特許第6864756号(P6864756)IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立製作所の特許一覧
<>
  • 特許6864756-作業分析装置、及び作業分析方法 図000002
  • 特許6864756-作業分析装置、及び作業分析方法 図000003
  • 特許6864756-作業分析装置、及び作業分析方法 図000004
  • 特許6864756-作業分析装置、及び作業分析方法 図000005
  • 特許6864756-作業分析装置、及び作業分析方法 図000006
  • 特許6864756-作業分析装置、及び作業分析方法 図000007
  • 特許6864756-作業分析装置、及び作業分析方法 図000008
  • 特許6864756-作業分析装置、及び作業分析方法 図000009
  • 特許6864756-作業分析装置、及び作業分析方法 図000010
  • 特許6864756-作業分析装置、及び作業分析方法 図000011
  • 特許6864756-作業分析装置、及び作業分析方法 図000012
  • 特許6864756-作業分析装置、及び作業分析方法 図000013
  • 特許6864756-作業分析装置、及び作業分析方法 図000014
  • 特許6864756-作業分析装置、及び作業分析方法 図000015
  • 特許6864756-作業分析装置、及び作業分析方法 図000016
  • 特許6864756-作業分析装置、及び作業分析方法 図000017
  • 特許6864756-作業分析装置、及び作業分析方法 図000018
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】6864756
(24)【登録日】2021年4月6日
(45)【発行日】2021年4月28日
(54)【発明の名称】作業分析装置、及び作業分析方法
(51)【国際特許分類】
   G06Q 10/06 20120101AFI20210419BHJP
【FI】
   G06Q10/06 332
【請求項の数】13
【全頁数】25
(21)【出願番号】特願2019-550025(P2019-550025)
(86)(22)【出願日】2017年10月31日
(86)【国際出願番号】JP2017039245
(87)【国際公開番号】WO2019087275
(87)【国際公開日】20190509
【審査請求日】2020年1月29日
(73)【特許権者】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110000198
【氏名又は名称】特許業務法人湘洋内外特許事務所
(72)【発明者】
【氏名】井上 鉄平
(72)【発明者】
【氏名】辻部 晃久
(72)【発明者】
【氏名】小倉 孝裕
(72)【発明者】
【氏名】茂木 俊行
【審査官】 塩田 徳彦
(56)【参考文献】
【文献】 国際公開第2017/175259(WO,A1)
【文献】 特開2005−267284(JP,A)
【文献】 国際公開第2007/126026(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G06Q 10/00 − 99/00
(57)【特許請求の範囲】
【請求項1】
実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定部と、
前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出部と、
決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類部と、
前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出部と、
を備えることを特徴とする作業分析装置。
【請求項2】
請求項1に記載の作業分析装置であって、
工程毎に管理粒度と作業改善ポイントと各評価指標の閾値とが対応付けて記録された作業改善ポイントライブラリ情報を保持する記憶部と、
を備え、
前記作業改善ポイント抽出部は、分類された前記優秀作業それぞれの前記評価値と、前記非優秀作業それぞれの前記評価値と、前記作業改善ポイントライブラリ情報とに基づいて、前記各管理粒度グループに属する非優秀作業の前記作業改善ポイントを抽出する
ことを特徴とする作業分析装置。
【請求項3】
請求項2に記載の作業分析装置であって、
前記作業改善ポイントライブラリ情報は、ユーザが編集可能である
ことを特徴とする作業分析装置。
【請求項4】
請求項1に記載の作業分析装置であって、
前記管理粒度決定部は、予め決定されている複数の分析粒度に従って作業を分析粒度グループにグルーピングし、各分析粒度グループに属する作業の作業時間のバラつき具合に基づき、前記分析粒度の中から前記管理粒度を決定する
ことを特徴とする作業分析装置。
【請求項5】
請求項4に記載の作業分析装置であって、
前記管理粒度決定部は、各分析粒度グループに属する作業の各分析粒度グループに属する作業の作業時間の外れ値を除外し、前記外れ値を除外した前記作業時間のバラつき具合に基づき、前記分析粒度の中から前記管理粒度を決定する
ことを特徴とする作業分析装置。
【請求項6】
請求項4に記載の作業分析装置であって、
前記管理粒度決定部は、予め決定されている複数の分析粒度に従って作業を分析粒度グループにグルーピングし、各分析粒度グループに属する作業の平均作業時間と各作業時間との絶対値誤差に基づき、前記分析粒度の中から前記管理粒度を決定する
ことを特徴とする作業分析装置。
【請求項7】
請求項1に記載の作業分析装置であって、
前記評価値算出部は、前記評価指標の評価値として、作業時間、動線距離、及び非稼動割合のうちの少なくとも二つを算出する
ことを特徴とする作業分析装置。
【請求項8】
請求項1に記載の作業分析装置であって、
前記作業分類部は、各評価指標における平均よりも優れた作業を優秀作業候補とし、前記複数の評価指標の全てにおいて前記優秀作業候補とされた前記作業を前記優秀作業に分類する
ことを特徴とする作業分析装置。
【請求項9】
請求項1に記載の作業分析装置であって、
前記作業分類部は、各評価指標における外れ値を除外した後、各評価指標における平均よりも優れた作業を優秀作業候補とし、前記複数の評価指標の全てにおいて前記優秀作業候補とされた前記作業を前記優秀作業に分類する
ことを特徴とする作業分析装置。
【請求項10】
請求項1に記載の作業分析装置であって、
前記作業改善ポイント抽出部は、前記作業実績情報に含まれる動画像を複数のエリアに分割し、分割したエリア毎の前記優秀作業の評価値に基づき、前記作業改善ポイントを抽出する
ことを特徴とする作業分析装置。
【請求項11】
請求項10に記載の作業分析装置であって、
前記作業改善ポイント抽出部は、前記作業実績情報に含まれる動画像における作業者の移動範囲に基づいて前記動画像を複数のエリアに分割する
ことを特徴とする作業分析装置。
【請求項12】
請求項1に記載の作業分析装置であって、
抽出された前記作業改善ポイントをユーザに提示させる提示制御部と、
を備えることを特徴とする作業分析装置。
【請求項13】
作業分析装置の作業分析方法であって、
実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定ステップと、
前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出ステップと、
決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類ステップと、
前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出ステップと、
を含むことを特徴とする作業分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、作業分析装置、及び作業分析方法に関する。
【背景技術】
【0002】
製品の生産効率を向上させるためには、作業時間を分析し、作業の改善ポイントを抽出する必要がある。作業時間を分析するには、作業を適切な管理粒度によってグルーピングする必要がある。
【0003】
例えば昇降機等の非量産品の製造作業を分析する場合、製品の仕様によって、製造ラインや製法が異なるので、管理粒度は、各工程における作業内容、製品の仕様、作業者等を組合せて決定することが望ましい。
【0004】
