IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

<>
  • 特開-磁気テープおよび磁気テープ装置 図1
  • 特開-磁気テープおよび磁気テープ装置 図2
  • 特開-磁気テープおよび磁気テープ装置 図3
  • 特開-磁気テープおよび磁気テープ装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022118254
(43)【公開日】2022-08-12
(54)【発明の名称】磁気テープおよび磁気テープ装置
(51)【国際特許分類】
   G11B 5/70 20060101AFI20220804BHJP
   G11B 5/702 20060101ALI20220804BHJP
   G11B 5/706 20060101ALI20220804BHJP
   G11B 5/735 20060101ALI20220804BHJP
   G11B 5/738 20060101ALI20220804BHJP
   G11B 5/84 20060101ALI20220804BHJP
【FI】
G11B5/70
G11B5/702
G11B5/706
G11B5/735
G11B5/738
G11B5/84 C
【審査請求】有
【請求項の数】10
【出願形態】OL
(21)【出願番号】P 2022102545
(22)【出願日】2022-06-27
(62)【分割の表示】P 2021112013の分割
【原出願日】2016-06-23
(71)【出願人】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】特許業務法人特許事務所サイクス
(72)【発明者】
【氏名】金子 徹也
(72)【発明者】
【氏名】笠田 成人
(72)【発明者】
【氏名】小沢 栄貴
(57)【要約】
【課題】総厚を薄くし、かつ磁性層の表面平滑性を高めた磁気テープにおいて、タイミングベースサーボシステムにおける信号欠陥の発生頻度を低減すること。
【解決手段】非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、磁気テープ総厚は5.30μm以下であり、磁性層はタイミングベースサーボパターンを有し、磁性層の表面において測定される中心線平均表面粗さRaは1.8nm以下であり、強磁性粉末は強磁性六方晶フェライト粉末であり、磁性層は研磨剤を含み、かつ走査透過型電子顕微鏡を用いて行われる断面観察によって求められる磁性層の表面に対する強磁性六方晶フェライト粉末の傾きcosθは0.85以上1.00以下である磁気テープ。磁気テープ装置。
【選択図】なし
【特許請求の範囲】
【請求項1】
非磁性支持体上に強磁性粉末を含む磁性層を有する磁気テープであって、
磁気テープ総厚は5.30μm以下であり、
前記磁性層の厚みは0.01μm以上0.15μm以下であり、
前記磁性層はタイミングベースサーボパターンを有し、
前記磁性層の表面において測定される中心線平均表面粗さRaは、1.8nm以下であり、
前記強磁性粉末は強磁性六方晶フェライト粉末であり、かつ
走査透過型電子顕微鏡を用いて行われる断面観察によって求められる前記磁性層の表面に対する前記強磁性六方晶フェライト粉末の傾きcosθは、0.85以上1.00以下である磁気テープ。
【請求項2】
前記cosθが0.89以上1.00以下である、請求項1に記載の磁気テープ。
【請求項3】
前記磁性層は、重量平均分子量が1,000以上80,000以下であるポリエステル鎖含有化合物を更に含む、請求項1または2に記載の磁気テープ。
【請求項4】
前記強磁性六方晶フェライト粉末の活性化体積は、800nm3以上2500nm3以下である、請求項1~3のいずれか1項に記載の磁気テープ。
【請求項5】
前記磁性層の表面において測定される中心線平均表面粗さRaは、1.2nm以上1.8nm以下である、請求項1~4のいずれか1項に記載の磁気テープ。
【請求項6】
磁気テープ総厚は3.00μm以上5.30μm以下である、請求項1~5のいずれか1項に記載の磁気テープ。
【請求項7】
前記磁性層の厚みは0.01μm以上0.10μm以下である、請求項1~6のいずれか1項に記載の磁気テープ。
【請求項8】
前記非磁性支持体と前記磁性層との間に非磁性粉末を含む非磁性層を有する、請求項1~7のいずれか1項に記載の磁気テープ。
【請求項9】
前記非磁性支持体の前記磁性層を有する側とは反対側に、非磁性粉末を含むバックコート層を有する、請求項1~8のいずれか1項に記載の磁気テープ。
【請求項10】
請求項1~9のいずれか1項に記載の磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気テープおよび磁気テープ装置に関する。
【背景技術】
【0002】
磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープ(以下、単に「テープ」とも記載する。)が主に用いられている。磁気テープへの情報の記録は、通常、磁気テープのデータバンドに磁気信号を記録することにより行われる。これによりデータバンドにデータトラックが形成される。
【0003】
近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。この高容量化のための手段としては、データトラックの幅を狭くすることにより、磁気テープの幅方向に、より多くのデータトラックを配置して記録密度を高めることが挙げられる。
【0004】
しかしデータトラックの幅を狭くすると、磁気テープを磁気テープ装置(一般に、「ドライブ」と呼ばれる。)内で走行させ磁気信号の記録および/または再生を行う際、磁気テープの幅方向の位置変動によって、磁気ヘッドがデータトラックに正確に追従することが困難となり、記録および/または再生時にエラーを起こし易くなってしまう。そこで、かかるエラーの発生を抑制するための手段として、近年、サーボ信号を利用するヘッドトラッキングサーボを用いたシステム(以下、「サーボシステム」と記載する。)が提案され、実用化されている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】米国特許第5689384号
【発明の概要】
【発明が解決しようとする課題】
【0006】
サーボシステムの中で、磁気サーボ方式のサーボシステムでは、サーボ信号(サーボパターン)を磁気テープの磁性層に形成し、このサーボパターンを磁気的に読み取ってヘッドトラッキングを行う。より詳しくは、次の通りである。
まずサーボヘッドにより、磁性層に形成されているサーボパターンを読み取る(即ち、サーボ信号を再生する)。サーボパターンを読み取ることにより得られた値(詳細は後述する。)に応じて、磁気テープの幅方向における磁気ヘッドの位置をコントロールする。これにより、磁気信号(情報)の記録および/または再生のために磁気テープ装置内で磁気テープを走行させる際、磁気テープの位置が磁気ヘッドに対して幅方向に変動しても、磁気ヘッドがデータトラックに追従する精度を高めることができる。こうして、磁気テープに正確に情報を記録すること、および/または、磁気テープに記録されている情報を正確に再生すること、が可能となる。
【0007】
上記の磁気サーボ方式のサーボシステムとしては、近年、タイミングベースサーボ方式が広く用いられている。タイミングベースサーボ方式のサーボシステム(以下、「タイミングベースサーボシステム」と記載する。)では、二種以上の異なる形状の複数のサーボパターンを磁性層に形成し、サーボヘッドが、異なる形状の2つのサーボパターンを読み取った時間間隔と、同種の形状の2つのサーボパターンを読み取った時間間隔と、によりサーボヘッドの位置を認識する。こうして認識されたサーボヘッドの位置に基づき、磁気テープの幅方向における磁気ヘッドの位置がコントロールされる。
【0008】
ところで、磁気テープは、通常、磁気テープカートリッジに収容されて流通され、使用される。磁気テープカートリッジの1巻あたりの記録容量を高めるためには、磁気テープカートリッジ1巻に収容される磁気テープ全長を長くすることが望ましい。このためには、磁気テープの総厚を薄くする(以下、「薄型化」とも記載する。)ことが求められる。
【0009】
また、近年、磁気テープには、磁性層の表面平滑性を高めることが求められている。磁性層の表面平滑性を高めることは、電磁変換特性の向上につながるためである。
【0010】
以上の点を鑑み本発明者らは、総厚を薄くし、かつ磁性層の表面平滑性を高めた磁気テープを、タイミングベースサーボシステムに適用することを検討した。しかるに、かかる検討の中で、磁気テープの総厚を薄くし、かつ磁性層の表面平滑性を高めると、タイミングベースサーボシステムにおいてサーボ信号再生時に信号欠陥の発生頻度が増加するという、従来知られていなかった現象が生じることが明らかとなった。かかる信号欠陥の一例としては、サーマルアスペリティと呼ばれる信号欠陥が挙げられる。サーマルアスペリティは、磁気抵抗効果型(magnetoresistive;MR)素子を搭載したMRヘッドを備えたシステムにおいて、MR素子に局所的な温度変化が発生することによってMR素子の抵抗値が変動することに起因して生じる再生波形の変動である。サーボ信号再生時に信号欠陥が発生すると、発生箇所ではヘッドトラッキングサーボを行うことが困難になってしまう。したがって、タイミングベースサーボシステムを用いて、磁気テープへ情報をより正確に記録し、および/または、磁気テープに記録されている情報をより正確に再生するためには、サーボ信号再生時の信号欠陥の発生頻度を低減することが求められる。
【0011】
そこで本発明の目的は、総厚を薄くし、かつ磁性層の表面平滑性を高めた磁気テープにおいて、タイミングベースサーボシステムにおける信号欠陥の発生頻度を低減することにある。
【課題を解決するための手段】
【0012】
本発明の一態様は、
非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有する磁気テープであって、
磁気テープ総厚は5.30μm以下であり、
磁性層はタイミングベースサーボパターンを有し、
磁性層の表面において測定される中心線平均表面粗さRa(以下、「磁性層表面Ra」ともいう。)は、1.8nm以下であり、
上記強磁性粉末は強磁性六方晶フェライト粉末であり、磁性層は研磨剤を含み、かつ
走査透過型電子顕微鏡を用いて行われる断面観察によって求められる磁性層の表面に対する上記強磁性六方晶フェライト粉末の傾きcosθ(以下、単に「cosθ」ともいう。)は、0.85以上1.00以下である磁気テープ、
に関する。
【0013】
本発明および本明細書において、強磁性六方晶フェライト粉末とは、複数の強磁性六方晶フェライト粒子の集合を意味するものとする。以下では、強磁性六方晶フェライト粉末を構成する粒子(強磁性六方晶フェライト粒子)を、「六方晶フェライト粒子」または単に「粒子」とも呼ぶ。集合とは、集合を構成する粒子が直接接触している態様に限定されず、結合剤、添加剤等が、粒子同士の間に介在している態様も包含される。以上の点は、本発明および本明細書における非磁性粉末等の各種粉末についても同様とする。cosθの算出方法等について、詳細は後述する。
【0014】
本発明および本明細書における「タイミングベースサーボパターン」とは、タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンをいう。タイミングベースサーボシステムについては、先に記載した通りである。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンは、サーボパターン記録ヘッド(「サーボライトヘッド(servo write head)」とも呼ばれる。)により、磁性層に二種以上の異なる形状の複数のサーボパターンとして形成される。一例では、二種以上の異なる形状の複数のサーボパターンが、同種の形状の複数のサーボパターンごとに連続して一定の間隔をもって配置される。他の一例では、異なる種類のサーボパターンが交互に配置される。なおサーボパターンが同種の形状であることは、完全に同一の形状であることのみを意味するものではなく、サーボライトヘッド等の装置に起因して発生し得る形状誤差は許容されるものとする。タイミングベースサーボシステムにおけるヘッドトラッキングが可能なサーボパターンの形状および磁性層における配置は公知であり、具体的態様は後述する。以下、タイミングベースサーボパターンを、単にサーボパターンとも記載する。本明細書には、ヘッドとして、「サーボライトヘッド」、「サーボヘッド」、および「磁気ヘッド」が記載されている。サーボライトヘッドとは、上記の通りサーボ信号の記録(即ち、サーボパターンの形成)を行うヘッドである。サーボヘッドとは、サーボ信号の再生(即ち、サーボパターンの読み取り)を行うヘッドであり、磁気ヘッドとは、情報の記録および/または再生を行うヘッドである。
【0015】
本発明および本明細書において、磁気テープの磁性層の表面において測定される中心線平均表面粗さRaとは、原子間力顕微鏡(Atomic Force Microscope;AFM)により面積40μm×40μmの領域で測定される値とする。測定条件の一例としては、下記の測定条件を挙げることができる。後述の実施例に示す中心線平均表面粗さRaは、下記測定条件下での測定によって求めた値である。なお本発明および本明細書において、磁気テープの磁性層(の)表面とは、磁気テープの磁性層側表面と同義である。
AFM(Veeco社製Nanoscope4)により磁気テープの磁性層表面の面積40μm×40μmの領域を測定する。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとする。
【0016】
一態様では、cosθは、0.89以上1.00以下である。
【0017】
一態様では、磁性層は、重量平均分子量が1,000以上80,000以下であるポリエステル鎖含有化合物を更に含む。
【0018】
一態様では、上記強磁性六方晶フェライト粉末の活性化体積は、800nm3以上2500nm3以下である。
【0019】
一態様では、磁性層表面Raは、1.2nm以上1.8nm以下である。
【0020】
一態様では、磁気テープ総厚は、3.00μm以上5.30μm以下である。
【0021】
一態様では、上記磁気テープは、非磁性支持体と磁性層との間に、非磁性粉末および結合剤を含む非磁性層を有する。
【0022】
一態様では、上記磁気テープは、非磁性支持体の磁性層を有する側とは反対側に、非磁性粉末および結合剤を含むバックコート層を有する。
【0023】
一態様では、上記研磨剤は、アルミナ粉末を含む。
【0024】
本発明の更なる態様は、上記磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置に関する。
