IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ユリウス−マクシミリアン−ウニヴェルシテート・ヴュルツブルクの特許一覧

特開2022-97517リンパ球における高レベル且つ安定な遺伝子移入のための方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2022097517
(43)【公開日】2022-06-30
(54)【発明の名称】リンパ球における高レベル且つ安定な遺伝子移入のための方法
(51)【国際特許分類】
   C12N 15/90 20060101AFI20220623BHJP
   C12N 15/54 20060101ALI20220623BHJP
   C12N 15/11 20060101ALI20220623BHJP
   C12N 5/10 20060101ALI20220623BHJP
   C12N 15/12 20060101ALI20220623BHJP
   C12N 15/13 20060101ALI20220623BHJP
   A61K 35/17 20150101ALI20220623BHJP
   A61K 48/00 20060101ALI20220623BHJP
   A61P 31/00 20060101ALI20220623BHJP
   A61P 31/04 20060101ALI20220623BHJP
   A61P 31/10 20060101ALI20220623BHJP
   A61P 31/12 20060101ALI20220623BHJP
   A61P 35/00 20060101ALI20220623BHJP
   A61P 37/02 20060101ALI20220623BHJP
   A61P 37/06 20060101ALI20220623BHJP
   C12N 9/12 20060101ALN20220623BHJP
【FI】
C12N15/90 Z ZNA
C12N15/54
C12N15/11 Z
C12N5/10
C12N15/12
C12N15/13
A61K35/17 Z
A61K48/00
A61P31/00
A61P31/04
A61P31/10
A61P31/12
A61P35/00
A61P37/02
A61P37/06
C12N9/12
【審査請求】有
【請求項の数】33
【出願形態】OL
【外国語出願】
(21)【出願番号】P 2022066573
(22)【出願日】2022-04-13
(62)【分割の表示】P 2018534021の分割
【原出願日】2016-09-22
(31)【優先権主張番号】15002732.4
(32)【優先日】2015-09-22
(33)【優先権主張国・地域又は機関】EP
(31)【優先権主張番号】16153490.4
(32)【優先日】2016-01-29
(33)【優先権主張国・地域又は機関】EP
(71)【出願人】
【識別番号】518098047
【氏名又は名称】ユリウス-マクシミリアン-ウニヴェルシテート・ヴュルツブルク
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ミヒャエル・フデチェク
(72)【発明者】
【氏名】ツォルタン・イフィクス
(57)【要約】
【課題】1つには、リンパ球並びに他の哺乳動物細胞へ導入遺伝子を安定に組み込むための、他に類のない効率、柔軟性、有用性及び速さを提供する新規技術を提供すること。
【解決手段】本明細書に開示する方法は、リンパ球並びに他の哺乳動物細胞へ導入遺伝子を安定に組み込むための、他に類のない効率、柔軟性、有用性及び速さを提供する新規技術について記述する。新規の方法は、小環DNAにコードされている転位エレメントと組み合わせたmRNAにコードされているトランスポザーゼ(例えばsleeping beautyトランスポザーゼ)の使用に基づく。新規の方法は、より高い遺伝子移入率を可能にし、それと同時に、プラスミドDNAにコードされている転位エレメントと組み合わせてプラスミドDNAにコードされているトランスポザーゼを使用する従来の手法より毒性が小さい。本発明の適用には、それだけには限らないが、ヒトTリンパ球への免疫受容体(例えばT細胞受容体又は合成キメラ抗原受容体)をコードしている導入遺伝子の安定な組み込みが含まれ、その免疫受容体は、腫瘍細胞により発現される分子に対する特異性を与える。トランスポザーゼmRNA及びトランスポゾン小環DNAは、エレクトロポレーション及びヌクレオフェクション等のエレクトロトランスファーを含むがこれに限定されない方法によってリンパ球に導入され得る。
【選択図】なし
【特許請求の範囲】
【請求項1】
哺乳動物細胞のゲノムに転位エレメントを安定して組み込むための、
転位エレメントをコードしている小環DNA及びトランスポザーゼの供給源の組合せ
の使用。
【請求項2】
トランスポザーゼの供給源が、トランスポザーゼをコードしている核酸である、またはトランスポザーゼの供給源が、トランスポザーゼポリペプチドである、好ましくは、トランスポザーゼをコードしている核酸が、トランスポザーゼをコードしているmRNA、トランスポザーゼをコードしているプラスミドDNA、トランスポザーゼをコードしている小環DNA又はトランスポザーゼをコードしている直鎖状DNAである、好ましくは、トランスポザーゼをコードしている核酸が、トランスポザーゼをコードしているmRNA又はトランスポザーゼをコードしている小環DNAである、好ましくは、トランスポザーゼをコードしている小環DNA及び転位エレメントをコードしている小環DNAが、同じ小環DNAである、請求項1に記載の使用。
【請求項3】
トランスポザーゼが、SB100Xである、請求項1または2に記載の使用。
【請求項4】
転位エレメントが、T細胞受容体又はキメラ抗原受容体の発現のための遺伝情報を含有し、哺乳動物細胞がヒトTリンパ球である、好ましくは、T細胞受容体又はキメラ抗原受容体が、腫瘍反応性であり、前記使用により得られるヒトTリンパ球が、がんの養子免疫療法における使用に適している腫瘍反応性ヒトTリンパ球である、および/または、転位エレメントが、キメラ抗原受容体のための遺伝情報を含有する、好ましくは、キメラ抗原受容体が、CD19、CD20、CD22、CD33、CD44v6、CD123、CD135、EpCAM、EGFR、EGFRバリアント、GD2、ROR1、ROR2、CD269、CD319、CD38又はCD138に特異的である、請求項1から3のいずれか一項に記載の使用。
【請求項5】
I)転位エレメントをコードしている小環DNAが、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーをコードする;および/または
II)in vitro使用である;および/または
III)トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、エレクトロポレーション、ヌクレオフェクション等のエレクトロトランスファー;ケモトランスファー、リン酸カルシウム;又はナノ粒子により細胞に導入される;および/または
IV)ゲノムへの転位エレメントの転位を媒介するトランスポザーゼが、Sleeping Beauty、PiggyBac、Frog Prince、Himarl、Passport、Minos、hAT、Tol1、Tol2、AciDs、PIF、Harbinger、Harbinger3-DR、及びHsmar1、又は転位活性を有するその誘導体である、請求項1から4のいずれか一項に記載の使用。
【請求項6】
哺乳動物細胞のゲノムに転位エレメントを安定して組み込むための、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼの供給源
の組合せの使用であって、
転位エレメントをコードしているDNAが、複製起点を欠いており、且つ/又は抗生物質耐性遺伝子を欠いている使用。
【請求項7】
I)転位エレメントをコードしているDNAが、複製起点を欠いており、且つ抗生物質耐性遺伝子を欠いている;および/または
II)転位エレメントをコードしているDNAが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択されるプラスミドから前記複製起点及び/又は前記抗生物質耐性遺伝子を欠失させることにより得ることが可能である;および/または
III)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより3.0kb、好ましくは2.0kbを超えない;および/または
IV)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.5kbを超えない;および/または
V)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.0kbを超えない;および/または
VI)転位エレメントをコードしているDNAが、請求項1から5のいずれか一項で使用される小環DNAである;および/または
VII)導入遺伝子が、請求項4に規定のT細胞受容体又はキメラ抗原受容体であり、哺乳動物細胞がヒトTリンパ球である;および/または