管理粒度を決定する技術として、例えば特許文献1には「作業時間履歴データに含まれる作業種類項目値毎に分類して作業時間履歴データを生成する作業種類分類部11と、作業時間履歴データから作業種類項目値毎に代表参考時間を算出する代表参考時間算出部12と、作業時間履歴データを属性項目値毎に分類して作業時間履歴データを生成する属性項目分類部13と、作業時間履歴データから属性項目値毎に細分参考時間を算出する細分参考時間算出部14と、有意性有りと判断した細分参考時間を当該属性項目値の参考時間として設定し、そうでない属性項目値に対しては代表参考時間を参考時間として設定する有意性評価部15と、を有する」参照時間推定装置が記載されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2015−148961号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特許文献1に記載の技術では、各属性の作業時間の差が有意であるか否かを判断することで管理粒度を算出するが、作業実績のデータ数が少ない場合、有意か否かの判断ができない。
【0007】
また、従来、管理粒度を決定してから改善ポイントを抽出するまでの技術も存在するが、作業の評価指標は作業時間しかなく、他の評価指標を用いるためには、人による目視での確認が必要であった。
【0008】
本発明は、このような状況に鑑みてなされたものであり、適切な管理粒度を決定してから改善ポイントを抽出するまでの一連の処理を人力に頼ることなく実行できるようにすることを目的とする。
【課題を解決するための手段】
【0009】
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。上記課題を解決すべく、本発明の一態様に係る作業分析装置は、実行済みの複数の作業に関する情報が蓄積された作業実績情報に基づいて工程毎の管理粒度を決定する管理粒度決定部と、前記作業実績情報に基づき、各作業に対する複数の評価指標それぞれの評価値を算出する評価値算出部と、決定された工程毎の管理粒度に従って作業を管理粒度グループにグルーピングし、前記作業に対して算出された前記複数の評価指標それぞれの評価値に基づき、各管理粒度グループに属する複数の前記作業から優秀作業を分類する作業分類部と、前記各管理粒度グループの前記優秀作業の前記評価値に基づき、前記各管理粒度グループに属する非優秀作業の作業改善ポイントを抽出する作業改善ポイント抽出部と、を備えることを特徴とする。
【発明の効果】
【0010】
本発明によれば、適切な管理粒度の決定から改善ポイントの抽出までの一連の処理を人力に頼ることなく実行することが可能となる。上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
【図面の簡単な説明】
【0011】
図1】本発明に係る一実施の形態である作業分析システムの構成例を示すブロック図である。
図2】作業実績情報のデータ構造の一例を示す図である。
図3】管理粒度情報のデータ構造の一例を示す図である。
図4】動線情報のデータ構造の一例を示す図である。
図5】評価値情報のデータ構造の一例を示す図である。
図6】作業分類情報のデータ構造の一例を示す図である。
図7】エリア別評価値情報のデータ構造の一例を示す図である。
図8】作業改善ポイント情報のデータ構造の一例を示す図である。
図9】作業改善ポイントライブラリ情報のデータ構造の一例を示す図である。
図10】作業分析システムによる作業分析処理の一例を説明するフローチャートである。
図11】各分析粒度の作業時間のバラつき具合を可視化した一例を示す図である。
図12】各分析粒度の平均作業時間の算出結果の一例を示す図である。
図13】各分析粒度の絶対値誤差の算出結果の一例を示す図である。
図14】出力画面の一例を示す図である。
図15】編集画面の一例を示す図である。
図16】編集処理の一例を説明するフローチャートである。
図17】コンピュータの構成例を示すブロック図である。
【発明を実施するための形態】
【0012】
以下、本発明に係る一実施の形態を図面に基づいて説明する。なお、一実施の形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。また、以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。また、「Aからなる」、「Aよりなる」、「Aを有する」、「Aを含む」と言うときは、特にその要素のみである旨明示した場合等を除き、それ以外の要素を排除するものでないことは言うまでもない。同様に、以下の実施の形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に明らかにそうでないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。
【0013】
本明細書において、「作業」とは、製品を製造する一連の動作を成す複数の区切りの単位を指すものとする。作業は、その属性情報として工程、作業内容、機種、作業者をそれぞれ表す情報を有しているものとする。
【0014】
また、「粒度」とは、作業を工程毎に分析するためにグループにグルーピングするときの条件の組み合わせを表すものとする。例えば、昇降機を製造する一連の動作は、複数の工程から成り、同じ工程の中にも異なる作業内容があったり、製造する機種の違いがあったり、作業者が異なったりするので、各作業は、工程と、作業内容と、機種と、作業者との組み合わせを条件としてグループにグルーピングすることができる。
【0015】
具体的には、管理粒度は、工程だけにするが、または、工程と、機種、作業内容、および作業者のうちの少なくとも1つとを組み合わせとすることができる。
【0016】
例えば、各作業を最も少ない条件でグルーピングする場合、管理粒度は工程だけとすればよい。また、「粒度が粗い」とは、グルーピングするときの条件が少ないことを意味する。反対に、「粒度が細かい」は、グルーピングするときの条件が多いことを意味することになる。
【0017】
<本発明に係る一実施の形態である作業分析システムの構成例>
図1は、本発明に係る一実施の形態(以下、本実施の形態と称する)である作業分析システムの構成例を示すブロック図である。
【0018】
この作業分析システム100は、作業分析装置101が、ネットワーク102を介して、ユーザ端末103とデータベース104とに接続されて構成される。
【0019】
作業分析装置101は、実行済みの作業を工程毎に分析して作業改善ポイントを抽出するものである。ここで、作業改善ポイントとは、実行済みの作業において、例えば、長い作業時間を要していた等の改善すべき点を指す。
【0020】
ネットワーク102は、例えば、LAN(Local Area Network)、WAN(Wide Area Network)、VPN(Virtual Private Network)、インターネット等を含む双方向通信網である。
【0021】
ユーザ端末103は、例えばパーソナルコンピュータ等から成り、分析対象の工程を指定したり、作業改善ポイントライブラリ情報128のレコードを新規登録したり、編集したりするユーザの操作を受け付けて、その操作情報を、ネットワーク102を介して作業分析装置101に送信する。また、ユーザ端末103は、作業分析装置101から供給される分析結果等を表す出力画面1300(図14)等をディスプレイ(不図示)に表示してユーザに提示する。
【0022】
データベース104は、例えばMES(Manufacturing Execution System)等のシステムまたはそれに準じるデータを記憶している。具体的には、実行済みの作業に関する情報が蓄積された作業実績情報を記憶しており、記憶している作業実績情報のうちの、分析対象工程に指定された工程に関する作業実績情報を作業分析装置101に供給する。
【0023】
作業分析装置101について詳述する。作業分析装置101は、例えば、パーソナルコンピュータまたはサーバーコンピュータ等から成り、演算部110、記憶部120、入力部130、及び出力部140を備える。
【0024】
演算部110は、管理粒度決定部111、評価値算出部112、作業分類部113、及び作業改善ポイント抽出部114を有する。
【0025】
管理粒度決定部111は、データベース104から供給されて記憶部120に記憶されている作業実績情報121(詳細後述)に基づき、各工程に属する作業を、予め決定されている複数の分析粒度に従って、分析粒度グループにグルーピングし、各分析粒度グループに属する作業の平均作業時間を算出する。
【0026】
