IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本電気硝子株式会社の特許一覧

<>
  • 特開-光学部材及びその製造方法 図1
  • 特開-光学部材及びその製造方法 図2
  • 特開-光学部材及びその製造方法 図3
  • 特開-光学部材及びその製造方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022034713
(43)【公開日】2022-03-04
(54)【発明の名称】光学部材及びその製造方法
(51)【国際特許分類】
   G02B 1/02 20060101AFI20220225BHJP
   C03C 3/32 20060101ALI20220225BHJP
   C03B 32/02 20060101ALI20220225BHJP
   C03C 10/02 20060101ALI20220225BHJP
   G02B 3/00 20060101ALI20220225BHJP
【FI】
G02B1/02
C03C3/32
C03B32/02
C03C10/02
G02B3/00 Z
【審査請求】未請求
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2020138547
(22)【出願日】2020-08-19
(71)【出願人】
【識別番号】000232243
【氏名又は名称】日本電気硝子株式会社
(72)【発明者】
【氏名】富田 充
(72)【発明者】
【氏名】吉田 光佑
【テーマコード(参考)】
4G015
4G062
【Fターム(参考)】
4G015EA02
4G062AA04
4G062BB18
4G062CC09
4G062CC10
4G062DA01
4G062DA10
4G062DB01
4G062DC01
4G062DD01
4G062DE01
4G062DF01
4G062EA01
4G062EA10
4G062EB01
4G062EC01
4G062ED01
4G062EE01
4G062EF01
4G062EG01
4G062FA01
4G062FA10
4G062FB01
4G062FC01
4G062FD01
4G062FD02
4G062FD03
4G062FD04
4G062FD05
4G062FE01
4G062FF01
4G062FG01
4G062FH01
4G062FJ01
4G062FK01
4G062FL01
4G062GA01
4G062GB01
4G062GB02
4G062GB03
4G062GB04
4G062GB05
4G062GB06
4G062GB07
4G062GC01
4G062GC02
4G062GC03
4G062GC04
4G062GC05
4G062GC06
4G062GC07
4G062GD04
4G062GD05
4G062GD06
4G062GD07
4G062GD08
4G062GE01
4G062HH01
4G062HH03
4G062HH05
4G062HH06
4G062HH07
4G062HH09
4G062HH11
4G062HH13
4G062HH15
4G062HH17
4G062HH20
4G062JJ01
4G062JJ03
4G062JJ05
4G062JJ07
4G062JJ10
4G062KK01
4G062KK03
4G062KK05
4G062KK07
4G062KK10
4G062MM02
4G062NN33
4G062QQ20
(57)【要約】
【課題】簡便な方法で製造可能であり、かつ安定した光学特性を有する光学部材及びその製造方法を提供する。
【解決手段】カルコゲナイドガラスからなる光学部材であって、光学部材は、ガラス部11と、ガラス部11上に配される結晶部12とを備える、光学部材1。
【選択図】図1
【特許請求の範囲】
【請求項1】
カルコゲナイドガラスからなる光学部材であって、
前記光学部材は、ガラス部と、前記ガラス部上に配される結晶部とを備える、光学部材。
【請求項2】
前記結晶部が、前記ガラス部の表面全体に配される、請求項1に記載の光学部材。
【請求項3】
前記結晶部が、前記ガラス部のガラス構成成分の少なくとも一部を結晶構成成分として含むことを特徴とする、請求項1又は2に記載の光学部材。
【請求項4】
前記カルコゲナイドガラスが、モル%で、S+Se+Te 20%~95%を含有する、請求項1~3のいずれか一項に記載の光学部材。
【請求項5】
前記結晶部が、カルコゲン元素を含有する結晶を含む、請求項1~4のいずれか一項に記載の光学部材。
【請求項6】
前記結晶部の表面に機能膜を有する、請求項1~5のいずれか一項に記載の光学部材。
【請求項7】
前記機能膜が、反射防止膜である、請求項5に記載の光学部材。
【請求項8】
レンズ形状である、請求項1~7のいずれか一項に記載の光学部材。
【請求項9】
請求項1~8のいずれか一項に記載の光学部材の製造方法であって、