【発明の効果】
【0025】
本発明の一態様によれば、薄型化され、かつ表面平滑性が高い磁性層にタイミングベースサーボパターンを有する磁気テープであって、タイミングベースサーボシステムにおけるサーボ信号再生時の信号欠陥の発生頻度が低減された磁気テープ、ならびに、この磁気テープへ磁気信号を記録および/または再生する磁気テープ装置を提供することができる。
【図面の簡単な説明】
【0026】
図1】データバンドおよびサーボバンドの配置例を示す。
図2】LTO(Linear-Tape-Open) Ultriumフォーマットテープのサーボパターン配置例を示す。
図3】cosθに関する角度θの説明図である。
図4】cosθに関する角度θの説明図である。
【発明を実施するための形態】
【0027】
[磁気テープ]
本発明の一態様は、非磁性支持体上に強磁性粉末および結合剤を含む磁性層を有し、磁気テープ総厚は5.30μm以下であり、磁性層はタイミングベースサーボパターンを有し、磁性層の表面において測定される中心線平均表面粗さRa(磁性層表面Ra)は1.8nm以下であり、上記強磁性粉末は強磁性六方晶フェライト粉末であり、磁性層は研磨剤を含み、かつ走査透過型電子顕微鏡を用いて行われる断面観察によって求められる磁性層の表面に対する上記強磁性六方晶フェライト粉末の傾きcosθは0.85以上1.00以下である磁気テープに関する。
以下、上記磁気テープについて、更に詳細に説明する。以下の記載には、本発明者らの推察が含まれる。かかる推察によって本発明は限定されるものではない。また、以下では、図面に基づき例示的に説明することがある。ただし、例示される態様に本発明は限定されるものではない。
【0028】
<磁性層表面Ra>
上記磁気テープの磁性層表面において測定される中心線平均表面粗さRa(磁性層表面Ra)は、1.8nm以下である。磁性層表面Raが1.8nm以下であり、かつ総厚が5.30μm以下である磁気テープは、何ら対策を施さなければ、タイミングベースサーボシステムにおいて、サーボ信号再生時に信号欠陥の発生頻度が増加してしまう。これに対し、磁性層に強磁性六方晶フェライト粉末および研磨剤を含み、かつcosθが0.85以上1.00以下である上記磁気テープは、磁性層表面Raが1.8nm以下であり、かつ総厚が5.30μm以下であるにもかかわらず、サーボ信号再生時に信号欠陥の発生を抑制することができる。この点に関する本発明者らの推察は、後述する。また、磁性層表面Raが1.8nm以下である上記磁気テープは、優れた電磁変換特性を示すことができる。電磁変換特性の更なる向上の観点からは、磁性層表面Raは、1.7nm以下であることが好ましく、1.6nm以下であることが更に好ましい。また、磁性層表面Raは、例えば1.2nm以上または1.3nm以上であることができる。ただし電磁変換特性向上の観点からは磁性層表面Raが低いほど好ましいため、上記例示した値を下回ってもよい。
【0029】
磁性層表面Raは、公知の方法により制御することができる。例えば、磁性層に含まれる各種粉末(例えば、強磁性粉末、任意に含まれ得る非磁性粉末等)のサイズ、磁気テープの製造条件等により磁性層表面Raは変わり得るため、これらを調整することにより、磁性層表面Raが1.8nm以下の磁気テープを得ることができる。
【0030】
<タイミングベースサーボパターン>
上記磁気テープは、磁性層にタイミングベースサーボパターンを有する。タイミングベースサーボパターンとは、先に説明したサーボパターンである。例えば、磁気テープ装置の記録方式として広く用いられているリニア記録方式に適用される磁気テープには、通常、磁性層に、サーボパターンが形成された領域(「サーボバンド」と呼ばれる)が磁気テープの長手方向に沿って複数存在する。2本のサーボバンドに挟まれた領域は、データバンドと呼ばれる。磁気信号(情報)の記録はデータバンド上で行われ、各データバンドには複数のデータトラックが長手方向に沿って形成される。
【0031】
図1に、データバンドおよびサーボバンドの配置例を示す。図1中、磁気テープ1の磁性層には、複数のサーボバンド10が、ガイドバンド12に挟まれて配置されている。2本のサーボバンドに挟まれた複数の領域11が、データバンドである。サーボパターンは、磁化領域であって、サーボライトヘッドにより磁性層の特定の領域を磁化することによって形成される。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。例えば、業界標準規格であるLTOUltriumフォーマットテープには、磁気テープ製造時に、図2に示すようにテープ幅方向に対して傾斜した複数のサーボパターンが、サーボバンド上に形成される。詳しくは、図2中、サーボバンド10上のサーボフレームSFは、サーボサブフレーム1(SSF1)およびサーボサブフレーム2(SSF2)から構成される。サーボサブフレーム1は、Aバースト(図2中、符号A)およびBバースト(図2中、符号B)から構成される。AバーストはサーボパターンA1~A5から構成され、BバーストはサーボパターンB1~B5から構成される。一方、サーボサブフレーム2は、Cバースト(図2中、符号C)およびDバースト(図2中、符号D)から構成される。CバーストはサーボパターンC1~C4から構成され、DバーストはサーボパターンD1~D4から構成される。このような18本のサーボパターンが5本と4本のセットで、5、5、4、4、の配列で並べられたサブフレームに配置され、サーボフレームを識別するために用いられる。図2には、説明のために1つのサーボフレームを示した。ただし、実際には、タイミングベースサーボシステムにおいてヘッドトラッキングサーボが行われる磁気テープの磁性層では、各サーボバンドに、複数のサーボフレームが走行方向に配置されている。図2中、矢印は走行方向を示している。サーボヘッドは磁性層上を走行しながら、複数のサーボフレームにおいて順次サーボパターンの読み取りを行う。
【0032】
タイミングベースサーボシステムでは、異なる形状の2つのサーボパターンをサーボヘッドが読み取った(サーボ信号を再生した)時間間隔と、同種の形状の2つのサーボパターンを読み取った時間間隔と、によりサーボヘッドの位置を認識する。時間間隔は、通常、サーボ信号の再生波形のピークの時間間隔として求められる。例えば、図2に示す態様では、AバーストのサーボパターンとCバーストのサーボパターンが同種の形状のサーボパターンであり、BバーストのサーボパターンとDバーストのサーボパターンが同種の形状のサーボパターンである。AバーストのサーボパターンおよびCバーストのサーボパターンは、BバーストのサーボパターンおよびDバーストのサーボパターンとは形状が異なるサーボパターンである。異なる形状の2つのサーボパターンをサーボヘッドが読み取った時間間隔とは、例えば、Aバーストのいずれかのサーボパターンを読み取った時間とBバーストのいずれかのサーボパターンを読み取った時間との間隔である。同種の形状の2つのサーボパターンをサーボヘッドが読み取った時間間隔とは、例えば、Aバーストのいずれかのサーボパターンを読み取った時間とCバーストのいずれかのサーボパターンを読み取った時間との間隔である。タイミングベースサーボシステムは、上記の時間間隔が設定値からずれた場合、時間間隔のズレは磁気テープの幅方向の位置変動に起因して発生することを前提とするシステムである。設定値とは、磁気テープが幅方向で位置変動を起こさずに走行する場合の時間間隔である。タイミングベースサーボシステムでは、求められた時間間隔の設定値からのズレの程度に応じて、磁気ヘッドを幅方向に移動させる。詳しくは、時間間隔の設定値からのズレが大きいほど、磁気ヘッドを幅方向に大きく移動させる。この点は、図1および図2に示す態様に限定されずタイミングベースサーボシステム全般に当てはまる。このようなタイミングベースサーボシステムを用いる磁気テープ装置において、サーボ信号再生時に信号欠陥が発生すると、欠陥が発生した箇所(サーボフレーム)では時間間隔の測定結果を得ることが困難になる。その結果、磁気テープを走行させて磁気ヘッドによって磁気信号(情報)の記録または再生を行う際に磁気ヘッドを幅方向に移動させてヘッドの位置決めを行うことが部分的に困難になってしまう。この点に関し、本発明者らの検討の中で、総厚が5.30μm以下であり、かつ磁性層表面Raが1.8nm以下である磁気テープでは、サーボ信号再生時に信号欠陥が顕著に発生することが判明した。本発明者らは、サーボ信号再生時の信号欠陥の発生原因としては、サーボヘッドと磁性層表面との円滑な摺動が妨げられること(以下、「摺動性の低下」と記載する。)が挙げられると考えている。総厚が5.30μm以下であり、かつ磁性層表面Raが1.8nm以下である磁気テープは、従来の磁気テープとは、サーボヘッドと磁性層表面との接触状態が異なることが、摺動性低下の原因ではないかと本発明者らは推察している。ただし推察に過ぎない。
これに対し本発明者らの鋭意検討の結果、サーボ信号再生時の信号欠陥の発生は、cosθを0.85以上1.00以下とすることにより抑制できることが、明らかとなった。この点に関する本発明者らの推察は、後述する。
【0033】
<cosθ>
上記磁気テープにおいて、走査透過型電子顕微鏡を用いて行われる断面観察によって求められる磁性層の表面に対する強磁性六方晶フェライト粉末の傾きcosθは、0.85以上1.00以下である。cosθは、より好ましくは0.89以上であり、更に好ましくは0.90以上であり、一層好ましくは0.92以上であり、より一層好ましくは0.95以上である。一方、cosθは、磁性層の表面に対して、後述のアスペクト比および長軸方向の長さを有する六方晶フェライト粒子がいずれも平行に存在している場合に最大値の1.00となる。本発明者らの検討によれば、cosθの値が大きくなるほど、タイミングベースサーボシステムにおいてサーボ信号再生時に信号欠陥の発生頻度が少なくなる傾向が見られた。即ち、総厚が5.30μm以下であり、かつ磁性層表面Raが1.8nm以下である磁気テープにおいて、タイミングベースサーボシステムにおけるサーボ信号再生時の信号欠陥の発生頻度をより低減する観点からは、cosθの値は大きいほど好ましい。したがって、上記磁気テープにおいて、cosθの上限は、1.00以下である。なおcosθは、例えば0.99以下であってもよい。ただし、上述の通り、cosθの値は大きいほど好ましい傾向があるため、cosθは0.99を超えてもよい。
【0034】
(cosθの算出方法)
cosθとは、走査透過型電子顕微鏡(Scanning Transmission Electron Microscope;以下、「STEM」とも記載する。)を用いて行われる断面観察によって求められる。本発明および本明細書におけるcosθとは、以下の方法により測定し算出される値とする。
【0035】
(1)cosθを求める対象の磁気テープの無作為に定めた位置から切り出し断面観察用試料を作製する。断面観察用試料の作製は、ガリウムイオン(Ga+)ビームを用いるFIB(Focused Ion Beam)加工によって行う。かかる作製方法の具体例は、実施例について後述する。
(2)作製した断面観察用試料をSTEM観察し、STEM像を撮像する。STEM像は、同一の断面観察用試料において、撮像する範囲が重複しないように選択する点以外は無作為に選択した位置において撮像し、合計10画像得る。上記STEM像は、加速電圧300kVおよび撮像倍率450000倍で撮像されるSTEM-HAADF(High-Angle Annular Dark Field)像であり、1画像に、磁性層の厚み方向の全領域が含まれるように撮像する。なお磁性層の厚み方向の全領域とは、断面観察用試料において観察される磁性層表面から磁性層と隣接する層または非磁性支持体との界面までの領域である。上記の隣接する層とは、cosθを求める対象の磁気テープが磁性層と非磁性支持体との間に後述する非磁性層を有する場合には非磁性層である。一方、cosθを求める対象の磁気テープが非磁性支持体上に直接磁性層を有する場合には、上記界面とは磁性層と非磁性支持体との界面である。
(3)こうして得られた各STEM像において、磁性層表面を表す線分の両端を結ぶ直線を、基準線として定める。上記の線分の両端とは、例えば、STEM像を、断面観察用試料の磁性層側が画像の上方に位置し非磁性支持体側が下方に位置するように撮像した場合には、STEM像の画像(通常、形状は長方形または正方形)の左辺と上記線分との交点とSTEM像の右辺と上記線分との交点とを結ぶ直線である。
(4)上記STEM像において観察される六方晶フェライト粒子の中で、アスペクト比が.1.5~6.0の範囲であり、かつ、長軸方向の長さが10nm以上である六方晶フェライト粒子(一次粒子)の長軸方向と上記基準線とがなす角度θを測定し、測定された角度θについて、cosθを、単位円に基づくcosθとして算出する。かかるcosθの算出を、各STEM像において、上記アスペクト比および長軸方向の長さを有する六方晶フェライト粒子の中から無作為に抽出した30個の粒子について行う。
(5)以上の測定および算出を、10画像それぞれにおいて行い、各画像の30個の六方晶フェライト粒子について、即ち10画像の合計で300個の六方晶フェライト粒子について求められたcosθの値を算術平均する。こうして求められる算術平均を、走査透過型電子顕微鏡を用いて行われる断面観察によって求められる磁性層表面に対する強磁性六方晶フェライト粉末の傾きcosθとする。
【0036】
ここで、上記STEM像において観察される「アスペクト比」とは、六方晶フェライト粒子の「長軸方向の長さ/短軸方向の長さ」の比をいうものとする。
「長軸方向」とは、STEM像において観察される1個の六方晶フェライト粒子の像の中で、最も距離が離れている端部のうち、基準線との距離が近い方の端部から遠い方の端部を結んだときの方向を意味する。一方の端部と他方の端部を結んだ線分が基準線に対して平行である場合には、基準線と平行な方向が長軸方向となる。
「長軸方向の長さ」とは、STEM像において観察される1個の六方晶フェライト粒子の像の中で、最も距離が離れている端部を結んで作成される線分の長さを意味する。一方、「短軸方向の長さ」とは、上記粒子の像の外縁と上記長軸方向に対する垂線との2つの交点を結んだ線分の中で、最も長い線分の長さを意味する。
また、基準線と上記粒子の長軸方向の傾きとがなす角度θとは、長軸方向が基準線に対して平行な角度を0°とし、0°以上90°以下の範囲で定めるものとする。以下に、角度θについて、図面に基づき更に説明する。
【0037】
図3および図4は、角度θの説明図である。図3および図4中、符号101は、上記の最も距離が離れている端部を結んで作成される線分(長軸方向の長さ)を示し、符号102は基準線を示し、符号103は線分(符号101)の延長線を示す。この場合、基準線102と延長線103とのなす角度としては、図3および図4に示すようにθ1およびθ2を取り得る。ここでは、θ1およびθ2の中で、より小さな角度を採用し、これを角度θとするものとする。したがって、図3に示す態様では、θ1を角度θとし、図4に示す態様では、θ2を角度θとするものとする。なおθ1=θ2の場合は、即ち角度θ=90°の場合である。単位円に基づくcosθは、θ=0°の場合に1.00、θ=90°の場合に0となる。