ここで、分析粒度とは、工程だけ、または、工程と、作業内容、機種、及び作業者の3項目のうちの少なくとも1項目を組み合わせたものである。例えば、工程と、作業内容と、機種と、作業者とがそれぞれ3種類ずつ存在する場合、分析粒度が工程だけであれば、ある工程に属する作業は1つの分析粒度グループにグルーピングされることになる。また、分析粒度が工程と機種であれば、ある工程に属する作業は3つの分析粒度グループにグルーピングされることになる。
【0027】
また、管理粒度決定部111は、各分析粒度グループに属する作業の作業時間のバラつき具合を算出し、算出したバラつき具合が最小となる分析粒度を該工程における管理粒度に決定する。例えば、管理粒度決定部111は、各分析粒度グループに属する作業の作業時間と、平均作業時間との絶対値誤差を算出してそれらの総和を算出し、絶対値誤差の総和が最小となる分析粒度を該工程における管理粒度に決定する。さらに、管理粒度決定部111は、管理粒度を記憶部120が記憶している管理粒度情報122(詳細後述)に格納する。
【0028】
なお、本実施の形態では、工程毎の管理粒度及び分析粒度の項目を、工程と作業内容と機種と作業者の4項目としたが、材料等のさらに他の項目を追加してもよい。
【0029】
評価値算出部112は、記憶部120が記憶している作業実績情報121(詳細後述)に含まれる、作業を撮像した動画ファイルから、各作業における作業者の移動経路を表す動線情報を検出して、検出結果を記憶部120が記憶している動線情報123(詳細後述)に格納する。また、評価値算出部112は、作業実績情報121と動線情報123に基づき、作業の評価指標となる作業時間と動線距離と非稼動割合とを算出する。さらに、評価値算出部112は、算出した各評価値を記憶部120が記憶している評価値情報124(詳細後述)に格納する。
【0030】
作業分類部113は、記憶部120が記憶している作業実績情報121と管理粒度情報122と評価値情報124とに基づき、各工程の管理粒度に従って作業を管理粒度グループにグルーピングし、管理粒度グループの中から優秀作業を選定する。また、作業分類部113は、選定した優秀作業を記憶部120が記憶している作業分類情報125(詳細後述)に格納する。
【0031】
作業改善ポイント抽出部114は、記憶部120が記憶している作業実績情報121に含まれる、作業を撮像した動画ファイルの画角を複数の作業エリアに分割する。また、作業改善ポイント抽出部114は、記憶部120が記憶している作業実績情報121と管理粒度情報122と動線情報123とに基づき、分割した作業エリア毎に、各作業の評価指標となる評価値を算出する。さらに、作業改善ポイント抽出部114は、作業エリア毎の評価値を、記憶部120が記憶しているエリア別評価値情報126に格納する。さらに、作業改善ポイント抽出部114は、記憶部120が記憶している作業分類情報125とエリア別評価値情報126と作業改善ポイントライブラリ情報128とに基づき、作業の改善ポイントを抽出する。またさらに、作業改善ポイント抽出部114は、抽出した改善ポイントを記憶部120が記憶している作業改善ポイント情報127に格納する。
【0032】
記憶部120は、作業分析に必要な情報、具体的には、作業実績情報121、管理粒度情報122、動線情報123、評価値情報124、作業分類情報125、エリア別評価値情報126、作業改善ポイント情報127、及び作業改善ポイントライブラリ情報128を記憶する。
【0033】
入力部130は、ネットワーク102を介してユーザ端末103から送信された操作情報を受け付けて演算部110に通知する。また、入力部130は、ネットワーク102を介してデータベース104から供給される作業実績情報を受け付けて、記憶部120が記憶している作業実績情報121に追加する。さらに、入力部130は、ユーザ端末103から送信された操作情報のうち、前記作業改善ポイントライブラリ情報128への編集の操作情報に応じて、記憶部120が記憶している作業改善ポイントライブラリ情報128を変更する。
【0034】
出力部140(本発明の提示制御部に相当する)は、作業の分析結果を表す出力画面1300(図14)をユーザ端末103のディスプレイに表示させる。また、出力部140は、作業改善ポイントライブラリ情報128の編集画面1500(図16)をユーザ端末103のディスプレイに表示させる。
【0035】
次に、図2は、作業実績情報121のデータ構造の一例を示している。作業実績情報121には、実施済みの複数の作業に関する情報が蓄積されている。
【0036】
作業実績情報121は、各作業に対応する複数のレコードで構成されており、各レコードは、作業IDフィールド1211と、工程フィールド1212と、作業内容フィールド1213と、機種フィールド1214と、作業者フィールド1215と、開始時刻フィールド1216と、終了時刻フィールド1217と、動画ファイルフィールド1218とを有する。
【0037】
作業IDフィールド1211には、各作業を識別するための作業ID(Identification)情報が格納されている。工程フィールド1212には、工程情報が格納されている。ここで、工程情報とは、製品を製造する一連の動作において順次実行される複数の工程のいずれであるかを表す情報である。
【0038】
作業内容フィールド1213には、工程フィールド1212に格納される工程情報が表す工程(以下、該工程と称する)の作業内容を表わす情報が格納されている。なお、同一の工程に対して、異なる複数の作業内容が存在してもよい。
【0039】
機種フィールド1214には、該工程にて製造している製品の機種を表す情報が格納されている。作業者フィールド1215には、該工程を担当した作業者を表す情報が格納されている。開始時刻フィールド1216には、作業の開始時刻が格納されている。終了時刻フィールド1217には、作業の終了時刻が格納されている。動画ファイルフィールド1218には、作業を撮像した動画ファイルが格納されている。なお、動画ファイルのフレームレートは、例えば、1fps(frames per second)程度でよいが、30fps等のより高いフレームレートであってもよい。
【0040】
図2の例では、例えば、作業ID=作業1のレコードには、工程フィールド1212に「工程1」が、作業内容フィールド1213に「作業内容1」が、機種フィールド1214に「機種1」が、作業者フィールド1215に「作業者1」が格納されている。また、開始時刻フィールド1216に「2017/4/2 9:00」が、終了時刻フィールド1217に「2017/4/2 9:30」が、動画ファイルフィールド1218に「動画ファイル./movie1」が格納されている。
【0041】
図3は、管理粒度情報122のデータ構造の一例を示している。管理粒度情報122には、各工程の管理粒度を表す情報が格納されている。
【0042】
管理粒度情報122は、複数のレコードで構成されており、各レコードは、工程フィールド1221と、管理粒度を表すための作業内容フィールド1222と機種フィールド1223と作業者フィールド1224とを有する。
【0043】
工程フィールド1221には、工程を表す工程情報が格納されている。
【0044】
作業内容フィールド1222には、該工程の管理粒度として、作業内容が採用されるか否かの情報が格納されている。具体的には、管理粒度として作業内容が採用される場合には「○」が格納され、採用されない場合には「−」が格納されている。
【0045】
機種フィールド1223には、該工程の管理粒度として、機種が採用されるか否かの情報が格納されている。具体的には、管理粒度として機種が採用される場合には「○」が格納され、採用されない場合には「−」が格納されている。
【0046】
作業者フィールド1224には、該工程の管理粒度として、作業者が採用されるか否かの情報が格納されている。具体的には、管理粒度として作業者が採用される場合には「○」が格納され、採用されない場合には「−」が格納されている。
【0047】
図3の例では、例えば、工程1の管理粒度として、作業内容、機種、及び作業者のいずれもが採用されていない。この場合、工程1の管理粒度としては、工程が採用されていることを表している。したがって、工程1に属する全ての作業は、同一の管理粒度グループにグルーピングされて分析される。
【0048】
また例えば、工程2の管理粒度には、機種が採用されたことを表している。したがって、工程2に属する作業は、機種毎に異なる管理粒度グループにグルーピングされて分析される。
【0049】
図4は、動線情報123のデータ構造の一例を示している。動線情報123には、各作業において作業者の動線に関する情報が格納されている。
【0050】
動線情報123は、複数のレコードで構成されており、各レコードは、作業IDフィールド1231と、フレームフィールド1232と、X座標フィールド1233と、Y座標フィールド1234とから構成されている。
