IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 住友ゴム工業株式会社の特許一覧

特開2022-82046タイヤ、タイヤ用モールド、及びタイヤの製造方法
<>
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図1
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図2
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図3
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図4
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図5
  • 特開-タイヤ、タイヤ用モールド、及びタイヤの製造方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022082046
(43)【公開日】2022-06-01
(54)【発明の名称】タイヤ、タイヤ用モールド、及びタイヤの製造方法
(51)【国際特許分類】
   B60C 15/06 20060101AFI20220525BHJP
   B60C 15/00 20060101ALI20220525BHJP
   B29C 33/02 20060101ALI20220525BHJP
【FI】
B60C15/06 B
B60C15/00 B
B29C33/02
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2020193365
(22)【出願日】2020-11-20
(71)【出願人】
【識別番号】000183233
【氏名又は名称】住友ゴム工業株式会社
(74)【代理人】
【識別番号】110000280
【氏名又は名称】特許業務法人サンクレスト国際特許事務所
(72)【発明者】
【氏名】永瀬 将弘
【テーマコード(参考)】
3D131
4F202
【Fターム(参考)】
3D131AA03
3D131AA04
3D131BA05
3D131BB01
3D131BC02
3D131BC12
3D131BC13
3D131DA09
3D131DA30
3D131EA10U
3D131GA19
3D131HA36
3D131HA38
4F202AA45
4F202AH20
4F202AR07
4F202AR12
4F202CA21
4F202CB01
4F202CU02
(57)【要約】
【課題】必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる、タイヤ2の提供。
【解決手段】このタイヤ2は、トレッド4と、一対のサイドウォール6と、一対のビード10と、カーカス12とを備える。ビード10は、コア38と、エイペックス40とを備える。正規状態にセットしたタイヤ2において、ビードベースラインからエイペックス40の外端PAまでの径方向距離HAの、タイヤ断面高さHSに対する比率(HA/HS)は20%以上30%以下であり、エイペックス40の、コア38との接触面の、軸方向幅の中心PMと、エイペックス40の外端PAとを結ぶ線分がビードベースラインに対してなす角度θtは、45°以上55°以下である。
【選択図】図2
【特許請求の範囲】
【請求項1】
W以上の速度記号を有し、
路面と接地するトレッドと、
前記トレッドの端に連なり、径方向において前記トレッドの内側に位置する一対のサイドウォールと、
径方向において、前記サイドウォールの内側に位置する一対のビードと、
前記トレッドと、前記一対のサイドウォールとの内側において、一方のビードと他方のビードとの間を架け渡すカーカスと
を備え、
前記ビードが、コアと、径方向において前記コアの外側に位置するエイペックスとを備え、
正規リムに組み、内圧を正規内圧に調整し、荷重をかけない、正規状態において、
ビードベースラインから前記エイペックスの外端までの径方向距離の、タイヤ断面高さに対する比率が20%以上30%以下であり、
前記エイペックスの、前記コアとの接触面の、軸方向幅の中心と、前記エイペックスの外端とを結ぶ線分が前記ビードベースラインに対してなす角度が、45°以上55°以下である、
タイヤ。
【請求項2】
前記カーカスが、第一カーカスプライ及び第二カーカスプライを含み、
前記第一カーカスプライが、一方のコアと他方のコアとの間を架け渡す第一プライ本体と、前記第一プライ本体に連なり、前記コアの周りで軸方向内側から外側に向かって折り返される、一対の第一折り返し部とを備え、
前記第一折り返し部の端が、径方向において、タイヤ最大幅位置よりも外側に位置し、
前記第二カーカスプライが、一方のコアと他方のコアとの間を架け渡す第二プライ本体と、前記第二プライ本体に連なり、前記コアの周りで軸方向内側から外側に向かって折り返される、一対の第二折り返し部とを備え、
前記第二折り返し部の端が、径方向において、前記エイペックスの、前記コアとの接触面と、前記エイペックスの外端との間に位置する、
請求項1に記載のタイヤ。
【請求項3】
タイヤ最大幅位置における前記サイドウォールの厚さが、4.0mm以下である、
請求項1又は2に記載のタイヤ。
【請求項4】
前記正規状態にセットしたタイヤに、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量をB100、接地面積をA100とし、前記ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの縦撓み量をB73、接地面積をA73としたとき、前記縦撓み量B100及び前記接地面積A100、並びに前記縦撓み量B73及び前記接地面積A73が下記式(1)を満たす、
請求項1から3のいずれか一項に記載のタイヤ。
1.03≦(B100/B73)/(A100/A73)≦1.06 式(1)
【請求項5】
請求項1から4のいずれか一項に記載のタイヤを成形するためのモールドであって、
前記モールドが、前記タイヤのための生タイヤの外面に、前記タイヤの外面を形づけるキャビティ面を備え、
前記キャビティ面が、前記モールドのクリップ幅を規定する基準面を含み、
前記キャビティ面の輪郭において、前記基準面が径方向に延びる直線で表され、その最大幅位置が、前記最大幅位置と前記基準面との間を繋ぎ、円弧からなる、3つの輪郭線で特定され、
前記3つの輪郭線が、前記最大幅位置に連なる外側輪郭線、前記基準面に連なる内側輪郭線、及び、前記外側輪郭線と前記内側輪郭線との間に位置する中間輪郭線であり、
前記外側輪郭線を表す円弧の中心が、前記キャビティ面の内側において、前記最大幅位置を通り軸方向に延びる直線上に位置し、
