特開2021-70204(P2021-70204A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友化学株式会社の特許一覧
特開2021-70204樹脂ペレット及び樹脂ペレットの製造方法
<>
  • 特開2021070204-樹脂ペレット及び樹脂ペレットの製造方法 図000004
  • 特開2021070204-樹脂ペレット及び樹脂ペレットの製造方法 図000005
  • 特開2021070204-樹脂ペレット及び樹脂ペレットの製造方法 図000006
  • 特開2021070204-樹脂ペレット及び樹脂ペレットの製造方法 図000007
  • 特開2021070204-樹脂ペレット及び樹脂ペレットの製造方法 図000008
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2021-70204(P2021-70204A)
(43)【公開日】2021年5月6日
(54)【発明の名称】樹脂ペレット及び樹脂ペレットの製造方法
(51)【国際特許分類】
   B29B 9/06 20060101AFI20210409BHJP
   C08J 3/12 20060101ALI20210409BHJP
【FI】
   B29B9/06
   C08J3/12 ZCES
【審査請求】未請求
【請求項の数】17
【出願形態】OL
【全頁数】22
(21)【出願番号】特願2019-197407(P2019-197407)
(22)【出願日】2019年10月30日
(71)【出願人】
【識別番号】000002093
【氏名又は名称】住友化学株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【弁理士】
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100124062
【弁理士】
【氏名又は名称】三上 敬史
(72)【発明者】
【氏名】眞見 俊彦
(72)【発明者】
【氏名】上野 翔平
【テーマコード(参考)】
4F070
4F201
【Fターム(参考)】
4F070AA13
4F070AB24
4F070DA11
4F070DA55
4F070DC06
4F201AA03
4F201AA04
4F201BA02
4F201BL11
4F201BL42
(57)【要約】
【課題】固体状態でのフィーダーでの輸送性が高い樹脂ペレット及びその製造方法を提供する。
【解決手段】樹脂ペレット10は、くぼみ部10aを有し、くぼみ部10aが水平面HPに対面するように樹脂ペレット10を水平面HP上に載置した場合の高さをT1とし、水平面HPに直交する方向から見た最大径をLとした時に、L/T1により定義されるアスペクト比が1.2〜1.8である。
【選択図】図1
【特許請求の範囲】
【請求項1】
樹脂ペレットであって、くぼみ部を有し、
前記くぼみ部が水平面に対面するように前記樹脂ペレットを前記水平面上に載置した場合の高さをT1とし、前記水平面に直交する方向から見た最大径をLとした時に、L/T1により定義されるアスペクト比が1.2〜1.8である、樹脂ペレット。
【請求項2】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の幅Wが1.7mm〜2.3mmである、請求項1に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における2つの凸部との接点間の距離である。
【請求項3】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像におけるくぼみ部の深さDが0.2mm〜0.6mmである、請求項1または2に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離である。
【請求項4】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の曲線の長さCが2.0mm〜2.4mmである、請求項1〜3のいずれか一項に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の曲線の長さCは、前記断面像において前記樹脂ペレットの輪郭における前記接線と接する2つの接点間の長さである。
【請求項5】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の幅Wと前記くぼみ部の深さDとの比(W/D)が3.5〜7.0である、請求項1〜4のいずれか一項に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における前記2つの凸部との接点間の距離である。
【請求項6】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における、前記くぼみ部の幅Wと前記樹脂ペレットの幅Sとの比(W/S)が0.05〜0.15である、請求項1〜5のいずれか一項に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における前記2つの凸部との接点間の距離であり、前記樹脂ペレットの幅Sは、前記断面像において前記接線と垂直かつ前記樹脂ペレットを間に挟む2本の第2接線間の距離である。
【請求項7】
X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における、前記くぼみ部の深さDと前記樹脂ペレットの高さT2との比(D/T2)が0.1〜0.2である、請求項1〜6のいずれか一項に記載の樹脂ペレット。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記樹脂ペレットの高さT2は、前記断面像において前記接線と、前記接線と平行且つ前記接線との間に前記樹脂ペレットを挟む第3接線との間の距離である。
【請求項8】
前記アスペクト比が1.4〜1.5である、請求項1〜7のいずれか一項に記載の樹脂ペレット。
【請求項9】
前記樹脂ペレットの体積の標準偏差が、0.5〜3.5mmである、請求項1〜8のいずれか一項に記載の樹脂ペレット。
【請求項10】
前記樹脂ペレットの表面積の標準偏差が、0.5〜4.0mmである、請求項1〜9のいずれか一項に記載の樹脂ペレット。
【請求項11】
前記樹脂ペレットの重量の標準偏差が、0.5〜3.0mgである、請求項1〜10のいずれか一項に記載の樹脂ペレット。