【0051】
作業IDフィールド1231には、各作業を識別する作業IDが格納されている。フレームフィールド1232には、動画ファイルを構成するフレームのフレーム番号が格納されている。X座標フィールド1233とY座標フィールド1234には、該フレームにおける作業者の重心位置のX座標とY座標が格納されている。
【0052】
図4の例は、作業1の動画ファイルの各フレームにおける作業者の重心のX,Y座標を表しており、例えばフレーム1におけるX,Y座標は(29,16)、フレーム2におけるX,Y座標は(25,10)であることを表している。
【0053】
図5は、評価値情報124のデータ構造の一例を示している。評価値情報124には、各作業の複数の評価指標それぞれの評価値が格納されている。
【0054】
評価値情報124は、複数のレコードで構成されており、各レコードは、作業IDフィールド1241と、作業時間フィールド1242と、動線距離フィールド1243と、非稼動割合フィールド1244とを有する。
【0055】
作業IDフィールド1241には、各作業を識別する作業IDが格納されている。作業時間フィールド1242には、評価指標の評価値として作業時間が格納されている。動線距離フィールド1243には、評価指標の評価値として作業者の動線距離が格納されている。非稼動割合フィールド1244には、評価指標の評価値としての非稼働割合が格納されている。
【0056】
図5の例では、例えば、作業1の評価指標は、作業時間が30分、動線距離が5m、非稼動割合が10%であり、作業2の評価指標は、作業時間が50分、動線距離が7m、非稼動割合が15%であることを表している。
【0057】
図6は、作業分類情報125のデータ構造の一例を示している。作業分類情報125には、各工程の管理粒度における優秀作業の情報が格納されている。
【0058】
作業分類情報125は、複数のレコードで構成されており、各レコードは、工程フィールド1251と、作業内容フィールド1252と、機種フィールド1253と、作業者フィールド1254と、作業IDフィールド1255とを有する。
【0059】
工程フィールド1251には、工程を表す工程情報が格納されている。作業内容フィールド1252には、該工程の管理粒度のうちの作業内容に関する情報が格納されている。なお、該工程の管理粒度に作業内容が採用されない場合、作業内容フィールド1252には、「−」が格納される。機種フィールド1253には、該工程の管理粒度のうちの機種に関する情報が格納されている。なお、該工程の管理粒度に機種が採用されない場合、機種フィールド1253には、「−」が格納される。作業者フィールド1254には、該工程の管理粒度のうちの作業者に関する情報が格納されている。なお、該工程の管理粒度に作業者が採用されない場合、作業者フィールド1254には、「−」が格納される。
【0060】
作業IDフィールド1255には、該工程の管理粒度における優秀作業を表す作業IDが格納されている。
【0061】
図6の例では、例えば、工程1の管理粒度は工程であり、工程1の管理粒度グループにグルーピングされた作業の優秀作業は作業1であることを表している。また例えば、工程2の管理粒度は機種であり、工程2且つ機種1の管理粒度グループにグルーピングされた作業の優秀作業は作業3と作業5であることを表している。さらに、工程2且つ機種2の管理粒度グループにグルーピングされた作業の優秀作業は作業11であることを表している。
【0062】
図7は、エリア別評価値情報126のデータ構造の一例を示している。エリア別評価値情報126には、作業エリア別に集計された各作業の評価指標となる評価値情報が格納されている。
【0063】
エリア別評価値情報126は、複数のレコードで構成されており、各レコードは、作業IDフィールド1261と、作業エリアフィールド1262と、抽出開始時刻フィールド1263と、抽出終了時刻フィールド1264と、作業時間フィールド1265と、動線距離フィールド1266と非稼動割合フィールド1267とを有する。
【0064】
作業IDフィールド1261には、各作業を識別する作業IDが格納されている。作業エリアフィールド1262には、作業エリアを表す情報が格納されている。抽出開始時刻フィールド1263には、該作業エリアにおける作業の開始時刻が格納されている。抽出終了時刻フィールド1264には、該作業エリアにおける作業の終了時刻が格納されている。作業時間フィールド1265には、該作業エリアにおける作業時間が格納されている。動線距離フィールド1266には、該作業エリアにおける作業者の動線距離が格納されている。非稼動割合フィールド1267には、非稼働割合(詳細後述)が格納されている。
【0065】
図7の例では、作業1の作業エリア2における作業時間は2017/4/2の9:10から9:15の5分であり、動線距離が2m、非稼動割合が10%であることを表している。
【0066】
図8は、作業改善ポイント情報127のデータ構造の一例を示している。作業改善ポイント情報127には、各工程の管理粒度において抽出された作業の改善ポイントに関する情報が格納されている。
【0067】
作業改善ポイント情報127は、複数のレコードで構成されており、各レコードは、作業IDフィールド1271と、作業エリアフィールド1272と、改善ポイントフィールド1273と、抽出開始時刻フィールド1274と、抽出終了時刻フィールド1275とを有する。
【0068】
作業IDフィールド1271には、改善ポイントが抽出された作業の作業IDが格納されている。作業エリアフィールド1272には、改善ポイントの対象となった作業エリアを表す情報が格納されている。改善ポイントフィールド1273には、改善ポイントの具体的内容が格納されている。抽出開始時刻フィールド1274には、改善ポイントの抽出開始時刻が格納されている。抽出終了時刻フィールド1275には、改善ポイントの抽出終了時刻が格納されている。
【0069】
図8の例では、作業2の作業エリア4において、改善ポイントとして「手元もたつき」が2017/4/1の8:00から8:15の間に抽出されたことを表している。また、作業7の作業エリア2において、改善ポイントとして「移動距離超過」が2017/5/1の13:00から13:10の間に抽出されたことを表している。
【0070】
図9は、作業改善ポイントライブラリ情報128のデータ構造の一例である。作業改善ポイントライブラリ情報128には、各工程から改善ポイントを抽出する際に参照される情報が予め格納されている。ただし、作業改善ポイントライブラリ情報128は、ユーザが新規登録したり、修正したりすることができる。
【0071】
作業改善ポイントライブラリ情報128は、複数のレコードで構成されており、各レコードは、工程フィールド1281と、作業内容フィールド1282と、機種フィールド1283と、作業者フィールド1284と、改善ポイントフィールド1285と、作業時間フィールド1286と、動線距離フィールド1287と、非稼動割合フィールド1288とを有する。
【0072】
工程フィールド1281には、工程を表す工程情報が格納されている。作業内容フィールド1282には、該工程の管理粒度のうちの作業内容に関する情報が格納されている。なお、該工程の管理粒度に作業内容が採用されない場合、作業内容フィールド1282には、「−」が格納される。機種フィールド1283には、該工程の管理粒度のうちの機種に関する情報が格納されている。なお、該工程の管理粒度に機種が採用されない場合、機種フィールド1283には、「−」が格納される。作業者フィールド1284には、該工程の管理粒度のうちの作業者に関する情報が格納されている。なお、該工程の管理粒度に作業者が採用されない場合、作業者フィールド1284には、「−」が格納される。
【0073】
改善ポイントフィールド1285には、抽出される改善ポイントの内容が格納されている。作業時間フィールド1286には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との作業時間の差の閾値が格納されている。動線距離フィールド1287には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との動線距離の差の閾値が格納されている。非稼動割合フィールド1288には、該改善ポイントを抽出する際に参照される、優秀作業と非優秀作業との非稼動割合の差の閾値が格納されている。
【0074】
図9の例では、工程1から改善ポイントとして「手元もたつき」が抽出される条件は、優秀作業との作業時間の差が10分以上であることを表している。また、工程1から改善ポイントとして「移動距離超過」が抽出される条件は、優秀作業との移動距離の差が3m以上であることを表している。