前記内側輪郭線を表す円弧の中心が、前記キャビティ面の外側において、前記基準面の外端を通り軸方向に延びる直線上に位置し、
前記中間輪郭線を表す円弧の中心が、前記キャビティ面の内側に位置し、
前記中間輪郭線が、前記外側輪郭線及び前記内側輪郭線のそれぞれと接し、
前記外側輪郭線を表す円弧が、前記基準面の外端を通り、軸方向に対して傾斜する斜線と接し、
前記斜線が軸方向に対してなす角度が50°以上60°以下である、
タイヤ用モールド。
【請求項6】
前記中間輪郭線を表す円弧の半径の、前記外側輪郭線を表す円弧の半径に対する比が、0.48以上0.75以下である、
請求項5に記載のタイヤ用モールド。
【請求項7】
請求項1から4のいずれか一項に記載のタイヤを製造するための方法であって、
前記タイヤのための生タイヤをモールド内で加圧及び加熱する工程
を含み、
前記モールドが、前記生タイヤの外面に前記タイヤの外面を形づけるキャビティ面を備え、
前記キャビティ面が、前記モールドのクリップ幅を規定する基準面を含み、
前記キャビティ面の輪郭において、前記基準面が径方向に延びる直線で表され、その最大幅位置が、前記最大幅位置と前記基準面との間を繋ぎ、円弧からなる、3つの輪郭線で特定され、
前記3つの輪郭線が、前記最大幅位置に連なる外側輪郭線、前記基準面に連なる内側輪郭線、及び、前記外側輪郭線と前記内側輪郭線との間に位置する中間輪郭線であり、
前記外側輪郭線を表す円弧の中心が、前記キャビティ面の内側において、前記最大幅位置を通り軸方向に延びる直線上に位置し、
前記内側輪郭線を表す円弧の中心が、前記キャビティ面の外側において、前記基準面の外端を通り軸方向に延びる直線上に位置し、
前記中間輪郭線を表す円弧の中心が、前記キャビティ面の内側に位置し、
前記中間輪郭線が、前記外側輪郭線及び前記内側輪郭線のそれぞれと接し、
前記外側輪郭線を表す円弧が、前記基準面の外端を通り、軸方向に対して傾斜する斜線と接し、
前記斜線が軸方向に対してなす角度が50°以上60°以下である、
タイヤの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、タイヤ、タイヤ用モールド、及びタイヤの製造方法に関する。
【背景技術】
【0002】
環境への配慮から、タイヤにおいては転がり抵抗の低減が求められている(例えば、下記の特許文献1)。
【0003】
転がり抵抗の低減を図るには、例えば、トレッドのキャップ層に低発熱性のゴムを適用することが検討される。低発熱性のゴムをキャップ層に適用すると、グリップ力が低下しタイヤの制動性能が低下する恐れがある。そこで、キャップ層については30℃での損失正接に着目した組成の改良と、タイヤの構造簡素化とによって、制動性能の確保と、転がり抵抗の低減とが図られている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2018-2008号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
転がり抵抗の低減に対する要求レベルが高まり、構造簡素化だけでは要求に応えることができない状況にある。
【0006】
本発明は、このような事情に鑑みてなされたものであり、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる、タイヤ、そしてこのタイヤを得るためのタイヤ用モールド、及びタイヤの製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、タイヤの撓みに着目した検討を進めた結果、構造を見直し、撓みをコントロールすることで、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができることを見出し、本発明を完成するに至っている。
【0008】
本発明の一態様に係るタイヤは、W以上の速度記号を有する。このタイヤは、路面と接地するトレッドと、前記トレッドの端に連なり、径方向において前記トレッドの内側に位置する一対のサイドウォールと、径方向において、前記サイドウォールの内側に位置する一対のビードと、前記トレッドと、前記一対のサイドウォールとの内側において、一方のビードと他方のビードとの間を架け渡すカーカスとを備える。前記ビードは、コアと、径方向において前記コアの外側に位置するエイペックスとを備える。タイヤを正規リムに組み、タイヤの内圧を正規内圧に調整し、タイヤに荷重をかけない、正規状態において、ビードベースラインから前記エイペックスの外端までの径方向距離の、タイヤ断面高さに対する比率は20%以上30%以下であり、前記エイペックスの、前記コアとの接触面の、軸方向幅の中心と、前記エイペックスの外端とを結ぶ線分が前記ビードベースラインに対してなす角度は、45°以上55°以下である。
【0009】
好ましくは、このタイヤでは、前記カーカスは、第一カーカスプライ及び第二カーカスプライを含む。前記第一カーカスプライは、一方のコアと他方のコアとの間を架け渡す第一プライ本体と、前記第一プライ本体に連なり、前記コアの周りで軸方向内側から外側に向かって折り返される、一対の第一折り返し部とを備える。前記第一折り返し部の端は、径方向において、タイヤ最大幅位置よりも外側に位置する。前記第二カーカスプライは、一方のコアと他方のコアとの間を架け渡す第二プライ本体と、前記第二プライ本体に連なり、前記コアの周りで軸方向内側から外側に向かって折り返される、一対の第二折り返し部とを備える。前記第二折り返し部の端は、径方向において、前記エイペックスの、前記コアとの接触面と、前記エイペックスの外端との間に位置する。
【0010】
好ましくは、このタイヤでは、タイヤ最大幅位置における前記サイドウォールの厚さは、4.0mm以下である。
【0011】
好ましくは、このタイヤでは、前記正規状態にセットしたタイヤに、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量をB100、接地面積をA100とし、前記ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの縦撓み量をB73、接地面積をA73としたとき、前記縦撓み量B100及び前記接地面積A100、並びに前記縦撓み量B73及び前記接地面積A73が下記式(1)を満たす。
1.03≦(B100/B73)/(A100/A73)≦1.06 式(1)
【0012】