【請求項12】
前記樹脂ペレットのHDD硬度が、60〜70である、請求項1〜11のいずれか一項に記載の樹脂ペレット。
【請求項13】
前記樹脂ペレットの樹脂がポリオレフィン系樹脂である、請求項1〜12のいずれか一項に記載の樹脂ペレット。
【請求項14】
前記樹脂ペレットの樹脂がポリエチレン系樹脂である、請求項1〜12のいずれか1項に記載の樹脂ペレット。
【請求項15】
樹脂ペレットの製造方法であって、
樹脂を溶融して溶融樹脂を得る工程と、
ダイ板の貫通孔から前記溶融樹脂を押し出す工程と、
押し出された溶融樹脂を、水で冷却しながら回転するカッターで切断して樹脂ペレットを得る工程と、を含み、
前記切断する工程において、押し出された溶融樹脂に対して供給する水の量は80m/h〜160m/hであり、
前記カッターは、回転の軸方向から見た場合に、前記カッターの刃先が伸びる方向が、回転中心及び前記刃先の回転中心側端部を結ぶ線を基準として、回転の方向とは反対向きに20°〜50°で傾斜している、樹脂ペレットの製造方法。
【請求項16】
前記押し出された溶融樹脂に供給する水の流れ方向と、前記溶融樹脂の押出方向とが、80°〜100°の角度をなす、請求項15に記載の樹脂ペレットの製造方法。
【請求項17】
前記押し出された溶融樹脂に供給する水の流れ方向が鉛直方向であり、前記溶融樹脂の押出方向が水平方向である、請求項16に記載の樹脂ペレットの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂ペレット及び樹脂ペレットの製造方法に関する。
【背景技術】
【0002】
従来より、押出成形装置などに供給するための樹脂ペレットが知られている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2015−93965号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、従来の樹脂ペレットにおいては、固体状態でのフィーダーでの輸送性が必ずしも十分でない。
【0005】
本発明は上記課題に鑑みてなされたものであり、固体状態でのフィーダーでの輸送性が高い樹脂ペレット及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明にかかる樹脂ペレットは、くぼみ部を有し、
前記くぼみ部が水平面に対面するように前記樹脂ペレットを前記水平面上に載置した場合の高さをT1とし、前記水平面に直交する方向から見た最大径をLとした時に、L/T1により定義されるアスペクト比が1.2〜1.8である。
【0007】
ここで、上記樹脂ペレットは、X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の幅Wが1.7mm〜2.3mmであることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における2つの凸部との接点間の距離である。
【0008】
また、上記樹脂ペレットは、X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像におけるくぼみ部の深さDが0.2mm〜0.6mmであることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離である。
【0009】
また、上記樹脂ペレットは、X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の曲線の長さCが2.0mm〜2.4mmであることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の曲線の長さCは、前記断面像において前記樹脂ペレットの輪郭における前記接線と接する2つの接点間の長さである。
【0010】
また、上記樹脂ペレットはX線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における前記くぼみ部の幅Wと前記くぼみ部の深さDとの比(W/D)が3.5〜7.0であることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における前記2つの凸部との接点間の距離である。
【0011】
また、上記樹脂ペレットは、X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における、前記くぼみ部の幅Wと前記樹脂ペレットの幅Sとの比(W/S)が0.05〜0.15であることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記くぼみ部の幅Wは前記断面像において前記接線における前記2つの凸部との接点間の距離であり、前記樹脂ペレットの幅Sは、前記断面像において前記接線と垂直かつ前記樹脂ペレットを間に挟む2本の第2接線間の距離である。
【0012】
また、上記樹脂ペレットは、X線CT装置により、前記水平面と垂直且つ前記最大径Lの方向と垂直な前記樹脂ペレットの断面像を前記最大径Lの方向に一定距離毎に取得した場合に、前記くぼみ部の深さDが最大となる断面像における、前記くぼみ部の深さDと前記樹脂ペレットの高さT2との比(D/T2)が0.1〜0.2であることができる。
ただし、前記くぼみ部の深さDは、前記断面像において前記くぼみ部の両側の2つの凸部と接する接線と、前記くぼみ部の最深部との間の距離であり、前記樹脂ペレットの高さT2は、前記断面像において前記接線と、前記接線と平行且つ前記接線との間に前記樹脂ペレットを挟む第3接線との間の距離である。
【0013】
また、上記樹脂ペレットにおいて、前記アスペクト比が1.4〜1.5であることができる。
【0014】
また、前記樹脂ペレットの体積の標準偏差が、0.5〜3.5mmであることができる。
【0015】
また、前記樹脂ペレットの表面積の標準偏差が、0.5〜4.0mmであることができる。
【0016】
また、前記樹脂ペレットの重量の標準偏差が、0.5〜3.0mgであることができる。
【0017】
また、前記樹脂ペレットのHDD硬度が、60〜70であることができる。
【0018】
また、前記樹脂ペレットの樹脂がポリオレフィン系樹脂であることができる。
【0019】
また、前記樹脂ペレットの樹脂がポリエチレン系樹脂であることができる。
【0020】
本発明にかかる樹脂ペレットの製造方法は、樹脂を溶融して溶融樹脂を得る工程と、