【0038】
上記磁気テープは、磁性層に研磨剤および強磁性六方晶フェライト粉末を含み、かつcosθが0.85以上1.00以下である。本発明者らは、磁性層に含まれる強磁性六方晶フェライト粉末を構成する六方晶フェライト粒子の中で、上記アスペクト比および上記長軸方向の長さを満たす六方晶フェライト粒子は、研磨剤を下支えすることができると考えている。このことが、上記磁気テープにおいて、タイミングベースサーボシステムにおけるサーボ信号再生時に信号欠陥が発生することを抑制することに寄与すると、本発明者らは考えている。この点について、以下に更に説明する。
研磨剤は、磁性層表面に、サーボヘッドに付着した異物(以下、「付着物」と記載する。)を除去する機能(以下、「磨耗性」と記載する。)をもたらすことができる。磁性層表面が磨耗性を発揮することにより、サーボヘッドが磁性層上を走行する際に磁性層表面の一部が削れること等により発生してサーボヘッドに付着した付着物を除去することができる。しかし、磁性層表面が磨耗性を十分に発揮することができないと、サーボヘッドに付着物が付着した状態でサーボヘッドが磁性層上を走行し、この付着物の影響によって信号欠陥が発生すると、本発明者らは推察している。この磁性層表面の磨耗性の低下は、磁性層の表面近傍に存在する研磨剤がサーボヘッドとの接触により磁性層内部に押し込まれることに起因して発生すると、本発明者らは考えている。
これに対し、磁性層の表面近傍に存在する研磨剤がサーボヘッドとの接触により磁性層内部に押し込まれることは、上記アスペクト比および上記長軸方向の長さを満たす六方晶フェライト粒子が研磨剤を下支えすることによって抑制することができると考えられる。これにより、磁性層表面の磨耗性の低下を抑制することができ、その結果、サーボ信号再生時にサーボヘッドに付着した付着物の影響によって信号欠陥が発生することを抑制できるのではないかと、本発明者らは推察している。ただし推察に過ぎない。
なお、磁性層における強磁性六方晶フェライト粉末の存在状態(配向状態)の指標としては、角型比が知られている。しかし、本発明者らの検討によれば、角型比の制御とサーボ信号再生時の信号欠陥の発生頻度との間には、良好な相関関係は見られなかった。角型比とは、飽和磁化に対する残留磁化の比を表す値であって、強磁性六方晶フェライト粉末に含まれる粒子の形状およびサイズに関わらず、全ての粒子を対象として測定される。これに対し、cosθとは、上記範囲のアスペクト比および長軸方向の長さを有する六方晶フェライト粒子を選択して測定される値である。このような違いによって、cosθによれば、サーボ信号再生時の信号欠陥の発生頻度との間に良好な相関関係が見られるのではないかと本発明者らは考えている。ただし以上は推察に過ぎず、本発明を何ら限定するものではない。
【0039】
(cosθの調整方法)
上記磁気テープは、非磁性支持体上に、磁性層形成用組成物を塗布する工程を経て作製することができる。そして、cosθの調整方法としては、磁性層形成用組成物における強磁性六方晶フェライト粉末の分散状態を制御することが挙げられる。この点に関し本発明者らは、強磁性六方晶フェライト粉末の磁性層形成用組成物における分散性(以下、単に「強磁性六方晶フェライト粉末の分散性」または「分散性」とも記載する。)を高めるほど、この磁性層形成用組成物を用いて形成される磁性層において、上記範囲のアスペクト比および長軸方向の長さを有する六方晶フェライト粒子が、磁性層表面に対して、より平行に近い状態に配向し易くなると考えている。分散性を高めるための手段としては、以下の方法(1)および(2)のいずれか一方または両方が挙げられる。
(1)分散条件の調整
(2)分散剤の利用
また、分散性を高めるための手段としては、強磁性六方晶フェライト粉末と研磨剤を別分散させることも挙げられる。別分散とは、より詳しくは、強磁性六方晶フェライト粉末と、結合剤と、溶媒と、を含む磁性液(ただし、研磨剤を実質的に含まない)を、研磨剤および溶媒を含む研磨剤液と混合する工程を経て磁性層形成用組成物を調製する方法である。このように研磨剤と強磁性六方晶フェライト粉末とを別分散した後に混合することによって、磁性層形成用組成物における強磁性六方晶フェライト粉末の分散性を高めることができる。上記の「研磨剤を実質的に含まない」とは、上記磁性液の構成成分として添加しないことを意味するものであって、意図せず混入した不純物として微量の研磨剤が存在することは許容されるものとする。また、上記方法(1)および(2)のいずれか一方または両方を、上記の別分散と組み合わせることも好ましい。この場合、磁性液における強磁性六方晶フェライト粉末の分散状態を制御することにより、磁性液を研磨剤液と混合する工程を経て得られる磁性層形成用組成物における強磁性六方晶フェライト粉末の分散状態を制御することができる。
【0040】
以下、上記(1)および(2)の具体的態様を説明する。
【0041】
(1)分散条件の調整
磁性層形成用組成物、好ましくは磁性液の分散処理は、公知の分散方法を用い、その分散条件を調整することにより行うことができる。分散処理における分散条件としては、例えば、分散機の種類、分散機に用いる分散メディアの種類、分散機内の滞留時間(以下、「分散滞留時間」とも言う。)等が挙げられる。
分散機としては、ボールミル、サンドミル、ホモミキサー等のせん断力を利用した各種公知の分散機を使用することができる。2つ以上の分散機を連結して2段階以上の分散処理を行ってもよく、異なる分散機を併用してもよい。分散機の先端周速は5~20m/秒が好ましく、7~15m/秒であることがより好ましい。
分散メディアとしては、セラミックビーズ、ガラスビーズ等が挙げられ、ジルコニアビーズが好ましい。二種以上のビーズを組み合わせて使用してもよい。分散メディアの粒径は、例えば0.03~1mmであり、0.05~0.5mmであることが好ましい。なお、上述のように分散機を連結して2段階以上の分散処理を行う場合は、各段階で異なる粒径の分散メディアを用いてもよい。段階を経るごとに、より小さな粒径の分散メディアを用いることが好ましい。分散メディアの充填率は、体積基準で、例えば30~80%、好ましくは50~80%とすることができる。
分散滞留時間は、分散機の先端周速および分散メディアの充填率等を考慮し適宜設定すればよく、例えば15~45時間、好ましくは20~40時間とすることができる。なお、上述のように分散機を連結して2段階以上の分散処理を行う場合は、各段階の分散滞留時間の合計が上記範囲となることが好ましい。このような分散処理を行うことで、強磁性六方晶フェライト粉末の分散性を高め、cosθを0.85以上1.00以下に調整することができる。
【0042】
(2)分散剤の利用
磁性層形成用組成物の調製時、好ましくは磁性液の調製時に分散剤を用いることによって、強磁性六方晶フェライト粉末の分散性を高めることもできる。ここで分散剤とは、この剤が存在しない状態と比べて、磁性層形成用組成物および/または磁性液における強磁性六方晶フェライト粉末の分散性を高めることができる成分をいう。磁性層形成用組成物および/または磁性液に含有させる分散剤の種類および量を変更することによっても、強磁性六方晶フェライト粉末の分散状態を制御することができる。上記分散剤としては、磁性層の耐久性を高める観点から、強磁性六方晶フェライト粉末を構成する六方晶フェライト粒子の凝集を防ぎ、かつ、磁性層に適度な可塑性を付与するものを用いることも好ましい。
【0043】
強磁性六方晶フェライト粉末の分散性を向上するために好ましい分散剤の一態様としては、ポリエステル鎖含有化合物を挙げることができる。ポリエステル鎖含有化合物は、磁性層に適度な可塑性を付与するうえでも好ましい。ここでポリエステル鎖とは、後述する一般式A中のEで表されるものとする。その具体的態様としては、後述の一般式1に含まれるポリエステル鎖、式2-Aで表されるポリエステル鎖、および式2-Bで表されるポリエステル鎖を挙げることができる。ポリエステル鎖含有化合物を強磁性六方晶フェライト粉末とともに磁性層形成用組成物および/または磁性液に混合することにより、ポリエステル鎖が六方晶フェライト粒子同士の間に介在することによって粒子の凝集を抑制することができると本発明者らは推察している。ただし、推察に過ぎず、本発明を何ら限定するものではない。ポリエステル鎖含有化合物の重量平均分子量は、強磁性六方晶フェライト粉末の分散性向上の観点からは、1,000以上であることが好ましい。また、ポリエステル鎖含有化合物の重量平均分子量は、80,000以下であることが好ましい。本発明者らは、重量平均分子量が80,000以下のポリエステル鎖含有化合物は可塑剤的な作用を奏することにより磁性層の耐久性を高めることができるのではないかと考えている。なお本発明および本明細書における重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC;Gel permeation chromatography)により測定された値を、標準ポリスチレン換算して求められる値をいう。測定条件の具体例は後述する。また、重量平均分子量の好ましい範囲についても、後述する。
【0044】
そのようなポリエステル鎖含有化合物の好ましい一態様としては、下記一般式Aで表される部分構造を有する化合物が挙げられる。なお本発明および本明細書において、特記しない限り、記載されている基は置換基を有してもよく無置換であってもよい。ある基が置換基を有する場合、置換基としては、アルキル基(例えば炭素数1~6のアルキル基)、ヒドロキシ基、アルコキシ基(例えば炭素数1~6のアルコキシ基)、ハロゲン原子(例えばフッ素原子、塩素原子、臭素原子)、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ(塩)基等を挙げることができる。また、置換基を有する基について「炭素数」とは、置換基を含まない部分の炭素数を意味するものとする。
【0045】
【化1】
【0046】
一般式A中、Qは-O-、-CO-、-S-、-NRa-または単結合を表し、TおよびRaはそれぞれ独立に水素原子または一価の置換基を表し、Eは-(O-LA-CO)a-または-(CO-LA-O)a-を表し、LAは二価の連結基を表し、aは2以上の整数を表し、bは1以上の整数を表し、*は上記ポリエステル鎖含有化合物を構成する他の部分構造との結合位置を表す。
【0047】
一般式A中、LAはa×b個含まれる。また、TおよびQは、それぞれb個含まれる。LAが一般式A中に複数含まれる場合、複数のLAは同一であってもよく異なっていてもよい。この点は、TおよびQについても同様である。
【0048】
上記化合物は、磁性液および磁性層形成用組成物中において、上記部分構造に起因した立体障害によって六方晶フェライト粒子の凝集を抑制することができると考えられる。
【0049】
ポリエステル鎖含有化合物の好ましい一態様としては、分子内にポリエステル鎖とともに六方晶フェライト粒子表面へ吸着し得る基または部分構造(以下、「吸着部」と記載する。)を有する化合物が挙げられる。また、ポリエステル鎖は、一般式Aで表される部分構造に含まれることが好ましい。更に、一般式Aで表される部分構造と吸着部とが、一般式A中の*を介して結合を形成していることがより好ましい。
一態様では、吸着部は、六方晶フェライト粒子表面への吸着点となる極性のある官能基(極性基)であることができる。具体例としては、カルボキシ基(-COOH)およびその塩(-COO-+)、スルホン酸基(-SO3H)およびその塩(-SO3 -+)、硫酸基(-OSO3H)およびその塩(-OSO3 -+)、リン酸基(-P=O(OH)2)およびその塩(-P=O(O-+2)、アミノ基(-NR2)、-N+3、エポキシ基、チオール基(-SH)、ならびにシアノ基(-CN)(ここで、M+はアルカリ金属イオン等のカチオン、Rは水素原子または炭化水素基を表す)等から選ばれる少なくとも1つの極性基を挙げることができる。なお、「カルボキシ(塩)基」とは、カルボキシ基およびその塩(カルボキシ塩)の一方または両方を意味するものとする。カルボキシ塩とは、上記の通り、カルボキシ基(-COOH)の塩の形態である。
また、吸着部の一態様としては、ポリアルキレンイミン鎖を挙げることもできる。
なお、一般式Aで表される部分構造と吸着部により形成される結合の種類は、特に制限はない。かかる結合は、共有結合、配位結合およびイオン結合からなる群から選択されることが好ましく、同一分子内に異なる種類の結合を有していてもよい。上記吸着部を介して六方晶フェライト粒子に対して効率的に吸着することにより、一般式Aで表される部分構造によりもたらされる立体障害に基づく六方晶フェライト粒子の凝集抑制効果を更に高めることができると考えられる。
【0050】
一態様では、ポリエステル鎖含有化合物は、ポリアルキレンイミン鎖を少なくとも1つ有することができる。かかるポリエステル鎖含有化合物は、好ましくは、ポリエステル鎖を一般式Aで表される部分構造に含むことができる。そのようなポリエステル鎖含有化合物の好ましい例としては、一般式Aとして下記式2-Aで表されるポリエステル鎖および下記式2-Bで表されるポリエステル鎖からなる群から選ばれるポリエステル鎖を含むポリアルキレンイミン誘導体が挙げられる。これらの例の詳細については、後述する。
【0051】
【化2】
【0052】
【化3】
【0053】
式2-A中のL1および式2-B中のL2は、それぞれ独立に二価の連結基を表し、式2-A中のb11および式2-B中のb21は、それぞれ独立に2以上の整数を表し、式2-A中のb12および式2-B中のb22は、それぞれ独立に0または1を表し、式2-A中のX1および式2-B中のX2は、それぞれ独立に水素原子または一価の置換基を表す。
【0054】
一般式A中、Qは-O-、-CO-、-S-、-NRa-または単結合を表し、好ましくは後述する一般式1中のX、上記式2-A中の(-CO-)b12または式2-B中の(-CO-)b22で表される部分が挙げられる。
【0055】
一般式A中、TおよびRaはそれぞれ独立に水素原子または一価の置換基を表し、好ましくは後述する一般式1中のR、式2-A中のX1または式2-B中のX2で表される部分が挙げられる。
【0056】
一般式A中、Eは-(O-LA-CO)a-または-(CO-LA-O)a-を表し、LAは二価の連結基を表し、aは2以上の整数を表す。
Aが表す二価の連結基としては、好ましくは後述する一般式1中のL、上記式2-A中のL1または式2-B中のL2で表される部分が挙げられる。
【0057】