本発明の一態様に係るタイヤ用モールドは、前述したタイヤを成形するためのモールドである。このモールドは、前記タイヤのための生タイヤの外面に、前記タイヤの外面を形づけるキャビティ面を備える。前記キャビティ面は、前記モールドのクリップ幅を規定する基準面を含む。前記キャビティ面の輪郭において、前記基準面が径方向に延びる直線で表され、その最大幅位置が、前記最大幅位置と前記基準面との間を繋ぎ、円弧からなる、3つの輪郭線で特定される。前記3つの輪郭線は、前記最大幅位置に連なる外側輪郭線、前記基準面に連なる内側輪郭線、及び、前記外側輪郭線と前記内側輪郭線との間に位置する中間輪郭線である。前記外側輪郭線を表す円弧の中心は、前記キャビティ面の内側において、前記最大幅位置を通り軸方向に延びる直線上に位置する。前記内側輪郭線を表す円弧の中心は、前記キャビティ面の外側において、前記基準面の外端を通り軸方向に延びる直線上に位置する。前記中間輪郭線を表す円弧の中心は、前記キャビティ面の内側に位置する。前記中間輪郭線は、前記外側輪郭線及び前記内側輪郭線のそれぞれと接する。前記外側輪郭線を表す円弧は、前記基準面の外端を通り、軸方向に対して傾斜する斜線と接し、前記斜線が軸方向に対してなす角度は50°以上60°以下である。
【0013】
好ましくは、このタイヤ用モールドでは、前記中間輪郭線を表す円弧の半径の、前記外側輪郭線を表す円弧の半径に対する比は、0.48以上0.75以下である。
【0014】
本発明の一態様に係るタイヤの製造方法は、前述したタイヤを製造するための方法である。このタイヤの製造方法は、前記タイヤのための生タイヤをモールド内で加圧及び加熱する工程を含む。前記モールドは、前記生タイヤの外面に前記タイヤの外面を形づけるキャビティ面を備える。前記キャビティ面は、前記モールドのクリップ幅を規定する基準面を含む。前記キャビティ面の輪郭において、前記基準面が径方向に延びる直線で表され、その最大幅位置が、前記最大幅位置と前記基準面との間を繋ぎ、円弧からなる、3つの輪郭線で特定される。前記3つの輪郭線は、前記最大幅位置に連なる外側輪郭線、前記基準面に連なる内側輪郭線、及び、前記外側輪郭線と前記内側輪郭線との間に位置する中間輪郭線である。前記外側輪郭線を表す円弧の中心は、前記キャビティ面の内側において、前記最大幅位置を通り軸方向に延びる直線上に位置する。前記内側輪郭線を表す円弧の中心は、前記キャビティ面の外側において、前記基準面の外端を通り軸方向に延びる直線上に位置する。前記中間輪郭線を表す円弧の中心は、前記キャビティ面の内側に位置する。前記中間輪郭線は、前記外側輪郭線及び前記内側輪郭線のそれぞれと接する。前記外側輪郭線を表す円弧は、前記基準面の外端を通り、軸方向に対して傾斜する斜線と接し、前記斜線が軸方向に対してなす角度は50°以上60°以下である。
【発明の効果】
【0015】
本発明によれば、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる、タイヤが得られる。
【図面の簡単な説明】
【0016】
図1図1は、本発明の一実施形態に係るタイヤの一部を示す断面図である。
図2図2は、図1に示されたタイヤの一部を示す断面図である。
図3図3は、タイヤの縦撓み量を説明する概略図である。
図4図4は、タイヤの接地面形状の一例を示す模式図である。
図5図5は、本発明の一実施形態に係るタイヤ用モールドの一部を示す断面図である。
図6図6は、図5に示されたモールドの一部を示す断面図である。
【発明を実施するための形態】
【0017】
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて、本発明が詳細に説明される。
【0018】
本開示においては、タイヤを正規リムに組み、タイヤの内圧を正規内圧に調整し、このタイヤに荷重をかけない状態は、正規状態と称される。本発明では、特に言及がない限り、タイヤの各部の寸法及び角度は、正規状態にセットしたタイヤにおいて測定される。
【0019】
正規リムとは、タイヤが依拠する規格において定められたリムを意味する。JATMA規格における適用リムに含まれる「標準リム」、TRA規格における「Design Rim」、及びETRTO規格における「Measuring Rim」は、正規リムである。
【0020】
正規内圧とは、タイヤが依拠する規格において定められた内圧を意味する。JATMA規格における「最高空気圧」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「INFLATION PRESSURE」は、正規内圧である。タイヤが乗用車用である場合、特に言及がない限り、正規内圧は180kPaである。
【0021】
正規荷重とは、タイヤが依拠する規格において定められた荷重を意味する。JATMA規格における「最大負荷能力」、TRA規格における「TIRE LOAD LIMITS AT VARIOUS COLD INFLATION PRESSURES」に掲載された「最大値」、及びETRTO規格における「LOAD CAPACITY」は、正規荷重である。タイヤが乗用車用である場合、特に言及がない限り、正規荷重は、前記荷重の88%に相当する荷重である。
【0022】
本開示において、ロードインデックス(LI)とは、例えば、JATMA規格において規定され、規定の条件下でタイヤに負荷することが許される最大の質量、すなわち最大負荷能力を指数で表す指標である。
【0023】
本開示において、タイヤを構成する要素のうち、架橋ゴムからなる要素の温度30℃での損失正接(tanδとも称される。)は、JIS K6394の規定に準拠し、粘弾性スペクトロメータ((株)岩本製作所製の「VES」)を用いて下記の条件にて測定される。
初期歪み=10%
動歪み=2%
周波数=10Hz
変形モード=引張
この測定では、試験片はタイヤからサンプリングされる。タイヤから試験片をサンプリングできない場合には、測定対象の要素の形成に用いられるゴム組成物を170℃の温度で12分間加圧及び加熱して得られる、シート状の架橋ゴム(以下、ゴムシートとも称される。)から試験片がサンプリングされる。
【0024】
本開示において、タイヤを構成する要素のうち、架橋ゴムからなる要素の硬さは、JIS K6253の規定に準じて、23℃の温度条件下でタイプAデュロメータを用いて測定される。
【0025】
図1は、本発明の一実施形態に係るタイヤ2の一部を示す。このタイヤ2は、乗用車用タイヤである。図1において、タイヤ2はリムRに組まれている。リムRは正規リムである。タイヤ2の内部には空気が充填され、タイヤ2の内圧が調整される。この図1に示されたタイヤ2は、正規状態にセットされている。
【0026】
リムRに組まれたタイヤ2は、タイヤ-リム複合体とも称される。タイヤ-リム複合体は、リムRと、このリムRに組まれたタイヤ2とを備える。
【0027】
図1には、タイヤ2の回転軸(図示されず)を含む平面に沿った、このタイヤ2の断面の一部が示される。図1において、左右方向はタイヤ2の軸方向であり、上下方向はタイヤ2の径方向である。図1の紙面に対して垂直な方向は、タイヤ2の周方向である。図1において、一点鎖線CLはタイヤ2の赤道面を表す。
【0028】
