特開2021-93783(P2021-93783A)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧
<>
  • 特開2021093783-車載電力変換装置 図000003
  • 特開2021093783-車載電力変換装置 図000004
  • 特開2021093783-車載電力変換装置 図000005
  • 特開2021093783-車載電力変換装置 図000006
  • 特開2021093783-車載電力変換装置 図000007
  • 特開2021093783-車載電力変換装置 図000008
  • 特開2021093783-車載電力変換装置 図000009
  • 特開2021093783-車載電力変換装置 図000010
  • 特開2021093783-車載電力変換装置 図000011
  • 特開2021093783-車載電力変換装置 図000012
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】特開2021-93783(P2021-93783A)
(43)【公開日】2021年6月17日
(54)【発明の名称】車載電力変換装置
(51)【国際特許分類】
   H02M 7/48 20070101AFI20210521BHJP
   H02M 3/28 20060101ALI20210521BHJP
【FI】
   H02M7/48 Z
   H02M3/28 Y
【審査請求】未請求
【請求項の数】11
【出願形態】OL
【全頁数】16
(21)【出願番号】特願2019-221492(P2019-221492)
(22)【出願日】2019年12月6日
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110002952
【氏名又は名称】特許業務法人鷲田国際特許事務所
(72)【発明者】
【氏名】中川 拓哉
(72)【発明者】
【氏名】湯河 潤一
【テーマコード(参考)】
5H730
5H770
【Fターム(参考)】
5H730AA18
5H730BB27
5H730BB57
5H730CC04
5H730DD04
5H730DD16
5H730EE04
5H730EE07
5H730EE08
5H730EE13
5H730ZZ01
5H730ZZ04
5H730ZZ07
5H730ZZ11
5H770AA09
5H770AA21
5H770BA02
5H770CA01
5H770CA02
5H770CA06
5H770DA03
5H770DA10
5H770DA41
5H770EA01
5H770PA01
5H770PA21
5H770PA42
5H770QA01
5H770QA02
5H770QA08
5H770QA22
5H770QA24
(57)【要約】
【課題】インバータ及び充電器の熱拡散性(熱分散性)を、より一層向上させることを可能とする車載電力変換装置を提供すること。
【解決手段】車両の外部から供給される交流電力を直流電力に電力変換して、車載バッテリ10に対して充電を行う充電器40と、車載バッテリ10から供給される直流電力を三相交流電力に電力変換して、車両を駆動するモータ30に供給するインバータ20と、を備え、インバータ20が有するスイッチング素子群と充電器40が有するスイッチング素子群とは、同一の放熱器P10上に配設されており、インバータ20が有するスイッチング素子群のスイッチング素子間の領域に、充電器40が有するスイッチング素子群の少なくとも一つのスイッチング素子が配設されている、車載電力変換装置。
【選択図】図4
【特許請求の範囲】
【請求項1】
車両の外部から供給される交流電力を直流電力に電力変換して、車載バッテリに対して充電を行う充電器と、
前記車載バッテリから供給される直流電力を三相交流電力に電力変換して、前記車両を駆動するモータに供給するインバータと、
を備え、
前記充電器により前記車載バッテリの充電が行われる場合、前記インバータによる前記モータへの電力供給は行われず、
前記インバータによる前記モータへの電力供給が行われる場合、前記充電器による前記車載バッテリの充電は行われず、
前記インバータが有するスイッチング素子群と前記充電器が有するスイッチング素子群とは、同一の放熱器上に配設されており、
前記インバータが有するスイッチング素子群のスイッチング素子間の領域に、前記充電器が有するスイッチング素子群の少なくとも一つのスイッチング素子が配設されている、
車載電力変換装置。
【請求項2】
前記インバータが有するスイッチング素子群は、U相スイッチング素子を構成する第1スイッチング素子、V相スイッチング素子を構成する第2スイッチング素子、及び、W相スイッチング素子を構成する第3スイッチング素子を含み、
前記第1スイッチング素子は、第1回路基板上に実装され、