また、一態様では、ポリエステル鎖含有化合物は、カルボキシ基およびカルボキシ塩からなる群から選ばれる基を少なくとも1つ有することができる。かかるポリエステル鎖含有化合物は、好ましくは、ポリエステル鎖を一般式Aで表される部分構造に含むことができる。そのようなポリエステル鎖含有化合物の好ましい例としては、下記一般式1で表される化合物が挙げられる。
【0058】
<一般式1で表される化合物>
一般式1は、以下の通りである。
【0059】
【化4】
(一般式1中、Xは-O-、-S-または-NR1-を表し、RおよびR1は、それぞれ独立に水素原子または一価の置換基を表し、Lは二価の連結基を表し、Zはカルボキシ基およびカルボキシ塩からなる群から選ばれる基(カルボキシ(塩)基)を少なくとも1つ有するn価の部分構造を表し、mは2以上の整数を表し、nは1以上の整数を表す。)
【0060】
一般式1中、Lはm×n個含まれる。また、RおよびXは、それぞれn個含まれる。Lが一般式1中に複数含まれる場合、複数のLは同一であってもよく異なっていてもよい。この点は、RおよびXについても同様である。
【0061】
一般式1で表される化合物は、-((C=O)-L-O)m-で表される構造(ポリエステル鎖)を有し、上述の吸着部としてカルボキシ(塩)基をZ部分に含む。Z部分に含まれるカルボキシ(塩)基が六方晶フェライト粒子表面への吸着部となることにより一般式1で表される化合物が六方晶フェライト粒子に効率的に吸着したうえで、上記ポリエステル鎖に起因して立体障害がもたらされることで六方晶フェライト粒子の凝集を防ぐことができると考えられる。
【0062】
一般式1中、Xは、-O-、-S-または-NR1-を表し、R1は水素原子または一価の置換基を表す。R1が表す一価の置換基としては、上述した置換基であるアルキル基、ヒドロキシ基、アルコキシ基、ハロゲン原子、シアノ基、アミノ基、ニトロ基、アシル基、カルボキシ(塩)基等を挙げることができ、好ましくはアルキル基であり、より好ましくは炭素数1~6のアルキル基であり、更に好ましくはメチル基またはエチル基である。一層好ましくは、R1は、水素原子である。Xは、-O-を表すことが好ましい。
【0063】
Rは、水素原子または一価の置換基を表す。Rは、一価の置換基を表すことが好ましい。Rで表される一価の置換基としては、例えば、アルキル基、アリール基、ヘテロアリール基、脂環基、非芳香族ヘテロ環基等の一価の基、および上記一価の基に二価の連結基が連結した構造(即ち、Rが、上記一価の基に二価の連結基が連結した構造を有し、この二価の連結基を介してXと結合する一価の置換基である。)等を挙げることができる。二価の連結基としては、例えば、-C(=O)-O-、-O-、-C(=O)-NR10-(R10は水素原子または炭素数1~4のアルキル基を表す)、-O-C(=O)-NH-、フェニレン基、および炭素数1~30のアルキレン基、炭素数2~30のアルケニレン基からなる群から選択される1つまたは2つ以上の組み合わせから構成される二価の連結基を挙げることができる。Rで表される一価の置換基の具体例としては、例えば下記構造が挙げられる。下記構造において、*はXとの結合位置を表す。ただし、Rは、下記具体例に限定されるものではない。
【0064】
【化5】
【0065】
一般式1中、Lは二価の連結基を表す。二価の連結基としては、直鎖、分岐または環構造であってもよいアルキレン基、直鎖、分岐または環構造であってもよいアルケニレン基、-C(=O)-、-O-およびアリーレン基からなる群から選ばれる1つまたは2つ以上の組み合わせから構成される二価の連結基であって、上記二価の連結基中に置換基またはアニオンとしてハロゲン原子を有してもよい二価の連結基を挙げることができる。より詳しくは、直鎖、分岐または環構造であってもよい炭素数1~12のアルキレン基、直鎖、分岐または環構造であってもよい炭素数1~6のアルケニレン基、-C(=O)-、-O-およびフェニレン基から選ばれる1つまたは2つ以上の組み合わせから構成される二価の連結基を挙げることができる。上記の二価の連結基は、好ましくは、1~10個までの炭素原子、0~10個までの酸素原子、0~10個までのハロゲン原子、および1~30個までの水素原子から成り立つ二価の連結基である。具体例としては、アルキレン基および下記構造が挙げられる。下記構造中、*は一般式1中の他の構造との結合位置を示す。ただし、上記の二価の連結基は、下記具体例に限定されるものではない。
【0066】
【化6】
【0067】
Lは、好ましくはアルキレン基であり、より好ましくは炭素数1~12のアルキレン基であり、より好ましくは炭素数1~5のアルキレン基であり、更に好ましくは炭素数1~5の無置換アルキレン基である。
【0068】
Zはカルボキシ基およびカルボキシ塩からなる群から選ばれる基(カルボキシ(塩)基)を少なくとも1つ有するn価の部分構造を表す。
【0069】
Zに含まれるカルボキシ(塩)基の数は、1つのZあたり少なくとも1つであり、2つ以上であることが好ましく、2~4つであることがより好ましい。
【0070】
Zは、直鎖構造、分岐構造および環状構造からなる群から選ばれる1つ以上の構造を含むことができる。合成の容易性等の観点から、好ましくは、Zはカルボン酸無水物の反応残基である。例えば具体例としては、下記構造が挙げられる。下記構造中、*は一般式1中の他の構造との結合位置を示す。ただし、Zは下記具体例に限定されるものではない。
【0071】
【化7】
【0072】
カルボン酸無水物とは、-(C=O)-O-(C=O)-で表される部分構造を有する化合物である。カルボン酸無水物では、上記部分構造が反応部位となって、一般式1中の-((C=O)-L-O)m-の酸素原子とZとが、カルボニル結合(-(C=O)-)を介して結合するとともにカルボキシ(塩)基がもたらされる。こうして生成した部分構造が、カルボン酸無水物の反応残基である。カルボン酸無水物として、部分構造-(C=O)-O-(C=O)-を1つ有するものを用いて一般式1で表される化合物を合成することにより、カルボン酸無水物の一価の反応残基を有する一般式1で表される化合物を得ることができ、2つ有するものを用いることによりカルボン酸無水物の二価の反応残基を有する一般式1で表される化合物を得ることができる。カルボン酸無水物の三価以上の反応残基を有する一般式1で表される化合物についても、同様である。先に記載した通り、nは1以上の整数であり、例えば1~4の範囲の整数であり、好ましくは2~4の範囲の整数である。
【0073】
カルボン酸無水物としては、例えばテトラカルボン酸無水物を用いることにより、n=2の一般式1で表される化合物を得ることができる。なおテトラカルボン酸無水物とは、一分子中に4つのカルボキシ基を有する化合物において、各2つのカルボキシ基の脱水縮合により、上記部分構造を一分子中に2つ有するカルボン酸無水物である。一般式1中、Zがテトラカルボン酸無水物の反応残基を表す化合物は、強磁性六方晶フェライト粉末の分散性および磁性層の耐久性の一層の向上の観点から好ましい。テトラカルボン酸無水物としては、例えば、脂肪族テトラカルボン酸無水物、芳香族テトラカルボン酸無水物、多環式テトラカルボン酸無水物等の各種テトラカルボン酸無水物を挙げることができる。
【0074】
脂肪族テトラカルボン酸無水物としては、例えば、特開2016-071926号公報の段落0040に記載の各種脂肪族テトラカルボン酸無水物を用いることができる。また、芳香族テトラカルボン酸無水物としては、例えば、特開2016-071926号公報の段落0041に記載の各種芳香族テトラカルボン酸無水物を用いることができる。多環式テトラカルボン酸無水物としては、特開2016-071926号公報の段落0042に記載の各種多環式テトラカルボン酸無水物を用いることができる。
【0075】
一般式1中、mは2以上の整数を表す。先に記載したように、一般式1で表される化合物は、-((C=O)-L-O)m-で表される構造(ポリエステル鎖)が、分散性および耐久性向上に寄与すると考えられる。これらの観点から、mは、5~200の範囲の整数であることが好ましく、5~100の範囲の整数であることがより好ましく、5~60の範囲の整数であることが更に好ましい。
【0076】
<<重量平均分子量>>
一般式1で表される化合物の重量平均分子量は、上述のように好ましくは1,000以上80,000以下であり、1,000以上20,000以下であることがより好ましい。一般式1で表される化合物の重量平均分子量は、20,000未満であることが更に好ましく、12,000以下であることが一層好ましく、10,000以下であることがより一層好ましい。また、一般式1で表される化合物の重量平均分子量は、好ましくは1,500以上であり、より好ましくは2,000以上である。なお一般式1で表される化合物について後述の実施例に示す重量平均分子量は、GPCを用いて下記測定条件下で測定された値を標準ポリスチレン換算して求めた値である。また、二種以上の構造異性体の混合物について重量平均分子量とは、この混合物に含まれる二種以上の構造異性体の重量平均分子量をいうものとする。
GPC装置:HLC-8220(東ソー社製)
ガードカラム:TSKguardcolumn Super HZM-H
カラム:TSKgel Super HZ 2000、TSKgel Super HZ 4000、TSKgel Super HZ-M(東ソー社製、4.6mm(内径)×15.0cm、三種カラムを直列連結)
溶離液:テトラヒドロフラン(THF)、安定剤(2,6-ジ-t-ブチル-4-メチルフェノール)含有
溶離液流速:0.35mL/分
カラム温度:40℃
インレット温度:40℃
屈折率(RI;Refractive Index)測定温度:40℃
サンプル濃度:0.3質量%
サンプル注入量:10μL
【0077】
<<合成方法>>
以上説明した一般式1で表される化合物は、公知の方法で合成することができる。合成方法の一例としては、例えば、カルボン酸無水物と、下記一般式2で表される化合物とを開環付加反応等の反応に付す方法を挙げることができる。一般式2中、R、X、Lおよびmは、それぞれ一般式1と同義である。Aは、水素原子、アルカリ金属原子または四級アンモニウム塩基を表し、好ましくは水素原子である。
【0078】
【化8】
【0079】
カルボン酸無水物と一般式2で表される化合物との反応は、例えば、ブタンテトラカルボン酸無水物を用いた場合、ヒドロキシ基1当量に対して、0.4~0.5モルの割合でブタンテトラカルボン酸無水物を混合し、無溶媒、必要に応じて沸点が50℃以上の有機溶媒、更には三級アミンや無機塩基などの反応触媒存在下で、3~12時間程度加熱攪拌することにより実施される。他のカルボン酸無水物を用いる場合にも、上記の反応条件に準じて、または公知の反応条件に準じて、カルボン酸無水物と一般式2で表される化合物との反応を実施することができる。
【0080】
上記反応の後、必要に応じて精製等の後工程を行ってもよい。
【0081】
また、一般式2で表される化合物は、市販品を用いてもよく、公知のポリエステル合成法によって得ることもできる。例えばポリエステル合成法としては、ラクトンの開環重合を挙げることができる。ラクトンの開環重合については、特開2016-071926号公報の段落0050~0051を参照できる。ただし、一般式2で表される化合物は、ラクトンの開環重合により得られる化合物に限定されるものではなく、公知のポリエステル合成法、例えば、多価カルボン酸と多価アルコールとの重縮合、ヒドロキシカルボン酸の重縮合等により得られた化合物であることもできる。
【0082】
以上説明した合成方法は一例であって、一般式1で表される化合物の合成方法を何ら限定するものではない。一般式1で表される化合物を合成可能な方法であれば、公知の合成方法を、何ら制限なく用いることができる。合成後の反応生成物は、そのまま、または必要に応じて公知の方法により精製を行い、磁性層の形成のために用いることができる。一般式1で表される化合物は、磁性層の形成のために一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。また、一般式1で表される化合物は、二種以上の構造異性体の混合物として用いてもよい。例えば、一般式1で表される化合物の合成反応により、二種以上の構造異性体が得られる場合、かかる混合物を、磁性層の形成のために用いることもできる。
【0083】
一般式1で表される化合物としては、特開2016-071926号公報の実施例中、合成例に示されている反応生成物に含まれている各種化合物を挙げることができる。例えば、具体例としては、以下の表1に示す化合物が例示できる。表1に示す重量平均分子量は、表1に示す構造式で表される化合物の重量平均分子量、または表1に示す構造式で表される化合物およびその構造異性体の混合物についての重量平均分子量である。
【0084】
【表1】
【0085】
上記一般式Aで表される部分構造および吸着部を有する化合物の好ましい例の一態様としては、一般式Aとして下記式2-Aまたは2-Bで表されるポリエステル鎖を含むポリアルキレンイミン誘導体が挙げられる。以下、かかるポリアルキレンイミン誘導体について説明する。
【0086】
<ポリアルキレンイミン誘導体>
ポリアルキレンイミン誘導体は、下記式2-Aで表されるポリエステル鎖および下記式2-Bで表されるポリエステル鎖からなる群から選ばれる少なくとも1つのポリエステル鎖と、数平均分子量が300~3,000の範囲のポリアルキレンイミン鎖と、を含む化合物である。この化合物において、ポリアルキレンイミン鎖の占める割合は、好ましくは5.0質量%未満である。
【0087】
上記ポリアルキレンイミン誘導体は、先に記載した吸着部の一態様であるポリアルキレンイミン鎖を有する。更に、上記ポリアルキレンイミン誘導体が有するポリエステル鎖に起因した立体障害が、磁性層形成用組成物および/または磁性液中でもたらされることにより、六方晶フェライト粒子の凝集を抑制することができると考えられる。
【0088】
以下、上記ポリアルキレンイミン誘導体が有するポリエステル鎖およびポリアルキレンイミン鎖について説明する。
【0089】
<<ポリエステル鎖>>
ポリエステル鎖の構造
ポリアルキレンイミン誘導体は、後述するポリアルキレンイミン鎖とともに、下記式2-Aで表されるポリエステル鎖および下記式2-Bで表されるポリエステル鎖からなる群から選択される少なくとも1つのポリエステル鎖を含む。ポリエステル鎖は、一態様では、後述する式Aで表されるアルキレンイミン鎖と、式A中の*1において、式Aに含まれる窒素原子Nとカルボニル結合-(C=O)-により結合し、-N-(C=O)-を形成することができる。また、他の一態様では、後述する式Bで表されるアルキレンイミン鎖とポリエステル鎖とが、式B中の窒素カチオンN+とポリエステル鎖が有するアニオン性基により塩架橋基を形成することができる。塩架橋基としては、ポリエステル鎖に含まれる酸素アニオンO-と式B中のN+とにより形成されるものを挙げることができる。
【0090】
【化9】
【0091】
【化10】