【0075】
<作業分析システム100による作業分析処理>
次に、図10は、作業分析システム100による作業分析処理の一例を説明するフローチャートである。
【0076】
この作業分析処理は、データベース104に所定数の作業実績情報が記録されていることを前提とし、例えば、ユーザからの開始コマンドに応じて開始される。
【0077】
はじめに、ユーザ端末103が、分析対象の工程を指定するユーザからの操作入力を受け付け、その操作情報を、ネットワーク102を介して作業分析装置101に送信する(ステップS11)。次に、この操作情報を受信した作業分析装置101の入力部130が、該操作情報が表す工程に対応する全ての作業実績情報をデータベース104から取得して、記憶部120が記憶している作業実績情報121に格納する(ステップS12)。
【0078】
次に、演算部110の管理粒度決定部111が、記憶部120の作業実績情報121に基づき、ユーザ端末103から送信された操作情報が表す工程に対する管理粒度を決定して、記憶部120が記憶している管理粒度情報122に格納する(ステップS13)。
【0079】
ステップS13の処理の詳細について説明する。管理粒度決定部111は、記憶部120が記憶している作業実績情報121から、予め決定されている分析粒度に合致するレコードを読み込み、各レコードの作業時間を開始時刻と終了時刻から算出する。例えば、分析対象工程が工程1であり、分析粒度が工程である場合、作業実績情報121の工程フィールド1212に工程1が格納されているレコードを読み込み、各レコードの開始時刻フィールド1216と終了時刻フィールド1217とにそれぞれ格納されている時刻の差を作業時間として算出する。また例えば、分析対象工程が工程2であり、分析粒度が工程と機種である場合、作業実績情報121の工程フィールド1212に工程2が格納されているレコードを読み込み、さらに、機種フィールド1214に格納されている機種ID毎に分析粒度グループにグルーピングして、分析粒度グループ毎に各レコードの開始時刻フィールド1216と終了時刻フィールド1217とにそれぞれ格納されている時刻の差を作業時間として算出する。
【0080】
図11は、算出された各レコードの作業時間のバラつき具合を可視化したものであり、工程1と工程2において、工程のみでグルーピングする分析粒度1と、工程と機種を組合せてグルーピングする分析粒度2に対して、各分析粒度グループにグルーピングされた作業の作業時間をプロットした散布図である。なお、同図の横軸は作業日、縦軸は作業時間を表している。また、図11における太枠線は、工程1と工程2それぞれにおいて、分析粒度1と分析粒度2の管理粒度として相応しい方を示している(その理由は後述する)。
【0081】
次に、管理粒度決定部111は、分析粒度グループにグルーピングされた作業の作業時間のバラつき具合を定量化する。具体的には、管理粒度決定部111は、分析粒度グループ毎の平均作業時間を算出する。
【0082】
ただし、作業実績情報121には、登録時における開始時刻や終了時刻の入力ミス等により、不備データが含まれている可能性がある。そこで、管理粒度決定部111は、作業実績情報121から、不備データの可能性がある外れ値を除去する。
【0083】
外れ値を除去する方法は、いくつか存在するが、本実施の形態では、ヒストグラムの作成と、スミルノフ=グラブス検定を活用する。まず、各作業の作業時間のヒストグラムを作成する。ヒストグラムを作成する際、スタージェスの式により、ヒストグラムのビン数を決定するが、他の方法によりヒストグラムのビン数を決定してもよい。その後、スミルノフ=グラブス検定により、作成したヒストグラムに外れ値が含まれているか否かを判定し、外れ値が含まれていない場合は、ヒストグラムの平均値を平均作業時間とする。反対に、外れ値が含まれている場合は、再度ヒストグラムを作成する。具体的には、ヒストグラムの度数が一番高い範囲と、その前後の範囲のレコードを抽出し、抽出したデータで再度ヒストグラムを作成し、スミルノフ=グラブス検定を行う。以後、作成したヒストグラムに外れ値が含まれなくなるまで、同様の処理を繰り返す。なお、再度ヒストグラムを作成するに際し、ヒストグラムの度数が一番高い範囲と、その前後の範囲のレコードを抽出する代わりに、度数が一番高い範囲のみを抽出するなど、他の範囲を抽出するようにしてもよい。
【0084】
なお、外れ値の除去には、上述した方法以外の方法(箱ひげ図に基づく方法等)を活用してもよい。
【0085】
図12は、外れ値を除去した後の各分析粒度における平均作業時間の算出結果の一例を示している。図12は、図11と同様、工程1と工程2において、工程のみの分析粒度1と、工程と機種を組合せた分析粒度2に対して、平均作業時間の算出結果を示している。図12に示された各分析粒度における平均作業時間は、図11の散布図上に点線でプロットされている。工程1の分析粒度1における平均作業時間は10であり、工程1の分析粒度2における機種1の平均作業時間は11、機種2の平均作業時間は9、機種3の平均作業時間は12である。また、工程2の分析粒度1における平均作業時間は20であり、工程2の分析粒度2における機種1の平均作業時間は25、機種2の平均作業時間は35、機種3の平均作業時間は21である。
【0086】
次に、管理粒度決定部111は、各分析粒度において、作業時間のバラつき具合が最小となる分析粒度を管理粒度に決定する。具体的には、管理粒度決定部111は、算出した平均作業時間と、各レコードの作業時間との絶対値誤差の総和が最小となる分析粒度を該工程の管理粒度に決定する。なお、作業時間のバラつき具合の算出方法は、上述した具体例に限るものでもよい。例えば、分散や標準偏差等を算出するようにしてもよい。
【0087】
なお、分析粒度間(いまの場合、分析粒度1と分析粒度2との間)で、絶対値誤差の総和が等しい場合は、分析粒度が粗い方を管理粒度に決定する。この採用方法について図13を参照して詳述する。
【0088】
図13は、工程1と工程2において、分析粒度1と分析粒度2の絶対値誤差の総和を示している。工程1の場合、分析粒度1の絶対値誤差の総和は300であり、分析粒度2の絶対値誤差の総和も300(=120+100+80)となる。したがって、工程1の場合、分析粒度1と分析粒度2との間で、絶対値誤差の総和が等しいので、分析粒度が粗い方の分析粒度1が管理粒度に決定される。また、工程2の場合、分析粒度1の絶対値誤差の総和は400であり、分析粒度2の絶対値誤差の総和は350(=200+50+100)となる。したがって、工程2の場合、分析粒度2の方が分析粒度1よりも絶対値誤差の総和が小さいので、分析粒度2が管理粒度に決定される。
【0089】
最後に、管理粒度決定部111は、決定した管理粒度を記憶部120が記憶している管理粒度情報122(図3)に格納する。例えば、図11の場合、工程1に対応するレコードとして、管理粒度情報122の工程フィールド1221に「工程1」を格納し、作業内容フィールド1222、機種フィールド1223、及び作業者フィールド1224に「−」を格納する。同様に、工程2に対応するレコードとして、管理粒度情報122の工程フィールド1221に「工程2」を格納し、作業内容フィールド1222及び作業者フィールド1224に「−」を格納し、機種フィールド1223に「○」を格納する。
【0090】
以上で、ステップS13の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。
【0091】
次に、評価値算出部112が、記憶部120が記憶している作業実績情報121に基づき、各作業の評価指標の評価値である作業時間と動線距離と非稼動割合を算出し、算出した評価値を記憶部120が記憶している評価値情報124に格納する(ステップS14)。
【0092】
なお、本実施の形態では、作業の評価指標として、作業時間と動線距離と非稼動割合の3項目を採用しているが、作業時間と動線距離と非稼動割合のうちの少なくとも二つを採用するようにしてもよい。さらに、上記した3項目以外に、例えば、各姿勢(立っている、しゃがんでいる等)の時間、移動の滑らかさ、話している時間、目の動き等を評価指標として採用してもよい。
【0093】
ステップS14の処理の詳細について説明する。まず、評価値算出部112は、評価値を算出するために、記憶部120が記憶している作業実績情報121から、各作業の動画ファイルを読み込んで画像解析を行うことにより動線データを作成する。具体的には、評価値算出部112は、作業実績情報121から読み込んだ動画ファイルの各フレーム上で作業者を探索し、作業者の重心の座標を取得する。作業者の探索方法としては、例えば、事前に作業者の特徴を機械学習により学習しておき、学習結果と各フレームの画像を比較する方法を採用するが、他の方法を用いてもよい。
