(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022151978
(43)【公開日】2022-10-12
(54)【発明の名称】レーザ加工装置及びレーザ加工方法
(51)【国際特許分類】
B23K 26/046 20140101AFI20221004BHJP
【FI】
B23K26/046
【審査請求】未請求
【請求項の数】8
【出願形態】OL
(21)【出願番号】P 2021054560
(22)【出願日】2021-03-29
(71)【出願人】
【識別番号】000005267
【氏名又は名称】ブラザー工業株式会社
(74)【代理人】
【識別番号】110000992
【氏名又は名称】弁理士法人ネクスト
(72)【発明者】
【氏名】西川 恭生
【テーマコード(参考)】
4E168
【Fターム(参考)】
4E168AA00
4E168CA07
4E168CB13
4E168DA02
4E168DA23
4E168DA24
4E168DA28
4E168EA15
4E168KA07
(57)【要約】
【課題】レーザ光が走査されるXY軸方向と直角に交わるZ軸方向において、レーザ光の焦点位置が不連続に移動することを低減化することによって、レーザ加工の品質を確保しつつ、レーザ加工の時間をより一層に短縮するレーザ加工装置を提供する。
【解決手段】レーザ加工装置は、Z軸方向において、加工対象物7の加工面8が最も加工レーザ光Pの上流側にある第1最端位置ME1と、加工対象物7の加工面8が最も加工レーザ光Pの下流側にある第2最端位置ME2との差が、加工レーザ光Pの焦点深度の1倍以上2倍以下である場合、焦点深度の上流側限界位置が第1最端位置ME1に一致する場合の焦点位置を第1焦点位置F1として特定し、焦点深度の下流側限界位置が第2最端位置ME2に一致する場合の焦点位置を第2焦点位置F2として特定し、焦点位置を第1焦点位置F1又は第2焦点位置F2に切り換える切換モードでレーザ加工を実行する。
【選択図】
図4
【特許請求の範囲】
【請求項1】
ワーク表面に加工データに基づいてレーザ加工を行うためのレーザ光を出射するレーザ光出射部と、
前記レーザ光を直交座標系のXY軸方向で走査するXY軸走査部と、
前記レーザ光の焦点位置を前記直交座標系のZ軸方向で移動させる可変焦点光学系と、
前記ワーク表面の三次元データを受け入れる受入部と、
前記レーザ加工の際に前記XY軸走査部及び前記可変焦点光学系を駆動制御する制御部と、を備え、
前記レーザ光は、前記レーザ光の焦点深度に基づき、前記Z軸方向において、前記レーザ光の上流側での限界位置を示す上流側限界位置と、前記レーザ光の下流側での限界位置を示す下流側限界位置と、を有し、
前記制御部は、前記Z軸方向において、前記ワーク表面が最も前記レーザ光の上流側にある位置を示す第1最端位置と、前記ワーク表面が最も前記レーザ光の下流側にある位置を示す第2最端位置との差が、前記レーザ光の焦点深度の1倍以上2倍以下であると前記三次元データに基づいて判定する場合には、
前記レーザ光の焦点深度の前記上流側限界位置が前記第1最端位置に一致する第1状態を想定した場合の、前記レーザ光の焦点位置を第1焦点位置として特定し、
前記レーザ光の焦点深度の前記下流側限界位置が前記第2最端位置に一致する第2状態を想定した場合の、前記レーザ光の焦点位置を第2焦点位置として特定し、
前記レーザ光の焦点位置を前記第1焦点位置又は前記第2焦点位置に前記三次元データに基づいて切り換える切換モードで前記レーザ加工を実行することを特徴とするレーザ加工装置。
【請求項2】
前記制御部は、
前記第1状態を想定した場合の前記レーザ光の焦点深度である第1焦点深度において、前記レーザ加工の加工位置が前記Z軸方向で移動する総距離を第1総移動距離として前記加工データ及び前記三次元データに基づいて算出し、
前記第2状態を想定した場合の前記レーザ光の焦点深度である第2焦点深度において、前記レーザ加工の加工位置が前記Z軸方向で移動する総距離を第2総移動距離として前記加工データ及び前記三次元データに基づいて算出し、
前記第1総移動距離と前記第2総移動距離との比較に基づいて、前記レーザ光の焦点位置の切り変えタイミングを決定することを特徴とする請求項1に記載のレーザ加工装置。
【請求項3】
前記制御部は、
前記第1総移動距離が前記第2総移動距離よりも長いと判定するときは、前記レーザ加工の加工位置が前記第1焦点深度の前記下流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換え、
前記第2総移動距離が前記第1総移動距離よりも長いと判定するときは、前記レーザ加工の加工位置が前記第2焦点深度の前記上流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換え、
前記第1総移動距離と前記第2総移動距離とが等しいと判定するときは、前記レーザ加工の加工位置が前記第1焦点深度の前記下流側限界位置又は前記第2焦点深度の前記上流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換えることを特徴とする請求項2に記載のレーザ加工装置。
【請求項4】
前記制御部は、
前記第1状態を想定した場合の前記レーザ光の焦点深度である第1焦点深度の前記下流側限界位置を、前記レーザ加工の加工位置が前記レーザ光の下流側から前記レーザ光の上流側に超える回数を第1回数として前記加工データ及び前記三次元データに基づいて算出し、
前記第2状態を想定した場合の前記レーザ光の焦点深度である第2焦点深度の前記上流側限界位置を、前記レーザ加工の加工位置が前記レーザ光の上流側から前記レーザ光の下流側に超える回数を第2回数として前記加工データ及び前記三次元データに基づいて算出し、
前記第1回数と前記第2回数との比較に基づいて、前記レーザ光の焦点位置の切り変えタイミングを決定することを特徴とする請求項1に記載のレーザ加工装置。
【請求項5】
前記制御部は、
前記第2回数が前記第1回数よりも多いと判定するときは、前記レーザ加工の加工位置が前記第1焦点深度の前記下流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換え、
前記第1回数が前記第2回数よりも多いと判定するときは、前記レーザ加工の加工位置が前記第2焦点深度の前記上流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換え、
