(58)【調査した分野】(Int.Cl.,DB名)
【発明を実施するための形態】
【0011】
以下、本発明を適用した実施形態の一例について説明する。尚、以降の図における各部材のサイズや比率は、説明の便宜上のものであり、これに限定されるものではない。また、本明細書において「任意の数A〜任意の数B」なる記載は、当該範囲に数Aが下限値として、数Bが上限値として含まれる。また、本明細書における「シート」とは、JISにおいて定義される「シート」のみならず、「フィルム」も含むものとする。また、本明細書において特定する数値は、実施形態または実施例に開示した方法により求められる値である。
【0012】
本発明に係る電磁波シールドシート10は、導電性接着剤層1、金属層2、保護層3がこの順に積層された積層体からなる。電磁波シールドシート10は、部品(不図示)上に導電性接着剤層1を配置し、接合処理により当該部品と接合することができる。接合処理は、接合できればよいが、熱処理または熱圧着処理が好適である。保護層3は、導電性接着剤層1、および金属層2を保護する役割を担い、金属層2より表層側に配置される。金属層2は、保護層3と導電性接着剤層1の間に挟持された層であり、主として電磁波をシールドする役割を担う。プリント配線板においては、部品内部の信号配線等から発生する電磁ノイズをシールドし、外部からの信号を遮蔽する役割を担う。
金属層2は、複数の開口部を有し、前記開口部の数式(1)から求められる円径度係数の平均値が0.5以上であって、さらに金属層の開口率が0.1〜20%である。
開口部4は、保護層3と導電性接着剤層1が接着している箇所でもあり、ハンダリフロー耐性を向上させる役割を担う。また、後述するように開口部4と非開口部の面積から計算される開口率を所定の範囲に設定することで、ハンダリフロー耐性と、高い電磁波シールド性とを両立することができる。
【0013】
《金属層》
本発明の金属層は、複数の開口部を有し、前記開口部の数式(1)から求められる円径度係数の平均値が0.5以上であって、さらに金属層の開口率が0.1〜20%である。このような特定の開口部を、特定の開口率にて有することにより、高い電磁波シールド性を維持し、ハンダリフロー耐性およびクラック耐性との両立が可能となる。
【数1】
但し、前記周囲長は、金属層を光学顕微鏡、レーザー顕微鏡、および電子顕微鏡いずれかで観察した画像を読み込み、前記開口部の平面が観察視点に対して垂直な方向になり、全体が確認できる前記開口部を抽出して、当該抽出した前記開口部を二次元に投影したときの外周の長さをいい、前記面積は、前記抽出した前記開口部を二次元に投影したときの外周により画定される領域の広さをいう。
【0014】
<開口部>
本発明の金属層は複数の開口部を有している。開口部は、金属層の全面に有していることが好ましい。開口部はプリント配線板をハンダリフロー等の加熱処理をした際に、プリント配線板のポリイミドフィルムやカバーレイ接着剤に含まれる揮発成分を外部に逃がし、カバーレイ接着剤および電磁波シールドシートの界面剥離による外観不良及び接続信頼性の低下を抑制する役割を担う。さらに
図1の断面模式図に示すように、開口部内部で保護層と導電性接着剤層が接着することにより、保護層/金属層/導電性接着剤層同士の界面の接着力がより向上し、ハンダリフロー耐性がさらに向上する。
【0015】
開口部の一例を
図2に示す。
開口部の形状は円であり、数式(1)から求められる円径度係数の平均値が0.5以上である。円径度係数の平均値を0.5以上とすることにより、金属層に面方向の張力が加わっても開口周壁に亀裂が生
じにくいためクラック耐性を向上できる。円径度係数の平均値は0.6以上が好ましく、0.7以上がより好ましい。
加えて円形度係数を上記範囲にすることで、高温高湿経時後の電磁波シールド性を向上できる。これは、円形度係数が0.5未満の場合、開口部が歪であり導電層と保護層を張り合わせた際に、開口部に完全に埋まらない空隙部が発生する。電磁波シールドシートを高温高湿環境下で長時間保管した際に水分がその空隙に侵入し、開口部周辺にが発生する。これによって、部分的に導電性が悪化し、電磁波シールド性も悪化すると考えられる。
【数2】
但し、前記周囲長は、金属層を光学顕微鏡、レーザー顕微鏡、および電子顕微鏡いずれか
で観察した画像を読み込み、前記開口部の平面が観察視点に対して垂直な方向になり、全
体が確認できる前記開口部を抽出して、当該抽出した前記開口部を二次元に投影したとき
の外周の長さをいい、前記面積は、前記抽出した前記開口部を二次元に投影したときの外
周により画定される領域の広さをいう。
【0016】
上記数式(1)の円径度係数により、開口部の外縁の凹凸度合(起伏度合)を把握することができる。真円は円径度係数が1となり、凹凸形状の増大に従って円径度係数が低下する。即ち、円径度係数は、0より大きく1以下となる。本明細書における円径度係数は、Mac−View Ver.4(マウンテック社)の解析ソフトを用いて、金属層の開口部をレーザー顕微鏡または、電子顕微鏡によって画像(500倍〜1万倍程度)を読み込み、手動認識モードで開口部を約20個選択した。粒子基準データは、投影面積円相当径、分布は体積分布の設定として、円径度係数を算出し、20個の平均値を求めた。上記数式(1)において面積は、二次元に投影した時の外周を形成する線の内部の面積を平板面とし、この平板面を二次元に投影したときの開口部の外周を周囲長の長さとする。
【0017】
開口部1個あたりの面積は、0.7〜5000μm
2であることが好ましい。10〜4000μm
2がより好ましく、20〜2000μm
2がさらに好ましい。開口部面積を0.7μm