前記第2スイッチング素子は、第2回路基板上に実装され、
前記第3スイッチング素子は、第3回路基板上に実装される、
請求項1に記載の車載電力変換装置。
【請求項3】
前記充電器が有するスイッチング素子群は、第4、および第5スイッチング素子を含み、
前記第4スイッチング素子は、第4回路基板上に実装され、
前記第5スイッチング素子は、第5回路基板上に実装され、
前記放熱器上に、前記第1回路基板と前記第2回路基板との間に前記第4回路基板が配設され、前記第2回路基板と前記第3回路基板との間に前記第5回路基板が配設される、
請求項2に記載の車載電力変換装置。
【請求項4】
前記インバータが有するスイッチング素子群と前記充電器が有するスイッチング素子群とは、前記放熱器と熱結合するように配設された同一の回路基板上に実装されている、
請求項1に記載の車載電力変換装置。
【請求項5】
前記回路基板は、金属基板である、
請求項4に記載の車載電力変換装置。
【請求項6】
前記充電器が有するスイッチング素子群は、DC/DCコンバータを構成する第1及び第2スイッチング素子を含み、
前記インバータが有するスイッチング素子群は、それぞれがブリッジ回路のU相スイッチング素子、V相スイッチング素子、及びW相スイッチング素子のいずれかを構成する第3、第4及び第5スイッチング素子を含み、
前記第3スイッチング素子、前記第4スイッチング素子及び前記第5スイッチング素子は、この順に並んで配設されており、
前記第1スイッチング素子は、前記第3スイッチング素子と前記第4スイッチング素子との間の第1領域に配設され、
前記第2スイッチング素子は、前記第4スイッチング素子と前記第5スイッチング素子との間の第2領域に配設されている、
請求項1、4、5のいずれか一項に記載の車載電力変換装置。
【請求項7】
前記DC/DCコンバータは、絶縁トランスを有し、当該絶縁トランスの一次側にブリッジ回路及び当該絶縁トランスの二次側に同期整流回路が構成された絶縁型DC/DCコンバータである、
請求項6に記載の車載電力変換装置。
【請求項8】
前記第1のスイッチング素子は、前記ブリッジ回路を構成するスイッチング素子であり、
前記第2のスイッチング素子は、前記同期整流回路を構成するスイッチング素子である、
請求項7に記載の車載電力変換装置。
【請求項9】
前記第1及び第2のスイッチング素子は、前記同期整流回路を構成するスイッチング素子である、
請求項7に記載の車載電力変換装置。
【請求項10】
前記絶縁トランスは、前記放熱器上に配設されている、
請求項8又は9のいずれか一項に記載の車載電力変換装置。
【請求項11】
前記インバータは、平滑コンデンサを有し、
前記平滑コンデンサは、前記放熱器上に配設されている、
請求項1乃至10のいずれか一項に記載の車載電力変換装置。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、車載電力変換装置に関する。
【背景技術】
【0002】
近年、電気自動車やプラグインハイブリッド車の本格的な普及に伴い、当該車両に搭載される機器(例えば、車載された充電器、駆動用のインバータなど)の小型化要請が益々高まっている。
【0003】
また、一部の電車(鉄道車両)などでは、架線に接続される変圧器と、交流電力を直流電力に変換するコンバータと、コンバータの出力による直流電力を三相交流電力に変換して主電動機に出力するインバータと、を備える構成において、コンバータとインバータの温度の偏りを小さくして、冷却器で有効に冷却することが開示されている。(例えば、特許文献1を参照)
【先行技術文献】
【特許文献】
【0004】
【特許文献1】国際公開2018−074329号
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、電力変換回路(例えば、インバータ)の冷却に求められる要件としては、発生した熱を拡散して局所的に温度が上がらないようにすることと、発生した熱を外部(外気)に放出することが挙げられる。そして、熱を拡散して局所的に温度が上がらないようにするためには、電力変換回路が有するスイッチング素子間の間隔を広く取ることが効果的である。
【0006】
しかしながら、スイッチング素子間の間隔を広く取ると、放熱器(冷却器)が大型化してしまうという課題があった。
【0007】
ここで、特許文献1に記載されたような電車に用いられるコンバータとインバータは、架線からの電力による走行中は、共に動作する。そのため、コンバータとインバータが同時に動作する場合においても熱が拡散するように、スイッチング素子間の間隔を広く取る必要があり、小型化には限界があった。
【0008】
そこで、本開示の目的は、車両に搭載されるインバータと充電器を小型化しつつ、インバータ及び充電器のスイッチング素子の熱拡散性(熱分散性)を、向上させることを可能とする車載電力変換装置を提供することである。