ダイ板の貫通孔から前記溶融樹脂を押し出す工程と、
押し出された溶融樹脂を、水で冷却しながら回転するカッターで切断して樹脂ペレットを得る工程と、を含み、
前記切断工程において、押し出された溶融樹脂に対して供給する水の量は80m/h〜160m/hであり、
前記カッターは、回転の軸方向から見た場合に、前記カッターの刃先が伸びる方向が、回転中心及び回転中心側端部を結ぶ線を基準として、回転の方向とは反対向きに20°〜50°で傾斜している。
【0021】
ここで、前記押し出された溶融樹脂に供給する水の流れ方向と、前記溶融樹脂の押出方向とが、80°〜100°の角度をなすことができる。
【0022】
また、前記押し出された溶融樹脂に供給する水の流れ方向が鉛直方向であり、前記溶融樹脂の押出方向が水平方向であることができる。
【発明の効果】
【0023】
本発明によれば、固体状態でのフィーダーでの輸送性が高い樹脂ペレット及びその製造方法が提供される。
【図面の簡単な説明】
【0024】
図1図1の(a)は本発明の1実施形態にかかる樹脂ペレットを、くぼみ部が水平面に対面する様に水平面上に載置した状態をしめす鉛直断面図であり、図1の(b)は、図1の(a)の上面図である。
図2図2は、本発明の一例にかかる樹脂ペレットのX線CTによる断面画像の一例である。
図3図3は、本発明の樹脂ペレットの製造に用いるペレット造粒機の概略断面図である。
図4図4は、図3のダイ板の外面の正面図である。
図5図5は、図3の回転カッターの正面図である。
【発明を実施するための形態】
【0025】
図面を参照して、本発明の実施形態について説明する。図1の(a)は本発明の1実施形態にかかる樹脂ペレット10を、くぼみ部10aが水平面HPに対面する様に水平面HP上に載置した状態をしめす鉛直断面図であり、図1の(b)は、図1の(a)のa−a断面図である。
【0026】
本発明の実施形態にかかる樹脂ペレット10は、くぼみ部10aをもち、扁平な形状を有する。くぼみ部10aが水平面HPに対面するように樹脂ペレット10を水平面HP上に載置した場合の樹脂ペレット10の高さをT1とし、水平面HPに垂直な方向から見た樹脂ペレットの最大径をLとした時に、L/T1により定義されるアスペクト比は1.2〜1.8である。このアスペクト比は、1.4〜1.5であることができる。
【0027】
くぼみ部10aが水平面HPに対面するように樹脂ペレット10を水平面HP上に載置した場合、図1に示すようにくぼみ部10aの周りの環状の凸部10pの少なくとも一部が水平面HPと接する。
【0028】
樹脂ペレット10の上部は、上から見て中央部が一番高くなり、外側に向かって高さが小さくなるように丸みを帯びていることができる。樹脂ペレット10の下部は、下から見て中央部にくぼみ部10aを有し、くぼみ部10aの周りには環状に下向きの凸部10pが形成されている。
【0029】
最大径L及び高さT1は、実体顕微鏡などの光学顕微鏡により測定できる。すなわち、図1の(a)及び(b)に示すようにくぼみ部10aが水平面HPに対面するように樹脂ペレット10を水平面HP上に載置した後、図1の(a)のように水平方向から樹脂ペレットを観察し、水平面HPと、当該水平面HPと平行且つ樹脂ペレット10の頂部と接する線HP’との距離を高さT1として取得することができる。
【0030】
また、上記のように載置された樹脂ペレット10を、図1の(b)のように鉛直方向下向きに観察し、樹脂ペレットの径の内の最大径をLとして取得することができる。最大径とは、あらゆる方向の径の内の最大の長さを与える径である。
【0031】
なお、図1の(b)において樹脂ペレット10の最大径Lに対する、最大径Lに直交する方向の径L’(第2の径と呼ぶことがある)の割合は、80〜100%であることが好ましく、90〜100%であることがより好ましい。
【0032】
なお、通常は、ダイ板の貫通孔から押し出される樹脂の方向(詳しくは後述)と、樹脂ペレットの高さT1の方向(図1のZ方向)とは一致する。
【0033】
本実施形態にかかる樹脂ペレット10は、X線CT(Computed Tomography;コンピュータ断層撮影)装置により、水平面HPと垂直且つ最大径Lの方向と垂直な断面像を最大径Lの方向に一定距離毎に取得した場合に、次の少なくとも一つの条件を満たすことができる。
【0034】
なお、X線CT像を撮影する一定距離の例は、1〜90μmであり、25μmであることが好適である。
【0035】
条件(a)くぼみ部10aの深さDが最大となる断面像(以下、特定断面像と呼ぶことがある)におけるくぼみ部10aの幅Wが1.7mm〜2.3mmである。
【0036】
ここで、図2に示すように、くぼみ部10aの深さDは、X線CTの断面像において、くぼみ部10aの両側の2つの凸部10pと接する接線Aと、くぼみ部10aの最深部との間の距離であり、くぼみ部10aの幅Wは接線Aにおける2つの凸部10pとの接点B、B間の距離である。
【0037】
条件(b)上記特定断面像におけるくぼみ部10aの深さDが、0.2mm〜0.6mmである。
【0038】
条件(c)上記特定断面像におけるくぼみ部10aの曲線の長さCが2.0mm〜2.4mmであることが好適である。
【0039】
ここで、くぼみ部10aの曲線の長さCは、特定断面像において、樹脂ペレット10の輪郭における接線Aと接する2つの接点BB間の長さである。
【0040】
条件(d)上記特定断面像におけるくぼみ部の幅Wとくぼみ部の深さDとの比(W/D)が3.5〜7.0である。
【0041】
くぼみ部の幅Wは、特定断面像において、接線Aにおける2つの凸部10pとの接点B、B間の距離である。
【0042】
条件(e)上記特定断面像における、くぼみ部の幅Wと樹脂ペレットの幅Sとの比(W/S)が0.05〜0.15である。
【0043】
ここで、樹脂ペレットの幅Sは、特定断面像において、接線Aと垂直かつ樹脂ペレット10を間に挟む2本の接線(第2接線)T,T’間の距離である。
【0044】
条件(f)上記特定断面像における、くぼみ部の深さDと樹脂ペレットの高さT2との比(D/T2)が0.1〜0.2である。
【0045】
ここで、樹脂ペレットの高さT2とは、特定断面像において、接線Aと、接線Aと平行且つ接線Aとの間に樹脂ペレット10を挟む接線(第3接線)A’との間の距離である。
【0046】
本実施形態にかかる樹脂ペレットの体積の標準偏差は0.5〜3.5mmであることができる。当該標準偏差は、0.5〜2.0mmであることが好ましい。
【0047】
本実施形態にかかる樹脂ペレットの表面積の標準偏差は0.5〜4.0mmであることができる。