2以上とすることで、保護層と導電性接着剤層が接着良好となり、ハンダリフロー耐性がより優れたものとなる。開口部面積を5000μm
2以下とすることで、高い電磁波シールド性に優れたものとすることができるため好ましい。
【0018】
開口部の個数は、100〜200000個/cm
2であることが好ましい。1000〜150000個/cm
2がより好ましく、1000〜20000個/cm
2がさらに好ましい。開口部の個数を100個/cm
2以上とすることで揮発成分を効率的に外部に出しやすくなるためハンダリフロー耐性をより向上させることができる。開口部の数を200000個/cm
2以下にすることで、高い電磁波シールド性を確保することができるため好ましい。
【0019】
<開口率>
本発明における金属層の開口率は、0.1〜20%である。開口率は、開口部の面積と個数から調整できる。また、開口率は下記数式(2)から求められる。
開口率(%)=単位面積あたりの開口部面積/(単位面積あたりの開口部面積+単位面積あたりの非開口部面積)×100 ・・・数式(2)
開口率の下限は、0.3%がより好ましく、0.5%がさらに好ましい。開口率の上限は、15%がより好ましく、6.5%がさらに好ましい。
開口率を0.1〜20%の範囲にすることで、ハンダリフロー耐性と、高い電磁波シールド性能および小開口接続性を保持することができる。
【0020】
開口率の測定は、例えば金属層を面方向から垂直にレーザー顕微鏡及び走査型電子顕微鏡(SEM)で500〜5000倍に拡大した画像を用いて、開口部と非開口部を2値化し、単位面積当たりの2値化した色のピクセル数をそれぞれの面積とすることで求めることができる。
【0021】
金属層の厚みは0.5〜5μmであることが好ましい。金属層の厚みは、1.0〜4.5μmがより好ましく、1〜4μmがさらに好ましい。金属層の厚みが0.5〜5μmの範囲にあることで高い電磁波シールド性能とクラック耐性とのバランスを取ることが可能となる。
【0022】
金属層は、例えば金属箔、金属蒸着膜、金属メッキ膜を使用できる。
金属箔に使用する金属は、例えばアルミニウム、銅、銀、金等の導電性金属が好ましく、電磁波シールド性およびコストの面から銅、銀、アルミニウムがより好ましく、銅がさらに好ましい。銅は、例えば、圧延銅箔または電解銅箔を使用することが好ましく、電解銅箔がより好ましい。電解銅箔を使用すると金属層の厚みをより薄くできる。また、金属箔はメッキで形成してもよい。金属箔の厚みは1〜5μmが好ましく、1.5〜4μmがより好ましい。
【0023】
金属蒸着膜及び金属メッキ膜に使用する金属は、例えばアルミニウム、銅、銀、金が好ましく、銅、銀がより好ましい。金属蒸着膜および金属メッキ膜の厚みは、0.2〜3μmが好ましく、0.3〜2μmがより好ましい。
金属層は薄膜化の点から蒸着膜が好ましい。電磁波シールド性の点からは金属箔が好ましい。
【0024】
<金属層の製造方法>
開口部を有する金属層の製造方法は、従来公知の方法を適用することができ、金属箔上にパターンレジスト層を形成し金属箔をエッチングして開口部を形成する方法(i)、スクリーン印刷によって所定のパターンに導電性ペーストを印刷する方法(ii)、所定のパターンでアンカー剤をスクリーン印刷しアンカー剤印刷面のみに金属メッキする方法
(iii)、および特開2015‐63730号公報に記載されている製造方法(iv)等が適用できる。
すなわち、支持体に水溶性、又は溶剤可溶性インクをパターン印刷し、その表面に金属蒸着膜を形成しパターンを除去する。その表面に離形層を形成し電解メッキすることでキャリア付開口部を有する金属層を得ることができるが、これらの中でもパターンレジスト層を形成し金属箔をエッチングする開口部形成方法(i)が、開口部の形状を精密に制御できるため好ましい。但し、その他の方法でも開口部の形状を制御すればよく、金属層の製造方法はエッチング工法(i)に制限されるものではない。
【0025】
《導電性接着剤層》
導電性接着剤層は導電性樹脂組成物を使用して形成できる。導電性樹脂組成物は、熱硬化性樹脂、および導電性フィラーを含む。導電性接着剤層は等方導電性接着剤層または異方導電性接着剤層の何れかを用いることができる。等方導電性接着剤層は、電磁波シールドシートを水平に置いた状態で、上下方向および水平方向に導電性を有する。また、異方導電性接着剤層は、電磁波シールドシートを水平に置いた状態で、上下方向のみに導電性を有する。
導電性接着剤層は、等方導電性あるいは異方導電性のいずれでもよく、異方導電性の場合、コストダウンが可能となるため好ましい。
【0026】
<熱硬化性樹脂>
熱硬化性樹脂は、硬化剤と反応可能な官能基を複数有する樹脂である。官能基は、例えば、水酸基、フェノール性水酸基、メトキシメチル基、カルボキシル基、アミノ基、エポキシ基、オキセタニル基、オキサゾリン基、オキサジン基、アジリジン基、チオール基、イソシアネート基、ブロック化イソシアネート基、ブロック化カルボキシル基、シラノール基等が挙げられる。熱硬化性樹脂は、例えば、アクリル樹脂、マレイン酸樹脂、ポリブタジエン系樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリウレタンウレア樹脂、エポキシ樹脂、オキセタン樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、フェノール系樹脂、アルキド樹脂、アミノ樹脂、ポリ乳酸樹脂、オキサゾリン樹脂、ベンゾオキサジン樹脂、シリコーン樹脂、フッ素樹脂等の公知の樹脂が挙げられる。
熱硬化性樹脂は、単独または2種類以上併用できる。
【0027】