VIII)導入遺伝子が、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーである;および/または
IX)in vitro使用である;および/または
X)トランスポザーゼの供給源が、請求項2、3または5に規定の通りの核酸である;および/または
XI)非ウイルス使用である、請求項6に記載の使用。
【請求項8】
安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸の組合せを導入する工程
を含み、それによって組換え哺乳動物細胞を得る方法。
【請求項9】
トランスポザーゼをコードしている核酸が、請求項2、3または5に規定の通りである;および/またはトランスポザーゼが、SB100Xである、請求項8に記載の方法。
【請求項10】
転位エレメントが、T細胞受容体又はキメラ抗原受容体の発現のための遺伝情報を含有し、哺乳動物細胞がヒトTリンパ球である、好ましくは、T細胞受容体又はキメラ抗原受容体が、腫瘍反応性であり、前記方法により得られる前記ヒトTリンパ球が、がんの養子免疫療法における使用に適している腫瘍反応性ヒトTリンパ球である、請求項8または9に記載の方法。
【請求項11】
転位エレメントが、キメラ抗原受容体のための遺伝情報を含有する、好ましくは、キメラ抗原受容体が、CD19、CD20、CD22、CD33、CD44v6、CD123、CD135、EpCAM、EGFR、EGFRバリアント、GD2、ROR1、ROR2、CD269、CD319、CD38又はCD138に特異的である、請求項8から10のいずれか一項に記載の方法。
【請求項12】
I)転位エレメントをコードしている小環DNAが、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーをコードする;および/または
II)in vitro方法である;および/または
III)前記トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、エレクトロポレーション、ヌクレオフェクション等のエレクトロトランスファー;ケモトランスファー、リン酸カルシウム;又はナノ粒子により細胞に導入される;および/または
IV)ゲノムへの転位エレメントの転位を媒介するトランスポザーゼが、Sleeping Beauty、PiggyBac、Frog Prince、Himarl、Passport、Minos、hAT、Tol1、Tol2、AciDs、PIF、Harbinger、Harbinger3-DR、及びHsmar1、又は転位活性を有するその誘導体である;および/または
V)転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸の組合せを、哺乳動物細胞に一緒に導入する、好ましくは、転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸が、同じ小環DNAである;および/または
VI)トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、モル比1:1以上、好ましくはモル比2:1から10:1、より好ましくはモル比3:1から9:1、なおより好ましくはモル比4:1から8:1で哺乳動物細胞に導入される、請求項8から11のいずれか一項に記載の方法。
【請求項13】
安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼをコードしている核酸
の組合せを導入する工程
を含み、それによって組換え哺乳動物細胞を得、
転位エレメントをコードしているDNAが、複製起点を欠いており、且つ/又は抗生物質耐性遺伝子を欠いている方法。
【請求項14】
前記転位エレメントをコードしている前記DNAが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択されるプラスミドから前記複製起点及び/又は前記抗生物質耐性遺伝子を欠失させることにより得ることが可能である、請求項13に記載の方法。
【請求項15】
安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼをコードしている核酸
の組合せを導入する工程
を含み、それによって前記組換え哺乳動物細胞を得、
転位エレメントをコードしているDNAが、少なくとも1塩基対プラスミドを短縮することによって得ることが可能であり、
プラスミドが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択される方法。
【請求項16】
I)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても3.0kb、好ましくは長くても2.0kbを超えない;および/または
II)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.5kbを超えない;および/または
III)転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.0kbを超えない;および/または
IV)転位エレメントをコードしているDNAが、請求項1から15のいずれか一項で使用される小環DNAである;および/または
V)導入遺伝子が、請求項14から17のいずれか一項に規定のT細胞受容体又はキメラ抗原受容体であり、哺乳動物細胞がヒトTリンパ球である、または導入遺伝子が、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーである;および/または
VI)in vitro方法である;および/または
VII)トランスポザーゼをコードしている前記核酸が、請求項8に規定の通りである;および/または
VIII)非ウイルス方法である;および/または
IX)前記組合せが、
転位エレメントをコードしているDNA又は小環DNA及び
トランスポザーゼをコードしている核酸
を同時に導入することによって導入される、好ましくは、
転位エレメントをコードしている前記DNA又は小環DNA及び
トランスポザーゼをコードしている前記核酸
が、同じ小環DNAである、請求項14または15に記載の方法。
【請求項17】
前記組合せが、
トランスポザーゼをコードしている前記核酸及び
転位エレメントをコードしている前記DNA又は小環DNA
を順次導入することによって導入される;または
前記組合せが、
転位エレメントをコードしている前記DNA又は小環DNA及び
トランスポザーゼをコードしている前記核酸
を順次導入することによって導入される、請求項8から16のいずれか一項に記載の方法。
【請求項18】
I)転位エレメントをコードしている小環DNAが、直鎖化DNA又は環状DNAである;および/または
II)トランスポザーゼの供給源又はトランスポザーゼをコードしている核酸が、トランスポザーゼをコードしている小環DNAであり、前記小環DNAが、直鎖化小環DNA又は環状小環DNAである;および/または
III)トランスポザーゼをコードしている核酸及び転位エレメントをコードしているDNA又は小環DNAが、質量比1:1以上、好ましくは質量比2:1から10:1、より好ましくは質量比3:1から9:1、なおより好ましくは質量比4:1から8:1で哺乳動物細胞に導入される、請求項8から17のいずれか一項に記載の方法、または請求項1から7のいずれか一項に記載の使用。
【請求項19】
請求項8から18のいずれか1つに記載の方法によって得ることが可能な組換え哺乳動物細胞。
【請求項20】
導入遺伝子の発現カセットを含有する転位エレメントを少なくとも1コピー含有する組換えヒトT細胞。
【請求項21】
前記細胞における転位エレメントのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である;あるいは前記細胞における転位エレメントのコピー数が、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、請求項19または20に記載の組換え細胞。
【請求項22】
組換え細胞の染色体ゲノムにおける転位エレメントのコピーの
A)0%~5%が;または、
B) 少なくとも5%が;または
C) 少なくとも10%が;または
D) 少なくとも15%が;または
E) 少なくとも20%が、
以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、請求項19から21のいずれか一項に記載の組換え細胞。
【請求項23】
組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも40%が、以下の基準:
(v)転写単位の外側
を満たすゲノム染色体領g域に組み込まれる、請求項19から22のいずれか一項に記載の組換え細胞。
【請求項24】
組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも1つ、好ましくは全てが、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
のうち
A) 少なくともいずれか1つ;または