【0048】
本実施形態にかかる樹脂ペレットの重量の標準偏差は0.5〜3.0mgであることができる。当該標準偏差は、0.5〜2.0mgであることが好ましい。
【0049】
また、本実施形態にかかる樹脂ペレットのHDD硬度が、60〜70であることができる。
【0050】
(樹脂)
樹脂ペレットを構成する樹脂は、重合体のみからなってもよいが、重合体以外に添加剤を含んでもよい。樹脂中の重合体の質量割合は50%以上であることができ、70%以上であることもでき、90%以上であることもでき、95%以上であることもできる。
【0051】
添加剤の例は、酸化防止剤、耐候剤、滑剤、抗ブロッキング剤、帯電防止剤、防曇剤、無滴剤、顔料、フィラーである。
【0052】
樹脂の例は、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、ポリカーボネート系樹脂、ポリエーテルイミド系樹脂、ポリエステル系樹脂、ポリスチレン系樹脂、ポリエーテルスルホン系樹脂、フッ素系樹脂、ABS(アクリロニトリル−ブタジエン−スチレン)系樹脂、AS(アクリロニトリル−スチレン)系樹脂、ポリ塩化ビニル系樹脂である。これらの樹脂の複数種の混合物であってもよい。これらの樹脂の中でも、ポリオレフィン系樹脂が好適である。
【0053】
(ポリオレフィン系樹脂)
ポリオレフィン系樹脂の例はポリエチレン系樹脂、ポリプロピレン系樹脂である。
【0054】
(ポリエチレン系樹脂)
ポリエチレン系樹脂はエチレン系重合体を含む。エチレン系重合体の例は、エチレン単独重合体、エチレンとα−オレフィンとの共重合体、脂環式化合物で置換されたα−オレフィンとエチレンとの共重合体である。
【0055】
エチレン単独重合体の例は、ラジカル開始剤を用いて高圧ラジカル重合により繰り返し単位のエチレンがランダムに分岐構造をもって結合した、密度が910〜935kg/mの高圧法低密度ポリエチレン(LDPE)である。
【0056】
エチレンとα−オレフィンとの共重合体の例は、結晶性を有する直鎖状低密度ポリエチレン、結晶性が低くゴム状の弾性特性を有するエチレンとα−オレフィンとの共重合体のエラストマー等が挙げられる。
【0057】
直鎖状低密度ポリエチレンの密度は900〜940kg/mであることができ、エチレンとα−オレフィンとの共重合体のエラストマーの密度は860〜900kg/mであることができる。
【0058】
α−オレフィンの例は、炭素数3〜10のα−オレフィンであり、炭素数3〜10のα−オレフィンとしては、例えば、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン、3−メチル−1−ブテン等が挙げられ、好ましくは、炭素数4〜10のα−オレフィンであり、より好ましくは、1−ブテン、1−ヘキセンまたは1−オクテンである。
【0059】
脂環式化合物で置換されたα−オレフィンの例は、ビニルシクロヘキサンである。
【0060】
エチレン系重合体に占めるα−オレフィンに由来する構造単位の量は4.0〜20質量%であることができる。
【0061】
エチレンとα−オレフィンとの共重合体の具体例は、エチレン−1−ブテン共重合体、エチレン−1−ヘキセン共重合体、エチレン−1−オクテン共重合体、エチレン−1−デセン共重合体、エチレン−(3−メチル−1−ブテン)共重合体であり、これらは、1種単独であってもよく、2種以上の混合物であってもよい。また、エチレン系重合体は、エチレン単独重合体と、エチレンとα−オレフィンとの共重合体との混合物であってもよい。る。
【0062】
エチレン系重合体の、測定温度190℃、2.16kg荷重下で測定されるメルトフローレートは、0.5〜50g/10分であることができり、1〜30g/10分であることが好ましく、1〜20g/10分であることがより好ましい。
【0063】
エチレン系重合体は、公知の重合触媒を用いて、公知の重合方法によって製造することができる。
【0064】
重合触媒としては、例えば、メタロセン触媒に代表される均一系触媒系、チーグラー型触媒系、チーグラー・ナッタ型触媒系等が挙げられる。均一系触媒系としては、例えば、シクロペンタジエニル環を有する周期表第4族の遷移金属化合物とアルキルアルミノキサンからなる触媒系、またはシクロペンタジエニル環を有する周期表第4族の遷移金属化合物とそれと反応してイオン性の錯体を形成する化合物および有機アルミニウム化合物からなる触媒系、シリカ、粘土鉱物等の無機粒子にシクロペンタジエニル環を有する周期表第4族の遷移金属化合物、イオン性の錯体を形成する化合物および有機アルミニウム化合物等の触媒成分を担持し変性させた触媒系等が挙げられ、また、上記の触媒系の存在下でエチレンやα−オレフィンを予備重合させて調製される予備重合触媒系が挙げられる。
【0065】
また、高圧法低密度ポリエチレン(LDPE)は、重合触媒としてラジカル開始剤を用いて製造することができる。
【0066】
(ポリプロピレン系樹脂)
ポリプロピレン系樹脂はプロピレン系重合体を含む。プロピレン系重合体の例は、プロピレン単独重合体、エチレンおよび/または炭素数4〜10のα−オレフィンと、プロピレンとの共重合体である。
【0067】
プロピレン単独重合体の測定温度230℃、2.16kg荷重下で測定されるメルトフローレートは、0.1〜50g/10分であることができる。
【0068】
エチレンおよび/または炭素数4〜10のα−オレフィンと、プロピレンとの共重合体の測定温度230℃、2.16kg荷重下で測定されるメルトフローレート(MFR)は、10〜200g/10分であることができる。
【0069】
エチレンおよび/または炭素数4〜10のα−オレフィンと、プロピレンとの共重合体の全質量を100質量%としたときに、エチレンおよび/または炭素数4〜10のα−オレフィンに由来する構造単位は0.1〜40重量%であることができ、プロピレンに由来する構造単位は99.9〜60重量%であることができる。
【0070】
本明細書において、「エチレンに由来する構造単位」のような用語中の「構造単位」とは、モノマーの重合単位を意味する。従って、例えば、「エチレンに由来する構造単位」は、−CHCH−なる構造単位を意味する。
【0071】
炭素数4〜10のα−オレフィンとしては、例えば、1−ブテン、1−ペンテン、1−ヘキセン、4−メチル−1−ペンテン、1−オクテン、1−デセン等が挙げられ、好ましくは、1−ブテン、1−ヘキセンまたは1−オクテンである。
【0072】