前記第1回数と前記第2回数とが等しいと判定するときは、前記レーザ加工の加工位置が前記第1焦点深度の前記下流側限界位置又は前記第2焦点深度の前記上流側限界位置を超えるタイミングで前記レーザ光の焦点位置を切り換えることを特徴とする請求項4に記載のレーザ加工装置。
【請求項6】
前記XY軸走査部で走査される前記レーザ光の走査速度を第1速度又は前記第1速度よりも遅い第2速度に設定する設定部を備え、
前記制御部は、
前記走査速度が前記第1速度に設定されている場合には、前記切換モードで前記レーザ加工を実行し、
前記走査速度が前記第2速度に設定されている場合には、前記切換モードとは異なる別モードで前記レーザ加工を実行することを特徴とする請求項1乃至請求項5のいずれか一つに記載のレーザ加工装置。
【請求項7】
前記別モードは、前記レーザ光の焦点位置を前記三次元データに基づいて前記ワーク表面の位置に一致させることを特徴とする請求項6に記載のレーザ加工装置。
【請求項8】
ワーク表面に加工データに基づいてレーザ加工を行うためのレーザ光を出射するレーザ光出射部と、前記レーザ光を直交座標系のXY軸方向で走査するXY軸走査部と、前記レーザ光の焦点位置を前記直交座標系のZ軸方向で移動させる可変焦点光学系と、前記ワーク表面の三次元データを受け入れる受入部と、を備えるレーザ加工装置において、前記加工データ及び前記三次元データに基づいて前記ワーク表面に前記レーザ光でレーザ加工を行うレーザ加工方法であって、
前記レーザ光は,その焦点深度に基づきは、前記Z軸方向において、前記レーザ光の上流側での限界位置を示す上流側限界位置と、前記レーザ光の下流側での限界位置を示す下流側限界位置と、を有し、
前記Z軸方向において、前記ワーク表面が最も前記レーザ光の上流側にある位置を示す第1最端位置と、前記ワーク表面が最も前記レーザ光の下流側にある位置を示す第2最端位置との差が、前記レーザ光の焦点深度の1倍以上2倍以下である場合に、前記XY軸走査部及び前記可変焦点光学系を駆動させて行う第1設定工程、第2設定工程、及びレーザ加工工程と、を備え、
前記第1設定工程では、前記レーザ光の焦点深度の前記上流側限界位置が前記第1最端位置に一致する状態を想定した場合の、前記レーザ光の焦点位置を第1焦点位置として特定し、
前記第2設定工程では、前記レーザ光の焦点深度の前記下流側限界位置が前記第2最端位置に一致する状態を想定した場合の、前記レーザ光の焦点位置を第2焦点位置として特定し、
前記レーザ加工工程では、前記レーザ光の焦点位置を前記第1焦点位置又は前記第2焦点位置に前記三次元データに基づいて切り換えて前記レーザ加工を実行することを特徴とするレーザ加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、レーザ光が走査されるXY軸方向と直角に交わるZ軸方向において、レーザ光の焦点位置が不連続に移動するレーザ加工装置に関するものである。
【背景技術】
【0002】
従来、上記レーザ加工装置に関し、種々の技術が提案されている。例えば、下記特許文献1に記載のレーザ加工装置は、レーザ光を出射するレーザ光出射部と、前記レーザ光を走査する走査部と、加工に適した前記レーザ光の結像が得られる結像面の前記レーザ光出射部からの距離を可変とする結像面可変手段と、制御部と、を備え、前記制御部は、前記レーザ光出射部および前記走査部を制御して、加工パターンに基づいて、前記レーザ光を加工対象物に照射させる加工処理と、前記結像面可変手段を制御して、前記加工対象物の加工面の高さに応じて、前記レーザ光の焦点深度に基づく所定の間隔を調整単位として該所定の間隔ごとに不連続に前記結像面の位置を調整する結像面調整処理とを実行することを特徴とする。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
上記特許文献1のレーザ加工装置は、加工対象物の加工面の高さに応じて、レーザ光の焦点深度に基づく所定の間隔を調整単位として所定の間隔ごとに不連続に結像面の位置を調整するため、適切な品質でレーザ光によるレーザ加工を実施しつつ、加工処理に費やす時間を短縮することができるが、加工処理に費やす時間をより一層に短縮する技術開発が求められている。
【0005】
そこで、本開示は、上述した点に鑑みてなされたものであり、レーザ光が走査されるXY軸方向と直角に交わるZ軸方向において、レーザ光の焦点位置が不連続に移動することを低減化することによって、レーザ加工の品質を確保しつつ、レーザ加工の時間をより一層に短縮するレーザ加工装置を提供する。
【課題を解決するための手段】
【0006】
本明細書は、ワーク表面に加工データに基づいてレーザ加工を行うためのレーザ光を出射するレーザ光出射部と、レーザ光を直交座標系のXY軸方向で走査するXY軸走査部と、レーザ光の焦点位置を直交座標系のZ軸方向で移動させる可変焦点光学系と、ワーク表面の三次元データを受け入れる受入部と、レーザ加工の際にXY軸走査部及び可変焦点光学系を駆動制御する制御部と、を備え、レーザ光は、レーザ光の焦点深度に基づき、Z軸方向において、レーザ光の上流側での限界位置を示す上流側限界位置と、レーザ光の下流側での限界位置を示す下流側限界位置と、を有し、制御部は、Z軸方向において、ワーク表面が最もレーザ光の上流側にある位置を示す第1最端位置と、ワーク表面が最もレーザ光の下流側にある位置を示す第2最端位置との差が、レーザ光の焦点深度の1倍以上2倍以下であると三次元データに基づいて判定する場合には、レーザ光の焦点深度の上流側限界位置が第1最端位置に一致する第1状態を想定した場合の、レーザ光の焦点位置を第1焦点位置に設定し、レーザ光の焦点深度の下流側限界位置が第2最端位置に一致する第2状態を想定した場合の、レーザ光の焦点位置を第2焦点位置に設定し、レーザ光の焦点位置を第1焦点位置又は第2焦点位置に三次元データに基づいて切り換える切換モードでレーザ加工を実行することを特徴とするレーザ加工装置を開示する。
【発明の効果】
【0007】
本開示によれば、レーザ加工装置は、レーザ光が走査されるXY軸方向と直角に交わるZ軸方向において、レーザ光の焦点位置が不連続に移動することを低減化することによって、レーザ加工の品質を確保しつつ、レーザ加工の時間をより一層に短縮する。
【図面の簡単な説明】
【0008】
【
図1】本実施形態のレーザ加工装置の概略構成が表された図である。
【
図2】同レーザ加工装置の電気的構成が表されたブロック図である。
【