これらの中でもハンダリフロー耐性の点から、ポリウレタン樹脂、ポリウレタンウレア樹脂、ポリエステル樹脂、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂が好ましい。
【0028】
熱硬化性樹脂の酸価は、1〜50mgKOH/gが好ましく、3〜30mgKOH/gがより好ましい。酸価を1〜50mgKOH/gとすることでハンダリフロー耐性がより向上する。
【0029】
熱硬化性樹脂は、導電性接着剤層の固形分中の含有量が、10〜80重量%配合することが好ましく、15〜80重量%がより好ましい。上記配合の範囲にすることで、ハンダリフロー耐性とクラック耐性を向上させることができる。
【0030】
<硬化剤>
硬化剤は、熱硬化性樹脂の官能基と反応可能な官能基を複数有している。硬化剤は、例えばエポキシ化合物、酸無水物基含有化合物、イソシアネート化合物、アジリジン化合物、アミン化合物、フェノール化合物、有機金属化合物等の公知の化合物が挙げられる。
硬化剤は、単独または2種類以上併用できる。
【0031】
硬化剤は、熱硬化性樹脂100重量部に対して各種1〜50重量部含むことが好ましく、3〜30重量部がより好ましく、3〜20重量部がさらに好ましい。
【0032】
<導電性フィラー>
導電性フィラーは、導電性接着剤層に導電性を付与する機能を有する。導電性フィラーは、素材としては、例えば金、白金、銀、銅およびニッケル等の導電性金属およびその合金、ならびに導電性ポリマーの微粒子が好ましく、価格と導電性の面から銀がより好ましい。
また単一素材の微粒子ではなく金属や樹脂を核体とし、核体の表面を被覆した被覆層を有する複合微粒子もコストダウンの観点から好ましい。ここで核体は、価格が安いニッケル、シリカ、銅およびその合金、ならびに樹脂から適宜選択することが好ましい。被覆層は、導電性金属または導電性ポリマーが好ましい。導電性金属は、例えば、金、白金、銀、ニッケル、マンガン、およびインジウム等、ならびにその合金が挙げられる。また導電性ポリマーは、ポリアニリン、ポリアセチレン等が挙げられる。これらの中でも価格と導電性の面から銀が好ましい。
【0033】
導電性フィラーの形状は、所望の導電性が得られればよく形状は限定されない。具体的には、例えば、球状、フレーク状、葉状、樹枝状、プレート状、針状、棒状、ブドウ状が好ましい。また、これらの異なる形状の導電性フィラーを2種類混合しても良い。
導電性フィラーは、単独または2種類以上併用できる。
【0034】
導電性フィラーの平均粒子径は、D
50平均粒子径であり、異方性を充分に確保する観点から、2μm以上が好ましく、5μm以上がより好ましく、7μm以上とすることが更に好ましい。一方、導電性接着剤層の薄さと両立させる観点からは、30μm以下が好ましく、20μm以下がより好ましく、15μm以下とすることが更に好ましい。
D50平均粒子径は、レーザー回折・散乱法粒度分布測定装置等により求めることができる。
【0035】
導電性フィラーは、導電性接着剤層における含有量が35〜90重量%であることが好ましく、39〜85重量%がより好ましく、40〜80重量%がさらに好ましい。35重量%以上とすることで小開口ビアの接続信頼性が向上する。一方90重量%以下とすることで導電性接着剤層の接着力が増すため半田リフロー耐性が向上する。
【0036】
導電性樹脂組成物は、他に任意成分としてシランカップリング剤、防錆剤、還元剤、酸化防止剤、顔料、染料、粘着付与樹脂、可塑剤、紫外線吸収剤、消泡剤、レベリング調整剤、充填剤、難燃剤などを配合できる。
【0037】
導電性樹脂組成物は、これまで説明した材料を混合し攪拌して得ることができる。攪拌は、例えばディスパーマット、ホモジナイザー等に公知の攪拌装置を使用できる。
【0038】
導電性接着剤層の作製は、公知の方法を使用できる。例えば、導電性樹脂組成物を剥離性シート上に塗工して乾燥することで導電性接着剤層を形成する方法、または、Tダイのような押出成形機を使用して導電性樹脂組成物をシート状に押し出すことで形成することもできる。
【0039】
塗工方法は、例えば、グラビアコート方式、キスコート方式、ダイコート方式、リップコート方式、コンマコート方式、ブレード方式、ロールコート方式、ナイフコート方式、スプレーコート方式、バーコート方式、スピンコート方式、ディップコート方式等の公知の塗工方法を使用できる。塗工に際して、乾燥工程を行うことが好ましい。乾燥工程は、例えば、熱風乾燥機、赤外線ヒーター等の公知の乾燥装置を使用できる。
【0040】
導電性接着剤層の厚みは、2〜30μmが好ましく、3〜15μmがより好ましく、4〜9μmがさらに好ましい。厚みが2〜30μmの範囲にあることでハンダリフロー耐性と小開口ビアの接続信頼性を向上することができる。
【0041】
《保護層》
保護層は、従来公知の樹脂組成物を使用して形成できる。
樹脂組成物は、導電性樹脂組成物で説明した熱硬化性樹脂および硬化剤を必要に応じて上記任意成分を含むことができる。なお、保護層および導電性接着剤層に使用する熱硬化性樹脂、硬化剤は、同一、または異なっていてもよい。
【0042】
樹脂組成物は、導電性樹脂組成物と同様の方法で得ることが出来る。
【0043】
また、保護層は、ポリエステル、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド等の絶縁性樹脂を成形したフィルムを使用することもできる。
【0044】
保護層の厚みは、通常2〜12μm程度である。
【0045】
《電磁波シールドシート》
本発明の電磁波シールドシートは、少なくとも保護層、開口部を有する金属層、および導電性接着剤層を備える。
本発明の電磁波シールドシートは、複数の開口部を有し、かつ金属層の開口率が0.1〜20%である金属層を備えているため、特に高周波(例えば、100MHzから50GHz)の信号を伝送する配線板でクロストーク等をより抑制することができる。