エチレンおよび/または炭素数4〜10のα−オレフィンと、プロピレンとの共重合体の具体例は、プロピレンとエチレンとのランダム共重合体、プロピレンと炭素数4〜10のα−オレフィンとのランダム共重合体、プロピレンとエチレンと炭素数4〜10のα−オレフィンとのランダム共重合体、プロピレンブロック共重合体等が挙げられ、これらは、1種単独であってもよく、2種以上の混合物であってもよい。また、プロピレン系重合体は、プロピレン単独重合体と、エチレンおよび/または炭素数4〜10のα−オレフィンと、プロピレンとの共重合体との混合物であってもよい。
【0073】
プロピレンと炭素数4〜10のα−オレフィンとのランダム共重合体としては、例えば、プロピレン−1−ブテンランダム共重合体、プロピレン−1−ヘキセンランダム共重合体、プロピレン−1−オクテンランダム、プロピレン−1−デセンランダム共重合体等が挙げられる。
【0074】
プロピレンとエチレンと炭素数4〜10のα−オレフィンとのランダム共重合体としては、例えば、プロピレン−エチレン−1−ブテン共重合体、プロピレン−エチレン−1−ヘキセン共重合体、プロピレン−エチレン−1−オクテン、プロピレン−エチレン−1−デセン共重合体等が挙げられる。
【0075】
プロピレン系重合体は、公知のオレフィンの重合触媒を用いて、公知の重合方法によって製造することができる。
【0076】
重合触媒としては、例えば、チーグラー型触媒系、チーグラー・ナッタ型触媒系、シクロペンタジエニル環を有する周期表第4族の遷移金属化合物とアルキルアルミノキサンからなる触媒系、またはシクロペンタジエニル環を有する周期表第4族の遷移金属化合物とそれと反応してイオン性の錯体を形成する化合物および有機アルミニウム化合物からなる触媒系、シリカ、粘土鉱物等の無機粒子にシクロペンタジエニル環を有する周期表第4族の遷移金属化合物、イオン性の錯体を形成する化合物および有機アルミニウム化合物等の触媒成分を担持し変性させた触媒系等が挙げられ、また、上記の触媒系の存在下でエチレンやα−オレフィンを予備重合させて調製される予備重合触媒を用いてもよい。
【0077】
(アクリル系樹脂)
アクリル系樹脂はアクリル系重合体を含む。アクリル系重合体の例は、アクリル酸及びそのエステルなどのアクリル酸誘導体の重合体、メタクリル酸及びそのエステルなどのメタクリル酸誘導体の重合体、及び、アクリル酸誘導体及びメタクリル酸誘導体の共重合体である。
【0078】
アクリル系重合体の例は、炭素数1〜4のアルキル基を有するメタクリル酸アルキルに由来する単量体単位のみを含むメタクリル単独重合体;炭素数1〜4のアルキル基を有するメタクリル酸アルキルに由来する単量体単位を50重量%以上100重量%未満と、炭素数1〜4のアルキル基を有するメタクリル酸アルキルに由来する単量体単位と共重合可能な他のビニル単量体に由来する単量体単位を0重量%を超えて50重量%以下とを有するメタクリル共重合体である。
【0079】
上記「炭素数1〜4のアルキル基を有するメタクリル酸アルキル」とは、CH=CH(CH)COOR(Rは炭素数1〜4のアルキル基)で表される化合物である。炭素数1〜4のアルキル基を有するメタクリル酸アルキルと共重合可能なビニル単量体とは、炭素数1〜4のアルキル基を有するメタクリル酸アルキルと共重合可能であり、且つビニル基を有する単量体である。
【0080】
上記炭素数1〜4のアルキル基を有するメタクリル酸アルキルとしては、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−プロピル、メタクリル酸イソプロピル、メタクリル酸n−ブチル、メタクリル酸tert−ブチル、メタクリル酸sec−ブチル、及びメタクリル酸イソブチルが挙げられる。上記炭素数1〜4のアルキル基を有するメタクリル酸アルキルは、好ましくはメタクリル酸メチルである。上記のメタクリル酸アルキルは、単独で使用してもよく、2種以上を混合して使用してもよい。
【0081】
上記炭素数1〜4のアルキル基を有するメタクリル酸アルキルと共重合可能なビニル単量体としては、例えば、メタクリル酸シクロヘキシル、メタクリル酸ベンジル、メタクリル酸2−エチルヘキシル、メタクリル酸2−ヒドロキシエチル、メタクリル酸ヒドロキシプロピル、メタクリル酸モノグリセロールなどのメタクリル酸エステル(但し、炭素数1〜4のアルキル基を有するメタクリル酸アルキルを除く);アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸モノグリセロール等のアクリル酸エステル;アクリル酸、メタクリル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸などの不飽和カルボン酸又はこれらの酸無水物;アクリルアミド、メタクリルアミド、アクリロニトリル、メタクリロニトリル、ジアセトンアクリルアミド、メタクリル酸ジメチルアミノエチル等の窒素含有モノマー;アリルグリシジルエーテル、アクリル酸グリシジル、メタクリル酸グリシジルなどのエポキシ基含有単量体;スチレン、α−メチルスチレンなどのスチレン系単量体が挙げられる。
【0082】
上記の重合体の製造方法としては、炭素数1〜4のアルキル基を有するメタクリル酸アルキルと、必要に応じて、炭素数1〜4のアルキル基を有するメタクリル酸アルキルと共重合可能なビニル単量体とを、塊状重合、溶液重合、懸濁重合、乳化重合等の方法で重合する方法が挙げられる。
【0083】
(ポリカーボネート系樹脂)
ポリカーボネート系樹脂に含まれる重合体は、ジヒドロキシ化合物に由来する構造単位を含む重合体である。当該重合体の例は、二価フェノールやイソソルバイドなどのジヒドロキシ化合物とカルボニル化剤とを界面重縮合法や溶融エステル交換法などで反応させることにより得られたもの;カーボネートプレポリマーを固相エステル交換法などで重合させることにより得られたもの;及び、環状カーボネート化合物を開環重合法で重合させることにより得られたものが挙げられる。
【0084】