図3】加工レーザ光の焦点深度の上流側限界位置と下流側限界位置とを説明するための図である。
【
図4】加工対象物の加工面の第1最端位置と第2最端位置とを説明するための図である。
【
図5】同レーザ加工装置が実行する各処理が表されたフローチャートである。
【
図6】同レーザ加工装置が実行する各処理が表されたフローチャートである。
【
図7】第1タイミングの設定処理の設定内容を説明するための図である。
【
図8】第1タイミングの設定処理の設定内容を説明するための図である。
【
図9】第2タイミングの設定処理の設定内容を説明するための図である。
【
図10】第2タイミングの設定処理の設定内容を説明するための図である。
【
図11】第1タイミングの設定処理の設定内容で加工レーザ光の焦点位置が切り換わる態様を説明するための図である。
【
図12】第2タイミングの設定処理の設定内容で加工レーザ光の焦点位置が切り換わる態様を説明するための図である。
【発明を実施するための形態】
【0009】
以下、本開示のレーザ加工装置について、具体化した実施形態に基づき、図面を参照しつつ説明する。以下の説明に用いる
図1及び
図2では、基本的構成の一部が省略されて描かれており、描かれた各部の寸法比等は必ずしも正確ではない。尚、以下の説明において、直交座標系のX軸方向、Y軸方向、及びZ軸方向は、図面に示された通りである。また、上下方向は、直交座標系のZ軸方向に平行であり、図面に示された通りである。
【0010】
[1.レーザ加工装置の概略構成]
先ず、
図1及び
図2に基づいて、本実施形態のレーザ加工装置1の概略構成について説明する。本実施形態のレーザ加工装置1は、印字情報作成部2及びレーザ加工部3で構成されている。印字情報作成部2は、パーソナルコンピュータ等で構成されている。
【0011】
レーザ加工部3は、加工レーザ光Pを加工対象物7の加工面8上で2次元走査してマーキング(印字)加工を行うものである。レーザ加工部3は、レーザコントローラ6を備えている。尚、以下では、マーキング(印字)加工を、レーザ加工と表記して説明する場合がある。
【0012】
レーザコントローラ6は、コンピュータで構成され、印字情報作成部2と双方向通信可能に接続されている。レーザコントローラ6は、印字情報作成部2から送信された印字情報、制御パラメータ、各種指示情報等に基づいてレーザ加工部3を駆動制御する。
【0013】
レーザ加工部3の概略構成について説明する。レーザ加工部3は、レーザ発振ユニット12、ガイド光部15、ダイクロイックミラー101、光学系70、ガルバノスキャナ18、及びfθレンズ19等を備えており、不図示の略直方体形状の筐体カバーで覆われている。
【0014】
レーザ発振ユニット12は、レーザ発振器21等で構成されている。レーザ発振器21は、CO2レーザ、YAGレーザ、ファイバレーザ等で構成されており、加工レーザ光Pを出射する。尚、加工レーザ光Pの光径は、不図示のビームエキスパンダで調整(例えば、拡大)される。
【0015】
ガイド光部15は、可視半導体レーザ28等で構成されている。可視半導体レーザ28は、可視可干渉光であるガイド光Q、例えば、赤色レーザ光を出射する。ガイド光Qは、不図示のレンズ群で平行光にされ、更に、2次元走査されることによって、例えば、加工レーザ光Pでマーキング(印字)加工すべき印字パターンの像、その像を取り囲んだ矩形の像、又は所定形状の像等を、加工対象物7の加工面8上に軌跡(時間残像)で描画するものである。つまり、ガイド光Qには、マーキング(印字)加工能力がない。
【0016】
ガイド光Qの波長は、加工レーザ光Pの波長とは異なる。本実施形態では、例えば、加工レーザ光Pの波長は1064nmであり、ガイド光Qの波長は、650nmである。
【0017】
ダイクロイックミラー101では、入射された加工レーザ光Pのほぼ全部が透過する。また、ダイクロイックミラー101では、加工レーザ光Pが透過する略中央位置にて、ガイド光Qが45度の入射角で入射され、45度の反射角で加工レーザ光Pの光路上に反射される。ダイクロイックミラー101の反射率は、波長依存性を持っている。具体的には、ダイクロイックミラー101は、誘電体層と金属層との多層膜構造の表面処理がなされており、ガイド光Qの波長に対して高い反射率を有し、それ以外の波長の光をほとんど(99%)透過するように構成されている。
【0018】
尚、
図1の一点鎖線は、加工レーザ光Pとガイド光Qの光軸10を示している。また、光軸10の方向は、加工レーザ光Pとガイド光Qの経路方向を示している。
【0019】
光学系70は、第1レンズ72、第2レンズ74、及び移動機構76を備えている。光学系70では、ダイクロイックミラー101を経た加工レーザ光Pとガイド光Qが、第1レンズ72に入射し通過する。その際、第1レンズ72によって、加工レーザ光Pとガイド光Qの各光径が縮小される。また、第1レンズ72を通過した加工レーザ光Pとガイド光Qは、第2レンズ74に入射し通過する。その際、第2レンズ74によって、加工レーザ光Pとガイド光Qが平行光にされる。移動機構76は、光学系モータ80と、光学系モータ80の回転運動を直線運動に変換するラック・アンド・ピニオン(不図示)等を備えており、光学系モータ80の回転制御によって、第2レンズ74を加工レーザ光Pとガイド光Qの経路方向に移動させる。
【0020】
尚、移動機構76は、第2レンズ74に代えて第1レンズ72を移動させる構成であってもよいし、第1レンズ72と第2レンズ74との間の距離が変わるように第1レンズ72と第2レンズ74の双方を移動させる構成であってもよい。また、移動機構76は、ボイスコイルモータ方式であってもよい。
【0021】
ガルバノスキャナ18は、光学系70を経た加工レーザ光Pとガイド光Qとを2次元走査するものである。ガルバノスキャナ18では、ガルバノX軸モータ31とガルバノY軸モータ32とが、それぞれのモータ軸が互いに直交するように取り付けられ、各モータ軸の先端部に取り付けられた走査ミラー18X、18Yが内側で互いに対向している。そして、各モータ31、32の回転制御で、各走査ミラー18X、18Yを回転させることによって、加工レーザ光Pとガイド光Qとを2次元走査する。この2次元走査方向は、X軸方向とY軸方向である。
【0022】
fθレンズ19は、ガルバノスキャナ18によって2次元走査された加工レーザ光Pとガイド光Qとを加工対象物7の加工面8上に集光するものである。従って、加工レーザ光Pとガイド光Qは、各モータ31、32の回転制御によって、加工対象物7の加工面8上でX軸方向とY軸方向に2次元走査される。