【課題を解決するための手段】
【0009】
前述した課題を解決する主たる本発明は、
車両の外部から供給される交流電力を直流電力に電力変換して、車載バッテリに対して充電を行う充電器と、
前記車載バッテリから供給される直流電力を三相交流電力に電力変換して、前記車両を駆動するモータに供給するインバータと、
を備え、
前記充電器により前記車載バッテリの充電が行われる場合、前記インバータによる前記モータへの電力供給は行われず、
前記インバータによる前記モータへの電力供給が行われる場合、前記充電器による前記車載バッテリの充電は行われず、
前記インバータが有するスイッチング素子群と前記充電器が有するスイッチング素子群とは、同一の放熱器上に配設されており、
前記インバータが有するスイッチング素子群のスイッチング素子間の領域に、前記充電器が有するスイッチング素子群の少なくとも一つのスイッチング素子が配設されている、
車載電力変換装置である。
【発明の効果】
【0010】
本発明に係る車載電力変換装置によれば、インバータと充電器を小型化しつつ、インバータ及び充電器のスイッチング素子の熱拡散性(熱分散性)を、向上させることが可能である。
【図面の簡単な説明】
【0011】
図1】一実施形態に係る車両の電源系の構成を示す図
図2】一実施形態に係る電力変換装置の回路図
図3】一実施形態に係る電力変換装置の構造を示す側面図
図4】一実施形態に係る第1回路基板上における回路部品のレイアウトを示す図
図5】一実施形態に係る第1回路基板上における回路部品のレイアウトを示す図
図6A】一実施形態に係る電力変換装置において、インバータが動作している際の発熱領域を示す図
図6B】一実施形態に係る電力変換装置において、充電器が動作している際の発熱領域を示す図
図7】変形例1に係る第1回路基板上における回路部品のレイアウトを示す図
図8】変形例2に係る第1回路基板上における回路部品のレイアウトを示す図
図9】変形例3に係る回路部品のレイアウトを示す図
【発明を実施するための形態】
【0012】
以下に添付図面を参照しながら、本開示の好適な実施形態について詳細に説明する。尚、本明細書及び図面において、実質的に同一の機能を有する構成要素については、同一の符号を付することにより重複説明を省略する。
【0013】
[車両の構成]
【0014】
以下、図1図2を参照して、本開示に係る車載電力変換装置(以下、「電力変換装置」と略称する)の構成の一例について説明する。本実施形態では、電力変換装置を電気自動車に適用した態様について説明する。
【0015】
図1は、本実施形態に係る車両1の電源系の構成を示す図である。図2は、本実施形態に係る電力変換装置Uの回路図である。
【0016】
車両1は、例えば、バッテリ10、インバータ20、モータ30、及び、充電器40を備えている。尚、インバータ20及び充電器40にて、車両1の電力変換装置Uが構成されている。
【0017】
バッテリ10(本発明の「車載バッテリ」に相当)は、二次電池や電気二重層キャパシタ等のエネルギー源であり、インバータ20に対して、直流電力を供給する。バッテリ10としては、例えば、48V系のリチウムイオン二次電池が用いられる。
【0018】
バッテリ10には、インバータ20と充電器40とが並列に接続されている。そして、バッテリ10は、モータ30が力行運転している際には、インバータ20を介してモータ30に電力供給する。又、バッテリ10は、モータ30が回生運転している際には、インバータ20を介してモータ30側から出力される回生電力により、充電される。
【0019】
又、バッテリ10は、外部電源のプラグが接続されるコネクタCin、及び、充電器40を介して、外部電源から供給される電力を用いて充電可能となっている。
【0020】
インバータ20は、例えば、モータ30を力行運転する際には、バッテリ10から供給される直流電力を三相交流電力(U相、V相、W相)に変換して、モータ30に対して送出する。又、インバータ20は、モータ30を回生運転する際には、モータ30で回生される交流電力を直流電力に変換してバッテリ10に送出する。
【0021】
ここで、車両の外部から供給される交流電力を電力変換してバッテリ10を充電する充電器40と、モータ30を駆動するインバータ20は互いに排他動作する。即ち、インバータ20は、車両1が走行中に動作する一方、充電器40は、車両1の停止時の充電中に動作するものであり、インバータ20と充電器40とのうち一方のみが動作し発熱する。
【0022】
本実施形態においては、インバータ20としては、図2に示すように、平滑コンデンサ21と、U相アームを構成するスイッチング素子22Q及び23Q(以下、「U相スイッチング素子」とも称する)と、V相アームを構成するスイッチング素子24Q及び25Q(以下、「V相スイッチング素子」とも称する)と、W相アームを構成するスイッチング素子26Q及び27Q(以下、「W相スイッチング素子」とも称する)と、これらのスイッチング素子22Q〜27Qの夫々に並列に設けられる環流ダイオード22D〜27Dと、を有する三相ブリッジインバータが用いられている。