B) 少なくともいずれか2つ;または
C) 少なくともいずれか3つ;または
D) 少なくともいずれか4つ
を満たすゲノム染色体領域に組み込まれる、請求項19から23のいずれか一項に記載の組換え細胞。
【請求項25】
組換え細胞の染色体ゲノムにおける転位エレメントのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である;および/または、組換え細胞における転位エレメントの一時的なコピーのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、請求項19から24のいずれか一項に記載の組換え細胞。
【請求項26】
医療に使用するための、請求項19から25のいずれか一項に記載の組換え細胞。
【請求項27】
がんの処置に使用するための、請求項19から26のいずれか一項に記載の組換え細胞。
【請求項28】
免疫療法における使用である、好ましくは、免疫療法における使用が、自己免疫性疾患の処置に対する使用である、または、免疫療法における使用が、感染性疾患の処置に対する使用である、好ましくは、感染性疾患が、細菌感染、ウイルス感染又は真菌感染である、請求項26または27に規定の使用のための請求項26または27に記載の組換え細胞。
【請求項29】
遺伝子治療に使用するための、請求項19から25のいずれか一項に記載の組換え細胞。
【請求項30】
転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸を含む組成物。
【請求項31】
トランスポザーゼをコードしている核酸が、請求項2、3または5に規定の通りである;または、転位エレメントが、請求項4または5に規定の通りである、請求項30に記載の組成物。
【請求項32】
in vivo使用又はin vivo方法である、好ましくは、遺伝子治療における使用又は遺伝子治療のための方法である、請求項1から7のいずれか一項に記載の使用、または、請求項8から18のいずれか一項に記載の方法。
【請求項33】
前記細胞が、哺乳動物細胞である、好ましくは、哺乳動物細胞が、哺乳動物リンパ球である、好ましくは、哺乳動物リンパ球が、ヒトリンパ球である、好ましくは、ヒトリンパ球がヒトTリンパ球である、好ましくは、前記細胞が、CD8+キラーT細胞、CD4+ヘルパーT細胞、ナイーブT細胞、メモリーT細胞、セントラルメモリーT細胞、エフェクターメモリーT細胞、メモリー幹T細胞、インバリアントT細胞、NKT細胞、サイトカイン誘導性キラーT細胞、g/d T細胞、Bリンパ球、ナチュラルキラー細胞、単球、マクロファージ、樹状細胞、又は顆粒球である、請求項1から7のいずれか一項に記載の使用、請求項8から18のいずれか一項に記載の方法、または、請求項19から29のいずれか一項に記載の組換え細胞。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、遺伝子移入のための方法及び技術並びに免疫療法のための方法及び技術を含む。
【背景技術】
【0002】
遺伝子改変された細胞及び組織が、生きた生物における診断及び治療適用において益々活用されている。遺伝子改変は、例えば、1つ若しくはいくつかの導入遺伝子を導入して細胞に新規の特性を与えることにより、又は1つ若しくはいくつかの遺伝子の改変因子を導入して固有の特性及び機能をモジュレートする若しくは欠失させることにより実施される。そのような遺伝子改変細胞の治療的有用性に関する目覚ましい例は、T細胞受容体(TCR)を発現するように遺伝子移入によって改変される操作されたT細胞又は腫瘍細胞により発現される分子を認識し、従って抗腫瘍性特異性を与える合成キメラ抗原受容体(CAR)の使用である。化学及び放射線療法難治性の進行した悪性腫瘍がある患者における臨床前腫瘍モデルと臨床試験の両方から、そのような操作されたTCR及びCAR改変T細胞の抗腫瘍性機能並びに治癒的潜在性に関する有力な証拠がある(Hudecek Blood 2010; Hudecek Cancer Immunol Res 2013; Hudecek Cancer Immunol Res 2015; Hudecek Leukemia 2015; Kalos Science Transl Med 2011; Grupp N Engl J Med 2013; Davila Science Transl Med 2014; Maude N Engl J Med 2014)。
【0003】
T細胞への遺伝子移入を達成するために最も一般的に使用されている戦略は、ウイルス送達系、例えばレトロウイルス、レンチウイルス、アデノウイルスベクターの使用である。ウイルス送達系を使用して、ヒトTリンパ球にTCR及びCARを含めた導入遺伝子を安定して組み込み、臨床前及び臨床適用のための腫瘍反応性TCR/CAR Tリンパ球の製造が可能になった。例えば、特に、CD19に特異的な合成キメラ抗原受容体(CAR)を備えた操作されたT細胞は、予備的研究においてB細胞悪性腫瘍に対して注目に値する有効性を実証した参考文献1~3。CD19-CAR T細胞療法の有効性を示す現在までに報告されている臨床試験の全てにおいて、組み込みレンチウイルス(LV)又はガンマレトロウイルス(RV)ベクターを利用して、CAR遺伝子移入及び発現が達成された。しかしながら、ウイルス遺伝子移入ベクターの使用と関連する概念的、技術的及び戦略的短所が複数存在し、そこには経時的な導入遺伝子サイレンシングの望ましくない潜在性、他の遺伝子(例えばがん遺伝子)及び遺伝毒性の望ましくない活性化と関連するゲノムの転写活性部位への優先的な組み込み;組み込みウイルスを製造、貯蔵及び取扱う出費並びに煩わしい労力が含まれ、その後者により、治療適用において遺伝子改変T細胞を製造するためのウイルス使用の普及が妨げられてきた。従って、安全性、並びに地球規模でCAR T細胞療法を確立するために必要となるベクター生産の費用及び規模の点でウイルスベクターに付随する懸念は存在したままである。
【0004】
安定な遺伝子移入を達成する代替戦略は、トランスポゾン技術である。トランスポゾン又は転位エレメント(TE)とは、宿主細胞ゲノムに安定して組み込まれる、転位と呼ばれるプロセス能力を持つ遺伝的エレメントである(Ivics Mobile DNA 2010)。TEは、トウモロコシを用いた遺伝子研究においてBarbara McClintockにより1950年代に既に仮定されていたが、転位についての最初の機能的モデルは、1970年代の終わりに細菌TEに関して記述された(Shapiro PNAS 1979)。一方、TEがあらゆる生物のゲノムに存在することは明白であり、ゲノム配列決定から、ヒトゲノムのおよそ45%がトランスポゾン由来であることが明らかになった(International Human Genome Sequencing Consortium Nature 2001)。しかしながら、機能的(又は、自律的)なTEが同定された無脊椎動物とは対照的に、ヒト及びほとんどの高等脊椎動物は機能的なTEを含有しない。TEの突然変異誘導潜在性に対する進化的選択圧により、進化の数百万年前に機能的不活化に至ったと仮定されている。
【0005】
自律的なTEは、2つの逆位末端反復配列(ITR)の間に位置するトランスポザーゼ酵素をコードするDNAを含み、その配列は、ITRの間にコードされているトランスポザーゼ酵素によって認識され、トランスポザーゼは、任意の二本鎖DNA配列へのTEの転位を触媒することができる。異なる2つのクラスのトランスポゾン:中間RNA及び「コピーアンドペースト」機序によって起動するクラスI又はレトロトランスポゾン並びに切除-組み込み又は「カットアンドペースト」機序によって起動するクラスII若しくはDNAトランスポゾンがある(Ivics Nat Methods 2009)。細菌、下等真核生物(例えば酵母)及び無脊椎動物のトランスポゾンは、主に種特異的のように見え、脊椎動物細胞におけるDNAの効果的な転位に使用することはできない。最初の活性なトランスポゾンが、魚由来の不活性なTEの配列シャフリングによって人工的に再構成されて初めて(従ってそのトランスポゾンは「Sleeping Beauty」(Ivics Cell 1997)と呼ばれる)、ヒト細胞を含めた脊椎動物細胞への転位によるDNA組み込みを成功裏に実現することが可能になった。Sleeping Beautyは、トランスポゾンのTc1/マリナーファミリーに属するクラスII DNAトランスポゾンである(Ni Genomics Proteomics 2008)。その間にも、更なる機能的なトランスポゾンがショウジョウバエ、カエル及びヒトゲノムさえも含めた異なる種から同定又は再構築され、全てが、脊椎動物及び更にヒト宿主細胞ゲノムへのDNA転位を可能にすることが示された。これらトランスポゾンのそれぞれが、転位効率、発現の安定性、遺伝子ペイロード能力、等と関連する利点及び短所を有する。
【先行技術文献】
【非特許文献】
【0006】
【非特許文献1】Hudecek Blood 2010
【非特許文献2】Hudecek Cancer Immunol Res 2013
【非特許文献3】Hudecek Cancer Immunol Res 2015