【0023】
加工レーザ光Pとガイド光Qとでは、波長が異なる。そのため、光学系70における第1レンズ72と第2レンズ74との間の距離が一定の場合、加工レーザ光Pとガイド光Qが集光する位置(以下、「焦点位置F」という。)は、上下方向(Z軸方向)で異なってしまう。そこで、加工レーザ光Pとガイド光Qの焦点位置Fは、光学系70における第1レンズ72と第2レンズ74との間の距離が調整されることによって、上下方向(Z軸方向)で移動し、加工対象物7の加工面8上に合わせられる。
【0024】
また、加工対象物7の加工面8の位置が上下方向(Z軸方向)で異なる場合も、同様にして、加工レーザ光Pとガイド光Qの焦点位置Fは、光学系70における第1レンズ72と第2レンズ74との間の距離が調整されることによって、上下方向(Z軸方向)で移動し、加工対象物7の加工面8上に合わせられる。
【0025】
次に、レーザ加工装置1を構成する印字情報作成部2とレーザ加工部3の回路構成について
図2に基づいて説明する。先ず、レーザ加工部3の回路構成について説明する。
【0026】
図2に表されるように、レーザ加工部3は、レーザコントローラ6、ガルバノコントローラ35、ガルバノドライバ36、レーザドライバ37、半導体レーザドライバ38、及び光学系ドライバ78等から構成されている。レーザコントローラ6は、レーザ加工部3の全体を制御する。レーザコントローラ6には、ガルバノコントローラ35、レーザドライバ37、半導体レーザドライバ38、及び光学系ドライバ78等が電気的に接続されている。また、レーザコントローラ6には、外部の印字情報作成部2が双方向通信可能に接続されている。また、レーザコントローラ6は、印字情報作成部2から送信された各情報(例えば、印字情報、レーザ加工部3に対する制御パラメータ、ユーザからの各種指示情報等)を受信可能に構成されている。
【0027】
レーザコントローラ6は、CPU41、RAM42、及びROM43等を備えている。CPU41は、レーザ加工部3の全体の制御を行う演算装置及び制御装置である。CPU41、RAM42、及びROM43は、不図示のバス線により相互に接続されて、相互にデータのやり取りが行われる。
【0028】
RAM42は、CPU41により演算された各種の演算結果や印字パターンの(XY座標)データ等を一時的に記憶させておくためのものである。
【0029】
ROM43は、各種のプログラムを記憶させておくものであり、例えば、印字情報作成部2から送信された印字情報に基づいて印字パターンのXY座標データを算出して、加工データ44としてRAM42に記憶するプログラムや、ガイド光Qの軌跡で描く像のXY座標データを算出してRAM42に記憶するプログラム等が記憶されている。尚、各種プログラムには、上述したプログラムに加えて、例えば、各種のディレイ値、印字情報作成部2から入力された印字情報に対応する印字パターンの太さ、深さ及び本数、レーザ発振器21のレーザ出力、加工レーザ光Pのレーザパルス幅、ガルバノスキャナ18による加工レーザ光Pを走査する速度、及びガルバノスキャナ18によるガイド光Qを走査する速度等を示す各種制御パラメータをRAM42に記憶するプログラム等がある。更に、ROM43には、歪補正のためのパラメータや、ガルバノスキャナ18、レーザ加工装置1のステータス情報(エラー情報、加工回数、加工時間等)が記憶されている。
【0030】
CPU41は、ROM43に記憶されている各種のプログラムに基づいて各種の演算及び制御を行う。
【0031】
CPU41は、加工データ44、ガイド光Qの軌跡で描く像のXY座標データ、ガルバノスキャナ18によるガイド光Qを走査する速度、及びガルバノスキャナ18による加工レーザ光Pを走査する速度等を示すガルバノ走査速度情報等を、ガルバノコントローラ35に出力する。また、CPU41は、印字情報作成部2から入力された印字情報に基づいて設定したレーザ発振器21のレーザ出力、及び加工レーザ光Pのレーザパルス幅等を示すレーザ駆動情報を、レーザドライバ37に出力する。
【0032】
CPU41は、可視半導体レーザ28の点灯開始を指示するオン信号又は消灯を指示するオフ信号を半導体レーザドライバ38に出力する。
【0033】
ガルバノコントローラ35は、レーザコントローラ6から入力された各情報(例えば、印字パターンのXY座標データ、ガイド光Qの軌跡で描く像のXY座標データ、ガルバノ走査速度情報等)に基づいて、ガルバノX軸モータ31とガルバノY軸モータ32の駆動角度、回転速度等を算出して、駆動角度及び回転速度を示すモータ駆動情報をガルバノドライバ36に出力する。ガルバノドライバ36は、ガルバノコントローラ35から入力されたモータ駆動情報に基づいて、ガルバノX軸モータ31とガルバノY軸モータ32を駆動制御して、加工レーザ光Pとガイド光Qを2次元走査する。
【0034】
レーザドライバ37は、レーザコントローラ6から入力されたレーザ発振器21のレーザ出力、及び加工レーザ光Pのレーザパルス幅等を示すレーザ駆動情報等に基づいて、レーザ発振器21を駆動させる。半導体レーザドライバ38は、レーザコントローラ6から入力されたオン信号又はオフ信号に基づいて、可視半導体レーザ28を点灯駆動又は、消灯させる。
【0035】
光学系ドライバ78は、レーザコントローラ6から入力された情報に基づいて、光学系モータ80を駆動制御して、第2レンズ74を移動させる。
【0036】
次に、印字情報作成部2の回路構成について説明する。印字情報作成部2は、制御部51、入力操作部55、液晶ディスプレイ(LCD)56、及びCD-ROMドライブ58等を備えている。制御部51には、不図示の入出力インターフェースを介して、入力操作部55、液晶ディスプレイ56、及びCD-ROMドライブ58等が接続されている。
【0037】
入力操作部55は、不図示のマウス及びキーボード等から構成されており、例えば、各種指示情報をユーザが入力する際に使用される。
【0038】
CD-ROMドライブ58は、各種データ、及び各種アプリケーションソフトウェア等をCD-ROM57から読み込むものである。
【0039】
制御部51は、印字情報作成部2の全体を制御するものであって、CPU61、RAM62、ROM63、及びハードディスクドライブ(以下、「HDD」という。)66等を備えている。CPU61は、印字情報作成部2の全体の制御を行う演算装置及び制御装置である。CPU61、RAM62、及びROM63は、不図示のバス線により相互に接続されており、相互にデータのやり取りが行われる。更に、CPU61とHDD66とは、不図示の入出力インターフェースを介して接続されており、相互にデータのやり取りが行われる。