カルコゲナイドガラスからなるガラス母材の表面に加熱処理を施すことにより、前記ガラス母材上に結晶部を形成する工程を備える、光学部材の製造方法。
【請求項10】
前記加熱処理が、過熱水蒸気または熱風により行われる、請求項9に記載の光学部材の製造方法。
【請求項11】
前記加熱処理の温度が、前記カルコゲナイドガラスの軟化点+200℃以下である、請求項9又は10に記載の光学部材の製造方法。
【請求項12】
請求項1~8のいずれか一項に記載の光学部材の製造方法であって、
カルコゲナイドガラスからなるガラス母材の表面を結晶化させることによって前記ガラス母材上に結晶部を形成する工程を備える、光学部材の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光学部材及びその製造方法に関する。
【背景技術】
【0002】
車載ナイトビジョンやセキュリティシステム等で用いる赤外線カメラの開発が進んでいる。赤外線カメラは、赤外線を透過するフィルターやレンズ等の光学部材を備えている。
【0003】
上記光学部材には、ゲルマニウム(Ge)やシリコン(Si)等の結晶材料がしばしば用いられる。しかし、Geは高価な材料であり、光学部材の低コスト化に不利である。また、Siは赤外線透過率が低く、赤外線カメラの性能向上に不利である。
【0004】
そこで、赤外線透過率に優れ、かつ比較的安価な材料として、カルコゲナイドガラスが提案されている(特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2017-178674号公報
【特許文献2】特開2017-128491号公報
【特許文献3】国際公開第2016/052079号
【発明の概要】
【発明が解決しようとする課題】
【0006】
カルコゲナイドガラスは、結晶材料に比べて機械的強度が低い。そのため、上記材料を用いた光学部材は、耐衝撃性が低く、傷が付きやすいという問題がある。また、それにより所望の光学特性が得づらくなる恐れがある。
【0007】
上記問題に対し、例えば、表面に炭素系の保護膜を形成した光学部材が開示されている(特許文献2、3)。しかし、上記で開示された方法は、保護膜の形成が難しい。また、保護膜が剥がれやすく、光学部材の保護が不十分になる恐れもある。
【0008】
上記課題に鑑み、本発明は簡便な方法で製造可能であり、かつ安定した光学特性を有する光学部材及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
本発明の光学部材は、カルコゲナイドガラスからなる光学部材であって、前記光学部材は、ガラス部と、前記ガラス部上に配される結晶部とを備えることを特徴とする。
【0010】
本発明の光学部材において、前記結晶部が、前記ガラス部の表面全体に配されることが好ましい。
【0011】
本発明の光学部材において、前記結晶部が、前記ガラス部のガラス構成成分の少なくとも一部を結晶構成成分として含むことが好ましい。
【0012】
本発明の光学部材において、前記カルコゲナイドガラスが、モル%で、S+Se+Te 20%~95%を含有することが好ましい。
【0013】
本発明の光学部材において、前記結晶部が、カルコゲン元素を含有する結晶を含むことが好ましい。
【0014】
本発明の光学部材は、前記結晶部の表面に機能膜を有することが好ましい。
【0015】
本発明の光学部材において、前記機能膜が、反射防止膜であることが好ましい。
【0016】
本発明の光学部材は、レンズ形状であることが好ましい。
【0017】
本発明の光学部材の製造方法は、上述した光学部材を製造するための方法であって、カルコゲナイドガラスからなるガラス母材の表面に加熱処理を施すことにより、前記ガラス母材上に結晶部を形成する工程を備えることを特徴とする。
【0018】
本発明の光学部材の製造方法において、前記加熱処理が、過熱水蒸気または熱風により行われることが好ましい。
【0019】
本発明の光学部材の製造方法において、前記加熱処理の温度が、前記カルコゲナイドガラスの軟化点+200℃以下であることが好ましい。
【0020】
本発明の光学部材の製造方法は、上述した光学部材を製造するための方法であって、カルコゲナイドガラスからなるガラス母材の表面を結晶化させることによって前記ガラス母材上に結晶部を形成する工程を備えることを特徴とする。
【発明の効果】
【0021】
本発明によれば、簡便な方法で製造可能であり、かつ安定した光学特性を有する光学部材及びその製造方法を提供することができる。
【図面の簡単な説明】
【0022】
図1】本発明の光学部材の構造の一例を示す模式的断面図である。
図2】本発明の光学部材の変形例の一例を示す模式的断面図である。
図3】ガラス部と結晶部の一例を示す写真である。
図4】結晶部をXRDにて測定した例を示す画像である。
【発明を実施するための形態】
【0023】
以下、好ましい実施形態について説明する。ただし、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。
【0024】