【0092】
式Aで表されるアルキレンイミン鎖と、式Aに含まれる窒素原子Nとカルボニル結合-(C=O)-により結合するポリエステル鎖としては、上記式2-Aで表されるポリエステル鎖を挙げることができる。上記式2-Aで表されるポリエステル鎖は、*1で表される結合位置において、アルキレンイミン鎖に含まれる窒素原子とポリエステル鎖に含まれるカルボニル基-(C=O)-とが-N-(C=O)-を形成することにより、式Aで表されるアルキレンイミン鎖と結合することができる。
【0093】
また、式Bで表されるアルキレンイミン鎖と、式B中のN+とポリエステル鎖に含まれるアニオン性基が塩架橋基を形成することにより結合するポリエステル鎖としては、上記式2-Bで表されるポリエステル鎖を挙げることができる。上記式2-Bで表されるポリエステル鎖は、酸素アニオンO-により、式B中のN+と塩架橋基を形成することができる。
【0094】
式2-A中のL1、式2-B中のL2は、それぞれ独立に二価の連結基を表す。二価の連結基としては、好ましくは炭素数3~30のアルキレン基を挙げることができる。なおアルキレン基の炭素数は、アルキレン基が置換基を有する場合には、先に記載したように、置換基を除く部分(主鎖部分)の炭素数をいうものとする。
【0095】
式2-A中のb11および式2-B中のb21は、それぞれ独立に2以上の整数を表し、例えば200以下の整数である。後述の表3に示すラクトン繰り返し単位数は、式2-A中のb11または式2-B中のb21に相当する。
【0096】
式2-A中のb12および式2-B中のb22は、それぞれ独立に0または1を表す。
【0097】
式2-A中のX1および式2-B中のX2は、それぞれ独立に、水素原子または一価の置換基を表す。一価の置換基としては、アルキル基、ハロアルキル基(例えばフルオロアルキル基等)、アルコキシ基、ポリアルキレンオキシアルキル基およびアリール基からなる群から選択される一価の置換基を挙げることができる。
【0098】
アルキル基は置換基を有していてもよく、無置換であってもよい。置換基を有するアルキル基としては、ヒドロキシ基が置換したアルキル基(ヒドロキシアルキル基)、およびハロゲン原子が1つ以上置換したアルキル基が好ましい。また、炭素原子と結合する全水素原子がハロゲン原子に置換したアルキル基(ハロアルキル基)も好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等を挙げることができる。アルキル基としては、より好ましくは炭素数1~30、更に好ましくは炭素数1~10のアルキル基である。アルキル基は、直鎖状、分岐鎖状および環状のいずれであってもよい。ハロアルキル基についても、同様である。
【0099】
置換または無置換のアルキル基またはハロアルキル基の具体例としては、例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、ペンタデシル基、へキサデシル基、ヘプタデシル基、オクタデシル基、エイコシル基、イソプロピル基、イソブチル基、イソペンチル基、2-エチルヘキシル基、tert-オクチル基、2-ヘキシルデシル基、シクロヘキシル基、シクロペンチル基、シクロヘキシルメチル基、オクチルシクロヘキシル基、2-ノルボルニル基、2,2、4-トリメチルペンチル基、アセチルメチル基、アセチルエチル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシペンチル基、ヒドロキシヘキシル基、ヒドロキシヘプチル基、ヒドロキシオクチル基、ヒドロキシノニル基、ヒドロキシデシル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、1,1,1,3,3,3-ヘキサフルオロイソプロピル基、ヘプタフルオロプロピル基、ペンタデカフルオロヘプチル基、ノナデカフルオロノニル基、ヒドロキシウンデシル基、ヒドロキシドデシル基、ヒドロキシペンタデシル基、ヒドロキシヘプタデシル基、およびヒドロキシオクタデシル基が挙げられる。
【0100】
アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロピルオキシ基、ヘキシルオキシ基、メトキシエトキシ基、メトキシエトキシエトキシ基、メトキシエトキシエトキシメチル基等を挙げることができる。
【0101】
ポリアルキレンオキシアルキル基とは、R10(OR11)n1(O)m1-で表される一価の置換基である。R10はアルキル基を表し、R11はアルキレン基を表し、n1は2以上の整数を表し、m1は0または1を表す。
10で表されるアルキル基については、X1またはX2で表されるアルキル基について記載した通りである。R11で表されるアルキレン基の詳細については、X1またはX2で表されるアルキル基に関する上記の記載を、これらアルキレン基から水素原子を1つ取り去ったアルキレン基に読み替えて(例えば、メチル基はメチレン基に読み替えて)適用することができる。n1は2以上の整数であり、例えば10以下、好ましくは5以下の整数である。
【0102】
アリール基は置換基を有していても縮環していてもよく、より好ましくは炭素数6~24のアリール基であり、例えばフェニル基、4-メチルフェニル基、4-フェニル安息香酸、3-シアノフェニル基、2-クロロフェニル基、2-ナフチル基等を挙げることができる。
【0103】
以上記載した式2-Aで表されるポリエステル鎖および式2-Bで表されるポリエステル鎖は、公知のポリエステル合成法により得られたポリエステル由来の構造であることができる。ポリエステル合成法としては、特開2015-28830号公報の段落0056~0057に記載のラクトンの開環重合を挙げることができる。ただし、上記ポリエステル鎖は、ラクトンの開環重合により得られたポリエステル由来の構造に限定されるものではなく、公知のポリエステル合成法、例えば、多価カルボン酸と多価アルコールとの重縮合、ヒドロキシカルボン酸の重縮合等により得られたポリエステル由来の構造であることもできる。
【0104】
ポリエステル鎖の数平均分子量
ポリエステル鎖の数平均分子量は、強磁性六方晶フェライト粉末の分散性向上の観点からは、200以上であることが好ましく、400以上であることがより好ましく、500以上であることが更に好ましい。また、同様の観点から、ポリエステル鎖の数平均分子量は、100,000以下であることが好ましく、50,000以下であることがより好ましい。先に記載した通り、ポリエステル鎖は、磁性層形成用組成物および/または磁性液中で立体障害をもたらし六方晶フェライト粒子の凝集を抑える作用を果たすことができると考えられる。上記の数平均分子量を有するポリエステル鎖は、かかる作用を良好に発揮することができると推察される。ポリエステル鎖の数平均分子量とは、ポリアルキレンイミン誘導体を加水分解して得られたポリエステルについて、GPCにより測定された値を、標準ポリスチレン換算して求められる値をいう。こうして求められる値は、ポリアルキレンイミン誘導体を合成するために用いたポリエステルについて、GPCにより測定された値を、標準ポリスチレン換算して求められる値と同様である。したがって、ポリアルキレンイミン誘導体を合成するために用いたポリエステルについて求めた数平均分子量を、ポリアルキレンイミン誘導体に含まれるポリエステル鎖の数平均分子量として採用することができる。ポリエステル鎖の数平均分子量の測定条件については、後述の具体例におけるポリエステルの数平均分子量の測定条件を参照できる。
【0105】
<<ポリアルキレンイミン鎖>>
数平均分子量
上記ポリアルキレンイミン誘導体に含まれるポリアルキレンイミン鎖の数平均分子量とは、ポリアルキレンイミン誘導体を加水分解して得られたポリアルキレンイミンについて、GPCにより測定された値を、標準ポリスチレン換算して求められる値をいう。こうして求められる値は、ポリアルキレンイミン誘導体を合成するために用いたポリアルキレンイミンについて、GPCにより測定された値を、標準ポリスチレン換算して求められる値と同様である。したがって、ポリアルキレンイミン誘導体を合成するために用いたポリアルキレンイミンについて求めた数平均分子量を、ポリアルキレンイミン誘導体に含まれるポリアルキレンイミン鎖の数平均分子量として採用することができる。ポリアルキレンイミン鎖の数平均分子量の測定条件については、後述の具体例を参照できる。なおポリアルキレンイミンとは、アルキレンイミンの開環重合により得ることができる重合体である。上記ポリアルキレンイミン誘導体において、重合体とは、同一構造の繰り返し単位を含む単独重合体(ホモポリマー)と二種以上の異なる構造の繰り返し単位を含む共重合体(コポリマー)とを包含する意味で用いるものとする。
また、ポリアルキレンイミン誘導体の加水分解は、エステルの加水分解法として通常用いられている各種方法により行うことができる。そのような方法の詳細については、例えば、「実験化学講座14 有機化合物の合成II-アルコール・アミン(第5版)」(日本化学会編、丸善出版、2005年8月発行)95~98頁の加水分解法に関する記載、「実験化学講座16 有機化合物の合成IV-カルボン酸・アミノ酸・ペプチド(第5版)」(日本化学会編、丸善出版、2005年3月発行)10~15頁の加水分解法に関する記載等を参照できる。
得られた加水分解物から、液体クロマトグラフィー等の公知の分離手段によりポリアルキレンイミンを分離し、数平均分子量を求めることができる。
【0106】
上記ポリアルキレンイミン誘導体に含まれるポリアルキレンイミン鎖の数平均分子量は、300~3,000の範囲である。ポリアルキレンイミン鎖の数平均分子量が上記範囲であることにより、ポリアルキレンイミン誘導体は六方晶フェライト粒子表面に有効に吸着し得るものとなると、本発明者らは推察している。六方晶フェライト粒子表面への吸着性の観点からは、ポリアルキレンイミン鎖の数平均分子量は、500以上であることが好ましい。また同様の観点から、2,000以下であることが好ましい。
【0107】
ポリアルキレンイミン誘導体におけるポリアルキレンイミン鎖が占める割合
先に記載した通り、ポリアルキレンイミン誘導体に含まれるポリアルキレンイミン鎖は、六方晶フェライト粒子表面への吸着部として機能し得ると本発明者らは考えている。ポリアルキレンイミン誘導体においてポリアルキレンイミン鎖の占める割合(以下、「ポリアルキレンイミン鎖比率」とも記載する。)は、強磁性六方晶フェライト粉末の分散性を高める観点から、好ましくは5.0質量%未満である。強磁性六方晶フェライト粉末の分散性向上の観点から、ポリアルキレンイミン鎖比率は4.9質量%以下であることがより好ましく、4.8質量%以下であることが更に好ましく、4.5質量%以下であることが一層好ましく、4.0質量%以下であることがより一層好ましく、3.0質量%以下であることが更に一層好ましい。また、強磁性六方晶フェライト粉末の分散性向上の観点からは、ポリアルキレンイミン鎖比率は0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましく、0.5質量%以上であることが更に好ましい。
以上記載したポリアルキレンイミン鎖の占める割合は、例えば、合成時に用いるポリアルキレンイミンとポリエステルとの混合比によって制御することができる。
【0108】
上記ポリアルキレンイミン誘導体においてポリアルキレンイミン鎖の占める割合は、核磁気共鳴(NMR;Nuclear Magnetic Resonance)、より詳しくは、1H-NMRおよび13C-NMR、ならびに公知の手法の元素分析により得られる分析結果から、算出することができる。こうして算出される値は、ポリアルキレンイミン誘導体の合成原料の配合比から求められる理論値と同様であるため、配合比から求められる理論値を、ポリアルキレンイミン誘導体におけるポリアルキレンイミン鎖の占める割合として採用することができる。
【0109】
ポリアルキレンイミン鎖の構造
ポリアルキレンイミン鎖とは、同一または異なるアルキレンイミン鎖の2つ以上を含む重合構造である。含まれるアルキレンイミン鎖としては、下記の式Aで表されるアルキレンイミン鎖、および式Bで表されるアルキレンイミン鎖を挙げることができる。下記式で表されるアルキレンイミン鎖の中で、式Aで表されるアルキレンイミン鎖は、ポリエステル鎖との結合位置を含み得るものである。また、式Bで表されるアルキレンイミン鎖は、ポリエステル鎖と上述したような塩架橋基により結合することができる。ポリアルキレンイミン誘導体は、このようなアルキレンイミン鎖を1つ以上含むことにより、ポリアルキレンイミン鎖に1つ以上のポリエステル鎖が結合した構造を有することができる。また、ポリアルキレンイミン鎖としては、直鎖構造のみからなるものであっても、分岐した三級アミン構造を有するものであってもよい。より一層の分散性向上の観点からは、ポリアルキレンイミン鎖に分岐構造を含むものが好ましい。分岐構造を含むものとしては、下記式A中の*1において隣接するアルキレンイミン鎖と結合するもの、および下記式B中の*2において隣接するアルキレンイミン鎖と結合するものを挙げることができる。
【0110】
【化11】
【0111】
式A中、R1およびR2は、それぞれ独立に水素原子またはアルキル基を表し、a1は2以上の整数を表し、*1はポリエステル鎖、隣接するアルキレンイミン鎖、または水素原子もしくは置換基との結合位置を表す。
【0112】
【化12】
【0113】
式B中、R3およびR4は、それぞれ独立に水素原子またはアルキル基を表し、a2は2以上の整数を表す。式Bで表されるアルキレンイミン鎖は、アニオン性基を有するポリエステル鎖と、式B中のN+とポリエステル鎖に含まれるアニオン性基が塩架橋基を形成することにより結合する。
【0114】
式Aおよび式B中の*、ならびに式B中の*2は、それぞれ独立に、隣接するアルキレンイミン鎖、または水素原子もしくは置換基と結合する位置を表す。
【0115】
以下、上記式Aおよび式Bについて、更に詳細に説明する。
【0116】
式A中のR1およびR2、ならびに式B中のR3およびR4は、それぞれ独立に、水素原子またはアルキル基を表す。アルキル基としては、例えば、炭素数1~6のアルキル基を挙げることができ、好ましくは炭素数1~3のアルキル基であり、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。式A中のR1およびR2の組み合わせとしては、一方が水素原子であって他方がアルキル基である態様、両方が水素原子である態様、両方がアルキル基(同一または異なるアルキル基)である態様があり、好ましくは両方が水素原子である態様である。以上の点は、式B中のR3およびR4についても、同様である。
【0117】