図1において、軸方向に延びる実線BBLはビードベースラインである。このビードベースラインは、リムRのリム径(JATMA等参照)を規定する線である。
【0029】
このタイヤ2は、トレッド4、一対のサイドウォール6、一対のクリンチ8、一対のビード10、カーカス12、ベルト14、バンド16、一対のクッション層18、一対のチェーファー20、及びインナーライナー22を備える。
【0030】
トレッド4は、その外面、すなわちトレッド面24において路面と接地する。トレッド4は、径方向において、バンド16の外側に位置する。このタイヤ2のトレッド4には溝26が刻まれる。図1に示された溝26は、周方向に連続して延びる、周方向溝26pである。このタイヤ2では、周方向溝26pの溝深さは8mm以下である。
【0031】
図1において、符号PCはタイヤ2の赤道である。赤道PCは、トレッド面24と赤道面CLとの交点により表される。図1において、両矢印HSで表される長さはタイヤ断面高さ(JATMA等参照)である。タイヤ断面高さHSは、ビードベースラインBBLから赤道PCまでの径方向距離で表される。
【0032】
トレッド4は、ベース層28と、キャップ層30とを有する。ベース層28は、バンド16全体を覆う。ベース層28は、低発熱性の架橋ゴムからなる。このタイヤ2では、ベース層28の、30℃での損失正接は0.10以下である。
【0033】
キャップ層30は、ベース層28の径方向外側に位置する。キャップ層30は、ベース層28全体を覆う。キャップ層30の外面が、前述のトレッド面24である。キャップ層30は、耐摩耗性及びグリップ性能が考慮された架橋ゴムからなる。このタイヤ2では、キャップ層30の、30℃での損失正接は0.20以上0.25以下である。
【0034】
図1において、両矢印TBはベース層28の厚さである。両矢印TCは、キャップ層30の厚さである。このタイヤ2では、ベース層28の厚さTBと、キャップ層30の厚さTCとは、回転軸を含む平面に沿ってこのタイヤ2を切断することで得られる、このタイヤ2の断面において、赤道面CLに沿って計測することで得られる。
【0035】
このタイヤ2では、グリップ性能の観点から、キャップ層30の厚さTCがベース層28の厚さTBよりも厚くなるように、トレッド4は構成される。具体的には、キャップ層30の厚さTCの、ベース層28の厚さTBの比(TC/TB)は、70/30以上が好ましく、90/10以下が好ましい。
【0036】
トレッド4は、ベース層28及びキャップ層30以外に、ベース層28及びキャップ層30からなるトレッド本体と、サイドウォール6との間に位置する、ウィング32を備える。ウィング32は、トレッド本体とサイドウォール6とを接合する。ウィング32は接着性が考慮された架橋ゴムからなる。
【0037】
それぞれのサイドウォール6は、トレッド4の端に連なる。サイドウォール6は、径方向においてトレッド4の内側に位置する。サイドウォール6は、トレッド4の端からクリンチ8に向かってカーカス12に沿って延びる。サイドウォール6は耐カット性を考慮した架橋ゴムからなる。サイドウォール6の外面と、後述するクリンチ8の外面とが、タイヤ2の外面の一部をなす側面34を構成する。側面34はトレッド面24に連なる。
【0038】
それぞれのクリンチ8は、径方向において、サイドウォール6の内側に位置する。クリンチ8はリムRと接触する。クリンチ8は耐摩耗性を考慮した架橋ゴムからなる。
【0039】
このタイヤ2では、サイドウォール6とクリンチ8との境界部分に、リムプロテクター36が構成される。図1において、二点鎖線LSは、リムプロテクター36、模様、文字等の凹凸がないと仮定して得られる、タイヤ2の仮想外面を表す。リムプロテクター36は、この仮想外面LSから外向きに突出する。リムプロテクター36は周方向に延びる。このリムプロテクター36は、このタイヤ2を装着する車両が路肩に寄せられたとき、サイドウォール6及びリムRの損傷を防止する。
【0040】
図1において、符号PWはタイヤ最大幅位置である。前述したように、このタイヤ2では、仮想外面LSから突出するリムプロテクター36が設けられる。このタイヤ最大幅位置PWは、仮想外面LSの輪郭に基づいて特定される。一方のタイヤ最大幅位置PWから他方のタイヤ最大幅位置PWまでの軸方向距離がタイヤ断面幅(JATMA等参照)である。
【0041】
それぞれのビード10は、軸方向においてクリンチ8の内側に位置する。ビード10は径方向においてサイドウォール6の内側に位置する。ビード10は、コア38と、エイペックス40とを備える。
【0042】
図示されないが、コア38はスチール製のワイヤを含む。コア38はワイヤを周方向に巻き回すことで構成される。コア38の断面には、複数のワイヤの断面が含まれる。このタイヤ2では、コア38の断面に含まれるワイヤの断面の数は、20個以上が好ましく、25個以下が好ましい。
【0043】
エイペックス40は、径方向においてコア38の外側に位置する。エイペックス40は高い剛性を有する架橋ゴムからなる。エイペックス40の硬さは85以上95以下である。エイペックス40は外向きに先細りである。図1において、符号PAはエイペックス40の外端である。
【0044】
カーカス12は、トレッド4、一対のサイドウォール6、及び一対のクリンチ8の内側に位置する。カーカス12は、一方のビード10と他方のビード10との間を架け渡す。
【0045】
カーカス12は、少なくとも1枚のカーカスプライ42を含む。このタイヤ2のカーカス12は、2枚のカーカスプライ42からなる。トレッド4の内側において径方向内側に位置するカーカスプライ42が第一カーカスプライ44であり、この第一カーカスプライ44の外側に位置するカーカスプライ42が第二カーカスプライ46である。このカーカス12は、第一カーカスプライ44及び第二カーカスプライ46を含む。
【0046】
第一カーカスプライ44は、一方のコア38と他方のコア38との間を架け渡す第一プライ本体44aと、この第一プライ本体44aに連なりそれぞれのコア38の周りで軸方向内側から外側に向かって折り返される一対の第一折り返し部44bとを備える。このタイヤ2では、第一折り返し部44bの端は、径方向において、タイヤ最大幅位置PWよりも外側に位置する。第一折り返し部44bの端は、径方向において、ベルト14の端よりも内側に位置する。
【0047】
第二カーカスプライ46は、一方のコア38と他方のコア38との間を架け渡す第二プライ本体46aと、この第二プライ本体46aに連なりそれぞれのコア38の周りにて軸方向内側から外側に向かって折り返される一対の第二折り返し部46bとを備える。このタイヤ2では、第二折り返し部46bの端は、径方向において、エイペックス40の、コア38との接触面と、エイペックス40の外端PAとの間に位置する。軸方向において、第二折り返し部46bの端は、エイペックス40と第一折り返し部44bとの間に位置する。