【0023】
スイッチング素子22Q〜27Qは、それぞれ、インバータECU(図示せず)からの制御信号(例えば、PWM信号)によって、選択的にオン/オフ動作する。これにより、U相アームに接続されたU相配線LuaにU相電圧、V相アームに接続されたV相配線LvaにV相電圧、W相アームに接続されたW相配線LwaにW相電圧が生じ、モータ30に対して、三相交流電力が供給される。
【0024】
モータ30は、例えば、永久磁石式同期モータ、又はかご形誘導モータである。モータ30は、力行運転時には、インバータ20から供給される交流電力を用いて、車両1を走行させるための駆動力を生成する。又、モータ30は、回生運転時には、運動エネルギーを電気エネルギーに変換して回生電力を生成し、車両1に制動力を作用させる。尚、モータ30の動作状態は、インバータ20の動作によって、制御される。
【0025】
充電器40は、外部電源(例えば、60Hz、100Vの単相交流電力を供給する商用交流電源)から入力された電力を電力変換して、バッテリ10に送出する。尚、充電器40は、外部電源のプラグが接続されるコネクタCinを介して、外部電源から供給される電力を受電する。
【0026】
充電器40は、例えば、コネクタCin側からバッテリ10側に向かって、順に、AC/DCコンバータ41及びDC/DCコンバータ42を有している。
【0027】
AC/DCコンバータ41は、外部電源から供給される交流電力を直流電力に変換する。本実施形態に係るAC/DCコンバータ41は、例えば、整流回路(例えば、ダイオードブリッジ回路)41a及びPFC回路41bによって構成される。
【0028】
PFC回路(力率改善回路)41bは、外部電源から供給される交流電力の力率を改善する。本実施形態では、PFC回路41bとして、昇圧チョッパ回路方式のPFC回路が用いられている。PFC回路41bは、例えば、正極側の電力ラインLa上に直列に接続されたリアクトル41ba、リアクトル41baの後段において正極側の電力ラインLaと負極側の電力ラインLbの間に接続されたスイッチング素子41bb、スイッチング素子41bbの後段でリアクトル41baと直列に接続されたダイオード41bc、及び、正極ラインLaと負極側のラインLbとの間に接続された平滑コンデンサ41bdを含んで構成される。
【0029】
DC/DCコンバータ42は、PFC回路41bから入力される直流電力を電圧変換(ここでは、降圧)して、バッテリ10に対して供給する。
【0030】
本実施形態に係るDC/DCコンバータ42は、例えば、絶縁トランス42eと、当該絶縁トランス42eの一次側に接続されたHブリッジ回路と、当該絶縁トランス42eの二次側に接続された同期整流回路と、を有する。より詳細には、DC/DCコンバータ42は、一次巻線と二次巻線を有する絶縁トランス42eと、絶縁トランス42eの一次側に接続されたHブリッジ回路を構成するスイッチング素子42a、42b、42c、42dと、絶縁トランス42eの二次側に接続された同期整流回路を構成するスイッチング素子42f、42g、42h、42iと、を有する。又、DC/DCコンバータ42は、同期整流回路の後段には、フィルタ回路として機能する平滑コンデンサ42k及びリアクトル42jを有している。
【0031】
尚、DC/DCコンバータ42(スイッチング素子42a〜42d、42f〜42i)の動作は、ECU(図示せず)によって制御されている。
【0032】
[電力変換装置のレイアウト]
図3は、本実施形態に係る電力変換装置Uの構造を示す側面図である。
【0033】
本実施形態に係る電力変換装置Uは、インバータ20及び充電器40が一体的に配設された構造を有する。そして、インバータ20及び充電器40は、同一の放熱器P10上に配設され、インバータ20と充電器40とで放熱器P10が共用される状態となっている。ここでは、インバータ20のスイッチング素子42a〜42d、42f〜42i、及び充電器40のスイッチング素子22Q〜27Qが、放熱器P10上に配設された同一の回路基板(後述する第1回路基板P1)上に実装されている。
【0034】
より詳細には、電力変換装置Uは、放熱器P10、第1回路基板P1、第2回路基板P2、及び第3回路基板P3を有し、第1回路基板P1、第2回路基板P2、及び第3回路基板P3上に、インバータ20及び充電器40を構成する電気部品が実装されている。
【0035】