二価フェノールとしては、例えば、ハイドロキノン、レゾルシノール、4,4’−ジヒドロキシジフェニル、ビス(4−ヒドロキシフェニル)メタン、ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン(通称ビスフェノールA)、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジメチル)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3,5−ジブロモ)フェニル}プロパン、2,2−ビス{(3−イソプロピル−4−ヒドロキシ)フェニル}プロパン、2,2−ビス{(4−ヒドロキシ−3−フェニル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,4−ビス(4−ヒドロキシフェニル)−2−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)ペンタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−4−イソプロピルシクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス{(4−ヒドロキシ−3−メチル)フェニル}フルオレン、α,α’−ビス(4−ヒドロキシフェニル)−o−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼン、α,α’−ビス(4−ヒドロキシフェニル)−p−ジイソプロピルベンゼン、1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシジフェニルケトン、4,4’−ジヒドロキシジフェニルエーテル、及び4,4’−ジヒドロキシジフェニルエステルが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0085】
これらの二価フェノールの中でも、ビスフェノールA、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)−3−メチルブタン、2,2−ビス(4−ヒドロキシフェニル)−3,3−ジメチルブタン、2,2−ビス(4−ヒドロキシフェニル)−4−メチルペンタン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、及びα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンが好ましい。特に、ビスフェノールAの単独使用や、ビスフェノールAと、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス{(4−ヒドロキシ−3−メチル)フェニル}プロパン、及びα,α’−ビス(4−ヒドロキシフェニル)−m−ジイソプロピルベンゼンからなる群より選択される少なくとも1種との併用が好ましい。
【0086】
カルボニル化剤としては、例えばカルボニルハライド(ホスゲンなど)、カーボネートエステル(ジフェニルカーボネートなど)、及びハロホルメート(二価フェノールのジハロホルメートなど)が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0087】
本実施形態にかかる樹脂ペレットは、固体状態でのフィーダーでの輸送性が高い。従って、成形機のスクリュー部における固体状態で搬送される部分、あるいは、成形機に搬送するフィーダー部において、樹脂ペレットの搬送量を高くできる。
【0088】
本実施形態にかかる樹脂ペレットは、種々の成形機に供して任意の成形品を得ることができる。例えば、押出成形機に供して、フィルム、管、棒状材料、ラミネート製品などを得ることができる。また、射出成形機に供して、型の形状に沿う成形品を得ることができる。
【0089】
(樹脂ペレットの製造方法)
続いて、上記の樹脂ペレットの製造方法について説明する。上記の樹脂ペレットは、溶融した樹脂をダイ板の貫通孔から押し出す押出工程と、押し出された樹脂を水で冷却しながらダイ板の外面上で切断する切断工程とを有するいわゆるアンダーウォーターカット法により製造することができる。
【0090】
図3は、本実施形態において用いられる樹脂ペレット造粒機200の一例の模式図であり、図4はダイ板の外側主面240sの模式図であり、図5は回転カッター260の正面図である。
【0091】
この樹脂ペレット造粒機200は、シリンダ220及びスクリュー230を有する押出機210、シリンダ220の先端に設けられた板状のダイ板240、ダイ板240の外側主面240sを覆うカバー250、ダイ板240の外側主面240s上に配置された回転カッター260、回転カッター260に接続された回転軸270及びモータ280、ポンプ290、冷却器300、及び、液固分離器310を備える。
【0092】
押出機210は、樹脂を溶融してダイ板240から押し出せるものであればよい。ダイ板240は板状形状を有し、厚み方向に貫通する貫通孔240hを多数有する。図4に示すように、貫通孔240hは、ダイ板240の外側主面240sの中心のまわりに環状に配置されている。貫通孔240hの径に特に限定はないが、2.0〜4.0mmとすることができる。貫通孔240hの断面形状は円形であることができる。
【0093】
図示は省略するが、ダイ板240の内部にはスチームなどの熱媒流路が設けられており、ダイ板240の外側主面240s上を冷却水が供給されても、ダイ板240自体の温度を適切な高温に維持できるようになっている。
【0094】
図3に示すように、回転カッター260は、複数のカッター部材262と、複数のカッター部材262を保持するホルダ264を有し、ホルダ264が回転軸270に固定されている。カッター部材262は、刃先262eを有する刃部262bを備え、刃部262bがダイ板240の外側主面240sと接触するように、回転カッター260が配置されている。
【0095】
図5に示すように、回転カッター260の軸方向から回転カッター260のダイ板240と接触する側を見た場合に、各刃部262bの刃先262eは直線状である。
【0096】
図4及び図5における刃部262bの有効長EF、すなわち、刃先262eの長さは、特に限定されないが、60〜120mmとすることができる。
【0097】
図5に示すように、回転カッター260の軸方向から回転カッター260のダイ板240と接触する側を見た場合に、刃先262eの伸びる方向Eは、回転カッター260の回転中心Q及び刃先262eの回転中心側の端部Mとを結ぶ線Fを基準として、回転カッター260の回転方向DDとは反対向きに角度θで傾斜している。この角度θを後退角度と呼ぶ。
【0098】
後退角度θは、20°〜50°であり、25°〜45°であることが好ましく、25°〜35°であることがより好ましい。
【0099】
図3に示すように、カバー250は、ダイ板240の外側主面240sと回転カッター260を収容している。回転軸270はカバー250を貫通しており、回転軸270の貫通部はカバー250の外に設けられたモータ280と接続されている。