【0048】
図示されないが、カーカスプライ42は並列された多数のカーカスコードを含む。これらカーカスコードはトッピングゴムで覆われる。カーカスコードは有機繊維からなるコードである。有機繊維としては、ナイロン繊維、レーヨン繊維、ポリエステル繊維及びアラミド繊維が例示される。
【0049】
カーカスコードは、赤道面と交差する。このタイヤ2のカーカス12はラジアル構造を有する。カーカス12に含まれるカーカスコードはそれぞれ、カーカスプライ42の一方の端と他方の端との間を架け渡す。
【0050】
ベルト14は、径方向において、トレッド4の内側に位置する。ベルト14はカーカス12とバンド16との間に位置する。ベルト14はカーカス12に積層される。このタイヤ2のベルト14の幅は、タイヤ断面幅の70%以上85%以下である。
【0051】
ベルト14は、径方向に積層された少なくとも2つの層48で構成される。このタイヤ2のベルト14は、径方向に積層された2つの層48からなる。2つの層48のうち、内側に位置する層48が内側層50であり、外側に位置する層48が外側層52である。図1に示されるように、内側層50は外側層52の幅よりも広い幅を有する。軸方向において、内側層50の端は外側層52の端よりも外側に位置する。外側層52の端から内側層50の端までの距離は3mm以上10mm以下である。
【0052】
図示されないが、内側層50及び外側層52はそれぞれ、並列された多数のベルトコードを含む。これらベルトコードはトッピングゴムで覆われる。それぞれのベルトコードは赤道面に対して傾斜する。ベルトコードの材質はスチールである。
【0053】
バンド16は、径方向において、トレッド4とベルト14との間に位置する。バンド16はベルト14に積層される。軸方向において、バンド16の端はベルト14の端よりも外側に位置する。ベルト14の端からバンド16の端までの距離は3mm以上7mm以下である。
【0054】
図示されないが、バンド16は、螺旋状に巻かれたバンドコードを含む。バンドコードは実質的に周方向に延びる。詳細には、バンドコードが周方向に対してなす角度は、5°以下である。このバンド16はジョイントレス構造を有する。このタイヤ2では、有機繊維からなるコードがバンドコードとして用いられる。有機繊維としては、ナイロン繊維、レーヨン繊維、ポリエステル繊維及びアラミド繊維が例示される。
【0055】
このタイヤ2のバンド16は、赤道面を挟んで両端が相対するフルバンド54と、軸方向において離間して配置され、ベルト14の端、及びフルバンド54の端を拘束する一対のエッジバンド56とを備える。バンド16がフルバンド54で構成されてもよい。バンド16が一対のエッジバンド56で構成されてもよい。
【0056】
それぞれのクッション層18は、ベルト14の端において、このベルト14とカーカス12との間に位置する。クッション層18は、軟質な架橋ゴムからなる。
【0057】
それぞれのチェーファー20は、ビード10の径方向内側に位置する。チェーファー20はリムRと接触する。このタイヤ2のチェーファー20は布とこの布に含浸したゴムとからなる。
【0058】
インナーライナー22はカーカス12の内側に位置する。インナーライナー22は、タイヤ2の内面を構成する。インナーライナー22は、気体透過係数が低い架橋ゴムからなる。インナーライナー22は、タイヤ2の内圧を保持する。
【0059】
図2には、図1に示されたタイヤ2の一部、具体的にはビード10の部分が示される。図2において、左右方向はタイヤ2の軸方向であり、上下方向はタイヤ2の径方向である。図2の紙面に対して垂直な方向は、タイヤ2の周方向である。
【0060】
図2において、符号PMは、エイペックス40の、コア38との接触面の、軸方向幅の中心である。接触面の、軸方向幅の中心PMは、幅中心とも称される。実線TLは、この幅中心PMと、エイペックス40の外端PAとを通る直線である。角度θtは、この実線TLがビードベースラインBBLに対してなす角度である。このタイヤ2では、この角度θtが、エイペックス40の、コア38との接触面の、軸方向幅の中心PMと、エイペックス40の外端PAとを結ぶ線分が、ビードベースラインBBLに対してなす角度である。この角度θtは、エイペックス角度とも称される。図2において両矢印HAは、ビードベースラインBBLからエイペックス40の外端PAまでの径方向距離である。この径方向距離HAはエイペックス高さとも称される。
【0061】
低いエイペックス高さHAは、タイヤ2の撓み量を増加させる。撓み量の増加は接地面積の増加に貢献するので、制動性能の向上が見込まれる。しかし、低いエイペックス高さHAはタイヤ2の横剛性を低下させるので、操縦安定性が低下することが懸念される。ところが、エイペックス高さHAを従来タイヤのそれに比べて低い高さで設定しても、エイペックス角度θtを従来タイヤのそれに比べて小さい角度で設定することで、プライ本体44a、46aに含まれるカーカスコードの張力分布が変わり、面内捻り剛性が高まり、その結果、横剛性の確保が可能なことを本発明者は見出し、本発明を完成するに至っている。
【0062】
正規状態にセットしたタイヤ2において、エイペックス高さHAの、タイヤ断面高さHSに対する比率(HA/HS)は20%以上30%以下である。
【0063】
比率(HA/HS)が30%以下であるので、タイヤ2の撓み量が確保される。このタイヤ2では、接地面積が増加する。特に、車両の制動時のように、大きな荷重がタイヤ2に作用する場合に、十分な接地面積が得られる。このタイヤ2では、良好な制動性能が得られる。接地面積の増加(詳細には、接地幅の拡大)は、トレッド4に作用する荷重を分散させる。このタイヤ2では、転がり抵抗への寄与が高い、トレッド4の端の部分における歪が低減される。このタイヤ2では、転がり抵抗が低減される。良好な制動性能の確保と、転がり抵抗の低減との観点から、比率(HA/HS)は27%以下が好ましい。
【0064】
比率(HA/HS)が20%以上であるので、撓み量が大きくなり過ぎることが防止される。このタイヤ2では、ビード10の部分において必要な剛性が確保される。この観点から、比率(HA/HS)は23%以上が好ましい。
【0065】
このタイヤ2では、制動性能の向上に必要な撓み量を確保するために、比率(HA/HS)が30%以下に設定される。このため、比率(HA/HS)が30%を超える従来タイヤに比べて、横剛性が低下し、操縦安定性が低下することが懸念される。しかしこのタイヤ2では、前述したように、エイペックス角度θtが従来タイヤのそれに比べて小さい角度で設定される。具体的には、エイペックス角度θtは55°以下である。
【0066】