ここで、第1回路基板P1は、当該第1回路基板P1の下面が放熱器P10と接触するように配設され、放熱器P10と熱結合された状態となっている。又、第2回路基板P2は、第1回路基板P1に隣接する位置に、当該第2回路基板P2の下面が放熱器P10と接触するように配設され、放熱器P10と熱結合された状態となっている。又、第3回路基板P3は、第1回路基板P1の上方に、第1回路基板P1から離間して配設されている。
【0036】
第1回路基板P1上には、インバータ20の平滑コンデンサ21、スイッチング素子22Q〜27Q、及びダイオード22D〜27Dが実装されると共に、充電器40のスイッチング素子42a〜42d、42f〜42iが実装されている。又、第2回路基板P2上には、充電器40の整流回路41a及びPFC回路41bの回路部品が実装されている。又、第3回路基板P3上には、充電器40の絶縁トランス42e、リアクトル42j、及び、平滑コンデンサ42kが実装されている。
【0037】
第1回路基板P1及び第2回路基板P2は、例えば、金属基板(例えば、アルミ基板)であって、ベースとなる金属基板上に絶縁膜(例えば、エポキシ樹脂)を形成した後、当該絶縁膜上に配線パターンを形成したものが用いられる。そして、第1回路基板P1及び第2回路基板P2は、自身に実装された回路部品が発生する熱を、裏面側に配設された放熱器P10を介して排出する。
【0038】
放熱器P10は、例えば、第1乃至第3回路基板P1、P2、P3を支持するためのベースプレートと、ベースプレートから下方に延在する放熱フィンと、を有している。そして、放熱器P10は、第1乃至第3回路基板P1、P2、P3から伝達される熱を、放熱フィンを介して、電力変換装置Uの外部に放熱する。尚、放熱器P10は、放熱フィンが冷媒(例えば、空気冷媒)の通路内に位置するように配設されている。
【0039】
図4図5は、本実施形態に係る第1回路基板P1上における回路部品のレイアウトを示す図である。図4は、レイアウトの模式図であり、図5は、レイアウトの詳細図である。
【0040】
第1回路基板P1の基板面内には、W相スイッチング素子配置領域P1a、充電器第1スイッチング素子配置領域P1b、V相スイッチング素子配置領域P1c、充電器第2スイッチング素子配置領域P1d、U相スイッチング素子配置領域P1e、及びコンデンサ配置領域P1fが設定されている。
【0041】
W相スイッチング素子配置領域P1a、充電器第1スイッチング素子配置領域P1b、V相スイッチング素子配置領域P1c、充電器第2スイッチング素子配置領域P1d、及びU相スイッチング素子配置領域P1eは、一方側から他方側に向かって、一列に、この順番で設定されている。尚、これらの領域P1a〜P1eの互いに隣接する領域同士は、密接した状態となっている。コンデンサ配置領域P1fは、これらの領域P1a〜P1eに隣接して、これらの領域P1a〜P1eの配列方向とは直交する方向に、設定されている。
【0042】
ここで、W相スイッチング素子配置領域P1aは、インバータ20のW相スイッチング素子26Q、27Q(及び26D、27D(図示せず))が配置される領域である。充電器第1スイッチング素子配置領域P1bは、例えば、充電器40の絶縁トランス42eの一次側に接続されたスイッチング素子42a〜42dが配置される領域である。V相スイッチング素子配置領域P1cは、例えば、インバータ20のV相スイッチング素子24Q、25Q(及び24D、25D(図示せず))が配置される領域である。充電器第2スイッチング素子配置領域P1dは、例えば、充電器40の絶縁トランス42eの二次側に接続されたスイッチング素子42f〜42iが配置される領域である。U相スイッチング素子配置領域P1eは、例えば、インバータ20のU相スイッチング素子22Q、23Q(及び22D、23D(図示せず))が配置される領域である。コンデンサ配置領域P1fは、例えば、インバータ20の平滑コンデンサ21が配置される領域である。
【0043】
つまり、第1回路基板P1の基板面内には、インバータ20のスイッチング素子が配置される領域と、充電器40のスイッチング素子が配置される領域とが交互に設定されている。これによって、インバータ20のU相スイッチング素子22Q、23QとV相スイッチング素子24Q、25Qとの間の距離を離間させ、且つ、V相スイッチング素子24Q、25QとW相スイッチング素子26Q、27Qとの間の距離を離間させている。又、これによって、充電器40の一次側スイッチング素子42a〜42dと二次側スイッチング素子42f〜42iとの間の距離を離間させている。
【0044】
これにより、インバータ20の各スイッチング素子22Q〜27Qが発する熱の分散を図ることが可能となり、インバータ20の熱拡散性(熱分散性)を向上することができる。又、充電器40の各スイッチング素子42a〜42d、42f〜42iが発する熱の分散を図ることが可能となり、充電器40の熱拡散性(熱分散性)を向上することができる。つまり、インバータ20と充電器40とを同一の回路基板(第1回路基板P1)上に実装して、電力変換装置Uの小型化を図りながら、インバータ20及び充電器40の熱拡散性(熱分散性)を向上することが可能である。