【0046】
また、本発明の電磁波シールドシートは、コプレーナ回路を有する配線板に張り合わせ、マイクロストリップライン回路を有する配線板の信号配線と、電磁波シールドシートの保護層とを積層し、マイクロストリップライン回路の信号配線に10GHzのサイン波を流した際の、コプレーナ回路のクロストークが、−45dB未満である、という優れた電磁波シールド性を有することができる。
【0047】
具体的には、例えば以下のようにして、電磁波シールド性を評価することができる。
まず、コプレーナ回路を用意する。
コプレーナ回路とはポリイミドフィルム等の絶縁性基材の片面側に信号配線がプリントされた平面伝送回路の一つであり、本発明においてコプレーナ回路はポリイミドフィルム上に2本の信号配線を挟む形でグランド配線が平行に形成された回路を用いる。尚、前述したコプレーナ回路は、対向する面にグランド設置用のグランドパターンが、スルーホールを介して設置されている。
コプレーナ回路の信号配線と反対側の絶縁性基材面に電磁波シールドシートの導電性接着剤層面を張り合わせ、熱圧着によって電磁波シールド層を形成する。この時電磁波シールドシートは一部露出しているグランドパターンと導通する。
【0048】
次に、別途用意したマイクロストリップライン回路を有するプリント配線基板の信号配線をコプレーナ回路に形成した電磁波シールド層の保護層面に配置し、測定用のテストピースが得られる。このテストピースのコプレーナ回路およびマイクロストリップライン回路に、ネットワークアナライザを接続し、マイクロストリップライン回路の信号配線に10MHzから20GHzのサイン波を流した際の、コプレーナ回路におけるクロストークを測定し、電磁波シールド性を評価することができる。
尚、上述のコプレーナ回路およびマイクロストリップライン回路上には、接着剤付きポリイミドカバーレイフィルムを貼りつけるが、ネットワークアナライザのプローブを接続するため回路の一部を露出させている。
【0049】
本発明において、マイクロストリップライン回路の信号配線に10GHzのサイン波を流した際の、コプレーナ回路のクロストークは、−45dB未満が好ましく、−50dB未満がより好ましく、−55dB未満がさらに好ましい。クロストークが−45dB未満になることで、高い電磁波シールド性を得ることができる。
【0050】
複数の開口部を有し、かつ金属層の開口部において、数式(1)から求められる円径度係数の平均値が0.5以上である金属層を備えているため、半田リフロー耐性、及びクラック耐性が優れる。この結果、金属層は面方向の抵抗値が変化することが少なく、高い電磁波シールド性を安定に維持することができ、狭い筐体内に実装した際に電子部品の不具合を低減する。
【0051】
本発明の電磁波シールドシートは、引張破断強度が10〜80N/20mmであることが好ましい。上記範囲とすることで、クラック耐性が向上し、電磁波シールド性の劣化を抑制することができる。引張破断強度のより好ましい範囲は20〜70N/20mmであり、さらに好ましい範囲は30〜65N/20mmである。
【0052】
電磁波シールドシートは、導電性接着剤層に含まれる熱硬化性樹脂と硬化剤が未硬化状態で存在し(Bステージ)、配線板と熱プレスにより硬化することで(Cステージ)、所望の接着強度を得ることが出来る。なお、前記未硬化状態は、硬化剤の一部が硬化した半硬化状態を含む。
【0053】
剥離性シートは、紙やプラスチック等の基材に公知の剥離処理を行ったシートである。
【0054】
なお電磁波シールドシートは、異物の付着を防止するため、導電性接着剤層および保護層に剥離性シートを貼り付けた状態で保存することが一般的である。
【0055】
電磁波シールドシートは、保護層、金属層、および導電性接着剤層のほかに、他の機能層を備えることができる。他の機能層とは、ハードコート性、水蒸気バリア性、酸素バリア性、熱伝導性、低誘電率、高誘電率性または耐熱性等の機能を有する層である。
【0056】
本発明の電磁波シールドシートは、電磁波をシールドする必要がある様々な用途に使用できる。例えば、フレキシブルプリント配線板は元より、リジッドプリント配線板、COF、TAB、フレキシブルコネクタ、液晶ディスプレイ、タッチパネル等に使用できる。また、パソコンのケース、建材の壁および窓ガラス等の建材、車両、船舶、航空機等の電磁波を遮蔽する部材としても使用できる。
【0057】
<電磁波シールドシートの作製方法>
電磁波シールドシートの作製において、導電性接着剤層と金属層とを積層する方法は、公知の方法を使用できる。
例えば、(i)剥離性シート上に導電性接着剤層を形成し、銅キャリア付開口部を有する電解銅箔の電解銅箔面側に導電性接着剤層を重ねてラミネートした後に、銅キャリアを剥がす。そして、銅キャリアを剥がした面と、別途剥離性シート上に形成した保護層とを重ねてラミネートする方法、(ii)剥離性シート上に保護層を形成し、銅キャリア付開口部を有する電解銅箔の電解銅箔面側に保護層を重ねてラミネートした後に、銅キャリアを剥がす。そして、銅キャリアを剥がした面と、別途剥離性シート上に形成した導電性接着剤層とを重ねてラミネートする方法、(iii)銅キャリア付開口部を有する電解銅箔の電解銅箔面側に樹脂組成物を塗工して保護層を形成し剥離性シートを張り合わせる。その後銅キャリアを剥がし、別途剥離性シート上に形成した導電性接着剤層とを重ねてラミネートする方法、(iv)剥離性シート上に導電性接着剤層を形成し、銅キャリア付電解銅箔の電解銅箔面側に導電性接着剤層を重ねてラミネートした後に、銅キャリアを剥がす。そして、銅キャリアを剥がした面と、別途剥離性シート上に形成した保護層とを重ねてラミネートした後、針状の治具で電磁波シールドシートに開口部を形成する方法、(v)剥離性シート上に形成した保護層を銅キャリア付開口部を有する電解銅箔の電解銅箔面側に重ねてラミネートした後に、銅キャリアを剥がす。そして、銅キャリアを剥がした面に導電性接着剤層を形成する方法等が挙げられる。
