【実施例】
【0025】
以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
【0026】
実施例1:
(A)多孔アルミニウム箔の製造
試薬として、ジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩を用いて以下の手順で行った。なお、ジメチルスルホンの含水量は109ppm、塩化アルミニウムの含水量は40ppm、トリメチルアミン塩酸塩の含水量は95ppmであった(三菱化学社製の微量水分測定装置:CA−100を用いて測定。以下同じ)。この3種類の試薬を、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は200ppmであった。この含水めっき液を用いて、陽極に純度99.99mass%のアルミニウム板、陰極(アルミニウム被膜を形成するための基材)にチタン板を用い、5A/dm
2の印加電流密度で、めっき液を95℃に保って300rpmの攪拌速度で攪拌しながら電気めっき処理を60分間行った。60分後、表面にアルミニウム被膜が形成されたチタン板をめっき液から取り出し、水洗を行ってから乾燥した後、その端部からアルミニウム被膜とチタン板の間に介入させたピンセットをチタン板に沿って滑らせるように移動させると、アルミニウム被膜はチタン板から容易に剥離し、アルミニウム箔が得られた。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約12μmであった。このアルミニウム箔のオモテ面(チタン板に対向する面と反対側の面)とウラ面(チタン板に対向する面)の走査型電子顕微鏡写真(装置:キーエンス社製のVE−8800。以下同じ)をそれぞれ
図1と
図2に示す。
図1と
図2から明らかなように、このアルミニウム箔は、大きさが20μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約30%であった。なお、多孔アルミニウム箔の空孔率は、箔の任意の1mm四方視野の走査型電子顕微鏡写真(倍率:100倍)の画像解析より求めた(以下同じ)。この多孔アルミニウム箔のオモテ面に対し、X線回折装置(D8 ADVANCE:ブルカーAXS社製、X線としてCuKα線を使用したθ−2θ法による、以下同じ)を用いてX線回折ピークを測定した結果を
図3に示す。
図3から明らかなように、その結晶配向性は、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率((111)面のX線回折強度/(200)面のX線回折強度)は7.7という特徴的なものであって、箔のウラ面に対する測定においても同様の結果であった。この多孔アルミニウム箔の結晶配向性は、圧延法によって製造されたアルミニウム箔の結晶配向性とは全く異なるものであった(参考例として日本製箔社製の厚みが20μmの圧延アルミニウム箔のX線回折ピークを
図4に示す)。
【0027】
(B)蓄電デバイス用電極(正極)の作製とその評価
上記の多孔アルミニウム箔を蓄電デバイス用正極集電体として用い、その表面に、マンガン酸リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で8:1:1の割合で混合して調製したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約40μmの蓄電デバイス用電極(正極)を作製した。この電極にクロスカットを入れた後、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジメチルカーボネート(DMC)からなる体積比1:1の混合溶媒に溶解して濃度を1mol/Lとした有機電解液(1mol/L LiPF
6/EC+DMC(1:1 by vol.))に浸漬した。真空雰囲気下で15分間放置した後、電極を取り出し、軽く水洗した後、ドライヤーで温風乾燥してから箔と正極活物質の密着性をテープ剥離試験で評価したところ、良好な密着性を示した。この電極の破断面の走査型電子顕微鏡写真を
図5に示す。また、破断面の模式図を
図6に示す。
図5と
図6から明らかなように、箔の表面の正極活物質層は、箔が有する孔の内部に正極活物質が入り込むようにして形成されており、箔と正極活物質との密着性の向上に箔が有する孔が寄与していることを確認できた。この電極を用いて作製した自体公知の構成を有する蓄電デバイスは所望する性能を発揮した。
【0028】
実施例2:
実施例1における大気雰囲気下での300℃で60分間の熱処理を行う前のアルミニウム箔を用い、実施例1と同様にして蓄電デバイス用電極(正極)を作製した。なお、この熱処理前のアルミニウム箔は、熱処理後のアルミニウム箔と同様の構造的特徴を有する多孔箔であった(但し箔の表面に対して(111)面のX線回折強度の(200)面のX線回折強度に対する比率は8.7であって熱処理後の比率よりもわずかに高かった)。
【0029】
実施例3:
(A)多孔アルミニウム箔の製造
実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は100ppmであった。この含水めっき液を用いて、印加電流密度を10A/dm
2とすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約45μmであった。このアルミニウム箔は、大きさが8μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約3%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は5.0という特徴的なものであった。
【0030】
(B)蓄電デバイス用電極(正極)の作製とその評価
上記の多孔アルミニウム箔を蓄電デバイス用正極集電体として用い、その表面に、リン酸鉄リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で9:0.5:0.5の割合で混合して調製したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約70μmの蓄電デバイス用電極(正極)を作製し、
図7に示す実験装置を用いてその評価を次のようにして行った。実験装置20の容器24の中に有機電解液25を入れた。有機電解液25としては6フッ化リン酸リチウムをエチレンカーボネート(EC)とジメチルカーボネート(DMC)からなる体積比1:1の混合溶媒に溶解して濃度を1mol/Lとしたもの(1mol/L LiPF
6/EC+DMC(1:1 by vol.))を用いた。この有機電解液25の中に、上記で作製した正極21、リチウム箔からなる負極22、リチウム箔からなる参照極23を設置し、充放電試験を行った。充放電レートは0.3C、1C、2C、3Cとした(Cは充放電速度を表す。0.3Cとは200分間で充電と放電が1サイクル完了することを意味する。1Cとは1時間で充電と放電が1サイクル完了することを意味する。2Cは30分間で充電と放電が1サイクル完了することを意味する。3Cとは20分間で充電と放電が1サイクル完了することを意味する)。それぞれの充放電レートにおける放電挙動を
図8に示す(横軸が放電容量を示し、縦軸が正極に印加される電位を示す)。