【0045】
尚、図5で、丸で囲んだ「a点」、「b点」、「c点」、「d点」、「e点」、「f点」、「g点」、「h点」、「i点」、「j点」、「k点」、「l点」及び「m点」は、図2の丸で囲んだ「a点」、「b点」、「c点」、「d点」、「e点」、「f点」、「g点」、「h点」、「i点」、「j点」、「k点」、「l点」及び「m点」の接点部分に相当する。第1回路基板P1は、これらの接点部分において、ハーネス(図示せず)によって、第2回路基板P2又は第3回路基板P3と接続されている。
【0046】
又、図5のLa、Lb、Lc、Ld、Le、Lfは、それぞれ、第1回路基板P1上に形成されたパターン配線であり、図2の電力ラインLa、Lb、Lc、Ld、Le、Lfに相当する。尚、図5のパターン配線Lfは、2本に分離された状態で形成されており、2本に分離されたパターン配線間は、ジャンパ線J1によって電気接続されている。
【0047】
図6Aは、本実施形態に係る電力変換装置Uにおいて、インバータ20が動作している際の発熱領域を示す図であり、図6Bは、本実施形態に係る電力変換装置Uにおいて、充電器40が動作している際の発熱領域を示す図である。尚、図6A図6Bにおいて、色付きの領域が発熱領域に相当する。
【0048】
上記したように、インバータ20と充電器40とは、互いに排他動作する関係にある。即ち、インバータ20は、主に車両1走行中に動作する一方、充電器40は、主に車両1停止時の充電中に動作するものである。言い換えると、充電器40によりバッテリ10の充電が行われる場合、インバータ20によるモータ30への電力供給は行われず、インバータ20によるモータ30への電力供給が行われる場合、充電器40によるバッテリ10の充電は行われない。そのため、通常、インバータ20と充電器40とのうち一方のみが発熱する。
【0049】
従って、インバータ20が動作している際には、W相スイッチング素子配置領域P1a、V相スイッチング素子配置領域P1c、U相スイッチング素子配置領域P1e、及びコンデンサ配置領域P1fが発熱する。この際には、充電器第1スイッチング素子配置領域P1b及び充電器第2スイッチング素子配置領域P1dは、非発熱状態であり、インバータ20のU相スイッチング素子22Q、23Q、V相スイッチング素子24Q、25Q、W相スイッチング素子26Q、27Q、及び平滑コンデンサ21が発生する熱を吸熱して、熱分散を促進する。
【0050】
一方、充電器40が動作している際には、充電器第1スイッチング素子配置領域P1b及び充電器第2スイッチング素子配置領域P1dが発熱する。この際には、W相スイッチング素子配置領域P1a、V相スイッチング素子配置領域P1c、U相スイッチング素子配置領域P1e、及びコンデンサ配置領域P1fは、非発熱状態であり、充電器40のスイッチング素子42a〜42d、42f〜42iが発生する熱を吸熱して、熱分散を促進する。
【0051】
[効果]
以上のように、本実施形態に係る電力変換装置Uにおいては、インバータ20が有するスイッチング素子群と充電器40が有するスイッチング素子群とは、同一の放熱器P10上に配設されており、インバータ20が有するスイッチング素子群のスイッチング素子間の領域に、充電器40が有するスイッチング素子群の少なくとも一つのスイッチング素子が配設されている。
【0052】
これによって、装置全体の小型化を図りつつ、インバータ20及び充電器40それぞれのスイッチング素子の熱拡散性(熱分散性)を向上することができる。
【0053】
特に、本実施形態に係る電力変換装置Uにおいては、第1回路基板P1上のレイアウトとして、インバータ20のW相スイッチング素子26Q、27Qを実装される領域(W相スイッチング素子配置領域P1a)、充電器40の絶縁トランス42eの一次側に接続されたスイッチング素子42a〜42dが実装される領域(充電器第1スイッチング素子配置領域P1b)、インバータ20のV相スイッチング素子24Q、25Qを実装される領域(V相スイッチング素子配置領域P1c)、充電器40の絶縁トランス42eの二次側に接続されたスイッチング素子42f〜42iが実装される領域(充電器第2スイッチング素子配置領域P1d)、及びインバータ20のU相スイッチング素子22Q、23Qを実装される領域(U相スイッチング素子配置領域P1e)が、一列に、この順番に設定されている。
【0054】
これによって、第1回路基板P1上において発生する熱量を最大限分散させることが可能となる。即ち、これにより、インバータ20及び充電器40それぞれのスイッチング素子の熱拡散性(熱分散性)をより向上することができる。
【0055】