【0058】
《プリント配線板》
本発明のプリント配線板は、電磁波シールドシート、カバーコート層、ならびに信号配線とグランド配線とを有する回路パターンおよび絶縁性基材を有する配線板を備えており、電磁波シールドシートが、保護層と金属層と導電性接着剤層とから構成され、前記金属層は、複数の開口部を有し、金属層の開口部において、数式(1)から求められる円径度係数の平均値が0.5以上であり、かつ金属層の開口率が0.1〜20%である。
【0059】
本発明のプリント配線板において、電磁波シールド層は、保護層と金属層と導電性接着剤層とから構成される電磁波シールドシートを熱圧着してなり、
金属層は、複数の開口部を有し、金属層の開口部において、数式(1)から求められる円径度係数の平均値が0.5以上であり、かつ金属層の開口率が0.1〜20%である。
配線板は、絶縁性基材の表面に信号配線とグランド配線とを有する回路パターンを有し、
前記配線板上に、信号配線とグランド配線とを絶縁保護し、グランド配線上の少なくとも一部にビアを有するカバーコート層を形成し、
前記電磁波シールドシートの導電性接着剤層面を、前記カバーコート層上に配置した後、前記電磁波シールドシートを熱圧着し、ビア内部に導電性接着剤層を流入させグランド配線と接着させることにより、製造することができる。
【0060】
本発明のプリント配線板の一例について、
図1を参照して説明する。
電磁波シールドシート10は、保護層3、複数の開口部を有する金属層2、導電性接着剤層1を含む構成である。
【0061】
カバーコート層8は、配線板の信号配線を覆い外部環境から保護する絶縁材料である。
カバーコート層は、熱硬化性接着剤付きポリイミドフィルム、熱硬化型もしくは紫外線硬化型のソルダーレジスト、または感光性カバーレイフィルムが好ましく、微細加工をするためには感光性カバーレイフィルムがより好ましい。またカバーコート層は、ポリイミド等の耐熱性と柔軟性を備えた公知の樹脂を使用するのが一般的である。カバーコート層の厚みは、通常10〜100μm程度である。
【0062】
回路パターンは、アースを取るグランド配線5、電子部品に電気信号を送る信号配線6を含む。両者は銅箔をエッチング処理することで形成することが一般的である。回路パターンの厚みは、通常1〜50μm程度である。
【0063】
絶縁性基材9は、回路パターンの支持体であって、ポリエステル、ポリカーボネート、ポリイミド、ポリフェニレンサルファイド、液晶ポリマー等の屈曲可能なプラスチックが好ましく、液晶ポリマーおよびポリイミドがより好ましい。これらの中でも高周波の信号を伝送するプリント配線板の用途を考慮すると比誘電率および誘電正接が低い液晶ポリマーがさらに好ましい。
配線板がリジッド配線板の場合、絶縁性基材の構成材料は、ガラスエポキシが好ましい。これらのような絶縁性基材を備えることで配線板は高い耐熱性が得られる。
【0064】
電磁波シールドシート10と、配線板との熱プレスは、温度150〜190℃程度、圧力1〜3MPa程度、時間1〜60分程度の条件で行うことが一般的である。熱プレスにより導電性接着剤層1とカバーコート層8が密着するとともに、導電性接着剤層1が流動してカバーコート層8に形成されたビア11を埋めることでグランド配線5との間で導通が取れる。熱プレスにより熱硬化性樹脂が反応して硬化する。
なお、硬化を促進させるため、熱プレス後に150〜190℃で30〜90分間ポストキュアを行う場合もある。なお、電磁波シールドシートは、熱プレス後に電磁波シールド層ということがある。
【0065】
前記ビア11の開口面積は、0.008mm
2以上、0.8mm
2以下が好ましい。より好ましくは、0.3mm
2以下、特に好ましくは、0.03mm
2以下である。上記範囲とすることでグランド接続信頼性を確保し高い電磁波シールド性を保ちつつグランド配線の領域を狭めることができ、プリント配線板の小型化を実現できる。
ビアの形状は特に限定されず、円、正方形、長方形、三角形および不定形等用途に応じていずれも用いることができる。
【0066】
前記電磁波シールド層は配線基板の両面に形成することが、電磁波の漏れをより効果的に抑制できる点から好ましい。本発明の電磁波シールドシートは、保護層と金属層と導電性接着剤層とから構成され、複数の開口部を有し、金属層の開口部において、数式(1)から求められる円径度係数の平均値が0.5以上であり、かつ金属層の開口率が0.1〜20%であるため、両面に張り付けられ電磁波シールド層を形成した後、リフロー処理した場合においても、内部残留ガスを開口部4を通じて外部に排出するため発泡が生じない。加えて、本発明のプリント配線板における電磁波シールドシート10は電磁波を遮蔽する他に、グランド回路として利用でき、それにより、グランド回路の一部を省略し、プリント配線板の面積を縮小することでコストダウンが可能となり筐体内の狭い領域に組み込むことができる。
【0067】
また、信号配線に関して、特に限定するものではなく、一本の信号配線からなるシングルエンド、2本の信号配線からなる差動回路のどちらの回路にも使用可能であるが、差動回路がより好ましい。一方、プリント配線板の回路パターン面積に制約があり、グランド回路を並列に形成することが難しい場合においては、信号回路の横にはグランド回路を設けず、電磁波シールドシートをグランド回路として用いて、厚み方向にグランドを有するプリント配線板構造にすることもできる。