【0100】
カバー250の下部の水入口250iにはラインL1が接続されている。ラインL1には、上流側から順に、ポンプ290、冷却器300、液固分離器310の水出口310wが接続されている。液固分離器310の入口310iと、カバー250の上部の水出口250oとは、ラインL2で接続され、液固分離器310の粒子出口310pにはラインL3が接続されている。
【0101】
液固分離器310の例は、フィルタである。
【0102】
続いて、樹脂ペレット造粒機200を使用した上記の樹脂ペレットの製造方法の一例を説明する。
【0103】
まず、原料樹脂を押出機210で溶融し、必要に応じて混練した後、ダイ板240の貫通孔240hから押し出す。
【0104】
樹脂の押出線速度は、通常200mm/s〜500mm/sであり、好ましくは300mm/s〜400mm/sである。
【0105】
樹脂の押出量は、通常1.0ton/h〜15ton/hであり、好ましくは1.5ton/h〜10ton/hであり、より好ましくは2.0ton/h〜5.0ton/hである。
【0106】
樹脂の押出圧力は通常4MPa〜25MPaであり、好ましくは10MPa〜20MPaである。
【0107】
樹脂の押出温度は、樹脂によって適宜設定できるが、通常200℃〜300℃であり、好ましくは220℃〜250℃である。
【0108】
樹脂の押出と平行して、ポンプ290で冷却水をカバー250内に定量供給して押し出された樹脂を冷却しつつ、回転カッター260を回転させて、貫通孔240hから押し出された樹脂を連続的にカットする。これにより、上記の樹脂ペレット10が得られる。
【0109】
カットにより得られる樹脂ペレットは、カバー250内に供給された冷却水と共にラインL2を介して排出され、混合物として液固分離器310に供給される。液固分離器310では、混合物が粒子と水とに分離され、分離された粒子はラインL3を介して排出され、必要に応じて乾燥処理等の後工程に送られる。一方、分離後の水は、ラインL1を介して、必要に応じて冷却器300で冷却された後、ポンプ290により循環利用される。
【0110】
カバー250内に供給する冷却水の流量は80m/h〜160m/hとする。冷却水の流量は、100m/h〜140m/hであることが好ましく、110m/h〜130m/hであることがより好ましい。冷却水の流量は、上記の範囲で樹脂の押出量に応じて適宜調整できる。
【0111】
カバー250内における冷却水の流れ方向と、樹脂の押出方向とがなす角度は、80°〜100°であることが好ましく、85°〜95°であることがより好ましい。なお、冷却水の流れ方向とは、カバー250の水入口250iと水出口250oとを結ぶ方向であり、図3の実施形態では鉛直上向き方向となっている。また、溶融樹脂の押出方向は、ダイ板240の貫通孔240hの軸方向であり、図3の実施形態では水平方向となっている。したがって、図3の実施形態では、冷却水の流れ方向と、樹脂の押出方向とがなす角度は、90°である。
【0112】
また、図3に示すように、カバー250内における冷却水の流れ方向は鉛直方向であり、溶融樹脂の押出方向が水平方向であることが好適である。特に、冷却水の流れ方向は鉛直上向き方向であることがより好ましい。
【0113】
カバー250内に供給する冷却水の温度は、通常10℃〜70℃であり、好ましくは、20℃〜60℃であり、より好ましくは30℃〜50℃である。
【0114】
回転カッター260の回転速度は通常100rpm〜2000rpmであり、好ましくは400rpm〜1200rpmであり、より好ましくは600rpm〜1000rpmである。
【0115】
ダイ板240の熱媒流路に供給するスチームの温度は、樹脂に応じて滴設定できるが、通常150℃〜250℃であり、好ましくは180℃〜220℃である。
【0116】
本実施形態では、特に、後退角度θが20°〜40°で取り付けられたカッターを用い、冷却水の流量を80〜160m/hとすることにより、上記の樹脂ペレットを好適に製造することができる。
【0117】
なお、本実施形態にかかる樹脂ペレットは、上記実施形態以外の方法で製造することも可能である。
例えば、回転カッターの刃の枚数等は適宜変更できる。
【実施例】
【0118】
<実施例1>
高圧法低密度ポリエチレンを、反応温度235℃、反応圧力190MPa、ガス量16トン/時で槽型反応器を用いて高圧ラジカル重合法により製造した。生産量は3トン/時であった。重合体の物性のサンプリング試験を行ったところ、得られた高圧法低密度ポリエチレンのMFRは3.5(g/10分)であり、密度は924(kg/m)であった。
【0119】
高圧および低圧の分離器により、生成した重合体から未反応ガスを分離して除去した後、重合体を押出機に送り、ダイ板の貫通孔から溶融重合体を押し出した。図3に示すペレット造粒機を用いて、押し出された溶融重合体を冷却水によって固化しつつ、回転カッターでカットすることにより樹脂ペレットを製造した。
【0120】
重合体の押出量は3トン/時、ダイ板に供給する重合体の温度を234℃、ダイ板内の熱媒流路に供給するスチームの温度を195℃、カバー内に供給する冷却水(PCW)の温度は46℃、冷却水の流量は120m/時とした。回転カッターは、カッターを8枚有し、カッターの取付における後退角度θが30°、回転数が687rpmであった。このようにして得られた樹脂ペレットはくぼみ部を有していた。
【0121】
<実施例2>
回転カッターの回転数を653rpmに変更した以外は、実施例1と同様の条件で樹脂ペレットを製造した。得られた樹脂ペレットはくぼみ部を有していた。
【0122】
<実施例3>
カッター回転数を652rpmにすること、及び、ダイ板の熱媒流路に供給するスチームの温度を210℃に変更した以外は、実施例1と同様の条件で樹脂ペレットを製造した。得られた樹脂ペレットはくぼみ部を有していた。
【0123】
<比較例1>
高圧法低密度ポリエチレンを、反応温度230℃、反応圧力165MPa、ガス量15.7トン/時で槽型反応器を用いて高圧ラジカル重合法により製造した。生産量は2.4トン/時であった。重合体物性のサンプリング試験を行ったところ、得られた高圧法低密度ポリエチレンのMFRは3.5(g/10分)であり、密度は924(kg/m)であった。
【0124】
