持続する。
【0280】
その結果、安定的に金属石鹸45cを感光体1の表面に維持することが出来る構成となり、より高寿命な構成においても感光体1の耐久性を維持しつつ、簡易な構成によって、画像流れの発生を抑制することが可能となる。
【0281】
尚、実施例1〜5では反転現像を用いたが、それに限るものでなく、正規現像を用いても良い。実施例1〜5では負に帯電する感光体1を用いたが、それに限ったものではなく、正に帯電する感光体を用いても良い。
【0282】
また、実施例1〜5では画像形成装置100として、カラーレーザプリンタを用いたが、モノクロレーザプリンタのように、単一のカートリッジ構成を有する画像形成装置100でもよい。
【0283】
また、中間転写ベルト31を用いるような中間転写方式ではなく、感光体1の表面に形成されたトナー像を記録材Sに直接転写する方式を用いてもよい。
【0284】
その他、実施例1〜5の中で説明として用いた設定条件は一例であり、その限りではない。
【符号の説明】
【0285】
1 感光体
2 帯電ローラ
3c トナー収容部
4 現像ローラ
10 トナー
36 帯電電流検知部
45c 金属石鹸
71 帯電電圧印加部
100 画像形成装置
156 判定部
157 予測部
202 制御部
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13