【0068】
本発明のプリント配線板は、液晶ディスプレイ、タッチパネル等のほか、ノートPC、携帯電話、スマートフォン、タブレット端末等の電子機器に備える(搭載する)ことが好ましい。
【実施例】
【0069】
以下、本発明を実施例により更に詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、実施例中の「部」とあるのは「重量部」を、「%」とあるのは「重量%」を其々表すものとする。
【0070】
なお、樹脂の酸価と重量平均分子量(Mw)とガラス転移温度(Tg)、導電性フィラーの平均粒子径、金属層の開口部の円径度係数、および電磁波シールドシートの引張破断強度の測定は次の方法で行なった。
【0071】
<樹脂の酸価の測定>
酸価はJIS K0070に準じて測定した。共栓三角フラスコ中に試料約1gを精密
に量り採り、テトラヒドロフラン/エタノール(容量比:テトラヒドロフラン/エタノール=2/1)混合液100mlを加えて溶解する。これに、フェノールフタレイン試液を指示薬として加え、0.1Nアルコール性水酸化カリウム溶液で滴定し、指示薬が淡紅色を30秒間保持した時を終点とした。酸価は次式により求めた(単位:mgKOH/g)。
酸価(mgKOH/g)=(5.611×a×F)/S
ただし、
S:試料の採取量(g)
a:0.1Nアルコール性水酸化カリウム溶液の消費量(ml)
F:0.1Nアルコール性水酸化カリウム溶液の力価
【0072】
<樹脂の重量平均分子量(Mw)の測定>
重量平均分子量(Mw)の測定は東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC−8020」を用いた。GPCは溶媒(THF;テトラヒドロフラン)に溶解した物質をその分子サイズの差によって分離定量する液体クロマトグラフィーである。本発明における測定は、カラムに「LF−604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、流量0.6ml/min、カラム温度40℃の条件で行い、重量平均分子量(Mw)の決定はポリスチレン換算で行った。
【0073】
<樹脂のガラス転移温度(Tg)>
Tgの測定は、示差走査熱量測定(メトラー・トレド社製「DSC−1」)によって測定した。
【0074】
<導電性フィラーの平均粒子径測定>
D
50平均粒子径は、レーザー回折・散乱法粒度分布測定装置LS13320(ベックマン・コールター社製)を使用し、トルネードドライパウダーサンプルモジュールにて、導電性フィラーを測定して得た数値であり、粒子径累積分布における累積値が50%の粒子径である。なお、屈折率の設定は1.6とした。
【0075】
<開口部の円形度係数の測定>
金属層の開口部が20個程度入るように、反射型電子顕微鏡JSM−IT100(日本電子株式会社)を用いて2000倍〜5000倍の倍率で金属層の平面画像を取得し上述の方法により解析した。
一例を挙げると、
図2は後述する銅箔5および銅箔14の開口部取得画像である。
【0076】
<引張破断強度の測定>
電磁波シールドシートを2枚用意し、それぞれの導電性接着剤層側の離形フィルムを剥離し、お互いの導電性接着剤層面を熱ロールラミネータで張り合わせ積層体を得た。前記積層体を幅20mm×長さ600mmの大きさに切断した後、保護層側の剥離性フィルムを両面とも剥がして測定試料とした。測定試料について小型卓上試験機EZ−TEST(島津製作所社製)を用いて、温度25℃、相対湿度50%の条件下で、引っ張り試験(試験速度50mm/min)を実施した。得られたS−S曲線(Stress−Strain曲線)から電磁波シールドシートの引張破断強度(N/20mm)を算出した。
【0077】
続いて、実施例で使用した原料を以下に示す。
《原料》
導電性フィラー:複合微粒子(核体の銅100重量部に対して銀が10重量部被覆されたデンドライト状の微粒子)平均粒径
D50:11.0μm福田金属箔粉工業社製
熱硬化性樹脂:酸価5mgKOH/g、重量平均分子量は54,000、Tgは−7℃のポリウレタンウレア樹脂(トーヨーケム社製)
エポキシ化合物:「JER828」(ビスフェノールA型エポキシ樹脂エポキシ当量=189g/eq)三菱化学社製
アジリジン化合物:「ケミタイトPZ−33」日本触媒社製
【0078】
<導電性接着剤層1の製造>
固形分換算で熱硬化性樹脂を100部、導電性フィラーを52部、エポキシ化合物を10部、アジリジン化合物を0.5部容器に仕込み、不揮発分濃度が40%になるように混合溶剤(トルエン:イソプロピルアルコール=2:1(重量比))を加えディスパーで10分攪拌して導電性樹脂組成物を得た。
【0079】
導電性樹脂組成物をバーコーターで乾燥厚みが10μmになるように剥離性シート上に塗工し、100℃の電気オーブンで2分間乾燥することで導電性接着剤層1を得た。
【0080】
<導電性接着剤層2〜8の製造>
導電性フィラーの添加量を変えた以外は導電性接着剤層1と同様の方法で表1に示す導電接着剤層2〜8を作製した。
【表1】
【0081】
[実施例1]
固形分換算で熱硬化性樹脂を100部、エポキシ化合物10部およびアジリジン硬化剤1部を加えディスパーで10分攪拌することで絶縁性樹脂組成物を得た。得られた絶縁性樹脂組成物をバーコーターを使用して乾燥厚みが5μmになるように、
銅箔2に塗工し、100℃の電気オーブンで2分間乾燥した後、保護層に微粘着剥離性シートを張り合わせた。
尚、この保護層のガラス転移温度Tgは−5℃であった。
【0082】
次いで、
銅箔2の銅キャリアを剥がし、銅箔面に導電性接着剤層4を張り合わせることで、「剥離性シート/保護層/