【非特許文献4】Hudecek Leukemia 2015
【非特許文献5】Kalos Science Transl Med 2011
【非特許文献6】Grupp N Engl J Med 2013
【非特許文献7】Davila Science Transl Med 2014
【非特許文献8】Maude N Engl J Med 2014
【非特許文献9】Ivics Mobile DNA 2010
【非特許文献10】Shapiro PNAS 1979
【非特許文献11】International Human Genome Sequencing Consortium Nature 2001
【非特許文献12】Ivics Nat Methods 2009
【非特許文献13】Ivics Cell 1997
【非特許文献14】Ni Genomics Proteomics 2008
【非特許文献15】Huang Mol Therapy 2008
【非特許文献16】Field PLoS1 2013
【非特許文献17】Singh Immunol Rev 2014
【非特許文献18】F. Jiaら、Nature methods、Vol.7、no.3、197~199頁、3月、2010年
【非特許文献19】Hudecek Clin Cancer Res 2013
【非特許文献20】Wang Blood 2011
【発明の概要】
【課題を解決するための手段】
【0007】
本明細書に開示する方法は、リンパ球並びに他の哺乳動物細胞へ導入遺伝子を安定に組み込むための、他に類のない効率、柔軟性、有用性及び速さを提供する新規技術について記述する。新規の方法は、小環DNAにコードされている転位エレメントと組み合わせたmRNAにコードされているトランスポザーゼ(例えばsleeping beautyトランスポザーゼ)の使用に基づく。新規の方法は、より高い遺伝子移入率を可能にし、それと同時に、プラスミドDNAにコードされている転位エレメントと組み合わせてプラスミドDNAにコードされているトランスポザーゼを使用する従来の手法より毒性が小さい。
【0008】
次の効果は、発明による小環により実現されるより高い遺伝子移入率に寄与することになる:
・プラスミドと比較してより長い、小環の半減期、
・プラスミドと比較して細胞質を通って核への、小環のより簡単な移動、
・大きな環状プラスミドと比較して、小さい高次コイルMCからのトランスポゾンのより簡単な可動化。
【0009】
本発明によると、これらの効果は小環に限られず、そのようなDNAが、転位エレメントのドナープラスミドとして適当な従来のプラスミドより小さいサイズを有する場合、導入遺伝子の発現カセットを含有する転位エレメントをコードしている任意の他のDNAにも適用される。従って、本発明によると、転位エレメントをコードしているDNAが、以下で定義する転位エレメントをコードしているDNAである場合、導入遺伝子の発現カセットを含有する転位エレメントをコードしている任意のDNAもまた使用することができる。
【0010】
本発明により実現されるより高い遺伝子移入率のため、適正製造基準(GMP)下での本方法の実行及び本発明の使用が容易になる。例えば、本発明を使用してCAR T細胞を生成する場合、CD3/CD28刺激を使用してトランスフェクション前にT細胞を活性化することができ、最新の方法とは異なり、本発明は、支持細胞を使用してCAR T細胞を増大させ、それにより治療的に妥当な用量のCAR T細胞を実現する必要がない。
【0011】
本発明によれば、トランスフェクトされた小環DNAの量の少なさ(プラスミドDNAと比較して)は、小環によって実現される毒性の減少に寄与する。また、この効果は小環に限られず、そのようなDNAが、転位エレメントのドナープラスミドとして適当な従来のプラスミドより小さいサイズを有する場合、導入遺伝子の発現カセットを含有する転位エレメントをコードしている任意の他のDNAにも適用される。従って、本発明によると、転位エレメントをコードしているDNAが、以下で定義する転位エレメントをコードしているDNAである場合、導入遺伝子の発現カセットを含有する転位エレメントをコードしている任意のDNAもまた使用することができる。
【0012】
本発明の更なる長所は、小環内に抗生物質耐性遺伝子がないため、宿主細菌への抗生物質耐性遺伝子の水平遺伝子移入及び宿主ゲノムへの抗生物質耐性遺伝子の予想外の組み込みが排除されることである。
【0013】
本発明によれば、mRNAをトランスポザーゼの供給源として使用できることが判明した。短命なmRNAが、本発明に充分な量のトランスポザーゼを供給するのに適切な供給源になるかどうか公知でなかったので、この発見は予想外であった。本発明によれば、トランスポザーゼの供給源としてのmRNAの使用には、2つの利点がある:第1に、mRNAによって供給されるトランスポザーゼは短命なので、既に組み込まれているトランスポゾンが再起動されるリスクが低い。第2に、mRNAとしてのトランスポザーゼの供給は、宿主ゲノムへのトランスポザーゼ発現カセットの意図しない組み込みのリスクを排除し、その組み込みは、ゲノムに組み込まれたトランスポゾンの制御不能な、連続的転位をもたらす可能性がある。
【0014】
本発明は、高発現している又はがん関連遺伝子に対する優先傾向なしに、導入遺伝子を保有しているトランスポゾンのほぼランダムな組み込みプロファイルを提供するという点で有利である。加えて、本発明を使用する場合、LV組み込みと比較して、ランダムな組み込みに対して予想される完全なスコアに近い著しく高い割合の導入遺伝子組み込みが、ゲノムセーフハーバー(genomic safe harbors)に起こる。従って、本発明を使用して、ウイルス含まない転位を使用してリンパ球(例えばCAR T細胞)等の組換え哺乳動物細胞を製造することができる。優れた安全性プロファイル、高レベルの安定な転位率及び本発明のベクターの取扱いの容易さにより、本発明は、例えば高度な細胞及び遺伝子治療において好ましい遺伝子移入戦略になる。
【0015】
本発明の適用には、それだけには限らないが、ヒトTリンパ球への免疫受容体(例えばT細胞受容体又は合成キメラ抗原受容体)をコードしている導入遺伝子の安定な組み込みが含まれ、その免疫受容体は、腫瘍細胞により発現される分子に対する特異性を与える。トランスポザーゼmRNA及びトランスポゾン小環DNAは、エレクトロポレーション及びヌクレオフェクション等のエレクトロトランスファーを含むがこれに限定されない方法によってリンパ球に導入され得る。
【図面の簡単な説明】
【0016】
図1A】小環DNA及びSB100X mRNA。小環(MC)DNA作製の略図である。MC-DNAエレメントを、PhiC31インテグラーゼによって媒介される親プラスミドからの部位特異的分子内組換えによって生成する。親プラスミドDNAは、細菌骨格を最終的に消化するが、MC-DNAを消化しない操作されたI-SceI制限部位をいくつか含有する。MC-DNAは、導入遺伝子及びそのプロモーターだけを含有するが、細菌複製起点又は抗生物質耐性マーカーをもはや保有しない。
図1B】小環DNA及びSB100X mRNA。部位特異的分子内組換えによって従来の親プラスミドから調製したMCベクターの略図である。MCは、導入遺伝子及びそのプロモーターだけを含有するが、細菌複製起点及び抗生物質耐性遺伝子を含有しない。EF1、伸長因子1アルファプロモーター;CMV、サイトメガロウイルスプロモーター;ORI、細菌複製起点;AntibioR、抗生物質耐性遺伝子;LIR、左逆位反復;RIR、右逆位反復;白丸=組換え部位。
図1C】小環DNA及びSB100X mRNA。ゲル電気泳動による精製したMC DNAの制限消化及び分析を示す図である。250ngのMC-GFP、MC-CD19 CAR又はMC-SB100Xを、PmeI又はPacIで消化し、0.8%アガロースゲルでゲル電気泳動によって分析した。レーンM:1kbp DNAラダー(PlasmidFactory);レーン1:PacI消化したMC-GFP;レーン2:PmeI消化したMC-CD19 CAR;レーン3:PmeI消化したMC-SB100X。
図1D】小環DNA及びSB100X mRNA。ゲル電気泳動によるin vitro転写されたSB100X mRNAの分析を示す図である。ARCAキャップされているSB100X mRNAは、変性アガロースゲルにおいて約1400bpの固有の単一バンドとして泳動される。レーンM:RNAマーカー(FlashGel、Lonza);レーン1:SB100X mRNA。
図2A】MC-DNA由来の最大の転位に対するSB100X mRNAの滴定。Tリンパ球のSBに媒介される再プログラミングのためのプロトコールを示す図である。約36時間の抗CD3/抗CD28マイクロビーズによるT細胞の活性化、4D-nucleofectorシステムを使用するトランスポザーゼ(プラスミドDNA、MC-DNA又はmRNAとして)とトランスポゾンドナー(プラスミドDNA又はMC-DNAとして)の同時トランスフェクション。導入遺伝子陽性T細胞のパーセンテージを決定するための連続フローサイトメトリー分析。典型的な実験において、トランスポゾンは、CD19特異的CARをコードしている導入遺伝子を含有した。ここで、導入遺伝子陽性T細胞を、導入遺伝子カセットに含有されるtEGFR形質導入マーカーを使用して濃縮し、機能的試験の7日前にCD19+ EBV形質転換B細胞(TM-LCL)による抗原特異的刺激によって増大させた。