図8から明らかなように、一般的に高いレートで充放電すると放電容量が低下するが、上記で作製した正極を用いると放電容量の低下が比較的少なく、充放電レートが0.3Cの時の放電容量が148Ah/kgであるのに対し、充放電レートが3Cの時の放電容量は117Ah/kgであり、放電容量の低下は25%以下に抑制された。これは、活物質と集電体との密着性が良好であるため、活物質と集電体の間での電子のやり取りがスムーズに行われ、その結果、電極内部でのエネルギーロスが低減されたことによるものである。以上の結果から、本発明の多孔アルミニウム箔を蓄電デバイス用正極集電体として用いることで、エネルギーロスの小さい蓄電デバイスを作製できることがわかった。
【0031】
実施例4:
実施例1で用いたトリメチルアミン塩酸塩に意図的に水を添加してその含水量を1900ppmとした。このトリメチルアミン塩酸塩と、実施例1で用いたジメチルスルホンと塩化アルミニウムを、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は998ppmであった。この含水めっき液を用いて、実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約150μmであった。このアルミニウム箔は、大きさが80μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約50%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は2.8という特徴的なものであった。
【0032】
実施例5:
実施例1で用いたジメチルスルホンに意図的に水を添加してその含水量を1000ppmとした。このジメチルスルホンと、実施例1で用いた塩化アルミニウムとトリメチルアミン塩酸塩を、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は1860ppmであった。この含水めっき液を用いて、印加電流密度を3A/dm
2とすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約100μmであった。このアルミニウム箔は、大きさが400μm以下の孔を多数有する多孔箔であり、その空孔率は60〜70%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は3.4という特徴的なものであった。
【0033】
実施例6:
実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液に意図的に水を添加してその含水量を1900ppmとした。この含水めっき液を用いて、印加電流密度を15A/dm
2とすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約50μmであった。このアルミニウム箔は、大きさが100μm以下の微細な孔を多数有する多孔箔であり、その空孔率は60〜70%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は3.8という特徴的なものであった。
【0034】
実施例7:
トリメチルアミン塩酸塩のかわりに塩化アンモニウムを用いること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約13μmであった。このアルミニウム箔は、大きさが10μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約15%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は4.2という特徴的なものであった。
【0035】
実施例8:
トリメチルアミン塩酸塩のかわりに塩化テトラメチルアンモニウムを用いること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約9μmであった。このアルミニウム箔は、大きさが20μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約40%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は2.6という特徴的なものであった。
【0036】
実施例9:
実施例1における蓄電デバイス用電極(正極)の作製の際に用いた、マンガン酸リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で8:1:1の割合で混合して調製したスラリーのかわりに、活性炭:アセチレンブラック:ポリフッ化ビニリデンを重量比で9:0.5:0.5の割合で混合したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約30μmの蓄電デバイス用電極(正極)を作製した。
【0037】
実施例10:
ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:4:0.01の割合で混合すること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約13μmであった。このアルミニウム箔は、大きさが10μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約5%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は11.0という特徴的なものであった。
【0038】
比較例1:
実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、露点−100℃以下の乾燥雰囲気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は70ppmであった。このめっき液を用いて、実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約12μmであった。このアルミニウム箔は、走査型電子顕微鏡写真の画像解析によっては孔が確認できない均一なもの(空孔率は0%)であったことから、含水量が70ppmのめっき液を用いた場合にはめっき液の含水量が少なすぎて多孔アルミニウム箔を得ることができないことがわかった。
【0039】
比較例2:
めっき液に意図的に水を添加してその含水量を2500ppmとしたこと以外は実施例6と同様にして多孔アルミニウム箔を得ようとしたが、チタン板の表面にアルミニウム被膜を形成する時点において部分的に被膜が黒ずんだりスジ状の被膜ムラが発生したりしてしまったことから、含水量が2500ppmのめっき液を用いた場合にはめっき液の含水量が多すぎて多孔アルミニウム箔を得ることができないことがわかった。
【0040】
比較例3:
実施例1の(B)と同様にして、厚みが15μmの市販の圧延アルミニウム箔(日本製箔社製)の表面に正極活物質層を形成し、全体の厚みが約40μmの蓄電デバイス用電極(正極)を作製した。この電極の箔と正極活物質の密着性を実施例1の(B)と同様にして評価したところ、テープ剥離試験を行う前の電極の乾燥段階で正極活物質層がシート状に箔から剥がれてしまった。また、実施例3の(B)と同様にして、この圧延アルミニウム箔を蓄電デバイス用正極集電体として用いて蓄電デバイス用電極(正極)を作製し、
図7に示す実験装置を用いて充放電試験を行った。結果を
図9に示す。
図9から明らかなように、この正極を用いると放電容量の低下が顕著であり、充放電レートが0.3Cの時の放電容量が144Ah/kgであるのに対し、充放電レートが3Cの時の放電容量は90Ah/kgであり、放電容量の低下は38%であった。