銅箔2/導電性接着剤層4/剥離性シート」からなる電磁波シールドシートを得た。
銅箔2と導電性接着剤層の貼り合せは、温度は90℃、圧力は3kgf/cm
2で、熱ラミネーターにより貼り合わせた。
【0083】
なお、
銅箔2は、銅キャリア上に剥離層を介して形成された銅箔上にパターンレジスト層を形成し銅箔をエッチングして開口部を形成する方法により、
表2に示す開口部の円径度係数、および開口率等を有する銅箔である。
【0084】
[実施例2〜27、比較例1〜3]
実施例1における、導電性接着剤層、および銅箔の種類を変更した以外は、実施例1と同様に行うことで、実施例2〜27、比較例1〜3の電磁波シールドシートをそれぞれ得た。
なお、実施例および比較例の銅箔は、実施例1と同様に、銅キャリア上に剥離層を介して形成された銅箔にパターンレジストを形成し、エッチングによって開口部を形成する方法により得られた、表2〜表4に示す開口部の円径度係数、および開口率等を有する銅箔である。
【0085】
得られた電磁波シールドシートを用いて、下記評価を行った。結果を表
2〜
4に示す。
【0086】
<ハンダリフロー耐性>
ハンダリフロー耐性は、電磁波シールドシートと溶融半田とを接触させた後の、外観変化の有無により評価した。ハンダリフロー耐性が高い電磁波シールドシートは、外観が変化しないが、ハンダリフロー耐性が低い電磁波シールドシートは、発泡や剥がれが発生する。
まず、幅25mm・長さ70mmの電磁波シールドシートの導電性接着剤層の剥離性シートを剥がし、露出した導電性接着剤層と、総厚64μmの金メッキ処理された銅張積層板(金メッキ0.3μm/ニッケルメッキ1μm/銅箔18μm/接着剤20μm/ポリイミドフィルム25μm)の金メッキ面を150℃、2.0MPa、30分の条件で圧着し、熱硬化させて積層体を得た。得られた積層体を幅10mm・縦65mmの大きさに切り取り試料を作製した。得られた試料を40℃、90%RHの雰囲気下で72時間放置した。その後、試料のポリイミドフィルム面を下にして250℃の溶融半田上に1分間浮かべ、次いで試料を取り出し、その外観を目視で観察し、発泡、浮き、剥がれ等の異常の有無を次の基準で評価した。
◎:外観変化全く無し。
〇:小さな発泡がわずかに観察される。
△:小さな発泡が多数観察される。
×:激しい発泡や剥がれが観察される。
【0087】
<電磁波シールド性>
電磁波シールド性は、クロストークを測定して評価した。クロストークは以下の測定用試料を用いて評価した。
(コプレーナ回路を有する配線板の製造)
図3に、測定に用いたコプレーナ回路を有するフレキシブルプリント配線板(以下、コプレーナ回路を有する配線板ともいう)20の主面側の模式的平面図を、
図4に、裏面側の模式的平面図を示す。まず、厚さ50μmのポリイミドフィルム50の両面に、厚さ12μmの圧延銅箔を積層した両面CCL「R−F775」(パナソニック社製)を用意した。そして、矩形状の4つのコーナー部近傍に、其々6か所のスルーホール51(直径0.1mm)を設けた。尚、図中においては、図示の便宜上、各コーナー部にスルーホール51を2つのみ示している。次いで、無電解メッキ処理を行った後に、電解メッキ処理を行って10μmの銅メッキ膜52を形成し、スルーホール51を介して両主面間の導通を確保した。その後、
図3に示すように、ポリイミドフィルム50の主面に長さが10cmの2本の信号配線53、およびその外側に信号配線53と並行なグランド配線54、およびグランド配線54から延在され、ポリイミドフィルム50の短手方向のスルーホール51を含む領域にグランドパターン(i)55を形成した。
【0088】
その後、ポリイミドフィルム50の裏面に形成された銅箔をエッチングして、グランドパターン(i)55に対応する位置に、
図4に示すような裏面側グランドパターン(ii)56を得た。回路の外観、公差の検査仕様はJPCA規格(JPCA−DG02)とした。次に、ポリイミドフィルム50の主面側に、ポリイミドフィルム8a(厚さ12.5μm)と絶縁性導電性接着剤層8b(厚さ15μm)とで構成されるカバーコート層8「CISV1215(ニッカン工業社製)」を貼り付けた(
図3参照)。尚、
図3においては、信号配線53等の構造がわかるように、カバーコート層8を透視図で示した。その後、カバーコート層8から露出した銅箔パターンにニッケルメッキ(不図示)を行い、次いで金メッキ(不図示)処理を行った。
【0089】
次に
図5に示すように、導電性接着剤層1、金属層2、保護層3の積層体からなる電磁波シールドシート10を用意し、電磁波シールドシート10の導電性接着剤層1上に設けられた剥離処理シート(不図示)を剥がした。そして、電磁波シールドシート10の導電性接着剤層1を内側としてコプレーナ回路を有する配線板20の裏全面側に、150℃、2.0MPa、30分の条件で圧着することにより電磁波シールドシート付きコプレーナ回路を有する配線板20を得た。
図5においては、裏面側グランドパターン(ii)56を透視図で示した。
【0090】
(マイクロストリップライン回路を有する配線板の製造)
別途、
図6及び
図7に示すようにマイクロストリップライン回路を有する配線板30を作製した。まず、厚さ12μmの圧延銅箔を積層した両面CCL「R−F775」(パナソニック社製)を用意した。そして、一方の面に長さが10cmの2本の信号配線35をエッチングによって形成した。回路の外観、公差の検査仕様はJPCA規格(JPCA−DG02)とした。次に、信号配線35側に、ポリイミドフィルム31a(厚さ12.5μm)と絶縁性導電性接着剤層31b(厚さ15μm)とで構成されるカバーレイ31「CISV1215(ニッカン工業社製)」を貼り付けた(