【0040】
RAM62は、CPU61により演算された各種の演算結果等を一時的に記憶させておくためのものである。ROM63は、各種のプログラム等を記憶させておくものである。更に、ROM63には、フォントの種類別に、直線と楕円弧とで構成された各文字のフォントの始点、終点、焦点、曲率等のデータが記憶されている。
【0041】
HDD66には、各種アプリケーションソフトウェアのプログラム、及び各種データファイル等が記憶される。
【0042】
また、入力操作部55においては、ユーザが、ガルバノスキャナ18による加工レーザ光Pを走査する速度(以下、「加工レーザ光Pの走査速度」という。)を、第1速度又は第1速度よりも遅い第2速度に設定することが可能である。更に、その設定内容は、加工レーザ光Pの走査速度の制御パラメータとして、RAM62に記憶される。尚、加工レーザ光Pの走査速度のデフォルトは、第1速度であり、ROM63に記憶されている。本実施形態において、第1速度は、加工レーザ光Pの焦点位置Fを上下方向(Z軸方向)で変更する速さ(移動機構76の動作速度)と比して速い速度であり、それに対して、第2速度は、加工レーザ光Pの焦点位置Fを上下方向(Z軸方向)で変更する速さ(移動機構76の動作速度)と比して十分遅い速度である。
【0043】
また、RAM62には、三次元形状データ64が記憶されている。三次元形状データ64は、加工対象物7の加工面8の三次元形状を示すデータであり、入力操作部55でユーザによって入力され、あるいは、CD-ROMドライブ58でCD-ROM57から読み込まれる。もっとも、三次元形状データ64は、レーザ加工装置1が備える三次元計測機能で計測されたものであってもよいし、印字情報作成部2で実行される3次元CADソフトのアプリケーションソフトウェアによって作成されたCADデータであってもよいし、不図示の入出力インターフェースを介してレーザ加工装置1の外部から入力されたCADデータであってもよい。
【0044】
[2.加工レーザ光の焦点位置等]
レーザ加工装置1においては、上述したように、加工対象物7の加工面8の位置が上下方向(Z軸方向)で異なる場合、加工レーザ光Pの焦点位置Fは、上下方向(Z軸方向)で移動することによって、加工対象物7の加工面8上に合わせられる。但し、加工対象物7の加工面8が後述の条件を満たし、更に、加工レーザ光Pの走査速度が第1速度に設定されている場合には、加工レーザ光Pの焦点位置Fは、加工対象物7の加工面8上に合わせられることなく、第1焦点位置及び第2焦点位置のいずれかに切り換えられ、不連続に移動する。以下、第1焦点位置及び第2焦点位置について、それらに関連する事項も含めて説明する。
【0045】
図3に表されるように、ガルバノスキャナ18によって2次元走査され、fθレンズ19を通過した加工レーザ光Pは、その光軸10上において、Z軸方向の上方側から下方側へ向けて進行し、焦点位置Fで集光する。本実施形態では、Z軸方向において、加工レーザ光Pが進行する向きの側を加工レーザ光Pの下流側といい、加工レーザ光Pが進行する向きとは逆向きの側を加工レーザ光Pの上流側という。
【0046】
焦点位置Fに対しては、その上下に亘って、加工レーザ光Pの焦点深度DFが存在する。本実施形態では、焦点位置Fから加工レーザ光Pの上流側に存在する焦点深度DFの限界位置を上流側限界位置LUと呼び、焦点位置Fから加工レーザ光Pの下流側に存在する焦点深度DFの限界位置を下流側限界位置LDと呼ぶ。尚、加工レーザ光Pの焦点深度DF(の値)は、レーザコントローラ6のROM43に記憶されている。焦点深度DFの値としては、例えば、レイリーレンジを採用することができ、その数値的定義は、ビーム径がその最小径の√2倍以下である光軸10の方向の範囲であり、実用上、この範囲ではビーム径がほぼ変わらず加工精度への影響に配慮しなくてよいとみなせる。但し、求める加工精度の高さや加工対象の材質に応じて、焦点深度DFとしてレイリーレンジ以外を採用してもよい。
【0047】
図4に表されるように、加工対象物7の加工面8は、加工対象物7においてZ軸方向の上方側で展開する凹凸面とする。Z軸方向における加工対象物7の加工面8の各位置のうち、最も上方側(つまり、最も加工レーザ光Pの上流側)にある位置を第1最端位置ME1とし、最も下方側(つまり、最も加工レーザ光Pの下流側)にある位置を第2最端位置ME2とする。
【0048】
符号MEDは、第1最端位置ME1と第2最端位置ME2との差を示している。また、符号103は、加工対象物7の加工面8上において、加工レーザ光Pでマーキング(印字)加工されている位置(以下、「レーザ加工の加工位置103」という。)を示している。本実施形態では、レーザ加工の加工位置103は、加工対象物7の加工面8上をX軸方向の全域に亘って移動する。尚、矢印105で示す向きは、レーザ加工の加工位置103が移動する向きを示している。
【0049】
符号F1は、第1焦点位置を示している。第1焦点位置F1とは、加工レーザ光Pの焦点深度DFの上流側限界位置LUが第1最端位置ME1に一致する状態(以下、「第1状態」という。)を想定した場合の、加工レーザ光Pの焦点位置Fをいう。以下、第1状態における焦点深度DFには、その符号に数字の「1」を添付し(
図4参照)、第1焦点深度DF1と表記する。更に、第1焦点深度DF1の上流側限界位置LU及び下流側限界位置LDには、それらの符号に数字の「1」を添付し(
図4参照)、第1焦点深度DF1の上流側限界位置LU1及び下流側限界位置LD1と表記する。
【0050】
符号F2は、第2焦点位置を示している。第2焦点位置F2とは、加工レーザ光Pの焦点深度DFの下流側限界位置LDが第2最端位置ME2に一致する状態(以下、「第2状態」という。)を想定した場合の、加工レーザ光Pの焦点位置Fをいう。以下、第2状態における焦点深度DFには、その符号に数字の「2」を添付し(
図4参照)、第2焦点深度DF2と表記する。更に、第2焦点深度DF2の上流側限界位置LU及び下流側限界位置LDには、それらの符号に数字の「2」を添付し(
図4参照)、第2焦点深度DF2の上流側限界位置LU2及び下流側限界位置LD2と表記する。
【0051】
[3.制御フロー]