アルキレンイミンとして環を構成する炭素数が最小の構造はエチレンイミンであり、エチレンイミンの開環により得られたアルキレンイミン鎖(エチレンイミン鎖)の主鎖の炭素数は2である。したがって、式A中のa1および式B中のa2の下限は2である。即ち、式A中のa1および式B中のa2は、それぞれ独立に、2以上の整数である。強磁性粉末の粒子表面への吸着性の観点からは、式A中のa1および式B中のa2は、それぞれ独立に、10以下であることが好ましく、6以下であることがより好ましく、4以下であることが更に好ましく、2または3であることが一層好ましく、2であることがより一層好ましい。
【0118】
式Aで表されるアルキレンイミン鎖または式Bで表されるアルキレンイミン鎖とポリエステル鎖との結合の詳細については、上述したとおりである。
【0119】
上記の各アルキレンイミン鎖は、各式中の*で表される位置において、隣接するアルキレンイミン鎖、または水素原子もしくは置換基と結合する。置換基としては、例えばアルキル基(例えば炭素数1~6のアルキル基)等の一価の置換基を例示することができるが、これらに限定されるものではない。また、置換基として、ポリエステル鎖が結合してもよい。
【0120】
ポリアルキレンイミン誘導体の重量平均分子量
ポリアルキレンイミン誘導体の分子量は、上述の通り、重量平均分子量として、好ましくは1,000以上80,000以下である。ポリアルキレンイミン誘導体の重量平均分子量は、1,500以上であることがより好ましく、2,000以上であることが更に好ましく、3,000以上であることが一層好ましい。また、ポリアルキレンイミン誘導体の重量平均分子量は、60,000以下であることがより好ましく、40,000以下であることが更に好ましく、35,000以下であることが一層好ましく、34,000以下であることがより一層好ましい。ポリアルキレンイミン誘導体の重量平均分子量の測定条件については、後述の具体例を参照できる。
【0121】
合成方法
上記ポリアルキレンイミン誘導体としては、ポリエステル鎖とともに、数平均分子量が300~3,000の範囲のポリアルキレンイミン鎖を上記割合で含むものであれば、合成方法は特に限定されるものではない。合成方法の好ましい一態様については、特開2015-28830号公報の段落0061~0069を参照できる。
【0122】
上記ポリアルキレンイミン誘導体の具体例としては、表2に示すポリエチレンイミンおよびポリエステルを用いて合成される表2に示す各種ポリアルキレンイミン誘導体を挙げることができる。合成反応の詳細については、後述の実施例および/または特開2015-28830号公報の実施例の記載を参照できる。
【0123】
【表2】
【0124】
(※注)表2に示すポリエチレンイミンは、以下に示すとおりである。
SP-003(ポリエチレンイミン(日本触媒社製) 数平均分子量300)
SP-006(ポリエチレンイミン(日本触媒社製) 数平均分子量600)
SP-012(ポリエチレンイミン(日本触媒社製) 数平均分子量1,200)
SP-018(ポリエチレンイミン(日本触媒社製) 数平均分子量1,800)
【0125】
上記表2に示すポリエステルは、表3に示すラクトンおよび求核試薬(カルボン酸)を用いて、ラクトンの開環重合により合成されるポリエステルである。合成反応の詳細については、後述の実施例および/または特開2015-28830号公報の実施例の記載を参照できる。
【0126】
【表3】
【0127】
上記の酸価およびアミン価は、電位差法(溶媒:テトラヒドロフラン/水=100/10(体積比)、滴定液:0.01N(0.01mol/l)水酸化ナトリウム水溶液(酸価)、0.01N (0.01mol/l)塩酸(アミン価))により決定される。
【0128】
上記の平均分子量(数平均分子量および重量平均分子量)は、GPCにより測定された値を標準ポリスチレン換算して求められる。
ポリエステル、ポリアルキレンイミン、およびポリアルキレンイミン誘導体の平均分子量の測定条件の具体例は、それぞれ以下の通りである。
【0129】
(ポリエステルの平均分子量の測定条件)
測定器:HLC-8220GPC(東ソー社製)
カラム:TSKgel Super HZ 2000/TSKgel Super HZ 4000/TSKgel Super HZ-H(東ソー社製)
溶離液:テトラヒドロフラン(THF)、
流速:0.35mL/min、
カラム温度:40℃
検出器:示差屈折(RI)検出器
【0130】
(ポリアルキレンイミンの平均分子量、ポリアルキレンイミン誘導体の平均分子量の測定条件)
測定器:HLC-8320GPC(東ソー社製)
カラム:TSKgel Super AWM-H(東ソー社製)3本
溶離液:N-メチル-2-ピロリドン(添加剤として10mmol/l臭化リチウム添加)
流速:0.35mL/min
カラム温度:40℃
検出器:示差屈折(RI)検出器
【0131】
以上説明した分散剤を、強磁性六方晶フェライト粉末、結合剤、研磨剤および溶媒と混合することにより磁性層形成用組成物を調製することができる。また、上記磁気テープの磁性層は、強磁性六方晶フェライト粉末、結合剤および研磨剤とともに、上記分散剤を含むことができる。上記分散剤は、一種のみ用いてもよく、構造の異なる二種以上を併用してもよい。二種以上を併用する場合、含有量とは、併用した化合物の合計含有量をいうものとする。以上の点は、本明細書に記載の各種成分の含有量についても同様である。
上記分散剤の含有量は、強磁性六方晶フェライト粉末100.0質量部あたり0.5~25.0質量部であることが好ましい。分散剤の含有量は、強磁性六方晶フェライト粉末100.0質量部あたり0.5質量部以上とすることが、強磁性六方晶フェライト粉末の分散性および磁性層の耐久性向上の観点から好ましく、1.0質量部以上とすることがより好ましく、5.0質量部以上とすることが更に好ましく、10.0質量部以上とすることが一層好ましい。一方、記録密度の向上のためには、磁性層における強磁性六方晶フェライト粉末の充填率を高くすることが好ましい。この点からは、相対的に強磁性六方晶フェライト粉末以外の成分の含有量は低くすることが好ましい。以上の観点から、上記分散剤の含有量は、強磁性六方晶フェライト粉末100.0質量部に対して25.0質量部以下とすることが好ましく、20.0質量部以下とすることがより好ましく、18.0質量部以下とすることが更に好ましく、15.0質量部以下とすることが一層好ましい。
【0132】
以下、上記磁気テープについて、更により詳細に説明する。
【0133】
<磁性層>
(強磁性粉末)
磁性層には、強磁性粉末として、強磁性六方晶フェライト粉末が含まれる。強磁性六方晶フェライト粉末の粒子サイズの指標としては、活性化体積を用いることができる。「活性化体積」とは、磁化反転の単位である。本発明および本明細書に記載の活性化体積は、振動試料型磁束計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し、以下のHcと活性化体積Vとの関係式から求められる値である。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数、Ms:飽和磁化、k:ボルツマン定数、T:絶対温度、V:活性化体積、A:スピン歳差周波数、t:磁界反転時間]
磁気テープには、近年の情報量の莫大な増大に伴い、記録密度を高めること(高密度記録化)が望まれている。高密度記録化を達成するための方法としては、磁性層に含まれる強磁性粉末の粒子サイズを小さくし、磁性層の強磁性粉末の充填率を高める方法が挙げられる。この点から、強磁性六方晶フェライト粉末の活性化体積は、2500nm3以下であることが好ましく、2300nm3以下であることがより好ましく、2000nm3以下であることが更に好ましい。一方、磁化の安定性の観点からは、活性化体積は、例えば800nm3以上であることが好ましく、1000nm3以上であることがより好ましく、1200nm3以上であることが更に好ましい。なおSTEM像において観察される全六方晶フェライト粒子の中で、上述のアスペクト比および長軸方向の長さを有する六方晶フェライト粒子の占める割合は、STEM像において観察される全六方晶フェライト粒子に対する粒子数基準の割合として、例えば50%以上であることができる。また、上記割合は、例えば95%以下であることができ、95%超であることもできる。その他の強磁性六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030を参照できる。
【0134】
磁性層における強磁性六方晶フェライト粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層の強磁性六方晶フェライト粉末以外の成分は少なくとも結合剤および研磨剤であり、任意に一種以上の他の添加剤が含まれ得る。磁性層において強磁性六方晶フェライト粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0135】
(結合剤)
上記磁気テープは、磁性層に、強磁性六方晶フェライト粉末とともに結合剤を含む。結合剤とは、一種以上の樹脂である。結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から単独または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。また、結合剤は、電子線硬化型樹脂等の放射線硬化型樹脂であってもよい。放射線硬化型樹脂については、特開2011-48878号公報の段落0044~0045を参照できる。
また、上記結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤とは、1分子中に少なくとも1つ、好ましくは2つ以上の架橋性官能基を有する化合物である。なお硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。硬化剤としては、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層等の各層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
【0136】
(研磨剤)
上記磁気テープは、磁性層に研磨剤を含む。研磨剤とは、モース硬度8超の非磁性粉末を意味し、モース硬度9以上の非磁性粉末であることが好ましい。研磨剤は、無機物質の粉末(無機粉末)であっても有機物質の粉末(有機粉末)であってもよく、無機粉末であることが好ましい。研磨剤は、モース硬度8超の無機粉末であることがより好ましく、モース硬度9以上の無機粉末であることが更に好ましい。なおモース硬度の最大値は、ダイヤモンドの10である。具体的には、研磨剤としては、アルミナ(Al23)、炭化珪素、ボロンカーバイド(B4C)、TiC、酸化セリウム、酸化ジルコニウム(ZrO2)、ダイヤモンド等の粉末を挙げることができ、中でもアルミナ粉末が好ましい。アルミナ粉末については、特開2013-229090号公報の段落0021も参照できる。また、研磨剤の粒子サイズの指標としては、比表面積を用いることができる。比表面積が大きいほど粒子サイズが小さいことを意味する。磁性層表面Raを小さくする観点からは、BET(Brunauer-Emmett-Teller)法によって測定された比表面積(以下、「BET比表面積」と記載する。)として、14m2/g以上の研磨剤を使用することが好ましい。また、分散性の観点からは、BET比表面積が40m2/g以下の研磨剤を用いることが好ましい。磁性層における研磨剤の含有量は、強磁性粉末100.0質量部に対して1.0~20.0質量部であることが好ましい。
【0137】
(添加剤)
磁性層には、強磁性六方晶フェライト粉末、結合剤および研磨剤が含まれ、必要に応じて一種以上の添加剤が更に含まれていてもよい。添加剤としては、一例として、上述の分散剤および硬化剤が挙げられる。また、磁性層に含まれ得る添加剤としては、非磁性フィラー、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤、カーボンブラック等を挙げることができる。非磁性フィラーとは、非磁性粉末と同義である。非磁性フィラーとしては、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性フィラー(以下、「突起形成剤」と記載する。)を挙げることができる。突起形成剤は、磁性層表面の摩擦特性制御に寄与し得る成分である。突起形成剤としては、一般に突起形成剤として使用される各種非磁性粉末を用いることができる。これらは、無機物質であっても有機物質であってもよい。一態様では、摩擦特性の均一化の観点からは、突起形成剤の粒度分布は、分布中に複数のピークを有する多分散ではなく、単一ピークを示す単分散であることが好ましい。単分散粒子の入手容易性の点からは、突起形成剤は無機物質の粉末(無機粉末)であることが好ましい。無機粉末としては、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末を挙げることができ、無機酸化物の粉末であることが好ましい。突起形成剤は、より好ましくはコロイド粒子であり、更に好ましくは無機酸化物コロイド粒子である。また、単分散粒子の入手容易性の観点からは、無機酸化物コロイド粒子を構成する無機酸化物は二酸化ケイ素(シリカ)であることが好ましい。無機酸化物コロイド粒子は、コロイダルシリカ(シリカコロイド粒子)であることがより好ましい。本発明および本明細書において、「コロイド粒子」とは、少なくとも、メチルエチルケトン、シクロヘキサノン、トルエンもしくは酢酸エチル、または上記溶媒の二種以上を任意の混合比で含む混合溶媒の少なくとも1つの有機溶媒100mLあたり1g添加した際に、沈降せず分散しコロイド分散体をもたらすことのできる粒子をいうものとする。他の一態様では、突起形成剤は、カーボンブラックであることも好ましい。突起形成剤の平均粒子サイズは、例えば30~300nmであり、好ましくは40~200nmである。また、突起形成剤が、その機能をより良好に発揮することができるという観点から、磁性層における突起形成剤の含有量は、好ましくは強磁性粉末100.0質量部に対して、1.0~4.0質量部であり、より好ましくは1.5~3.5質量部である。
【0138】
研磨剤を含む磁性層に使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を、磁性層形成用組成物における研磨剤の分散性を向上させるための分散剤として挙げることができる。研磨剤の磁性層形成用組成物における分散性を向上させることは、磁性層表面Raを小さくするうえで好ましい。
【0139】
添加剤は、所望の性質に応じて、市販品または公知の方法により製造されたものを適宜選択して使用することができる。
【0140】