図6参照)。尚、
図6においては、信号配線35等の構造がわかるように、カバーレイ31を透視図で示した。その後、カバーレイ31から露出した信号配線35にニッケルメッキ(不図示)を行い、次いで金メッキ(不図示)処理を行った。また、ポリイミドフィルム33の裏面側には、
図7に示すように、グランド層34が設けられている。
【0091】
(テストピースの作製)
次いで、マイクロストリップライン回路を有する配線板30の信号配線35側とコプレーナ回路を有する配線板20の電磁波シールドシート10側とが接触するように積層させ治具で固定した。積層体の模式的断面図を
図8及び
図9に示す。
図8は
図3のXI−XI切断部断面図に相当し、
図9は
図3のXII−XII切断部断面図に相当する。
マイクロストリップライン回路を有する配線板30の露出した信号配線35と、コプレーナ回路を有する配線板20の露出した信号配線53にネットワークアナライザE5071C(アジレント・ジャパン社製)を接続し、マイクロストリップライン回路を有する配線板30の信号配線35には10MHz〜20GHzのサイン波を入力し、その時のコプレーナ回路を有する配線板20におけるクロストークを測定し、この値によって電磁波シールド性の影響を確認した。
尚、信号配線35のL/S(ライン/スペース)は特性インピーダンスが±10Ωに入るよう適宜調整した。グランド配線54の幅は100μm、グランド配線54と信号配線53の間の距離は1mmとした。
実施例9、11及び、比較例2の測定データを
図11に示す。
測定したクロストークを下記の基準で評価した。
◎:10GHzにおけるクロストークが−55dB未満
〇:10GHzにおけるクロストークが−55dB以上、−50dB未満
△:10GHzにおけるクロストークが−50dB以上、−45dB未満
×:10GHzにおけるクロストークが−45dB以上
【0092】
<高温高湿経時後の電磁波シールド性>
電磁波シールドシート付きコプレーナ回路を有する配線板20を85℃85%の高温高湿環境下、500時間放置した後に以外は、電磁波シールド性と同様に10GHzにおけるクロストークを測定した。
◎:10GHzにおけるクロストークが−55dB未満
〇:10GHzにおけるクロストークが−55dB以上、−50dB未満
△:10GHzにおけるクロストークが−50dB以上、−45dB未満
×:10GHzにおけるクロストークが−45dB以上
【0093】
<クラック耐性>
幅50mm・長さ50mmの電磁波シールドシートを、導電性接着剤層の剥離性シートを剥がさず、150℃、5.0MPa、30分の条件で熱プレスした。その後剥離性シートを剥がし、導電性接着側から光学顕微鏡で金属層のクラックの有無を確認した。
評価基準は以下の通りである。
◎:クラックなし 非常に良好な結果である。
○:クラック箇所が1〜5個 良好な結果である。
△:クラック箇所が6〜10個 実用上問題ない。
×:クラック箇所が11個以上 実用不可
【0094】
<小開口ビアへの接続信頼性>
電磁波シールドシートを幅20mm、長さ50mmの大きさに準備し試料25とした。
図10(1)、(4)の平面図を示して説明すると電磁波シールドシート25から剥離性シートを剥がし、露出した導電性接着剤層25bを、別に作製したフレキシブルプリント配線板(厚み25μmのポリイミドフィルム21上に、互いに電気的に接続されていない厚み18μmの銅箔回路22A、および銅箔回路22Bが形成されており、銅箔回路22A上に、厚み37.5μmの、直径1.1mm(ビア面積が1.0mm
2)の円形ビア24を有する接着剤付きポリイミドカバーレイ23が積層された配線板)に150℃、2MPa、30分の条件で圧着し、電磁波シールドシートの導電性接着剤層25bおよび保護層25aを硬化させることで試料を得た。次いで、試料の保護層25a側の剥離性シートを除去し、
図10(4)の平面図に示す22A−22B間の初期接続抵抗値を、三菱化学製「ロレスターGP」のBSPプローブを用いて測定した。なお、
図10(2)は、
図10(1)のD−D’断面図、
図10(3)は
図10(1)のC−C’断面図である。同様に
図10(5)は、
図10(4)のD−D’断面図、
図10(6)は
図10(4)のC−C’断面図である。ビアの直径を1.1mm(ビア面積が1.0mm
2)から0.1mm(ビア面積が0.008mm
2)まで0.1mm刻みで作製し、それぞれについて、上記と同様に接続信頼性試験を行い接続抵抗値が200mΩ以下となる最少ビア直径を確認した。
接続信頼性の評価基準は以下の通りである。
◎:最少ビア直径が0.2mm(ビア面積が0.03mm
2)以下。非常に良好な結果である。
○:最少ビア直径が0.3mm(ビア面積が0.07mm
2)以上0.6mm(ビア面積が0.3mm
2)以下。良好な結果である。
△:最少ビア直径が0.7mm(ビア面積が0.4mm
2)以上1.0mm(ビア面積が0.8mm
2)以下。実用上問題ない。
×:最少ビア直径が1.1mm(ビア面積が1.0mm
2)、或いは、200mΩ以下にならない。実用不可。
【0095】
【表2】
【0096】
【表3】
【0097】
【表4】
【課題】ハンダリフロー耐性および、クラック耐性が良好で、かつ小開口のビアに対しても信頼性の高いグランド接地が可能で、高周波伝送回路に用いた場合においても高い電磁波シールド性を有する電磁波シールドシートを提供すること。
【解決手段】保護層と金属層と導電性接着剤層とから構成され、 前記金属層は複数の開口部を有し、前記開口部の数式(1)から求められる円径度係数の平均値が0.5以上であって、かつ金属層の開口率が0.1〜20%であることを特徴とする電磁波シールドシートによって解決される。