図2B-1】MC-DNA由来の最大の転位に対するSB100X mRNAの滴定。14日目における、表示した比のmRNA SB100X及びMC-CD19 CAR(mRNA-MC)、プラスミド(P-P)又はMC-DNA(MC-MC)でヌクレオフェクトしたCD8+ T細胞系のtEGFR発現のフローサイトメトリー分析を示す図である。2×10e6個のT細胞のヌクレオフェクションに使用した量:P-P:1ugのSB100X DNA+1ugのpT2;MC-MC:P-Pと等モル量;mRNA-MC:MC-MCと同量のMC(P-Pと等モル)、複数のmRNA。模擬=ヌクレオフェクションを、トランスポザーゼ及びトランスポゾンを含有しない溶液中で実施した。
図2B-2】図2B-1の続きである。
図2B-3】図2B-2の続きである。
図2B-4】図2B-3の続きである。
図2C】MC-DNA由来の最大の転位に対するSB100X mRNAの滴定。トランスフェクション14日後における、異なる比のSB100X mRNA及びMC-CD19 CAR、P-P又はMC-MCでトランスフェクションした後のtEGFR発現の比較を示す図である。データは、3つの独立した実験の平均値±SDを表す。統計的分析を、スチューデントのt検定を使用して実施した、*p<0.01、**p<0.001は、データ間の統計的有意差を示す。
図2D】MC-DNA由来の最大の転位に対するSB100X mRNAの滴定。遺伝子改変CD8+ T細胞の生存率及び増大を示す図である。トランスフェクション48時間後に、7-AAD染色を実施して、生T細胞のパーセンテージを決定した(ドットプロット及び左線図)。CAR改変T細胞の収量を、トランスフェクション後14日目までに得られるEGFRt+ T細胞の絶対数及びパーセンテージから算出した(右線図)。示したデータは、平均値±SDである。
図3A-1】従来のプラスミドDNAによる/からの転位と比較して、MC-DNAからのSB100X mRNAによる転位は、遺伝子移入率及び標的細胞生存率を改善する。トランスフェクション後14日目にフローサイトメトリーによって評価したプラスミド(P-P)、小環DNA(MC-MC、等モル)又はSB100X mRNA及びMC-CD19 CAR(mRNA-MC、比4:1)によるトランスフェクション後のtEGFR陽性T細胞のパーセンテージを示す図である。
図3A-2】図3A-1の続きである。
図3B】従来のプラスミドDNAによる/からの転位と比較して、MC-DNAからのSB100X mRNAによる転位は、遺伝子移入率及び標的細胞生存率を改善する。P-P、MC-MC又はmRNA-MCによるトランスフェクション後のtEGFR発現及び細胞生存率の比較を示す図である。tEGFR発現及び細胞生存率を、フローサイトメトリー分析によって評価した。6つの独立した実験に対する平均値±SDを示す。統計的分析をスチューデントのt検定を使用して実施した。*p<0.01、**p<0.001、***p<0.001は、データ間の統計的有意差を示す。
図3C】従来のプラスミドDNAによる/からの転位と比較して、MC-DNAからのSB100X mRNAによる転位は、遺伝子移入率及び標的細胞生存率を改善する。P-P、MC-MC又はmRNA-MCによるトランスフェクション後のGFP発現及び細胞生存率の比較を示す図である。GFP発現及び細胞生存率を、フローサイトメトリー分析によって評価した。3つの独立した実験に対する平均値±SDを示す。統計的分析をスチューデントのt検定を使用して実施した。*p<0.01、**p<0.001、***p<0.001は、データ間の統計的有意差を示す。
図3D】従来のプラスミドDNAによる/からの転位と比較して、MC-DNAからのSB100X mRNAによる転位は、遺伝子移入率及び標的細胞生存率を改善する。P-P、MC-MC又はmRNA-MCによるトランスフェクション後にフローサイトメトリー分析によって評価したIL-2を含む培養における28日間にわたるtEGFR表面発現の安定性を示す図である。
図3E】従来のプラスミドDNAによる/からの転位と比較して、MC-DNAからのSB100X mRNAによる転位は、遺伝子移入率及び標的細胞生存率を改善する。P-P、MC-MC又はmRNA-MCによるトランスフェクション後2週間以内のT細胞の増大を示す図である。CD8+ T細胞数の数を、トリパンブルー排除染色による計数で決定した。細胞の総数(左グラフ)又は遺伝子改変細胞の数(右グラフ)を示す。データは、3つの独立した実験の平均値±SDを表す。
図4A-1】レンチウイルス形質導入又はトランスポゾン系で作製したCD19 CAR発現T細胞のin vitroエフェクター機能の比較。tEGFR濃縮及び支持細胞による特異的増大後のCD8+及びCD4+ T細胞に対するtEGFR発現の代表的なフローサイトメトリードットプロットを示す図である。
図4A-2】図4A-1の続きである。
図4A-3】図4A-2の続きである。
図4A-4】図4A-3の続きである。
図4A-5】図4A-4の続きである。
図4A-6】図4A-5の続きである。
図4B】レンチウイルス形質導入又はトランスポゾン系で作製したCD19 CAR発現T細胞のin vitroエフェクター機能の比較。CD19 CAR発現CD8+ T細胞の特異的細胞毒性が、CD19+発現及び対照腫瘍細胞株に対するレンチウイルス形質導入(LV)又はトランスポゾン系(P-P、MC-MC又はmRNA-MC)により生成したことを示す図である。溶解パーセンテージ値を、模擬対照T細胞系の値に対して標準化する。3つの独立した実験(E:T=10:1)からのK562/CD19に対する細胞毒性データを標準化し(擬細胞による細胞溶解活性)、一元配置分散分析によって分析した。
図4C】レンチウイルス形質導入又はトランスポゾン系で作製したCD19 CAR発現T細胞のin vitroエフェクター機能の比較。CD19+発現腫瘍細胞株との共培養後24時間に得た上清のサイトカイン放出アッセイを示す図である。データは、3つの独立した実験からのCD8+及びCD4+ T細胞のIFN-γ又はIL-2産生の平均値±SDを表し、一元配置分散分析によって分析した。
図4D】レンチウイルス形質導入又はトランスポゾン系で作製したCD19 CAR発現T細胞のin vitroエフェクター機能の比較。CD19発現標的細胞株あり及び外因性サイトカインの添加なしでの刺激後72時間のCD19 CAR T細胞の増殖を、CFSE色素希釈によって評価した図である。分析のために、3つ組のウェルをプールし、生きた(7AAD-、CD8+又はCD4+)T細胞の増殖を分析した。細胞分裂の指数を、3つの独立した実験について算出し、データを一元配置分散分析によって分析した。
図4E】レンチウイルス形質導入又はトランスポゾン系で作製したCD19 CAR発現T細胞のin vitroエフェクター機能の比較。図4Dに示される実験の複製:CFSE色素希釈によって評価した、K562/CD19+標的細胞での刺激後72時間以内のCD19-CAR T細胞の増殖を示す図である。外因性サイトカインは、アッセイ培地に添加しなかった。分析のために、3つ組のウェルをプールし、生きた(7AAD-)T細胞の増殖を分析した。細胞増殖の指数(即ち細胞分裂の平均数)を、n=3の独立した実験で得られるデータからFlowJoソフトウェアを使用して算出し、データを一元配置分散分析によって分析した(**p<0.001)。
図5A】SB100X mRNA及びMC-CD19 CARでの転位による改変CD19 CAR T細胞のin vivo腫瘍反応性。上パネル:NSGマウスにRaji-ffluc細胞を接種し、7日後に10×106個のCD19 CAR T細胞(CD8+及びCD4+ T細胞、各5×106個)、無改変対照T細胞で処置した、又は無処置のままにした。マウスのコホートを、生物発光画像診断によって分析した図である。点線は、T細胞移入日を表す。7日目(T細胞移入日)、10日目(T細胞移入3日後)及び14日目(T細胞移入7日後)の生物発光像を示す。下パネル:NSGマウスにRaji-ffluc/eGFP細胞を接種し、7日後に5×106個のCD19CAR T細胞(CD8+及びCD4+ T細胞比1:1、各2.5×106個)、無改変対照T細胞で処置した、又は無処置のままにした。CD19CAR T細胞は、SB100X mRNA及びCD19 CAR MC(比4:1)によるトランスフェクションによって生成した。生物発光像を、7日目(T細胞注入前、上列)及び14日目(T細胞注入7日後、下列)に得た。データは、異なるドナーから調製したT細胞による少なくとも2つの独立した実験において得られた結果の代表例である。
図5B】SB100X mRNA及びMC-CD19 CARでの転位による改変CD19 CAR T細胞のin vivo腫瘍反応性。左パネル:各マウスの全身を包含する対象の領域から得た生物発光シグナルの平均値を、各時点で各処置群に対してプロットする図である。データは、図5Aの上パネルに示したマウスから得た。右側パネル:各マウスの全身を包含する対象の領域から得た生物発光シグナルの平均値を、各時点で各処置群に対してプロットする図である。データは、図5Aの下パネルに示したマウスから得た。太い点線は、T細胞注入日を表す。データは、異なるドナーから調製したT細胞による少なくとも2つの独立した実験において得られた結果の代表例である。