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体上に直接磁性層を有していてもよく、非磁性支持体と磁性層との間に、非磁性粉末と結合剤を含む非磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質でも有機物質でもよい。また、カーボンブラック等も使用できる。無機物質としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040~0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0141】
非磁性層の結合剤、添加剤等のその他詳細は、非磁性層に関する公知技術が適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0142】
本発明および本明細書における非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0143】
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する側とは反対側に、非磁性粉末および結合剤を含むバックコート層を有することもできる。バックコート層には、カーボンブラックおよび無機粉末のいずれか一方または両方が含有されていることが好ましい。バックコート層に含まれる結合剤および任意に含まれ得る各種添加剤については、磁性層および/または非磁性層の処方に関する公知技術を適用することができる。
【0144】
<非磁性支持体>
次に、非磁性支持体(以下、単に「支持体」とも記載する。)について説明する。非磁性支持体としては、二軸延伸を行ったポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリアミドが好ましい。これらの支持体には、あらかじめコロナ放電、プラズマ処理、易接着処理、熱処理等を行ってもよい。
【0145】
<磁気テープ総厚>
上記磁気テープの総厚は、5.30μm以下である。総厚が薄いこと(薄型化)は、磁気テープカートリッジの1巻あたりの記録容量を高めるうえで好ましい。上記磁気テープの総厚は、例えば5.20μm以下、5.10μm以下、または5.00μm以下であってもよい。また、上記磁気テープの総厚は、例えば、磁気テープの取り扱いの容易性(ハンドリング性)等の観点からは、1.00μm以上であることが好ましく、2.00μm以上であることがより好ましく、3.00μm以上であることが更に好ましい。
【0146】
<非磁性支持体および各層の厚み>
非磁性支持体の厚みは、好ましくは3.00~4.50μmである。磁性層の厚みは、近年求められている高密度記録化の観点からは0.15μm以下であることが好ましく、0.10μm以下であることがより好ましい。磁性層の厚みは、更に好ましくは0.01~0.10μmの範囲である。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する2層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。2層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
【0147】
非磁性層の厚みは、例えば0.0~1.50μmであり、0.10~1.00μmであることが好ましい。
【0148】
バックコート層の厚みは、0.90μm以下であることが好ましく、0.10~0.70μmの範囲であることが更に好ましい。
【0149】
磁気テープの各層および非磁性支持体の厚みは、公知の膜厚測定法により求めることができる。一例として、例えば、磁気テープの厚み方向の断面を、イオンビーム、ミクロトーム等の公知の手法により露出させた後、露出した断面において走査型電子顕微鏡を用いて断面観察を行う。断面観察において厚み方向の1箇所において求められた厚み、または無作為に抽出した2箇所以上の複数箇所、例えば2箇所、において求められた厚みの算術平均として、各種厚みを求めることができる。または、各層の厚みは、製造条件から算出される設計厚みとして求めてもよい。
【0150】
<製造方法>
<<サーボパターンが形成される磁気テープの製造>>
磁性層、非磁性層またはバックコート層を形成するための組成物は、先に説明した各種成分とともに、通常、溶媒を含む。溶媒としては、塗布型磁気テープを製造するために一般に使用される各種有機溶媒を用いることができる。各層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含む。個々の工程はそれぞれ2段階以上に分かれていてもかまわない。本発明で用いられるすべての原料は、どの工程の最初または途中で添加してもかまわない。また、個々の原料を2つ以上の工程で分割して添加してもかまわない。磁性層形成用組成物の調製においては、先に記載した通り、研磨剤と強磁性六方晶フェライト粉末とを別分散することが好ましい。磁気テープを製造するためには、公知の製造技術を用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつニーダを使用することが好ましい。これらの混練処理の詳細については特開平1-106338号公報および特開平1-79274号公報に記載されている。また、各層形成用組成物を分散させるためには、分散メディアとして、ガラスビーズおよびその他の分散ビーズの一種以上を用いることができる。このような分散ビーズとしては、高比重の分散ビーズであるジルコニアビーズ、チタニアビーズ、およびスチールビーズが好適である。これら分散ビーズの粒径(ビーズ径)と充填率は最適化して用いることができる。分散機は公知のものを使用することができる。また、cosθが0.85以上1.00以下の磁気テープを得るための手段の1つとして、分散条件を強化すること(例えば分散時間の長時間化、分散に用いる分散ビーズの小径化および/または高充填化、分散剤の利用等)も好ましい。分散条件の強化に関する好ましい態様は、先に記載した通りである。その他の磁気テープの製造方法の詳細については、例えば特開2010-24113号公報の段落0051~0057も参照できる。配向処理については、特開2010-24113号公報の段落0052を参照することができる。cosθが0.85以上1.00以下である磁気テープを得るための手段の1つとして、垂直配向処理を行うことが好ましい。
【0151】
<<サーボパターンの形成>>
上記磁気テープは、磁性層に、タイミングベースサーボパターンを有する。タイミングベースサーボパターンが形成された領域(サーボバンド)および2本のサーボバンドに挟まれた領域(データバンド)の配置例が、図1に示されている。タイミングベースサーボパターンの配置例は、図2に示されている。ただし、各図面に示す配置例は例示であって、磁気テープ装置(ドライブ)の方式に応じた配置でサーボパターン、サーボバンドおよびデータバンドを配置すればよい。また、タイミングベースサーボパターンの形状および配置については、例えば、米国特許第5689384号のFIG.4、FIG.5、FIG.6、FIG.9、FIG.17、FIG.20等に例示された配置例等の公知技術を何ら制限なく適用することができる。
【0152】
サーボパターンは、磁性層の特定の領域をサーボライターに搭載されたサーボライトヘッドにより磁化することによって形成することができる。サーボライトヘッドにより磁化する領域(サーボパターンを形成する位置)は規格により定められている。サーボライターとしては、市販のサーボライターまたは公知の構成のサーボライターを用いることができる。サーボライターの構成については、例えば特開2011-175687号公報、米国特許第5689384号、米国特許第6542325号等に記載の技術等の公知技術を何ら制限なく採用できる。
【0153】
以上説明した本発明の一態様にかかる磁気テープは、総厚が5.30μm以下に薄型化された磁気テープであり、磁性層表面Raが1.8nm以下の高い表面平滑性を有し、かつタイミングベースサーボシステムにおいてサーボ信号再生時に信号欠陥の発生を抑制することができる。
【0154】
[磁気テープ装置]
本発明の一態様は、上記磁気テープと、磁気ヘッドと、サーボヘッドと、を含む磁気テープ装置に関する。
【0155】
上記磁気テープ装置に搭載される磁気テープの詳細は、先に記載した通りである。かかる磁気テープは、タイミングベースサーボパターンを有する。したがって、磁気ヘッドによりデータバンド上に磁気信号を記録してデータトラックを形成し、および/または、記録された信号を再生する際、サーボヘッドによりサーボパターンを読み取りながら読み取られたサーボパターンに基づきタイミングベースサーボ方式のヘッドトラッキングを行うことによって、磁気ヘッドをデータトラックに高精度に追従させることができる。
【0156】
上記磁気テープ装置に搭載される磁気ヘッドとしては、磁気テープへの磁気信号の記録および/または再生を行うことが可能な公知の磁気ヘッドを用いることができる。記録ヘッドと再生ヘッドは、1つの磁気ヘッドであってもよく分離した磁気ヘッドであってもよい。サーボヘッドとしては、上記磁気テープのタイミングベースサーボパターンを読み取り可能な公知のサーボヘッドを用いることができる。例えば、MR素子を搭載した公知のMRヘッドを、サーボヘッドとして用いることができる。サーボヘッドは、上記磁気テープ装置に少なくとも1つ含まれ、2つ以上含まれてもよい。
【0157】
タイミングベースサーボシステムにおけるヘッドトラッキングの詳細については、例えば、米国特許第5689384号、米国特許第6542325号、および米国特許第7876521号に記載の技術をはじめとする公知技術を何ら制限なく適用することができる。
【0158】
なお市販の磁気テープ装置には、通常、規格に応じた磁気ヘッドおよびサーボヘッドが備えられている。また、市販の磁気テープ装置には、通常、規格に応じたタイミングベースサーボシステムにおけるヘッドトラッキングを可能にするためのサーボ制御機構が備えられている。本発明の一態様にかかる磁気テープ装置は、例えば、市販の磁気テープ装置に本発明の一態様にかかる磁気テープを組み込むことにより構成することができる。
【実施例0159】
以下に、本発明を実施例に基づき説明する。ただし、本発明は実施例に示す態様に限定されるものではない。なお、以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。
【0160】
本発明および本明細書における平均粒子サイズは、特開2016-071926号公報の段落0058~0061に記載の方法により測定される値である。以下に記載の平均粒子サイズの測定は、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて行った。
【0161】
[実施例1~9、比較例1~9]
1.アルミナ分散物(研磨剤液)の調製
アルファ化率約65%、BET比表面積20m2/gのアルミナ粉末(住友化学社製HIT-80;モース硬度9)100.0部に対し、3.0部の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSO3Na基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合液570.0部を混合し、ジルコニアビーズ存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物(研磨剤液)を得た。
【0162】
2.磁性層形成用組成物処方
(磁性液)
強磁性六方晶バリウムフェライト粉末(活性化体積:表4参照) 100.0部
SO3Na基含有ポリウレタン樹脂 14.0部
(重量平均分子量:70,000、SO3Na基:0.2meq/g)
分散剤 表4参照
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記1.で調製したアルミナ分散物 6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ:100nm) 2.0部
メチルエチルケトン 1.4部
(その他成分)
ステアリン酸 2.0部
ブチルステアレート 6.0部
ポリイソシアネート(日本ポリウレタン社製コロネート(登録商標))2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
【0163】
表4記載の分散剤の合成方法等の詳細は、後述する。
【0164】
3.非磁性層形成用組成物処方
非磁性無機粉末:α-酸化鉄 100.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m2/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
SO3Na基含有ポリウレタン樹脂 18.0部
(重量平均分子量:70,000、SO3Na基:0.2meq/g)
ステアリン酸 1.0部
シクロヘキサノン 300.0部
メチルエチルケトン 300.0部
【0165】
4.バックコート層形成用組成物処方
非磁性無機粉末:α-酸化鉄 80.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m2/g
カーボンブラック 20.0部
平均粒子サイズ20nm
塩化ビニル共重合体 13.0部
スルホン酸塩基含有ポリウレタン樹脂 6.0部
フェニルホスホン酸 3.0部
メチルエチルケトン 155.0部
ステアリン酸 3.0部
ブチルステアレート 3.0部
ポリイソシアネート 5.0部
シクロヘキサノン 355.0部
【0166】
5.各層形成用組成物の調製
(1)磁性層形成用組成物の調製
磁性層形成用組成物を、以下の方法により調製した。
上記の磁性液成分をバッチ式縦型サンドミルにおいて分散メディアとしてビーズを用いてビーズ分散することにより、磁性液を調製した。具体的には、各段階(1段階目および2段階目、または1~3段階目)のビーズ分散として、それぞれ表4に示すビーズ径を有するジルコニアビーズを用いて表4に示す分散滞留時間で分散処理を行った。ビーズ分散では、各段階終了後にそれぞれフィルター(平均孔径5μm)を用いて得られた分散液を濾過した。各段階のビーズ分散において、分散メディアの充填率は、50~80体積%程度とした。
こうして得られた磁性液を、上記の研磨剤液、シリカゾル、その他成分および仕上げ添加溶媒と混合し、上記サンドミルを用いて5分間ビーズ分散した後、更にバッチ型超音波装置(20kHz、300W)で0.5分間超音波分散を行った。次いで、フィルター(平均孔径0.5μm)を用いて得られた混合液をろ過し、磁性層形成用組成物を調製した。
上記のビーズ分散時のサンドミルにおける先端周速は、7~15m/秒の範囲とした。
(2)非磁性層形成用組成物の調製
非磁性層形成用組成物を、以下の方法により調製した。