(光学部材1)
図1は、本発明の光学部材の構造の一例を示す模式的断面図である。光学部材1は、ガラス部11と、ガラス部11上に配される結晶部12とを備える。
【0025】
このように、本発明では、ガラス部11上に結晶部12を備える。結晶部12はガラス部11に比べて硬度が高く、傷が付きにくい。そのため、結晶部12を備えることで、光学部材1の劣化を抑制することができ、所望の光学特性を維持しやすくなる。
【0026】
光学部材1の形状、大きさは特に限定されない。例えば、レンズ形状、板状、円盤状とすることができる。光学部材1の大きさは、例えば、長径10mm~300mmとすることができる。光学部材1の厚みは、例えば、5mm以下、3mm以下、2mm以下としてもよい。下限値は特に限定されないが、例えば、0.1mm以上としてもよい。
【0027】
光学部材1は、カルコゲナイドガラスからなる。本発明において、カルコゲナイドガラスは、カルコゲン元素(S、Se、Te)から選択される少なくとも一種を必須成分として含有する。例えば、モル%で、S+Se+Te 20%~95%、30%~90%、40%~85%、特に50%~80%を含有することが好ましい。なお、本明細書において、「○+○+・・・」は該当する各成分の含有量の合量を意味する。
【0028】
カルコゲン元素のうち、Teを含有することにより、より長波長の赤外線(例えば、波長20μm以上の赤外線)を透過しやすくなる。また、結晶部12を形成しやすくなる。Teの含有量はモル%で、20%以上、40%以上、50%以上、特に60%以上であることが好ましい。一方、Teの含有量が多すぎると、かえって赤外線が透過しづらくなる。そのため、Teの含有量はモル%で、95%以下、90%以下、85%以下、特に80%以下であることが好ましい。
【0029】
上記成分以外にも、例えば、以下に示す成分を含有してもよい。
【0030】
Geは赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱的安定性を高める成分である。Geの含有量は、モル%で、0%~40%、1%~35%、5%~30%、7%~25%、特に10%~20%であることが好ましい。Geの含有量が多すぎると、原料コストが高くなりやすい。
【0031】
Gaは赤外線透過率を低下させることなく、ガラス化範囲を広げ、ガラスの熱的安定性を高める成分である。Gaの含有量は、モル%で、0%~30%、1%~30%、3%~25%、特に4%~20%、であることが好ましい。Gaの含有量が多すぎると、原料コストが高くなりやすい。
【0032】
カルコゲナイドガラスの熱膨張係数は、例えば、400×10-7/℃以下、250×10-7/℃以下、220×10-7/℃以下、200×10-7/℃以下、特に180×10-7/℃以下としてもよい。熱膨張係数の下限は、例えば、50×10-7/℃以上としてもよい。なお、特に記載がない限り、本発明の「熱膨張係数」は、30~150℃の温度範囲において測定した熱膨張係数の値を意味する。
【0033】
結晶部12は、ガラス部11の表面全体に配されることが好ましい。このようにすれば、光学部材1が一層傷付きにくくなるため、その劣化を一層抑制しやすくなる。なお、結晶部12がガラス部11の表面の一部に形成されていてもよい。
【0034】
結晶部12は、ガラス部11のガラス構成成分の少なくとも一部を結晶構成成分として含むことが好ましい。さらにはガラス部11の一部が結晶化してなることにより形成されていることが好ましい。これにより、ガラス部11上に結晶部12を容易に配することができる。また、上記構成の結晶部12は、ガラス部11との密着性が高く剥がれ落ちにくいため、所望の光学特性を一層維持しやすくなる。なお、上記構成において、結晶部12は、ガラス部11の組成に応じた結晶が析出することにより形成される。例えば、結晶部12は、カルコゲン元素を含有する結晶を含んでいてもよい。例えば、光学部材1にTeを含有するカルコゲナイドガラスを用いる場合、結晶部12はTe元素を含有する結晶を含んでいてもよい。
【0035】
また結晶部12は、その他の方法、例えばガラス部11上に、別途用意した板状の結晶体を積層することにより形成してもよい。
【0036】
結晶部12の厚みは、例えば、1mm以下、0.5mm以下、0.2mm以下、0.15mm以下、特に0.1mm以下であることが好ましい。結晶部12の厚みが大きすぎると、赤外線が散乱されすぎて、光学部材1の赤外線透過率が低下しやすくなる。下限値は、上述の効果を得るために、例えば0.001mm以上、0.01mm以上とすることが好ましい。
【0037】
結晶部12は、全体が均一な厚みを有していてもよく、特定箇所の厚みを大きくしてもよい。図2は、本発明の光学部材の変形例の一例を示す模式的断面図である。図2に示す光学部材1は、主面と、側面を有する。図2において、側面の結晶部12aの厚みは、主面の結晶部12bの厚みより大きい。これにより、側面の破損を抑制することができ、光学部材1の劣化を抑制しやすくなる。
【0038】