また、インバータ20は車両1の走行(駆動)に使用されるため、バッテリ10を充電するための充電器40よりも大きな出力電力が求められる。そのため、発熱の大きいインバータ20が有するスイッチング素子群のスイッチング素子間に、充電器40が有するスイッチング素子を配設することで、より局所的に温度が上がらないように熱を拡散させることができる。
【0056】
(変形例1)
図7は、本変形例に係る第1回路基板P1上における回路部品のレイアウトを示す図である。尚、図7で、丸で囲んだ「j点」、「k点」、「l点」及び「m点」は、図2の丸で囲んだ「j点」、「k点」、「l点」及び「m点」の接点部分に相当する。第1回路基板P1は、これらの接点部分において、ハーネス(図示せず)によって、第2回路基板P2又は第3回路基板P3と接続されている。
【0057】
本変形例に係る電力変換装置Uは、第1回路基板P1の第2スイッチング素子配置領域P1bに充電器40の絶縁トランス42eの二次側に接続されたスイッチング素子42f、42gが配置され、第1回路基板P1の第4スイッチング素子配置領域P1dに充電器40の絶縁トランス42eの二次側に接続されたスイッチング素子42h、42iが配置された構成となっている点で、第1の実施形態に係る第1回路基板P1のレイアウトと相違する。
【0058】
ここで、スイッチング素子42fとスイッチング素子42hとを接続する電力ラインLcは、ジャンパ線J2によって構成され、スイッチング素子42gとスイッチング素子42iとを接続する電力ラインLdは、ジャンパ線J3によって構成されている。
【0059】
尚、本変形例に係る電力変換装置Uにおいては、充電器40の絶縁トランス42eの一次側に接続されたスイッチング素子42a〜42dは、第2回路基板P2上に実装される構成となっている。
【0060】
かかる構成によっても、第1の実施形態に係る電力変換装置Uと同様に、第1乃至第5スイッチング素子配置領域P1a〜P1eにおいては、インバータ20の各スイッチング素子22Q〜27Qが発生する熱の分散を図ることが可能となり、且つ、充電器40の各スイッチング素子42a〜42d、42f〜42iが発生する熱の分散を図ることが可能である。
【0061】
(変形例2)
図8は、本変形例に係る第1回路基板P1上における回路部品のレイアウトを示す図である。
【0062】
本変形例に係る第1回路基板P1の基板面内には、更に、絶縁トランス42eが配置される絶縁トランス配置領域P1gが設定されている点で、第1の実施形態に係る第1回路基板P1のレイアウトと相違する。絶縁トランス配置領域P1gは、例えば、領域P1a〜P1eに隣接して、領域P1a〜P1eの配列方向とは直交する方向に、設定されている。
【0063】
かかる構成によれば、絶縁トランス42eにて発生する熱を、放熱器P10に排出することが可能となり、絶縁トランス42eの熱拡散性(熱分散性)を向上することができる。
【0064】
(変形例3)
図9は本変形例に係る回路部品が実装された基板レイアウトを示す図である。尚、図9の左図は、放熱器P10の配設状態の一例を示しており、図9の右図は、放熱器P10上に配設された複数の回路基板P4〜P9の配設状態を平面視した図である。
【0065】
本変形例では、インバータ20のスイッチング素子、及び充電器40のスイッチング素子が、同一の第1回路基板P1上ではなく、互いに異なる複数の回路基板上に実装されている。
【0066】
具体的には、インバータ20のU相スイッチング素子22Q、23Q(及び22D、23D(図示せず))が第4回路基板P4上に実装され、インバータ20のV相スイッチング素子24Q、25Q(及び24D、25D(図示せず))が第5回路基板P5上に実装され、W相スイッチング素子26Q、27Q(及び26D、27D(図示せず))が第6回路基板P6上に実装されている。
【0067】
ここで、それぞれの相を構成するスイッチング素子は、通常、同様の構成が用いられる。すなわち、例えば、インバータ20のU相、V相、W相のうちの何れかの相のスイッチング素子が実装された回路基板(例えば、U相スイッチング素子22Q、23Q(及び22D、23D(図示せず)が実装された第4回路基板P4)を3つ製造し、それらをU相用の第4回路基板P4、V相用の第5回路基板P5、および、W相用の第6回路基板P6それぞれとして用いることが可能である。なお、スイッチング素子が実装された回路基板P4、P5、P6同士は、例えばバスバーで接続されている。
【0068】
このように構成することで、スイッチング素子が実装された回路基板(例えば、第4回路基板P4)は、車種毎に異なるサイズや形状要求に対しても柔軟に対応可能な共通部品とする事が出来、結果として量産効果により安価にする事が可能となる。
【0069】