エイペックス角度θtが55°以下であるので、タイヤ2の面内捻り剛性が高まり、必要な横剛性が確保される。このタイヤ2では、良好な操縦安定性が維持される。小さなエイペックス角度θtは低いエイペックス高さHAに貢献する。このタイヤ2は、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる。
【0067】
このタイヤ2では、エイペックス角度θtは45°以上である。撓み量が大きくなり過ぎることが防止されるので、必要な剛性が確保される。このタイヤ2では、良好な操縦安定性が維持される。この観点から、エイペックス角度θtは50°以上が好ましい。
【0068】
このタイヤ2では、正規状態において、エイペックス高さHAの、タイヤ断面高さHSに対する比率(HA/HS)が20%以上30%以下であり、エイペックス角度θtが45°以上55°以下である。このタイヤ2は、横剛性を確保しながら、撓み量の増加を図ることができる。このタイヤ2は、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる。
【0069】
図2において、両矢印Eは、タイヤ最大幅位置PWを通り、軸方向に延びる直線に沿って計測されるサイドウォール6の厚さである。このタイヤ2では、この厚さEが、タイヤ最大幅位置PWにおけるサイドウォール6の厚さである。
【0070】
このタイヤ2では、タイヤ最大幅位置PWにおけるサイドウォール6の厚さEは4.0mm以下が好ましい。これにより、サイドウォール6がタイヤ2の撓み量の増加に貢献できる観点から、この厚さEは3.5mm以下がより好ましい。必要な剛性確保の観点から、この厚さEは2.5mm以上が好ましく、3.0mm以上がより好ましい。
【0071】
前述したように、このタイヤ2では、横剛性を確保しながら、タイヤ2の撓み量及び接地面積の増加を図ることで、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とが達成される。このタイヤ2では、制動性能のさらなる向上と、転がり抵抗のさらなる低減との観点から、正規状態にセットしたタイヤ2に、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量をB100、接地面積をA100とし、ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの縦撓み量をB73、接地面積をA73としたとき、縦撓み量B100及び接地面積A100、並びに縦撓み量B73及び接地面積A73は下記式(1)を満たすのが好ましい。
1.03≦(B100/B73)/(A100/A73)≦1.06 式(1)
【0072】
ここで、正規状態にセットしたタイヤ2に、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量B100は、例えば、次のようにして計測される。図3に示されるように、正規状態にセットしたタイヤ2を、その回転軸が平らな路面Gと平行となるように、この路面Gに対してセットした後、路面Gが上昇させられる。このタイヤ2に作用する縦荷重がロードインデックスで表される荷重に到達するまでの路面Gの変位量(図3中の両矢印Bで示される長さ)が計測される。この変位量Bが、タイヤ2に、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量B100である。タイヤ2に、ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの縦撓み量B73も同様にして計測される。
【0073】
タイヤ2の縦撓み量の計測では、図4に示されるような、接地面画像が得られる。このタイヤ2では、この接地面画像に基づいて、タイヤ2に、ロードインデックスで表される荷重を縦荷重としてかけたときの接地面積A100と、このタイヤ2に、ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの接地面積A73とが得られる。この接地面積には、溝26に対応する部分(例えば、図4の符号GRで表される主方向溝26pに対応する部分)の面積も含まれる。
【0074】
このタイヤ2では、縦撓み量B100及び接地面積A100、並びに縦撓み量B73及び接地面積A73が前述の式(1)を満たす場合、転がり抵抗の十分な低減の観点から、縦撓み量B100の、縦撓み量B73に対する比(B100/B73)は、1.38以上が好ましい。制動性能の十分な向上の観点から、接地面積A100の、接地面積A73に対する比(A100/A73)は、1.34以上が好ましい。
【0075】
以上説明したタイヤ2は、次のようにして製造される。詳述しないが、このタイヤ2の製造では、成形機(図示されず)において、トレッド4、サイドウォール6、ビード10等のタイヤ2を構成する要素を組み合わせて、未加硫状態のタイヤ2(以下、生タイヤとも称される。)が準備される。
【0076】
このタイヤ2の製造では、生タイヤは、加硫機(図示されず)のモールドに投入される。生タイヤをモールド内で加圧及び加熱し、タイヤ2が得られる。タイヤ2は、生タイヤの加硫成形物である。
【0077】
このタイヤ2の製造方法は、タイヤ2のための生タイヤを準備する工程と、生タイヤをモールド内で加圧及び加熱する工程とを含む。詳述しないが、このタイヤ2の製造では、温度、圧力、時間等の加硫条件に特に制限はなく、一般的な加硫条件が採用される。
【0078】
図5は、タイヤ2の製造に用いられるモールド62の一例を示す。図5には、タイヤ2の回転軸に対応する中心軸(図示されず)を含む平面に沿った、モールド62の断面の一部が示される。図5において、上下方向はタイヤ2の軸方向に相当する。左右方向はタイヤ2の径方向に相当する。図5の紙面に対して垂直な方向は、タイヤ2の周方向に相当する。説明の便宜を図るために、このモールド62の次元はタイヤ2の次元により表される。図5において、一点鎖線MLはこのモールド62の中心線である。この中心線MLはタイヤ2の赤道面CLに対応する。
【0079】
このモールド62は、トレッドリング64と、一対のサイドプレート66と、一対のビードリング68とを備える。図5において、モールド62は、トレッドリング64、一対のサイドプレート66及び一対のビードリング68が組み合わされた状態、すなわち閉じられた状態にある。このモールド62は、割モールドである。
【0080】
トレッドリング64は、モールド62の径方向外側部分を構成する。トレッドリング64は、その内面に、トレッド形成面70を備える。トレッド形成面70は、タイヤ2のトレッド面24を形づける。このモールド62のトレッドリング64は、多数のセグメント72により構成される。これらセグメント72は、リング状に配置される。
【0081】