光学部材1は表面に機能膜13を有することが好ましい。これにより、光学部材1の耐候性を向上させやすくなる。機能膜13は、結晶部12の表面に配されることが好ましく、特に結晶部12の表面全体に配されていることが好ましい。なお、機能膜13は、結晶部12の表面の一部に配されていてもよい。このように結晶部12と機能膜13の両者を配することにより、光学部材1の劣化をより一層抑制することができ、所望の光学特性をより一層維持しやすくなる。
【0039】
ところで、機能膜を含む薄膜は、その製造時にピンホールが生じやすい。ピンホールは傷と同様に、光学部材1の劣化が進行する原因となりうる。一般に、ピンホールは成膜装置内の不純物等が原因で発生することが多い。そのため、ピンホールの発生を抑制しようとすると、製造装置のより高度な維持管理が必要になり、製造が難しくなりやすく、かつ製造コストも高くなりやすい。一方、本発明の光学部材1は、結晶部12を備えているため、機能膜13が形成されていない領域があったとしても、光学部材1の劣化を抑制することができ、所望の光学特性を維持しやすい。また、結晶部12は後述する簡便な方法により形成することができるため、光学部材1の製造コストを低減しやすい。
【0040】
機能膜13は、反射防止膜であることが好ましい。反射防止膜は、低屈折率層と高屈折率層が交互に合計2層以上、2層~34層、特に4層~12層積層されていることが好ましい。積層数が少なすぎると、所望の光学特性が得づらくなる。積層数が多すぎると、コスト面で不利になりやすい。なお、低屈折率層及び高屈折率層の組み合わせに制限はなく、高屈折率層の屈折率が低屈折率層の屈折率より相対的に大きければよい。
【0041】
低屈折率層及び高屈折率層の1層あたりの厚みは、0.01~10μm、0.02~5μm、特に0.03~2μmが好ましい。1層あたりの厚みが小さすぎると、所望の光学特性が得づらくなる。一方、厚みが大きすぎると、機能膜13と光学部材1の界面にかかる応力が大きくなり、機能膜13の密着性や、光学部材1の機械的強度が低下しやすくなる。
【0042】
低屈折率層及び高屈折率層としては、金属酸化物(Y、Al、SiO、SiO、MgO、TiO、TiO、Ti、CeO、Bi、HfO)、水素化炭素、ダイヤモンドライクカーボン(DLC)、Ge、Si、ZnS、ZnSe、As、AsSe、PbF、テルル化物、フッ化物(YF)等を用いることができる。
【0043】
(光学部材1の製造方法)
本発明の光学部材1の製造方法は、カルコゲナイドガラスからなるガラス母材の表面に加熱処理を施すことにより、ガラス母材上に結晶部12を形成する工程を備える。言い換えると、加熱処理を施すことにより、ガラス母材の表面部分を結晶化させて、ガラス母材上に結晶を析出させて結晶部を形成する。これにより、ガラス部11と結晶部12とが一体的に形成された光学部材1を得ることができる。
【0044】
加熱処理は、過熱水蒸気または熱風を用いて行うことが好ましい。このようにすれば、結晶部12の厚みを制御しやすくなる。また、結晶部12の形成箇所を精密に制御しやすくなる。
【0045】
加熱処理の温度は、使用するカルコゲナイドガラスの軟化点+200℃以下、180℃以下、160℃以下であることが好ましく、軟化点+40℃以上、+50℃以上、+60℃以上であることが好ましい。処理温度が高すぎると、加熱処理中に光学部材1が変形、破損する恐れがある。一方、処理温度が低すぎると、結晶部12が形成されにくくなる。
【0046】
上記方法にて得られた結晶部12の一例を以下に示す。図3は、ガラス部と結晶部の一例を示す写真である。図4は、結晶部をXRDにて測定した例を示す画像である。図3図4では、カルコゲナイドガラスとしてGe-Ga-Te系カルコゲナイドガラスを用いている。このとき、結晶部12はTe結晶とGa0.5Ge1.9Te7.6結晶が析出している。
【0047】
結晶部12を形成する工程の後に、光学部材1の表面を研磨する工程を含んでもよい。これにより、光学部材1(結晶部12)の表面の平滑性を確保しやすくなる。
【0048】
なお、光学部材1をプレス成型により作製する場合は、ガラス母材を低温でプレスした後、そのままプレス型の温度を上記加熱温度とすることにより、プレス成型と結晶部12の形成を同時に行ってもよい。このとき、プレス温度は、使用するカルコゲナイドガラスの軟化点+40℃未満、+30℃以下、+20℃以下であることが好ましく、軟化点-40℃以上、-30℃以上、-20℃以上であることが好ましい。ただし、結晶部12の厚みを精密に制御する観点では、プレス成型により光学部材1と同等の形状を有するガラス母材を作製した後、ガラス母材に加熱処理を施すことにより、ガラス母材上に結晶部12を形成することが好ましい。
【産業上の利用可能性】
【0049】
本発明の光学部材1は、赤外線センサー、赤外線カメラ等の赤外線デバイスに好適に用いることができる。
【符号の説明】
【0050】
1 光学部材
11 ガラス部
12、12a、12b 結晶部
13 機能膜
図1
図2
図3
図4