また、充電器40の一次側に接続されたスイッチング素子42a、42b、42c、42dが第7回路基板P7上に実装され、充電器40の二次側に接続されたスイッチング素子42f、42g、42h、42iが第8回路基板P8上に実装され、充電器40のフィルタ回路として機能する平滑コンデンサ42k及びリアクトル42jが第9回路基板P9上に実装されている構成となっている。スイッチング素子やフィルタ回路が実装された回路基板同士は、例えばバスバーで接続されている。なお、第9回路基板P9上には、フィルタ回路に限らず、例えば、PFC回路41bが有する平滑コンデンサ41bdが実装されても良い。
【0070】
このように構成されたインバータU相用の第4回路基板P4、V相用の第5回路基板P5、および、W相用の第6回路基板P6、並びに、充電器一次側用の第7回路基板P7、充電器二次側用の第8回路基板P8、および、充電器二次側フィルタ回路用の第9回路基板P9は、放熱器P10の同一面内に配設される。ここで、放熱器P10は、モータ30の端部に隣接して配設される。そのため、放熱器P10は、モータ30の端部の形状に合わせて、例えば、円形に構成される。尚、この際、放熱器P10とモータ30とは、典型的には、放熱器P10及びモータ30それぞれが放熱するための空間を介在した状態で配設される。
【0071】
そして、各回路基板は、放熱器P10上に放射状に配設される。具体的には、U相用の第4回路基板P4とV相用の第5回路基板P5の間に充電器一次側用の第7回路基板P7が配設され、V相用の第5回路基板P5とW相用の第6回路基板P6の間に充電器二次側用の第8回路基板P8が配設され、W相用の第6回路基板P6とU相用の第4回路基板P4の間に充電器二次側フィルタ回路用の第9回路基板P9が配設されるように放射状に配設される。換言すると、インバータ20を構成する回路基板(第4回路基板P4、第5回路基板P5、第6回路基板P6)と、充電器40を構成する回路基板(第7回路基板P7、第8回路基板P8、第9回路基板P9)とは、放熱器P10の周方向に沿って交互に配設される。尚、これらの回路基板P4〜P9は、放熱器P10に熱接続された状態で、放熱器P10上に配設されている。
【0072】
このような構成により、充電器40とインバータ20の排他動作によるスイッチング素子の熱拡散性(熱分散性)を活かして、部品共通化による量産効果を活かしつつも、車種毎に異なる隙間等を利用して、充電器40とインバータ20をコンパクトに搭載する事が可能となる。
【0073】
(その他の実施形態)
本発明は、上記実施形態に限らず、種々に変形態様が考えられる。
【0074】
例えば、上記実施形態では、DC/DCコンバータ42の一例として、絶縁トランス42eと、当該絶縁トランス42eの一次側に接続されたHブリッジ回路と、当該絶縁トランス42eの二次側に接続された同期整流回路と、によって構成された態様を示した。しかしながら、DC/DCコンバータ42の構成は、任意であり、絶縁トランス42eの一次側に接続される交流電圧発生回路は、ハーフブリッジ型であってもよい。又、絶縁トランス42eの一次側に接続される整流回路は、同期整流回路に代えて、ダイオードで構成された非同期整流回路であってもよい。又、DC/DCコンバータ42としては、絶縁トランス42eを有しない非絶縁型のDC/DCコンバータであってもよい。
【0075】
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
【産業上の利用可能性】
【0076】
本発明に係る車載電力変換装置によれば、インバータと充電器を小型化しつつ、インバータ及び充電器のスイッチング素子の熱拡散性(熱分散性)を、向上させることが可能である。
【符号の説明】
【0077】
1 車両
U 車載電力変換装置
Cin コネクタ
10 バッテリ
20 インバータ
21 平滑コンデンサ
22D〜27D ダイオード
22Q〜27Q スイッチング素子
30 モータ
40 充電器
41 AC/DCコンバータ
41a 整流回路
41b PFC回路
41ba リアクトル
41bb スイッチング素子
41bc ダイオード
41bd 平滑コンデンサ
42 DC/DCコンバータ
42a〜42d、42f〜42i スイッチング素子
42e 絶縁トランス
42j リアクトル
42k 平滑コンデンサ
J1、J2、J3 ジャンパ線
La、Lb、Lc、Ld、Le、Lf 電力ライン
Lua U相配線
Lva V相配線
Lwa W相配線
P1 第1回路基板
P1a W相スイッチング素子配置領域
P1b 充電器第1スイッチング素子配置領域
P1c V相スイッチング素子配置領域
P1d 充電器第2スイッチング素子配置領域
P1e U相スイッチング素子配置領域
P1f コンデンサ配置領域
P1g 絶縁トランス配置領域
P2 第2回路基板
P3 第3回路基板
P4 第4回路基板
P5 第5回路基板
P6 第6回路基板
P7 第7回路基板
P8 第8回路基板
P9 第9回路基板
P10 放熱器
図1
図2
図3
図4
図5
図6A
図6B
図7
図8
図9