重合体の押出量を2.4トン/時、ダイ板に供給する重合体の温度を257℃、ダイ板内の熱媒流路に供給するスチームの温度を210℃、冷却水の流量を52m/時とすること、及び、回転カッターが有するカッターの枚数を6枚とし、カッターの取付における後退角度θが0°、回転数が844rpmとすること以外は、実施例1と同様にして、樹脂ペレットを得た。このようにして得られた樹脂ペレットはくぼみ部を有していなかった。なお、くぼみを有していないが、最も小さい幅を高さとしてサイズを測定した。
【0125】
(重合体の評価)
(1)メルトフローレート(MFR、単位:g/10分)
JIS K7210−1に規定された方法に従い、温度190℃、荷重2.16kgの条件で、A法により測定した。
【0126】
(2)密度(単位:kg/m
JIS K6922−2に記載のアニーリングを行った後、JIS K7112に規定された方法に従い、A法により測定した。
【0127】
(樹脂ペレットの評価)
(i)実体顕微鏡観察によるペレットの形状の測定
実体顕微鏡を用いて、下記の条件(1)〜(4)により、水平面とくぼみ部とが対面するように水平面上に樹脂ペレットを載置し、高さT1、上から見た最大径L、及び、最大径Lと直交する方向の径L’を測定した。4粒の樹脂ペレットのそれぞれのアスペクト比(L/T1)の算術平均値を求め、その樹脂ペレットのアスペクト比とした。
【0128】
(1)実体顕微鏡:ニコン製SMZ1000−3標準BDセット
(2)光源:アズワン製 実体顕微鏡用LED照明装置1−9227−02 4方向独立落射の内、1分割のみ点灯
(3)対物レンズ:0.5倍
(4)ズーム:2倍
【0129】
(ii)X線CT測定による樹脂ペレットの形状の測定
X線CT装置を用いて、下記の条件(11)〜(16)により、樹脂ペレットの形状を測定した。実体顕微鏡観察に用いた樹脂ペレットと同一の4粒で測定を行い、その平均値を求めた。
【0130】
(11)三次元計測X線CT装置:ヤマト科学製TDM1000−IS/SP
(12)三次元ボリュームレンダリングソフト:Volume Graphics製VG−Studio MAX
(13)管電圧:50kV
(14)管電流:20μA
(15)画素数:512×512 pixel
(16)視野サイズ:13.0mmφ×13.0mmh
【0131】
(1)樹脂ペレットの設置
円板状の試料台の表面に、両面テープを用いて4粒の樹脂ペレットを固定した。ここで、各樹脂ペレットのくぼみ部が4粒とも同じ方向を向き(実体顕微鏡観察での高さT1方向が互いに平行且つ水平方向を向くように)、かつ、それぞれの最大径Lの方向が鉛直方向となるように、試料台に固定した。
【0132】
(2)X線CT画像の取得
このように固定した4粒の樹脂ペレットに対してX線CT装置により、図2に示すような水平断面画像を、鉛直軸のピッチを25μmとして順に上端から他端まで取得した。
【0133】
(3)特定画像の取得と各パラメータの測定
樹脂ペレット毎に、各水平断面画像の中からくぼみ部の深さDが一番深い画像を選択して、特定画像を取得した。各樹脂ペレット毎に、当該特定画像を用いて、図2におけるくぼみの深さD,くぼみの幅W,くぼみの高さT2、くぼみ部の曲線の長さC、樹脂ペレットの幅Sを測定した。なお、各値は4つの粒子の値の算術平均とした。
【0134】
(iii)樹脂ペレットの輸送量評価
ラボプラストミル2D25−Sのペレットフィーダーを用いて、下記の条件(21)〜(27)により、樹脂ペレットの固体状態での輸送量を評価した。二軸押出し機(東洋精機製作所製ラボプラストミル2D25−S)のペレットフィーダーのダイヤルゲージメモリを5に固定しスクリュー回転数を固定した。この時、スクリュー先端に接触式の回転計をあてた際の回転数は60rpmであった。ペレットフィーダーホッパー内に樹脂ペレットを600g投入し、1分後〜6分後の5分間で輸送される固体状態の樹脂ペレットの重量を測定した。3回測定し平均値を求め、輸送量(単位:kg/h)とした。
【0135】
(21)装置:東洋精機製作所製ラボプラストミル2D25−Sのペレットフィーダー
(22)フィーダータイプ:オーガー式 スクリュー径22mmφ
(23)フィーダー駆動:無段変速ギャードモータ 100v 25w
(24)ホッパー充填量:600g
(25)フィーダーScrew回転数:60rpm
(26)パージ時間:1min
(27)吐出量計測時間:5min
【0136】
(iv)樹脂ペレットの体積(単位:mm
上記(1)で固定した4粒の樹脂ペレットに対してX線CT装置により得られた画像を用いて、樹脂ペレットと試料台との界面をトリミングし、樹脂ペレット1粒を抽出した。次に、樹脂ペレット部を白、その他の部分を黒に二値化処理し、VG−Studio MAX(Volume Graphics製)で樹脂ペレットの体積を算出した。そして、4粒の樹脂ペレットの体積の算術平均値と、標準偏差とを求めた。
【0137】
(v)樹脂ペレットの表面積(単位:mm
上記(1)で固定した4粒の樹脂ペレットに対してX線CT装置により得られた画像を用いて、樹脂ペレットと試料台との界面をトリミングし、樹脂ペレット1粒を抽出した。次に、樹脂ペレット部を白、その他の部分を黒に二値化処理し、VG−Studio MAX(Volume Graphics製)で樹脂ペレットの表面積を算出した。そして、4粒の樹脂ペレットの表面積の算術平均値と、標準偏差とを求めた。
【0138】
(vi)樹脂ペレットの重量(単位:mg)
4粒の樹脂ペレットの重量を測定し、重量の算術平均値と、標準偏差とを求めた。
【0139】
これら樹脂ペレットの体積、表面積、及び、重量の標準偏差は、樹脂ペレットの粒度分布に関連するパラメータである。
【0140】
(vii)樹脂ペレットのHDD硬度
4粒の樹脂ペレットのHDD硬度を、JIS K7215−1986に規定された方法に従い、デュロメータ硬さ試験器 Model RH−201AL (エクセル株式会社)のタイプDデュロメータ圧子を用いて測定した。具体的には、樹脂ペレットのくぼみが試料台に対向するように設置した後、樹脂ペレットのおおよその中心位置を圧子で押して硬度を測定した。そして、4粒の樹脂ペレットの硬度の算術平均値を求めた。
【0141】
結果を表1に示す。
【0142】
【表1】
【0143】
くぼみ部を有し、特定のアスペクト比を有する樹脂ペレットは、輸送性に優れることが確認された。
【符号の説明】
【0144】
10…樹脂ペレット、10a…くぼみ部、HP…水平面、240…ダイ板、240h…貫通孔、262…カッター部材、262e…刃先、Q…回転中心、200…樹脂ペレット造粒機。
図1
図2
図3
図4
図5