【0094】
この後、評価値算出部112は、作成した動線データを記憶部120が記憶している動線情報123に格納する。次に、評価値算出部112は、作業実績情報121と動線情報123に基づき、作業時間と、動線距離と、非稼動割合を算出する。
【0095】
作業時間については、作業実績情報121のうち、各作業の開始時刻と終了時刻との差を計算することによって算出する。動線距離について、動線情報123の各フレーム間の作業者の重心座標の変化量を合算することにより、各作業の動線距離を算出する。非稼動割合については、各作業の動線情報123から、予め指定された作業エリア(作業を行わないエリア)に滞在していた時間を検出し、検出した時間の作業時間に対する割合を非稼動割合として算出する。最後に、評価値算出部112は、算出した作業時間と動線距離と非稼動割合を記憶部120が記憶している評価値情報124に格納する。
【0096】
以上で、ステップS14の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。次に、作業分類部113が、ステップS11で指定された工程に合致する作業から優秀作業を分類する作業分類を行う(ステップS15)。
【0097】
ステップS15の処理の詳細について説明する。まず、作業分類部113は、管理粒度情報122(図3)を参照して該工程の管理粒度を取得し、取得した管理粒度に合致するレコードを作業実績情報121から取得する。また、作業分類部113は、取得した該レコードの作業IDフィールド1211を参照して該工程の管理粒度の合致する作業IDを取得し、管理粒度グループにグルーピングする。さらに、作業分類部113は、各管理粒度グループに属する作業IDに合致するレコードを評価値情報124(図5)から取得する。またさらに、作業分類部113は、評価値情報124から取得したレコードを参照し、作業時間と動線距離と非稼働割合の各評価値において、優秀作業となり得る候補のレコードを選定する。
【0098】
例えば、ステップS11で指定された工程が工程1の場合、管理粒度情報122から粒度は工程のみであることが取得され、次に、作業実績情報121から工程1に合致する作業ID(図2の場合、作業1〜作業7)が取得されて、管理粒度グループにグルーピングされる。さらに、評価値情報124から、作業1〜作業7に合致するレコードが取得される。
【0099】
また、例えば、ステップS11で指定された工程が工程2の場合、管理粒度情報122から粒度は工程と機種であることが取得され、次に、作業実績情報121から工程2と機種2に合致する作業ID(図2の場合、作業11)が取得される。さらに、評価値情報124から、作業11(図5には不図示)に合致するレコードが取得される。
【0100】
以下、作業時間の評価値に基づいて優秀作業の候補となり得るレコードの選定方法について説明する。
【0101】
まず、作業分類部113は、評価値情報124から取得したレコードに基づき、平均作業時間を算出する。なお、ここでの平均作業時間の算出方法としては、管理粒度決定部111における処理と同様に、作業時間から外れ値を除去した後に平均作業時間を算出する。次に、作業分類部113は、作業時間が平均作業時間以下であるレコードを優秀作業の候補として選定する。
【0102】
また、作業分類部113は、作業時間以外の評価値についても、同様に、動線距離については平均動線距離以下であるレコードを優秀作業の候補として選定し、非稼動割合については平均非稼動割合以下であるレコードを優秀作業の候補として選定する。
【0103】
次に、作業分類部113は、全ての評価指標(作業時間と動線距離と非稼動割合)において優秀作業の候補として選定されたレコードを優秀作業として選定する。なお、複数のレコードが、全ての評価値において優秀作業の候補となっている場合、該当する複数のレコードを優秀作業に選定する。
【0104】
最後に、作業分類部113は、選定した優秀作業のレコードを記憶部120が記憶している作業分類情報125に格納する。図3の工程1の場合、管理粒度は工程のみであるため、作業分類部113は、工程フィールド1251に「工程1」を格納し、作業内容フィールド1252と、機種フィールド1253と、作業者フィールド1254に「−」を格納し、作業IDフィールド1255に優秀作業として選定された「作業1」を格納する。また、図3の工程2の場合、管理粒度は工程と機種であるため、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種1」を格納して、作業内容フィールド1252と、作業者フィールド1254に「−」を格納し、作業IDフィールド1255に優秀作業として選定された「作業3」を格納する。また、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種1」を格納して、作業内容フィールド1252と、作業者フィールド1254に「−」を格納し、作業IDフィールド1255に優秀作業として選定された「作業5」を格納する。さらに、作業分類部113は、工程フィールド1251に「工程2」を格納し、機種フィールド1253の「機種2」を格納して、作業内容フィールド1252と、作業者フィールド1254に「−」を格納し、作業IDフィールド1255に優秀作業として選定された「作業11」を格納する。
【0105】
以上で、ステップS15の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。
【0106】
次に、作業改善ポイント抽出部114が、記憶部120が記憶している作業実績情報121と管理粒度情報122と動線情報123と作業分類情報125と作業改善ポイントライブラリ情報128とに基づき、ステップS11で指定された工程の管理粒度における、作業の改善ポイントを抽出し、抽出した改善ポイントを記憶部120が記憶している作業改善ポイント情報127に格納する(ステップS16)。
【0107】
ステップS16の処理の詳細について説明する。まず、作業改善ポイント抽出部114は、管理粒度情報122を参照してステップS11で指定された工程の管理粒度を取得し、取得した管理粒度に合致するレコードを作業実績情報121から取得して作業IDを特定する。
【0108】
例えば、図3の工程1の場合、管理粒度は工程のみであるため、作業改善ポイント抽出部114は、作業実績情報121から工程1に合致するレコードを取得して作業ID(図3の場合、作業ID1〜作業ID7)を特定する。
【0109】
次に、作業改善ポイント抽出部114は、特定した作業IDに合致するレコードを動線情報123から取得し、取得したレコードにおける作業者の重心のX,Y座標に基づいて、該工程の動画ファイルの画角を複数の作業エリアに分割する。
【0110】
動画ファイルの画角を作業エリアに分割する方法としては、ヒストグラムのビン数を決定するスタージェスの式を活用し、動線情報123に格納されているX座標のデータから、作業エリアの水平方向の分割数を決定し、動線情報に格納されているY座標のデータから、作業エリアの垂直方法の分割数を決定する。また、ユーザ端末103を用いたユーザからの入力に従って、作業エリアを分割するようにしてもよい。
【0111】
次に、作業改善ポイント抽出部114は、該工程の管理粒度において、作業エリア毎に作業の評価値である作業時間と動線距離と非稼動割合を算出する。まず、作業改善ポイント抽出部114は、管理粒度情報122と動線情報123とから、該工程の管理粒度に合致するレコードを取得する。例えば、図3の工程1の場合、管理粒度は工程のみであるため、作業改善ポイント抽出部114は、作業実績情報121と動線情報123とから、工程情報が工程1に合致するレコードを取得する。
【0112】
作業エリア別の作業時間については、該作業エリアの範囲と、動線情報123に格納さされている作業者の重心座標とを比較し、作業者が該作業エリアに含まれているフレームを特定し、特定したフレームとフレームレート数から、該作業エリアにおける作業時間を算出する。また、特定したフレームから、各作業エリアにおける作業の開始時刻と終了時刻を取得する。
【0113】
作業エリア別の動線距離については、該作業エリアの範囲と、動線情報123に格納されている作業者の重心の座標とを比較し、作業者が作業エリアに含まれているフレームを特定する。その後、特定したフレーム間の動線の変化距離から、該作業エリアにおける動線距離を算出する。
【0114】