図5のフローチャートで表されたレーザ加工方法200のプログラムは、制御部51のROM63に記憶されており、加工レーザ光Pで加工対象物7の加工面8にマーキング(印字)加工を行う際に、レーザコントローラ6のCPU41により実行される。その際、三次元形状データ64や、加工レーザ光Pの走査速度の設定内容は、印字情報作成部2のCPU61のRAM62から読み出される。
【0052】
但し、レーザ加工方法200のプログラムは、印字情報作成部2のCPU61により実行されてもよい。そのような場合、後述する処理において、制御対象がレーザ加工部3の構成要素である場合、レーザコントローラ6を介した制御が行われる。また、本プログラムが、CD-ROM57に保存されており、CD-ROMドライブ58によって読み込まれる場合も、同様にして、CPU61により実行される。
【0053】
以下、本プログラムを説明する。先ず、ステップ(以下、単に「S」と表記する。)10の算出処理が行われる。この処理では、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDが、上述したようにして、三次元形状データ64に基づいて算出される。
【0054】
判定処理S12では、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDと、加工レーザ光Pの焦点深度DFとが比較される。ここで、第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの1倍未満である場合、後述する固定モードの設定処理S14が行われる。また、第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの2倍よりも長い場合、後述する別モードの設定処理S16が行われる。
【0055】
これに対して、第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの1倍以上2倍以下である場合、第1特定処理S18が行われる。
【0056】
第1特定処理S18では、加工レーザ光Pの第1焦点位置F1が、上述したようにして、三次元形状データ64及び加工レーザ光Pの焦点深度DF等に基づいて特定される。第2特定処理S20では、加工レーザ光Pの第2焦点位置F2が、上述したようにして、三次元形状データ64及び加工レーザ光Pの焦点深度DF等に基づいて特定される。
【0057】
判定処理S22では、加工レーザ光Pの走査速度が第1速度又は第2速度のいずれに設定されているかが判定される。ここで、加工レーザ光Pの走査速度が第2速度である場合、後述する別モードの設定処理S16が行われる。これに対して、加工レーザ光Pの走査速度が第1速度である場合、切換モードの設定処理S24が行われる。
【0058】
図6に表されるように、切換モードの設定処理S24では、先ず、第1総移動距離の算出処理S50が行われる。この処理では、第1総移動距離が、加工データ44及び三次元形状データ64に基づいて算出される。第1総移動距離とは、第1状態を想定した場合の加工レーザ光Pの第1焦点深度DF1において、レーザ加工の加工位置103がZ軸方向で移動する総距離をいう。具体的には、第1焦点深度DF1の上流側限界位置LU1と下流側限界位置LD1との間に展開する加工対象物7の加工面8上において、レーザ加工の加工位置103がXY軸方向に移動するに伴って、レーザ加工の加工位置103がZ軸方向の上方側へ移動する距離と、Z軸方向の下方側へ移動する距離とを合計した値をいう(
図4参照)。
【0059】
引き続いて、第2総移動距離の算出処理S52が行われる。この処理では、第2総移動距離が、加工データ44及び三次元形状データ64に基づいて算出される。第2総移動距離とは、第2状態を想定した場合の加工レーザ光Pの第2焦点深度DF2において、レーザ加工の加工位置103がZ軸方向で移動する総距離をいう。具体的には、第2焦点深度DF2の上流側限界位置LU2と下流側限界位置LD2との間に展開する加工対象物7の加工面8上において、レーザ加工の加工位置103がXY軸方向に移動するに伴って、レーザ加工の加工位置103がZ軸方向の上方側へ移動する距離と、Z軸方向の下方側へ移動する距離とを合計した値をいう(
図4参照)。
【0060】
判定処理S54では、第1総移動距離と第2総移動距離とが比較される。ここで、第1総移動距離が第2総移動距離よりも長い場合、第1タイミングの設定処理S56が行われる。この処理では、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1を超えるタイミングで、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換えられるように、切り換えモードの内容が設定される。
【0061】
具体的には、
図7の矢印105Aに表されるように、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1をその上方側から下方側へ超えるタイミングで、加工レーザ光Pの焦点位置Fが第1焦点位置F1から第2焦点位置F2に切り換えられるように、切り換えモードの内容が設定される。更に、
図8の矢印105Bに表されるように、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1をその下方側から上方側へ超えるタイミングで、加工レーザ光Pの焦点位置Fが第2焦点位置F2から第1焦点位置F1に切り換えられるように、切り換えモードの内容が設定される。
【0062】
これに対して、第2総移動距離が第1総移動距離よりも長い場合、第2タイミングの設定処理S58が行われる。この処理では、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2を超えるタイミングで、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換えられるように、切り換えモードの内容が設定される。
【0063】
具体的には、
図9の矢印105Cに表されるように、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2をその上方側から下方側へ超えるタイミングで、加工レーザ光Pの焦点位置Fが第1焦点位置F1から第2焦点位置F2に切り換えられるように、切り換えモードの内容が設定される。更に、