それぞれのサイドプレート66は、トレッドリング64の径方向内側に位置する。サイドプレート66は、トレッドリング64の端に連なる。サイドプレート66は、その内面に、サイドウォール形成面74を備える。サイドウォール形成面74は、タイヤ2の側面34を形づける。
【0082】
それぞれのビードリング68は、サイドプレート66の径方向内側に位置する。ビードリング68は、サイドプレート66の端に連なる。ビードリング68は、その内面に、ビード形成面76を備える。ビード形成面76は、タイヤ2のビード10の部分、具体的には、リムRに嵌め合わされる部分を形づける。
【0083】
このモールド62では、多数のセグメント72、一対のサイドプレート66及び一対のビードリング68が組み合わされることにより、生タイヤ2rの外面にタイヤ2の外面を形づけるキャビティ面78が構成される。このモールド62はキャビティ面78を備える。キャビティ面78は、トレッド形成面70、一対のサイドウォール形成面74及び一対のビード形成面76から構成される。
【0084】
加圧及び加熱工程において、生タイヤ2rは膨張したブラダー80によってモールド62のキャビティ面78に押し付けられる。これにより、生タイヤ2rの外面にタイヤ2の外面が形づけられる。この加圧及び加熱工程では、膨張したブラダー80に代えて剛性中子(図示されず)が用いられてもよい。
【0085】
図6は、図5に示されたモールド62の一部を示す。この図6には、サイドウォール形成面74及びビード形成面76の一部、すなわち、キャビティ面78の一部が示される。図6において、上下方向はタイヤ2の径方向である。左右方向はタイヤ2の軸方向である。図6の紙面に対して垂直な方向は、タイヤ2の周方向である。
【0086】
図6において、片矢印CWはモールド62のクリップ幅を表す。キャビティ面78は、このクリップ幅CWを規定する基準面82を含む。この基準面82は、タイヤ2とリムRとの接触面のうち、リムRのフランジFとの接触面を形成する面である。図6に示されたキャビティ面78の輪郭において、基準面82は径方向に延びる直線で表される。クリップ幅CWは、一方の基準面82から他方の基準面82(図示されず)までの軸方向距離で表される。図6において、符号PBは基準面82の外端である。
【0087】
図6において、符号PVはキャビティ面78の最大幅位置を表わす。図6に示されるように、キャビティ面78には、リムプロテクター36を形成するための窪み84が設けられる。図6の二点鎖線SLは、窪み84等の凹凸がないと仮定して得られる仮想キャビティ面である。本開示においては、この仮想キャビティ面はキャビティ面78の基準線とも称される。このモールド62では、キャビティ面78の最大幅位置PVはこの基準線SLにおいて特定される。
【0088】
このモールド62では、キャビティ面78の輪郭において、最大幅位置PVは、最大幅位置PWと基準面82の外端PBとの間を繋ぐ、3つの輪郭線で特定される。言い換えれば、このキャビティ面78の基準線は、最大幅位置PWと基準面82の外端PBとの間を繋ぐ、3つの輪郭線を含む。3つの輪郭線はそれぞれ円弧で表される。
【0089】
このモールド62では、3つの輪郭線は、最大幅位置PVに連なる外側輪郭線、基準面82に連なる内側輪郭線、及び、外側輪郭線と内側輪郭線との間に位置する中間輪郭線である。図6において、符号SMは外側輪郭線と中間輪郭線との境界である。符号MUは、中間輪郭線と内側輪郭線との境界である。
【0090】
図6の矢印Rsは、外側輪郭線を表す円弧の半径である。図示されないが、この外側輪郭線を表す円弧の中心は、キャビティ面78の内側において、最大幅位置PVを通り軸方向に延びる直線(図6の実線AL)上に位置する。
【0091】
矢印Ruは、内側輪郭線を表す円弧の半径である。図示されないが、この内側輪郭線を表す円弧の中心は、キャビティ面78の外側において、基準面82の外端PBを通り軸方向に延びる直線(図6の実線BL)上に位置する。この内側輪郭線を表す円弧の半径Ruは、9mm以上12mm以下の範囲で設定される。
【0092】
矢印Rmは、中間輪郭線を表す円弧の半径である。図示されないが、この中間輪郭線を表す円弧の中心は、キャビティ面78の内側に位置する。中間輪郭線は、境界SMにおいて、外側輪郭線と接する。この中間輪郭線は、境界MUにおいて内側輪郭線と接する。この中間輪郭線は、外側輪郭線及び内側輪郭線のそれぞれと接する。
【0093】
図6において、実線LTは基準面82の外端PBを通り、軸方向に対して傾斜する斜線である。斜線LTは、この斜線LTと、モールド62の中心線MLとの間隔が径方向において外向きに拡がるように、軸方向に対して傾斜する。図6において、角度θmは、この斜線LTが軸方向に対してなす角度である。
【0094】
図6において、点線ELで表される円弧は外側輪郭線の延長線である。この円弧ELは、外側輪郭線を表す円弧である。
【0095】
キャビティ面78の輪郭において、境界SMと境界MUとの間の部分は、タイヤ2におけるエイペックス40の傾きの程度、詳細には、エイペックス角度θtに影響する。
【0096】
従来のモールドでは、最大幅位置PVと境界MUとの間は、1の円弧で繋げられるのに対し、このモールド62では、最大幅位置PVと境界MUとの間は、外側輪郭線を表す円弧と、中間輪郭線を表す円弧とからなる、2つの円弧で繋げられる。このモールド62は、従来モールドにおいて略径方向に立っていた境界SMと境界MUとの間の部分を寝かせることができる。このモールド62は、従来のモールドで設定されるエイペックス角度よりも小さな角度でエイペックス角度θtを設定できる。しかも、このモールド62では、外側輪郭線を表す円弧は、位置TSにおいて、斜線LTと接し、この斜線LTが軸方向に対してなす角度θmは50°以上60°以下である。
【0097】
このモールド62によれば、正規状態において、エイペックス高さHAの、タイヤ断面高さHSに対する比率(HA/HS)が30%以下であり、エイペックス角度θtが55°以下である、図1に示されたタイヤ2が得られる。このタイヤ2は、前述したように、横剛性を確保しながら、撓み量の増加を図ることができる。このモールド62、及び、このモールド62を用いた製造方法によれば、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる、タイヤ2が得られる。
【0098】
横剛性を確保しながら、撓み量の増加を図ることができるタイヤ2の製造にモールド62が貢献できる観点から、斜線LTが軸方向に対してなす角度θmは52°以上が好ましく、54°以上がより好ましい。この角度θmは、58°以下が好ましく、56°以下がより好ましい。
【0099】