作業エリア別の非稼動割合については、作業エリアの範囲と、動線情報123に格納されている作業者の重心の座標とを比較し、該作業エリアにおける非作業領域に滞在した時間の、該作業エリアの作業時間に対する割合を、作業エリア別の非稼動割合を算出する。
【0115】
次に、作業改善ポイント抽出部114は、算出した作業エリア別の作業時間、動線距離、及び非稼動割合、該作業エリアにおける作業の開始時刻、並びに終了時刻をエリア別評価値情報126に格納する。
【0116】
次に、作業改善ポイント抽出部114は、該工程の管理粒度において、作業実績情報121と管理粒度情報122と作業分類情報125とエリア別評価値情報126と作業改善ポイントライブラリ情報128とに基づき、優秀作業に分類されなかった非優秀作業の改善ポイントを抽出する。具体的には、まず、作業改善ポイント抽出部114は、作業分類情報125に基づき、該工程の管理粒度における優秀作業を取得する。例えば、図3の工程1の場合、作業改善ポイント抽出部114は、作業分類情報125から、工程1における優秀作業として作業1を取得する。
【0117】
次に、作業改善ポイント抽出部114は、作業実績情報121とエリア別評価値情報126とに基づき、優秀作業と非優秀作業の各評価値の差を算出し、各評価値の差が作業改善ポイントライブラリ情報128に登録されている評価値の閾値以上であるか否かを判定し、改善ポイントを抽出する。
【0118】
例えば、図3の工程1の場合、作業改善ポイント抽出部114は、エリア別評価値情報126(図7)から、優秀作業である作業1と、非優秀作業である作業7の各評価値の差を算出する。この場合、優秀作業である作業1と非優秀作業である作業7の作業時間の差は「5分」、動線距離の差は「4m」、非稼動割合の差は「10%」として算出される。さらに、作業改善ポイントライブラリ情報128(図8)から各評価値の閾値が取得され、動線距離の差「4m」がその閾値「3m」以上であると判定されて、作業7の改善ポイントとして、「移動距離超過」が選択される。
【0119】
次に、作業改善ポイント抽出部114は、抽出した改善ポイントを、記憶部120が記憶している作業改善ポイント情報127に格納する。例えば、上述した作業7の場合、作業改善ポイント抽出部114は、作業改善ポイント情報127の作業IDフィールド1271に「作業7」を格納し、作業エリアフィールド1272に「エリア2」を格納し、改善ポイントフィールド1273に「移動距離超過」を格納する。さらに、作業改善ポイント抽出部114は、作業改善ポイント情報127の抽出開始時刻フィールド1274に「2017/5/1 13:00」を格納し、抽出終了時刻フィールド1275に「2017/5/1 13:10」を格納する。
【0120】
以上で、ステップS16の処理の詳細な説明を終了する。図10の作業分析処理の説明に戻る。
【0121】
最後に、出力部140が、記憶部120に記憶されている各情報に基づいて作業分析結果を表す出力画面1300(図14)を生成し、ネットワーク102を介してユーザ端末103に出力する。また、出力部140は、出力画面1300に対するユーザからの操作に応じて出力画面1300を随時更新してユーザ端末103に出力する。ユーザ端末103は、出力画面1300をディスプレイに表示することによってユーザに提示する(ステップS17)。以上で、作業分析システム100による作業分析処理が終了される。
【0122】
次に、図14は、ユーザ端末103に表示される出力画面1300の表示例を示している。出力画面1300は、工程情報選択欄1301と、管理粒度表示欄1302と、分析対象選択欄1303と、優秀作業表示欄1304と、作業改善ポイント表示欄1305と、作業改善ポイントライブラリ情報表示欄1306と、ライブラリ修正ボタン1307とを有する。さらに、出力画面1300は、優秀作業動画表示欄1308と、抽出作業動画表示欄1309とを有する。
【0123】
工程情報選択欄1301では、分析結果を表示させる工程をユーザが選択することができる。管理粒度表示欄1302には、該工程(工程情報選択欄1301にて選択された工程)の管理粒度が表示される。分析対象選択欄1303では、分析結果を表示させる管理粒度の分析対象をユーザが選択することができる。なお、該工程の管理粒度が工程である場合、管理粒度表示欄1302には「−」が表示されて、分析対象選択欄1303では、管理粒度の分析対象を選択できない。また、例えば、該工程の管理粒度が作業者である場合、管理粒度表示欄1302には「作業者」が表示されて、分析対象選択欄1303では、作業者を選択できる。
【0124】
優秀作業表示欄1304には、該工程における優秀作業のレコードとして、作業IDと作業者が表示される。作業改善ポイント表示欄1305には、該工程における非優秀作業であって改善ポイントが抽出された作業のレコードとして、作業ID、作業者、作業エリア、改善ポイント、抽出開始時刻、及び抽出終了時刻が表示される。なお、作業改善ポイント表示欄1305では、ユーザが表示されているレコードを選択でき、太線枠で囲まれたレコード(いまの場合、作業7)が選択されていることを表している。
【0125】
作業改善ポイントライブラリ情報表示欄1306には、作業改善ポイント表示欄1305にてユーザに選択された作業の、改善ポイントが抽出された根拠となる評価指標の閾値、及び、優秀作業と改善ポイントが抽出された作業との評価値の差が表示される。ライブラリ修正ボタン1307は、作業改善ポイントライブラリ情報128にレコードを新規登録したり、登録済みのレコードを修正したりする編集処理を開始させるためのボタンであり、ライブラリ修正ボタン1307が押下されると編集画面1500(図15)が表示される。
【0126】
優秀作業動画表示欄1308には、該工程における優秀作業の動画ファイルが再生されて表示される。抽出作業動画表示欄1309には、作業改善ポイント表示欄1305にてユーザに選択された作業の動画ファイルが再生されて表示される。
【0127】
次に、図15は、編集画面1500の表示例を示している。編集画面1500は、工程情報選択欄1501と、新規登録受付部1502と、登録ボタン1503と、修正受付部1504と、修正ボタン1505とを有する。
【0128】
工程情報選択欄1501では、作業改善ポイントライブラリ情報128に新規登録するレコード、または修正するレコードの工程を、ユーザが選択することができる。
【0129】
新規登録受付部1502には、作業改善ポイントライブラリ情報128に新規登録するレコードをユーザが入力できる。なお、新規登録受付部1502を用いてレコードを新規登録する際、工程情報選択欄1501で選択した工程に対する管理粒度が予め設定されていない場合がある。その場合、作業内容、機種、作業者をユーザが組み合わせて設定する必要があるので、ユーザは熟練者の経験等に基づいて、前記工程に対する管理粒度を設定すればよい。なお、ここで設定した管理粒度が不適切であった場合には、その後、作業分析装置101による作業解析の結果に基づいて、後述する修正受付部1504を用いて管理粒度を修正すればよい。
【0130】
登録ボタン1503は、新規登録受付部1502に入力されたレコードの作業改善ポイントライブラリ情報128への登録を指示することができる。
【0131】
修正受付部1504では、作業改善ポイントライブラリ情報128に既存のレコードを表示させて、ユーザが修正することができる。修正ボタン1505は、ユーザが押下することにより、修正受付部1504にて入力された修正を、作業改善ポイントライブラリ情報128に反映させることができる。
【0132】
次に、図16は、作業改善ポイントライブラリ情報128を新規登録、または修正できる編集処理の一例を説明するフローチャートである。この編集処理は、出力画面1300にてライブラリ修正ボタン1307が押下されたことに応じて開始され、ユーザ端末103に編集画面1500が表示される。
【0133】
はじめに、ユーザが、編集画面1500の工程情報選択欄1501にて、工程を選択した後、新規登録受付部1502に対して入力を行って登録ボタン1503を押下するか、または、修正受付部1504に対して入力を行って修正ボタン1505を押下する。これに応じ、ユーザ端末103が、これらの操作情報を、ネットワーク102を介して作業分析装置101の入力部130に送信する(ステップS21)。
【0134】
送信された操作情報を受信した入力部130は、受信した操作情報に基づき、記憶部120が記憶している作業改善ポイントライブラリ情報128にレコードを新規登録したり、既存のレコードを修正したりしてその結果を保存する(ステップS22)。以上で、編集処理は終了される。
【0135】