図10の矢印105Dに表されるように、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2をその下方側から上方側へ超えるタイミングで、加工レーザ光Pの焦点位置Fが第2焦点位置F2から第1焦点位置F1に切り換えられるように、切り換えモードの内容が設定される。
【0064】
また、第1総移動距離と第2総移動距離とが等しい場合、第3タイミングの設定処理S60が行われる。この処理では、切り換えモードの内容が、上記第1タイミングの設定処理S56での設定内容又は上記第2タイミングの設定処理S58での設定内容のいずれかに設定される。
【0065】
上記第1タイミングの設定処理S56、上記第2タイミングの設定処理S58、又は上記第3タイミングの設定処理S60が行われた後は、
図5に戻って、レーザ加工処理S26が行われる。この処理では、加工レーザ光Pが印字パターン(つまり、加工データ44)に基づいてガルバノスキャナ18で2次元走査される。更に、上記第1タイミングの設定処理S56、上記第2タイミングの設定処理S58、又は上記第3タイミングの設定処理S60のいずれかで設定された切り換えモードの内容で、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わるように、光学系70の第2レンズ74が移動させられる。このようにして、加工レーザ光Pで加工対象物7の加工面8にマーキング(印字)加工が行われる。その後、レーザ加工方法200は、終了する。
【0066】
図11では、上記第1タイミングの設定処理S56で設定された切り換えモードの内容で、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる態様が、線107で示されている。また、
図12では、上記第2タイミングの設定処理S58で設定された切り換えモードの内容で、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる態様が、線109で示されている。尚、上記第3タイミングの設定処理S60で設定された切り換えモードの内容で、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる態様は、
図11の線107又は
図12の線109で示される。
【0067】
いずれの切り換えモードの内容であっても、加工レーザ光Pの焦点位置Fが第1焦点位置F1にある場合には、加工対象物7の加工面8上を移動するレーザ加工の加工位置103は、第1焦点位置F1の上下に亘って存在する第1焦点深度DF1の上流側限界位置LU1と下流側限界位置LD1との間にあり、加工レーザ光Pの焦点位置Fが第2焦点位置F2にある場合には、加工対象物7の加工面8上を移動するレーザ加工の加工位置103は、第2焦点位置F2の上下に亘って存在する第2焦点深度DF2の上流側限界位置LU2と下流側限界位置LD2との間にあるため、加工レーザ光Pによるマーキング(印字)加工の品質が確保される。
【0068】
尚、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの1倍未満であるため、固定モードの設定処理S14が行われる場合、固定モードの設定処理S14では、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに固定するように、固定モードの内容が設定される。また、その後に行われるレーザ加工処理S26では、上記固定モードの設定処理S14で設定された固定モードの内容で、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに固定するように、光学系70の第2レンズ74が移動させられる。更に、加工レーザ光Pが印字パターン(つまり、加工データ44)に基づいてガルバノスキャナ18で2次元走査される。このようにして、加工レーザ光Pで加工対象物7の加工面8にマーキング(印字)加工が行われる。その後、レーザ加工方法200は、終了する。
【0069】
また、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの2倍よりも長いため、別モードの設定処理S16が行われる場合、別モードの設定処理S16では、加工レーザ光Pの焦点位置Fが加工対象物7の加工面8の位置と一致するように、別モードの内容が設定される。また、その後に行われるレーザ加工処理S26では、光学系70の第2レンズ74が三次元形状データ64に基づいて移動させられることによって、加工レーザ光Pの焦点位置Fが加工対象物7の加工面8上に合わせられると共に、加工レーザ光Pが印字パターン(つまり、加工データ44)に基づいてガルバノスキャナ18で2次元走査される。これにより、加工レーザ光Pで加工対象物7の加工面8にマーキング(印字)加工が行われる。その後、レーザ加工方法200は、終了する。
【0070】
[4.まとめ]
以上詳細に説明したように、本実施の形態では、切換モードの設定処理S24を経由してレーザ加工処理S26が行われると、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わりながら、加工レーザ光Pによるマーキング(印字)加工が加工対象物7の加工面8に対して行われる。このようにして、本実施の形態のレーザ加工装置1及びレーザ加工方法200は、加工レーザ光Pが走査されるXY軸方向と直角に交わるZ軸方向において、加工レーザ光Pの焦点位置Fが不連続に移動する箇所を2箇所にまで減らすことによって、レーザ加工の品質を確保しつつ、レーザ加工の時間をより一層に短縮する。
【0071】
また、切換モードの設定処理S24では、第1総移動距離と第2総移動距離との長短関係に応じて(判定処理S54)、第1タイミングの設定処理S56、第2タイミングの設定処理S58、又は第3タイミングの設定処理S60のいずれかが行われる。そのため、加工レーザ光Pの第1焦点深度DF1及び第2焦点深度DF2のうち、それらの範囲内で移動するレーザ加工の加工位置103のZ軸方向の総距離がより長い方を優先させてマーキング(印字)加工が行えるように、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる。このようにして、本実施の形態のレーザ加工装置1及びレーザ加工方法200は、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる回数を減らすことによって、レーザ加工の品質を確保しつつ、レーザ加工の時間をより一層に短縮する。