図5C】SB100X mRNA及びMC-CD19 CARでの転位による改変CD19 CAR T細胞のin vivo腫瘍反応性。左パネル:CD19 CARを発現しているT細胞で処置したマウスの生存のカプランマイヤー分析を、対照T細胞を受けた又はT細胞なし(無処置)のマウスと比較した図である。右側パネル: SB転位(SB100X mRNA及びCD19CAR MC)(n=5)及びLV形質導入(n=5)によって調製したCD19-CAR T細胞、対照T細胞(n=3)で処置した、又は処置を受けなかった(n=2)マウス群における生存のカプランマイヤー分析。データは、異なるドナーから調製したT細胞による少なくとも2つの独立した実験において得られた結果の代表例である。
図5D】SB100X mRNA及びMC-CD19 CARでの転位による改変CD19 CAR T細胞のin vivo腫瘍反応性。CD19-CAR T細胞で処置したマウスの末梢血及び骨髄中のヒトT細胞の頻度を示す図である。血液サンプルを、T細胞移入の3、7及び14日後(即ち腫瘍接種後10、14、21日目)に得、骨髄を実験の終了時に回収する。代表的なフローサイトメトリードットプロットは、CD8+及びCD4+ T細胞(生きた7-AAD- CD45+細胞に対するゲート制御)を示す。データは、異なるドナーから調製したT細胞による少なくとも2つの独立した実験において得られた結果の代表例である。
図5E】SB100X mRNA及びMC-CD19 CARでの転位による改変CD19 CAR T細胞のin vivo腫瘍反応性。実験の18日目(対照/無処置マウス)及び35日目(CD19-CAR群)に得られたNSGマウスの骨髄中のCD45+ ffLuc/eGFP+ Raji細胞の頻度を示す図である。水平バーは、平均値を示す。データは、異なるドナーから調製したT細胞による少なくとも2つの独立した実験において得られた結果の代表例である。
図6A】スプリンケレット(splinkerette)PCR(spPCR)を使用するSB100X mRNA及びMC-CD19 CARで改変したT細胞の導入遺伝子コピー数の決定。spPCR反応のそれぞれの3μLのPCR産物をロードした代表的なアガロースゲルを示す図である。限界希釈クローニングによって得たCAR+ T細胞クローンのゲノムDNAを、前述のspPCRを使用してトランスポゾン左逆位末端反復に特異的なプライマーで増幅した。レーンM:100bp DNAラダー(NEB);クローン1~10: 10個のCAR T細胞クローンからの投入ゲノムDNA;MC:MC-CD19 CAR単独、SB100X mRNAなしでトランスフェクトしたサンプルからの投入ゲノムDNA;模擬:ヌクレオフェクトした/トランスフェクトしていないT細胞からの投入ゲノムDNA;NDC:DNAがない対照。
図6B】スプリンケレット(splinkerette)PCR(spPCR)を使用するSB100X mRNA及びMC-CD19 CARで改変したT細胞の導入遺伝子コピー数の決定。SB100X mRNA及びMC-CD19 CAR(比4:1)でのSB100X転位により遺伝子改変されたn=10の異なるCD8+ CAR T細胞クローンの要約データである。T細胞当たりの平均コピー数及びSDを示す。
図6C】スプリンケレット(splinkerette)PCR(spPCR)を使用するSB100X mRNA及びMC-CD19 CARで改変したT細胞の導入遺伝子コピー数の決定。SB100X mRNA及びMC CD19-CAR(比4:1)で改変したCD4+(n=10)及びCD8+(n=9)CD19-CAR T細胞クローンの遺伝子コピー数を示す図である。CD8+ CD19-CAR T細胞クローンについて示した実験は、図6Bで示した実験の複製である。
図7A】ヒトT細胞におけるSB並びにLVの挿入部位特性及び安全性評価。ヒトゲノムの遺伝子関連特性におけるLV及びSB挿入頻度の比較を示す図である。予想されるランダムな頻度を超えるSB及びLV挿入部位の濃縮倍をプロットする。点線は、x軸上の部類におけるランダムな機会に予想される挿入頻度に対する1倍濃縮を表す。TSS及びTE:それぞれ転写開始及び終了部位。
図7B】ヒトT細胞におけるSB並びにLVの挿入部位特性及び安全性評価。ゲノム挿入部位頻度と遺伝子の転写状態との相関を示す図である。活性化型T細胞の遺伝子を、発現レベルの増加(左から右に)に基づいて等しいサイズの10個の群に集めた。点線は、1に標準化した予想されるランダムな挿入頻度を表す。SB(黒色)に対する趨勢線を、線形設定を使用して当てはめた。指数設定を使用して、LVデータセットの最初の9個のデータ点について趨勢線を当てはめた(R二乗値を示した)。最も活性な遺伝子の群の挿入頻度の増加は、指数関数的な傾向に従わない。
図7C】ヒトT細胞におけるSB並びにLVの挿入部位特性及び安全性評価。T細胞のゲノムセーフハーバーにおけるSB及びLVの組み込み頻度を示す図である。ゲノムセーフハーバーとは、以下の5つのx軸の基準を同時に満たすヒト染色体の領域である:超保存でない、miRNA遺伝子から300kb超離れている、転写開始部位(TSS)から50kb超離れている、がんに関与する遺伝子から300kb超離れている及び転写単位の外側である。左の線図は、各基準を満たしているSB、LV及びランダムな挿入のパーセンテージを示す。右の線図は、5つ全ての基準を満たしている挿入のパーセンテージを示す。
図8A】MC及びプラスミドにコードされているSBトランスポザーゼ及びトランスポゾンを使用するeGFPの転位。CD8+ T細胞を、eGFP及びSB100Xをコードしている従来のプラスミド各1μg(P-P)又は対応する等モルの量のMC(MC-MC)でトランスフェクトした図である。eGFP発現を、フローサイトメトリーによって評価した。データは、3つの独立した実験の平均値±SDを表す、p<0.001。
図8B】MC及びプラスミドにコードされているSBトランスポザーゼ及びトランスポゾンを使用するeGFPの転位。eGFP発現の安定性を、トランスフェクション後28日目までのフローサイトメトリーによって評価した図である。3つの独立した実験において得られたデータの平均値±SDを示す。
図8C】MC及びプラスミドにコードされているSBトランスポザーゼ及びトランスポゾンを使用するeGFPの転位。トランスフェクション後48時間のT細胞の生存率を、7-AAD染色及びフローサイトメトリー分析によって評価した図である。データは、3つの独立した実験の平均値±SDを表す。統計的分析を、スチューデントt検定を使用して実施した(p<0.05)。
図9】CD4+ T細胞におけるMC SB転位を示す図である。CD4+ T細胞を、CD19-CARトランスポゾン及びSB100Xトランスポザーゼをコードしている従来のプラスミド各1μg(P-P)又は対応するMC(MC-MC、等モルのDNA量を使用する)(n=3)でトランスフェクトした。14日目におけるEGFRt発現の代表的なフローサイトメトリードットプロットを示す(生きている、即ち7-AAD陰性細胞に対するゲート制御)。
図10】CD8+ナイーブ及びメモリーT細胞サブセットにおけるMC SB転位を示す図である。CD8+ナイーブ(CD45RA+RO-62L+、TN)、セントラルメモリー(CD45RA-RO+62L+、TCM)及びエフェクターメモリー(CD45RA- RO+62L+、TEM)T細胞を精製し、SB100X mRNA及びCD19-CAR MCでトランスフェクトした。フローサイトメトリードットプロットは、トランスフェクション後14日目におけるEGFRt発現を示す(生きた、即ち7-AAD陰性細胞に対するゲート制御)。
図11A】T細胞におけるSB及びLV挿入部位周辺の染色体DNAのヌクレオチド組成を示す図である。各データ点は、T細胞におけるSB及びLV挿入部位周辺の染色体DNAにある5つのヌクレオチドビンの平均TA含有量を表す。20kbpの分析ウインドウを図示する。ランダムなデータセットは、ヒト染色体の計算的に生成した任意の座10000個周辺のTA含有量を図示する。
図11B】T細胞におけるSB及びLV挿入部位周辺の染色体DNAのヌクレオチド組成を示す図である。各データ点は、T細胞におけるSB及びLV挿入部位周辺の染色体DNAにある5つのヌクレオチドビンの平均TA含有量を表す。20kbpの分析ウインドウを図示する。ランダムなデータセットは、ヒト染色体の計算的に生成した任意の座10000個周辺のTA含有量を図示する。
図11C】T細胞におけるSB及びLV挿入部位周辺の染色体DNAのヌクレオチド組成を示す図である。各データ点は、T細胞におけるSB及びLV挿入部位周辺の染色体DNAにある5つのヌクレオチドビンの平均TA含有量を表す。2.6kbpの分析ウインドウを図示する。ランダムなデータセットは、ヒト染色体の計算的に生成した任意の座10000個周辺のTA含有量を図示する。