以上に説明したように、本実施の形態である作業分析システム100によれば、作業分析装置101が管理粒度決定部111を備えるので、適切な管理粒度を決定することができる。また、作業分析装置101が評価値算出部112を備えるので、人力に頼ることなく異なる複数の評価指標の評価値を算出することができる。また、作業分析装置101が作業分類部113と作業改善ポイント抽出部114を備えるので、優秀作業と非優秀作業に基づいて、作業改善ポイントを抽出することができる。さらに、作業改善ポイント抽出部114は、作業改善ポイントライブラリ情報128を参照して作業改善ポイントを抽出するので、ユーザが作業改善ポイントライブラリ情報128を編集することにより、作業改善ポイントの基準を調整することができる。
【0136】
ところで、上述した本実施の形態における作業分析装置101については、ハードウェアにより構成することもできるし、ソフトウェアにより実現することもできる。作業分析装置101をソフトウェアにより実現する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータ等が含まれる。
【0137】
図17は、作業分析装置101をプログラムにより実現するコンピュータのハードウェアの構成例を示すブロック図である。
【0138】
このコンピュータ2000において、CPU(Central Processing Unit)2001,ROM(Read Only Memory)2002,RAM(Random Access Memory)2003は、バス2004により相互に接続されている。
【0139】
バス2004には、さらに、入出力インターフェース2005が接続されている。入出力インターフェース2005には、入力部2006、出力部2007、記憶部2008、通信部2009、およびドライブ2010が接続されている。
【0140】
入力部2006は、キーボード、マウス、マイクロフォン等より成る。出力部2007は、ディスプレイ、スピーカ等より成る。記憶部2008は、ハードディスクや不揮発性のメモリ等より成る。通信部2009は、ネットワークインターフェース等より成る。ドライブ2010は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリ等のリムーバブルメディア2011を駆動する。
【0141】
以上のように構成されるコンピュータ2000では、CPU2001が、例えば、記憶部2008に記憶されているプログラムを、入出力インターフェース2005およびバス2004を介して、RAM2003にロードして実行することにより、作業分析装置101の演算部110、入力部130、及び出力部140が実現される。
【0142】
また、作業分析装置101の記憶部120は、記憶部2008、RAM2003、またはリムーバブルメディア2011により実現される。
【0143】
コンピュータ2000(CPU2001)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブルメディア2011に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
【0144】
コンピュータ2000では、プログラムは、リムーバブルメディア2011をドライブ2010に装着することにより、入出力インターフェース2005を介して、記憶部2008にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部2009で受信し、記憶部2008にインストールすることができる。その他、プログラムは、ROM2002や記憶部2008に、あらかじめインストールしておくことができる。
【0145】
なお、コンピュータ2000が実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。
【0146】
本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
【0147】
本発明は、上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した各実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明が、必ずしも説明した全ての構成要素を備えるものに限定されるものではない。また、ある実施形態の構成の一部を、他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に、他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【0148】
また、上記の各構成、機能、処理部、処理手段等は、それらの一部または全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現されてもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
【0149】
本発明は、作業分析装置、及び作業分析方法だけでなく、複数の装置から構成されるシステムや、コンピュータ読み取り可能なプログラム等の様々な態様で提供することができる。
【符号の説明】
【0150】
100・・・作業分析システム、101・・・作業分析装置、102・・・ネットワーク、103・・・ユーザ端末、104・・・データベース、110・・・演算部、111・・・管理粒度決定部、112・・・評価値算出部、113・・・作業分類部、114・・・作業改善ポイント抽出部、120・・・記憶部、121・・・作業実績情報、122・・・管理粒度情報、123・・・動線情報、124・・・評価値情報、125・・・作業分類情報、126・・・エリア別評価値情報、127・・・作業改善ポイント情報、128・・・作業改善ポイントライブラリ情報、130・・・入力部、140・・・出力部、1211・・・作業IDフィールド、1212・・・工程フィールド、1213・・・作業内容フィールド、1214・・・機種フィールド、1215・・・作業者フィールド、1216・・・開始時刻フィールド、1217・・・終了時刻フィールド、1218・・・動画ファイルフィールド、1221・・・工程フィールド、1222・・・作業内容フィールド、1223・・・機種フィールド、1224・・・作業者フィールド、1231・・・作業IDフィールド、1232・・・フレームフィールド、1233・・・X座標フィールド、1234・・・Y座標フィールド、1241・・・作業IDフィールド、1242・・・作業時間フィールド、1243・・・動線距離フィールド、1244・・・非稼動割合フィールド、1251・・・工程フィールド、1252・・・作業内容フィールド、1253・・・機種フィールド、1254・・・作業者フィールド、1255・・・作業IDフィールド、1261・・・作業IDフィールド、1262・・・作業エリアフィールド、1263・・・抽出開始時刻フィールド、1264・・・抽出終了時刻フィールド、1265・・・作業時間フィールド、1266・・・動線距離フィールド、1267・・・非稼動割合フィールド、1271・・・作業IDフィールド、1272・・・作業エリアフィールド、1273・・・改善ポイントフィールド、1274・・・抽出開始時刻フィールド、1275・・・抽出終了時刻フィールド、1281・・・工程フィールド、1282・・・作業内容フィールド、1283・・・機種フィールド、1284・・・作業者フィールド、1285・・・改善ポイントフィールド、1286・・・作業時間フィールド、1287・・・動線距離フィールド、1288・・・非稼動割合フィールド、1300・・・出力画面、1301・・・工程情報選択欄、1302・・・管理粒度表示欄、1303・・・分析対象選択欄、1304・・・優秀作業表示欄、1305・・・作業改善ポイント表示欄、1306・・・作業改善ポイントライブラリ情報表示欄、1307・・・ライブラリ修正ボタン、1308・・・優秀作業動画表示欄、1309・・・抽出作業動画表示欄、1500・・・編集画面、1501・・・工程情報選択欄、1502・・・新規登録受付部、1503・・・登録ボタン、1504・・・修正受付部、1505・・・修正ボタン、2000・・・コンピュータ、2001・・・CPU、2002・・・ROM、2003・・・RAM、2004・・・バス、2005・・・入出力インターフェース、2006・・・入力部、2007・・・出力部、2008・・・記憶部、2009・・・通信部、2010・・・ドライブ、2011・・・リムーバブルメディア
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17