【0072】
また、加工レーザ光Pの走査速度が第2速度である場合(判定処理S22)、別モードの設定処理S16を経由してレーザ加工処理S26が行われる。そのような場合、加工レーザ光Pの走査速度が第1速度よりも遅い第2速度であるため、本実施の形態のレーザ加工装置1及びレーザ加工方法200は、加工レーザ光Pの走査速度に合わせながら、光学系70の第2レンズ74を三次元形状データ64に基づいて移動させることが可能である。つまり、本実施の形態のレーザ加工装置1及びレーザ加工方法200は、加工レーザ光Pの走査速度が比較的高速の第1速度である場合、加工レーザ光Pの焦点位置Fを第1焦点位置F1又は第2焦点位置F2のいずれかに切り換えることによってZ軸方向で移動させる一方、加工レーザ光Pの走査速度が比較的低速の第2速度である場合、加工レーザ光Pをガルバノスキャナ18によってXY軸方向で2次元走査することに合わせて、加工レーザ光Pの焦点位置Fを移動機構76によって加工対象物7の加工面8上に一致させながらZ軸方向で移動させるので、加工レーザ光Pの走査速度に応じて、最適なレーザ加工の品質を確保する。
【0073】
尚、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDが、加工レーザ光Pの焦点深度DFの2倍よりも長い場合も、別モードの設定処理S16を経由してレーザ加工処理S26が行われる。これにより、本実施の形態のレーザ加工装置1及びレーザ加工方法200は、加工対象物7の加工面8における第1最端位置ME1と第2最端位置ME2との差MEDに応じて、最適なレーザ加工の品質を確保する。
【0074】
ちなみに、加工対象物7の加工面8は、「ワーク表面」の一例である。レーザ発振ユニット12は、「レーザ光出射部」の一例である。ガルバノスキャナ18は、「XY軸走査部」の一例である。CPU41又はCPU61は、「制御部」の一例である。入力操作部55は、「設定部」の一例である。入力操作部55又はCD-ROMドライブ58は、「受入部」の一例である。三次元形状データ64は、「ワーク表面の三次元データ」の一例である。光学系70は、「可変焦点光学系」の一例である。加工レーザ光Pは、「レーザ光」の一例である。加工レーザ光Pの焦点位置Fは、「レーザ光の焦点位置」の一例である。第1特定処理S18は、「第1特定工程」の一例である。第2特定処理S20は、「第2特定工程」の一例である。レーザ加工処理S26は、「レーザ加工工程」の一例である。
【0075】
[5.その他]
尚、本開示は、本実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。
例えば、判定処理S54においては、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1をその下方側から上方側に超える回数(以下、「第1回数」という。)と、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2を上方側から下方方側に超える回数(以下、「第2回数」という。)とが比較されてもよい。そのような場合、第1回数が第2回数よりも多い場合は第2タイミングの設定処理S58が行われ、第2回数が第1回数よりも多い場合は第1タイミングの設定処理S56が行われ、前者の回数と後者の回数とが等しい合は第3タイミングの設定処理S60が行われる。このようにすれば、加工レーザ光Pの焦点位置Fが第1焦点位置F1又は第2焦点位置F2のいずれかに切り換わる回数が最小となる。
【0076】
また、 上記実施形態において、第1タイミングは、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1をその上方側から下方側へ超えるタイミング、及び、レーザ加工の加工位置103が第1焦点深度DF1の下流側限界位置LD1をその下方側から上方側へ超えるタイミングとされていたが、これらに限定されるものでない。具体的には、第2焦点深度DF2の上流側限界位置LU2と第1焦点深度DF1の下流側限界位置LD1との間で、下流側限界位置LD1寄りに設定された特定位置を、その上方側から下方側へ超えるタイミング及び下方側から上方側へ超えるタイミングを第1タイミングとして、焦点位置Fが移動してもよい。更に、レーザ加工の加工位置103が上方側から下方側へ向かうときの特定位置と、レーザ加工の加工位置103が下方側から上方側へ向かうときの特定位置は、異なる位置であってもよい。
【0077】
同様にして、上記実施形態において、第2タイミングは、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2をその上方側から下方側へ超えるタイミング、及び、レーザ加工の加工位置103が第2焦点深度DF2の上流側限界位置LU2をその下方側から上方側へ超えるタイミングとされていたが、これらに限定されるものでない。具体的には、第2焦点深度DF2の上流側限界位置LU2と第1焦点深度DF1の下流側限界位置LD1の間で、上流側限界位置LU2寄りに設定された特定位置を、その上方側から下方側へ超えるタイミング及び下方側から上方側へ超えるタイミングを第2タイミングとして、焦点位置Fが移動してもよい。更に、レーザ加工の加工位置103が上方側から下方側へ向かうときの特定位置と、レーザ加工の加工位置103が下方側から上方側へ向かうときの特定位置は、異なる位置であってもよい。
【符号の説明】
【0078】
1:レーザ加工装置、8:加工対象物の加工面、12:レーザ発振ユニット、18:ガルバノスキャナ、41:CPU、44:加工データ、55:入力操作部、58:CD-ROMドライブ、61:CPU、64:三次元形状データ、70:光学系、103:レーザ加工の加工位置、200:レーザ加工方法、DF:レーザ光の焦点深度、DF1:第1焦点深度、DF2:第2焦点深度、F:加工レーザ光の焦点位置、F1:第1焦点位置、F2:第2焦点位置、LU:焦点深度の上流側限界位置、LU1:第1焦点深度の上流側限界位置、LU2:第2焦点深度の上流側限界位置、LD:焦点深度の下流側限界位置、LD1:第1焦点深度の下流側限界位置、LD2:第2焦点深度の下流側限界位置、ME1:第1最端位置、ME2:第2最端位置、MED:第1最端位置と第2最端位置との差、P:加工レーザ光、S18:第1特定処理、S20:第2特定処理、S26:レーザ加工処理。