図11D】T細胞におけるSB及びLV挿入部位周辺の染色体DNAのヌクレオチド組成を示す図である。各データ点は、T細胞におけるSB及びLV挿入部位周辺の染色体DNAにある5つのヌクレオチドビンの平均TA含有量を表す。2.6kbpの分析ウインドウを図示する。ランダムなデータセットは、ヒト染色体の計算的に生成した任意の座10000個周辺のTA含有量を図示する。
図12-1】ヒトT細胞染色体上のSB標的部位の塩基組成を示す図である。長さ58ヌクレオチドのヌクレオチド頻度マトリックスを、連続的なヌクレオチドを示す「V」数と共に、表に表した。三角形は、挿入部位を表す。表は、各ヌクレオチドについてA、C、G及びTの4つのヌクレオチドの相対的な頻度(パーセンテージ)を示す。
図12-2】図12-1の続きである。
図12-3】図12-2の続きである。
図12-4】図12-3の続きである。
図13】T細胞の転写活性がある及び抑制されているクロマチンにおけるSB並びにLV挿入部位の代表例を示す図である。RNAポリメラーゼII(PolII)によって網羅される又は特異的ヒストン修飾(x軸に挙げた)を保有する染色体領域を、活性化型ヒトT細胞に関して得られる利用可能なデータセットから決定した。ランダムな対照(点線)と比較したChIP-Seqピークにおける組み込み部位の代表例の倍率変化をy軸に示す。
図14A】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、SB100X mRNA及びCD19-CAR MCを受けた非活性化T細胞に実施した図である。
図14B】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、非活性化模擬トランスフェクトされたT細胞に実施した図である。
図15A】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、SB100X mRNA及びCD19-CAR MCを受けた非活性化T細胞に実施し、CD19+ EBV-LCLを使用して増大させた図である。
図15B】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。CD19+標的細胞に対する細胞溶解活性を、標準的な4時間の細胞毒性アッセイにおいて分析した図である。
図16A】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、SB100X mRNA及びCD19-CAR MCを受けた非活性化T細胞に実施し、トランスフェクション後に、抗原依存的な増大なしにT細胞培地中で維持した図である。
図16B】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。CD19+標的細胞に対する細胞溶解活性を、標準的な4時間の細胞毒性アッセイにおいて分析した図である。
図17A】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、SB100X MC及びCD19-CAR MC(比1:1)を受けた(左ドットプロット)又は模擬トランスフェクトされた(右ドットプロット)非活性化CD4+ T細胞に、実施した図である。
図17B】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。遺伝子移入を、SB100X MC及びCD19-CAR MC(比1:1)を受けた(左ドットプロット)又は模擬トランスフェクトされた(右ドットプロット)非活性化CD8+ T細胞に実施した図である。
図17C】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析。CD19+標的細胞に対するCD8+ CD19 CAR T細胞の細胞溶解活性を、標準的な4時間の細胞毒性アッセイにおいて分析した図である。
図18】トランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析を示す図である。遺伝子移入を、Agile Pulse MAXシステムを使用してSB100X MC及びCD19-CAR MC(比1:1)で電気穿孔したCD8+ T細胞に実施した。
図19A】SB100X及びCD19-CAR MC DNAの滴定並びに得られたCD19-CARトランスポゾンコピー数との相関。滴定した量のSB100XをコードしているMC及びCD19-CARをコードしているMCでトランスフェクトしたCD8+ T細胞におけるトランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析を示す図である。代表的な1つの実験のフローサイトメトリードットプロットを示す図である。
図19B】SB100X及びCD19-CAR MC DNAの滴定並びに得られたCD19-CARトランスポゾンコピー数との相関。滴定した量のSB100XをコードしているMC及びCD19-CARをコードしているMCでトランスフェクトしたCD8+ T細胞におけるトランスフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析を示す図である。EGFRt+ T細胞のパーセンテージ(左線図)及びEGFRtマーカーに対する染色後の平均蛍光強度(右線図)を示す図である。データは、異なるドナー由来T細胞によるn=2の独立した実験の平均値±SDを表す。
図19C】SB100X及びCD19-CAR MC DNAの滴定並びに得られたCD19-CARトランスポゾンコピー数との相関。ポリクローナルEGFRt+ CD8+ T細胞を、FACS精製し、ゲノムDNAをドロップレットデジタルPCRによるトランスポゾンコピー数分析のために単離した。データは、平均トランスポゾンコピー数を示し、異なるドナー由来T細胞によるn=2の独立した実験の平均値±SDを表す。
図20A】SB100X MC及びCD19-CAR MCのトランスフェクション後9日目におけるVγ9Vδ2 γδ T細胞におけるEGFRt発現のフローサイトメトリー分析を示す図である。
図20B】CD19+ EBV-LCLによる刺激後のVγ9Vδ2 γδ T細胞におけるEGFRt発現のフローサイトメトリー分析を示す図である。
図20C】CD19+標的細胞に対するCD19-CAR改変及び模擬形質導入したVγ9Vδ2 γδT細胞の細胞溶解活性を、標準的な4時間の細胞毒性アッセイにおいて分析した図である。
図20D】CD19+標的細胞による刺激後のCD19-CAR改変及び模擬形質導入したVγ9Vδ2 γδ T細胞によるサイトカイン分泌を、共培養20時間後に除去した上清におけるELISAによって分析した図である。
図21】バルクPBMCへのSB100X MC及びCD19-CAR MCのトランスフェクション後9日目におけるEGFRt発現のフローサイトメトリー分析を示す図である。Vγ9Vδ2 γδ T細胞(CD3+ Vγ9Vδ2+)、NKT細胞(CD3+、CD56+)及びNK細胞(CD3-、CD56+)におけるEGFRt発現。
【発明を実施するための形態】
【0017】
現在までに、プラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているトランスポゾン(TE)を使用する哺乳動物細胞のゲノムへの導入遺伝子の転位並びに安定な組み込みのための技術が、先行技術に開示されてきた。より具体的には、プラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているトランスポゾンを使用するヒトTリンパ球のゲノムへの腫瘍反応性TCR及びCARをコードしている導入遺伝子の転位並びに安定な組み込みのための技術が、先行技術に開示されてきた。
【0018】
ヒトTリンパ球において、プラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているトランスポゾン(TE)( エレクトロトランスファーを含めた様々な方法によってTリンパ球に導入される)の使用により、T細胞への非常に低レベルの安定な遺伝子移入(一般に<10%)(Huang Mol Therapy 2008; Field PLoS1 2013)、T細胞への遺伝物質の導入と関連する高レベルの毒性が生じ、意図する治療上の使用に充分な量の遺伝子改変T細胞を得るには、更なる選択手順(機械的、例えばビーズに基づく若しくはFACS選別及び/又は生物学的、例えば抗原依存的刺激)及びex vivo増大(一般に数週間)(Singh Immunol Rev 2014)を必要とする。しかしながら、非常に著しいことに、遺伝子移入がプラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているCARトランスポゾンで実施されたCAR改変Tリンパ球の使用は、臨床前及び臨床適用において(レンチウイルス又はレトロウイルス遺伝子移入によって遺伝子改変されたCAR T細胞と比較して)治療効果が劣っている又は更にはそれを欠くことを示した。
【0019】