ステアリン酸、シクロヘキサンおよびメチルエチルケトンを除いた各成分を、バッチ式縦型サンドミルを用いてビーズ分散(分散メディア:ジルコニアビーズ(ビーズ径:0.1mm)、分散滞留時間:24時間)して分散液を得た。その後、得られた分散液に残りの成分を添加し、ディゾルバーで攪拌した。次いで、フィルター(平均孔径0.5μm)を用いて得られた分散液をろ過し、非磁性層形成用組成物を調製した。
(3)バックコート層形成用組成物の調製
バックコート層形成用組成物を、以下の方法により調製した。
ステアリン酸、ブチルステアレート、ポリイソシアネートおよびシクロヘキサノンを除いた各成分をオープンニーダにより混練および希釈した。その後、得られた混合液に対して横型ビーズミルにより、ビーズ径1mmのジルコニアビーズを用い、ビーズ充填率80体積%およびローター先端周速10m/秒で、1パスあたりの滞留時間を2分とし、12パスの分散処理を行った。その後、得られた分散液に残りの成分を添加し、ディゾルバーで攪拌した。次いで、フィルター(平均孔径1μm)を用いて得られた分散液をろ過し、バックコート層形成用組成物を調製した。
【0167】
6.磁気テープの作製およびタイミングベースサーボパターンの形成
表4に示す厚みのポリエチレンナフタレート製支持体の表面上に、乾燥後の厚みが表4に示す厚みとなるように上記5.(2)で調製した非磁性層形成用組成物を塗布および乾燥して非磁性層を形成した。次いで、非磁性層上に乾燥後の厚みが表4に示す厚みとなるように上記5.(1)で調製した磁性層形成用組成物を塗布した。表4に垂直配向処理「有」と記載した実施例および比較例については、塗布した磁性層形成用組成物が未乾状態にあるうちに、磁場強度0.3Tの磁場を塗布面に対し垂直方向に印加して垂直配向処理を行った後乾燥させ、磁性層を形成した。表4に垂直配向処理「無」と記載した比較例については上記垂直配向処理を行わずに塗布した磁性層形成用組成物を乾燥させ、磁性層を形成した。
その後、上記ポリエチレンナフタレート製支持体の非磁性層および磁性層を形成した面とは反対側の面に、乾燥後の厚みが表4に示す厚みとなるように上記5.(3)で調製したバックコート層形成用組成物を塗布および乾燥させて、積層体を得た。
その後、得られた積層体に対して、金属ロールのみから構成されるカレンダロールを用いて、カレンダ処理速度100m/分、線圧294kN/m(300kg/cm)、および表4に示すカレンダーロールの表面温度にて、表面平滑化処理(カレンダ処理)を行った。カレンダ処理条件を強化するほど(例えばカレンダロールの表面温度を高くするほど)、磁性層表面Raは小さくなる傾向がある。
その後、雰囲気温度70℃の環境下で36時間熱処理を行った。熱処理した積層体を、スリッターを用いて1/2インチ(0.0127メートル)幅に裁断し、磁気テープを作製した。
作製した磁気テープの磁性層を消磁した状態で、サーボ試験機に搭載されたサーボライトヘッドによって、LTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを磁性層に形成した。これにより、磁性層に、LTO Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターンを有する磁気テープを作製した。
こうして、実施例および比較例の各磁気テープを得た。なお上記サーボ試験機は、サーボライトヘッドおよびサーボヘッドを備えている。このサーボ試験機を後述する評価でも使用した。
【0168】
作製した磁気テープの各層および非磁性支持体の厚み、ならびに総厚を、以下の方法により求めた。形成した各層の厚みが表4に示す厚みであることが確認された。
磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡によって断面観察を行う。断面観察において厚み方向の2箇所において求められた厚みの算術平均として、各種厚みを求めた。
【0169】
7.分散剤の調製
表4に記載の分散剤1~4は、以下の方法によって調製した。以下に合成反応に関して記載する温度は、反応液の液温である。
比較例9では、分散剤1~4に代えて2,3-ジヒドロキシナフタレンを用いた。2,3-ジヒドロキシナフタレンは、特開2012-203955号公報において角型比の調整のための添加剤として用いられている化合物である。
【0170】
(1)分散剤1の調製
<前駆体1の合成>
500mL三口フラスコに、ε-カプロラクトン197.2gおよび2-エチル-1-ヘキサノール15.0gを導入し、窒素を吹き込みながら、攪拌溶解した。モノブチル錫オキシド0.1gを加え、100℃に加熱した。8時間後、ガスクロマトグラフィーにて、原料が消失したことを確認後、室温まで冷却し、固体状の前駆体1(下記構造)を200g得た。
【0171】
【化13】
【0172】
<分散剤1の合成>
200mL三口フラスコに、得られた前駆体1を40.0g導入し、窒素を吹き込みながら、80℃で攪拌溶解した。meso-ブタン-1,2,3,4-テトラカルボン酸二無水物2.2gを加え、110℃に加熱した。5時間後、1H-NMRにて、前駆体1由来のピークが消失したことを確認後、室温まで冷却し、固体状の反応生成物1(以下の構造異性体の混合物)を38g得た。こうして得られた反応生成物1は、表1に示した化合物1とその構造異性体の混合物である。反応生成物1を、「分散剤1」と呼ぶ。
【0173】
【化14】
【0174】
(2)分散剤2の調製
<分散剤2の合成>
ブタンテトラカルボン酸無水物2.2gを、ピロメリット酸二無水物2.4gに変更した点以外は分散剤1の合成と同様に合成を行い、固体状の反応生成物2(以下の構造異性体の混合物)を38g得た。こうして得られた反応生成物2は、表1に示した化合物2とその構造異性体の混合物である。反応生成物2を、「分散剤2」と呼ぶ。
【0175】
【化15】
【0176】
(3)分散剤3の調製
<ポリエステル(i-1)の合成>
500mL三口フラスコに、カルボン酸としてn-オクタン酸(和光純薬社製)12.6g、ラクトンとしてε-カプロラクトン(ダイセル工業化学社製プラクセルM)100g、触媒としてモノブチルすずオキシド(和光純薬社製)(C49Sn(O)OH)2.2gを混合し、160℃で1時間加熱した。ε-カプロラクトン100gを5時間かけて滴下し更に2時間攪拌した。その後、室温まで冷却しポリエステル(i-1)を得た。
合成スキームを以下に示す。
【0177】
【化16】
【0178】
<分散剤3(ポリエチレンイミン誘導体(J-1))の合成>
ポリエチレンイミン(日本触媒社製SP-018、数平均分子量1800)5.0gおよび得られたポリエステル(i-1)100gを混合し、110℃で3時間加熱して、ポリエチレンイミン誘導体(J-1)を得た。ポリエチレンイミン誘導体(J-1)を、「分散剤3」と呼ぶ。
合成スキームを以下に示す。下記合成スキーム中、a、bおよびcはそれぞれ繰り返し単位の重合モル比を示し、0~50であり、a+b+c=100である。l、m、n1およびn2はそれぞれ繰り返し単位の重合モル比を示し、lは10~90、mは0~80、n1およびn2は0~70であり、かつl+m+n1+n2=100である。
【0179】
【化17】
【0180】
(4)分散剤4の調製
<ポリエステル(i-2)の合成>
表3に示すカルボン酸の仕込み量を変更した点以外はポリエステル(i-1)の合成と同様にして、ポリエステル(i-2)を得た。
【0181】
<分散剤4(ポリエチレンイミン誘導体(J-2))の合成>
表2に示すポリエチレンイミンと、得られたポリエステル(i-2)とを用いた点以外は化合物J-1と同様に合成を行い、ポリエチレンイミン誘導体(J-2)を得た。ポリエチレンイミン誘導体(J-2)を、「分散剤4」と呼ぶ。
【0182】
分散剤1および2の重量平均分子量は、一般式1で表される化合物の重量平均分子量の測定方法として先に記載した方法により測定した。測定の結果、分散剤1の重量平均分子量は9200であり、分散剤2の重量平均分子量は6300であった。
【0183】
分散剤3(ポリエチレンイミン誘導体(J-1))および分散剤4(ポリエチレンイミン誘導体(J-2))の重量平均分子量を、先に記載した具体例の測定条件下でGPCにより測定された値を標準ポリスチレン換算して求めたところ、表3に示す値であった。
【0184】
上記の他の重量平均分子量は、下記測定条件下でGPCによって測定された値を標準ポリスチレン換算して求めた値である。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mm (内径)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0185】
8.活性化体積の測定
活性化体積の測定用試料として、磁性層形成用組成物の調製に用いた強磁性六方晶バリウムフェライト粉末と同じ粉末ロット内の粉末を使用した。測定は、振動試料型磁束計(東英工業社製)を用いてHc測定部の磁場スイープ速度3分と30分とで行い、先に記載した関係式から活性化体積を算出した。測定は23℃±1℃の環境で行った。算出された活性化体積を表4に示す。
【0186】
9.cosθの測定
実施例および比較例の各磁気テープから断面観察用試料を切り出し、この試料を用いて上述した方法でcosθを求めた。実施例および比較例の各磁気テープについて求められたcosθを表4に示す。なお、実施例および比較例の各磁気テープにおいて、STEM像で観察された全六方晶フェライト粒子に対して、cosθの測定対象とされる上述の範囲のアスペクト比および長軸方向の長さを有する六方晶フェライト粒子の占める割合は、粒子数基準で80~95%程度であった。
【0187】
cosθの測定に用いる断面観察用試料は、以下の方法により作製した。
【0188】
(i)保護膜付試料の作製
以下の方法により、保護膜(カーボン膜と白金膜との積層膜)付試料を作製した。
cosθを求める対象の磁気テープから、磁気テープの幅方向10mm×長手方向10mmのサイズの試料を剃刀を用いて切り出した。試料について以下に記載する幅方向とは、切り出す前の磁気テープにおいて幅方向であった方向をいうものとする。長手方向についても同様である。
切り出した試料の磁性層表面に保護膜を形成して保護膜付試料を得た。保護膜の形成は、以下の方法により行った。
上記試料の磁性層表面に、真空蒸着によりカーボン膜(厚み80nm)を形成し、形成したカーボン膜表面にスパッタリングにより白金(Pt)膜(厚み30nm)を形成した。カーボン膜の真空蒸着および白金膜のスパッタリングは、それぞれ下記条件で行った。
<カーボン膜の真空蒸着条件>
蒸着源:カーボン(直径0.5mmのシャープペンシルの芯)
真空蒸着装置のチャンバー内真空度:2×10-3Pa以下
電流値:16A
<白金膜のスパッタリング条件>
ターゲット:Pt
スパッタリング装置のチャンバー内真空度:7Pa以下
電流値:15mA
【0189】
(ii)断面観察用試料の作製
上記(i)で作製した保護膜付試料から、ガリウムイオン(Ga+)ビームを用いるFIB加工によって薄膜状の試料を切り出した。切り出しは、以下の2回のFIB加工により行った。FIB加工における加速電圧は30kVとした。
1回目のFIB加工では、保護膜表面から深さ約5μmの領域までを含む保護膜付試料の長手方向の一方の端部(即ち保護膜付試料の幅方向の一方の側面を含む部分)を切り出した。切り出された試料には、保護膜から非磁性支持体の一部までが含まれる。
次いで、切り出された試料の切り出し面側(即ち、切り出しにより露出した試料断面側)にマイクロプローブを取り付け、2回目のFIB加工を行った。2回目のFIB加工では、切り出し面側とは逆の面(即ち、上記の幅方向の一方の側面)側にガリウムイオンビームを当てて試料の切り出しを行った。2回目のFIB加工における切り出し面を、STEM観察用のメッシュの端面に貼り合わせて試料を固定した。固定後、マイクロプローブを除去した。
更に、メッシュに固定された試料からマイクロプローブを除去した面に、上記と同様の加速電圧でガリウムイオンビームを当ててFIB加工を行い、メッシュに固定された試料を更に薄膜化した。
こうして作製されたメッシュに固定された断面観察用試料を走査透過型電子顕微鏡により観察して、先に記載した方法によりcosθを求めた。こうして求められたcosθを、表4に示す。
【0190】
10.磁性層表面Ra
原子間力顕微鏡(AFM、Veeco社製Nanoscope4)を用い、測定面積40μm×40μmの範囲を測定し、磁気テープの磁性層表面において、中心線平均表面粗さRaを求めた。スキャン速度(探針移動速度)は40μm/秒、分解能は512pixel×512pixelとした。測定結果を表4に示す。
【0191】
11.角型比(Squareness Ratio;SQ)の評価
角型比を、作製した各磁気テープについて、振動試料型磁束計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定した。測定結果を表4に示す。
【0192】
12.サーボ信号再生時の信号欠陥(サーマルアスペリティ)発生頻度
上記タイミングベースサーボパターンが形成された磁気テープをサーボ試験機に取り付けた。このサーボ試験機において上記磁気テープを走行させ、走行している磁気テープの磁性層表面とMR素子を搭載したサーボヘッドとを接触させ摺動させることにより、上記サーボヘッドによってサーボパターンの読み取り(サーボ信号の再生)を行った。再生によって得られたサーボ信号の再生波形の中で、正常なバースト信号ではなく、かつノイズレベルの出力の平均値を100%として200%以上の出力を示している部分をサーマルアスペリティと判定して、サーマルアスペリティの発生回数をカウントした。カウントされたサーマルアスペリティの発生回数を、磁気テープ全長で除した値(回数/m)を、サーマルアスペリティ発生頻度とした。測定結果を表4に示す。
【0193】
以上の結果を、表4に示す。
【0194】
【表4】
【0195】
比較例1~4と比較例5~9との対比により、磁気テープ総厚が5.30μm超の場合(比較例1および2)、ならびに磁性層表面Raが1.8nm超の場合(比較例3および4)と比べ、磁気テープ総厚が5.30μm以下であり、かつ磁性層表面Raが1.8nm以下の場合には、サーボ信号再生時に信号欠陥の発生頻度が顕著に増加することが確認された。
これに対し実施例1~9の磁気テープは、総厚が5.30μm以下であり、かつ磁性層表面Raが1.8nm以下であるものの、比較例5~9の磁気テープと比べてサーボ信号再生時に信号欠陥の発生頻度が大きく低減された。
また、表4に示す結果から、cosθとサーボ信号再生時の信号欠陥の発生頻度との間には、cosθが大きくなるほどサーボ信号再生時の信号欠陥の発生頻度が少なくなるという良好な相関関係があることが確認できる。これに対し、そのような相関関係は、表4に示すように、角型比(SQ)とサーボ信号再生時の信号欠陥の発生頻度との間には見られなかった。
【産業上の利用可能性】
【0196】
本発明は、高密度記録用磁気テープの技術分野において有用である。
図1
図2
図3
図4