このモールド62では、横剛性を確保しながら、撓み量の増加を図ることができるタイヤ2の製造に貢献できる観点から、中間輪郭線を表す円弧は、外側輪郭線を表す円弧の半径Rsよりも小さい半径Rmを有するのが好ましい。具体的には、中間輪郭線を表す円弧の半径Rmの、外側輪郭線を表す円弧の半径Rsに対する比(Rm/Rs)は、0.48以上がより好ましく、0.50以上がさらに好ましい。この比(Rm/Rs)は、0.76以下がより好ましく、0.74以下がさらに好ましい。
【0100】
このモールド62では、キャビティ面78の基準線は、最大幅位置PVにおいて外側輪郭線に連なる上部輪郭線を含む。図6において、矢印Rgは上部輪郭線を表す円弧の半径である。図示されないが、この上部輪郭線を表す円弧の中心は、キャビティ面78の内側において、最大幅位置PVを通り軸方向に延びる直線AL上に位置する。この上部輪郭線は最大幅位置PVにおいて外側輪郭線と接する。
【0101】
このモールド62では、横剛性を確保しながら、撓み量の増加と接地面積の確保とを図ることができるタイヤ2の製造に貢献できる観点から、上部輪郭線を表す円弧は外側輪郭線を表す円弧の半径Rsよりも小さな半径Rgを有するのが好ましい。具体的には、上部仮想線を表す円弧の半径Rgの、外側輪郭線を表す円弧の半径Rsに対する比(Rg/Rs)は、0.85以上がより好ましく、0.88以上がさらに好ましい。この比(Rg/Rs)は、0.97以下がより好ましく、0.94以下がさらに好ましい。
【0102】
以上説明したように、本発明によれば、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを図ることができる、タイヤ2、そしてこのタイヤ2を得るためのモールド62、及び製造方法が得られる。本発明は、W以上の速度記号を有するタイヤ2において、顕著な効果を奏する。
【実施例0103】
以下、実施例などにより、本発明をさらに詳細に説明するが、本発明は、かかる実施例のみに限定されるものではない。
【0104】
[実施例1]
図1に示された基本構成を備え、下記の表1に示された仕様を備えた乗用車用の空気入りタイヤ(タイヤサイズ=225/45R19 92W)を得た。
【0105】
この実施例1では、エイペックス角度θtは55°に設定された。ビードベースラインからエイペックスの外端PAまでの径方向距離HAの、タイヤ断面高さHSに対する比率(HA/HS)は25%に設定された。タイヤ最大幅位置PWにおけるサイドウォールの厚さEは4.0mmに設定された。
【0106】
この実施例1では、ロードインデックスで表される荷重を縦荷重としてかけたときの縦撓み量B100の、ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの縦撓み量B73に対する比(B100/B73)で表される縦撓み比は、1.38であった。ロードインデックスで表される荷重を縦荷重としてかけたときの接地面積A100の、ロードインデックスで表される荷重の73%の荷重を縦荷重としてかけたときの接地面積A73に対する比(A100/A73)で表される接地面積比は、1.34であった。縦撓み比(B100/B73)の、接地面積比(A100/A73)に対する比で表される係数αは1.03であった。
【0107】
縦撓み量及び接地面積の測定では、タイヤをリム(サイズ=19×7.5)に組み、空気を充填してタイヤの内圧は240kPaに調整された。
【0108】
[比較例1-2]
エイペックス角度θtを下記の表1に示される通りとした他は実施例1と同様にして、比較例1-2のタイヤを得た。この比較例1及び2の縦撓み比、接地面積比、及び係数αは、この表1に示される通りであった。
【0109】
[実施例2-3]
厚さEを下記の表1に示される通りとした他は実施例1と同様にして、実施例2-3のタイヤを得た。この実施例2及び3の縦撓み比、接地面積比、及び係数αは、この表1に示される通りであった。
【0110】
[実施例4]
角度θ及び比率(HA/HS)を下記の表2に示される通りとした他は実施例1と同様にして、実施例4のタイヤを得た。この実施例4の縦撓み比、接地面積比、及び係数αは、この表2に示される通りであった。
【0111】
[実施例5及び比較例3]
比率(HA/HS)を下記の表2に示される通りとした他は実施例1と同様にして、実施例5及び比較例3のタイヤを得た。この実施例5及び比較例3の縦撓み比、接地面積比、及び係数αは、この表2に示される通りであった。
【0112】
[制動性能]
試作タイヤをリム(サイズ=19×7.5)に組み、空気を充填してタイヤの内圧を240kPaに調整した。タイヤを試験車両(乗用車)に装着して、制動性能評価用のテストコースでこの試験車両を走行させた。速度64km/hからの制動距離を測定した。その結果が、下記の表1及び2に指数で示されている。数値が大きいほど、タイヤは、ドライ路面に対する摩擦力が高く、制動性能に優れる。
【0113】
[転がり抵抗係数(RRC)]
転がり抵抗試験機を用い、試作タイヤが下記の条件でドラム上を速度80km/hで走行するときの転がり抵抗係数(RRC)を測定した。その結果が、下記の表1及び2に指数で示されている。数値が大きいほど、タイヤの転がり抵抗は低い。
リム:19×7.5
内圧:240kPa
縦荷重:4.75kN
【0114】
[操縦安定性]
試作タイヤをリム(サイズ=19×7.5)に組み、空気を充填してタイヤの内圧を240kPaに調整した。タイヤを試験車両(乗用車)に装着して、ドライアスファルト路面のテストコースでこの試験車両を走行させた。ドライバーに操縦安定性を評価(官能評価)させた。その結果が、下記の表1及び2に指数で示されている。数値が大きいほど、タイヤは操縦安定性に優れる。この評価では、指数が95以上であれば、必要な操縦安定は確保されているとして許容される。
【0115】
【表1】
【0116】
【表2】
【0117】
表1及び2に示されるように、実施例では、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とが達成されている。この評価結果から、本発明の優位性は明らかである。
【産業上の利用可能性】
【0118】
以上説明された、必要な操縦安定性を確保しながら、制動性能の向上と、転がり抵抗の低減とを達成できる技術は種々のタイヤにも適用されうる。
【符号の説明】
【0119】
2・・・タイヤ
2r・・・生タイヤ
4・・・トレッド
6・・・サイドウォール
8・・・クリンチ
10・・・ビード
12・・・カーカス
24・・・トレッド面
26、26p・・・溝
28・・・ベース層
30・・・キャップ層
34・・・側面
36・・・リムプロテクター
38・・・コア
40・・・エイペックス
42、44、46・・・カーカスプライ
62・・・モールド
64・・・トレッドリング
66・・・サイドプレート
68・・・ビードリング
78・・・キャビティ面
80・・・ブラダー
82・・・基準面
84・・・窪み
図1
図2
図3
図4
図5
図6