本発明において、本発明者らは、小環DNAにコードされているトランスポゾン(eGFP又はCD19特異的CARをコードしている)と組み合わせてmRNAにコードされているトランスポザーゼ(SB100X)を初めて使用して、ヒトTリンパ球への遺伝子移入を達成した。この方法により、本発明者らは、プラスミドDNAにコードされているトランスポザーゼ(SB100X)及びプラスミドDNAにコードされているトランスポゾン(eGFP又はCD19特異的CARをコードしている)の使用と比較して、Tリンパ球に対して著しく低い毒性で、非常に高いレベル(>50%)の安定なTE組み込み、長期間安定な導入遺伝子発現(少なくとも4週間、同じレベルで安定)を達成した。
【0020】
本発明の新規の手法に伴うより高い遺伝子移入率及びより低い毒性のため、治療上の数を得るためのex vivoでの培養時間を著しく短縮し、及び/又は所与の時間内での遺伝子改変Tリンパ球の全体の収量を著しく高めることができ、更なる選択若しくは増大手順なしに直接の治療上の使用も可能になる。
【0021】
本発明は、哺乳動物細胞のゲノムへのTEの安定な組み込みを達成するための、mRNAにコードされているトランスポザーゼと組み合わせた小環DNAにコードされているトランスポゾン(TE)の使用について初めて記述する。
【0022】
より具体的には、本発明は、リンパ球のゲノムへのTEの安定な組み込みを達成するための、mRNAにコードされているトランスポザーゼと組み合わせた小環DNAにコードされているトランスポゾン(TE)の使用について初めて記述する。
【0023】
更に、本発明は、リンパ球へ導入遺伝子を送達するための、トランスポザーゼの任意の潜在的供給源(mRNA、プラスミドDNA、小環DNA、直鎖状DNA、ポリペプチドを含むがこれに限定されない)と組み合わせた小環DNAにコードされているトランスポゾン(TE)の使用について初めて記述する。
【0024】
更に、本発明の好ましい実施形態に関して、本発明は、がんの免疫療法に使用するための腫瘍反応性ヒトTリンパ球を得るための、mRNAにコードされているsleeping beautyトランスポザーゼSB100Xと組み合わせた腫瘍反応性TCR又はCARの遺伝情報を含有する小環DNAにコードされているトランスポゾンの使用について初めて記述する。
【0025】
更に、本発明は、リンパ球においてプラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているトランスポゾン(TE)を使用する確立された従来の方法と比較して、mRNAにコードされているトランスポザーゼと組み合わせた小環DNAにコードされているトランスポゾン(TE)の使用により達成される著しく高い安定な遺伝子移入率及び著しく減少した毒性を与える効果的な技術的進歩について記述する。
【0026】
安定な遺伝子移入を、mRNAにコードされているトランスポザーゼと組み合わせた小環DNAにコードされているトランスポゾン(TE)の使用により達成できるという発見は、新規であり、先行技術に開示されておらず、mRNAは、Tリンパ球及び他の哺乳動物細胞の核又は細胞質への挿入後に短命であり、急速に分解することが公知なので、予想外であった。
【0027】
プラスミドDNAにコードされているトランスポザーゼ及びプラスミドDNAにコードされているトランスポゾンを使用する確立された従来の方法と比較して、トランスポザーゼの供給源としてのmRNAが、小環DNAからの転位を可能にするのに適切且つ充分であろうことは、従って、予想も予期もされ得なかった、またトランスポザーゼの供給源としてのmRNAの使用が、より高い転位率をもたらすであろうことも予想又は予期され得なかった。
【0028】
本明細書では、用語「小環DNA」とは、細菌複製起点及び抗生物質耐性遺伝子を欠くスーパーコイルDNA分子であるベクターのことを指す。従って、それらは、真核生物の発現カセットで主に構成される(例えば、F. JiaらNature methods、Vol.7、no.3、197~199頁、March 2010を参照)。
【0029】
本明細書では、「ゲノムセーフハーバー」とは、以下の5つの基準を同時に満たすヒト染色体の領域である:超保存でない、miRNA遺伝子から300kb超離れている、転写開始部位(TSS)から50kb超離れている、がんに関与する遺伝子から300kb超離れている及び転写単位の外側である。
【0030】
本明細書では、「超保存」ゲノム染色体領域とは、ヒト、マウス及びラットゲノムにおいて完全に保存されている非コード遺伝子内又は遺伝子間領域である。
【0031】
好ましい実施形態
本発明の好ましい実施形態は、がん養子免疫療法用の腫瘍反応性CAR改変Tリンパ球を生成するためのmRNAにコードされているSB100Xトランスポザーゼ及び小環DNAにコードされているCARトランスポゾンの使用である。
【0032】
有用な実施形態において、このCARは、CD19、CD20、CD22、CD33、CD44v6、CD123、CD135、EpCAM、EGFR、EGFRバリアント、GD2、ROR1、ROR2、CD269、CD319、CD38、CD138又は腫瘍細胞、疾患細胞若しくは正常細胞において発現される任意の他の表面分子に特異的である。
【0033】
別の有用な実施形態において、小環DNAは、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子、形質導入マーカー、又は細胞に導入されることが望ましい任意の他の天然に存在する若しくは合成分子をコードすることができる。
【0034】
別の有用な実施形態において、改変細胞は、CD8+キラーT細胞、CD4+ヘルパーT細胞、ナイーブT細胞、メモリーT細胞、セントラルメモリーT細胞、エフェクターメモリーT細胞、メモリー幹T細胞、インバリアントT細胞、NKT細胞、サイトカイン誘導性キラーT細胞、g/d T細胞、Bリンパ球、ナチュラルキラー細胞、単球、マクロファージ、樹状細胞、顆粒球、又は遺伝子改変に使用されることが望ましい任意の他の哺乳動物細胞型である。
【0035】
有用な実施形態において、mRNA及び小環DNAは、エレクトロポレーション、ヌクレオフェクション等のエレクトロトランスファー;lipofectamin、fugene等の物質によるケモトランスファー、リン酸カルシウム;ナノ粒子、又は細胞に物質を移入するのに適している考え得る任意の他の方法によって細胞に導入される。
【0036】
有用な実施形態において、ゲノムへの転位エレメントの転位を媒介するトランスポザーゼは、Sleeping Beauty、PiggyBac、Frog Prince、Himarl、Passport、Minos、hAT、Tol1、Tol2、AciDs、PIF、Harbinger、Harbinger3-DR、及びHsmar1、並びに同等の、より低い及び/又はより高い転位活性を持つそれぞれの任意の誘導体である。
【0037】
本発明の別の有用な実施形態において、SB100Xトランスポザーゼ自体は、小環DNA、直鎖状DNA、ポリペプチド、又は小環DNAにコードされているTEの転位を達成するのに適切な任意の他の供給源として送達されてもよい。
【0038】
本発明の特に好ましい実施形態は、以下の項目に定義される:
【0039】
1. 哺乳動物細胞のゲノムに転位エレメントを安定して組み込むための、
転位エレメントをコードしている小環DNA及びトランスポザーゼの供給源の組合せ
の使用。
【0040】
2. トランスポザーゼの供給源が、トランスポザーゼをコードしている核酸である、項目1に記載の使用。
【0041】
3. トランスポザーゼをコードしている核酸が、トランスポザーゼをコードしているmRNA、トランスポザーゼをコードしているプラスミドDNA、トランスポザーゼをコードしている小環DNA又はトランスポザーゼをコードしている直鎖状DNAである、項目2に記載の使用。
【0042】
4. トランスポザーゼをコードしている核酸が、トランスポザーゼをコードしているmRNAである、項目3に記載の使用。
【0043】
5. トランスポザーゼをコードしている核酸が、トランスポザーゼをコードしている小環DNAである、項目3に記載の使用。
【0044】
6. トランスポザーゼをコードしている小環DNA及び転位エレメントをコードしている小環DNAが、同じ小環DNAである、項目5に記載の使用。
【0045】
7. トランスポザーゼの供給源が、トランスポザーゼポリペプチドである、項目1に記載の使用。
【0046】
8. トランスポザーゼが、SB100Xである、項目1から7のいずれか1つに記載の使用。
【0047】
9. 哺乳動物細胞が、哺乳動物リンパ球である、項目1から8のいずれか1つに記載の使用。
【0048】
10. 哺乳動物リンパ球が、ヒトリンパ球である、項目9に記載の使用。
【0049】
11. リンパ球がTリンパ球である、項目9又は10に記載の使用。
【0050】
12. 哺乳動物細胞が、CD8+キラーT細胞、CD4+ヘルパーT細胞、ナイーブT細胞、メモリーT細胞、セントラルメモリーT細胞、エフェクターメモリーT細胞、メモリー幹T細胞、インバリアントT細胞、NKT細胞、サイトカイン誘導性キラーT細胞、g/d T細胞、Bリンパ球、ナチュラルキラー細胞、単球、マクロファージ、樹状細胞、又は顆粒球である、項目1から8のいずれか1つに記載の使用。
【0051】
13. 哺乳動物細胞が、CD8+キラーT細胞又はCD4+ヘルパーT細胞である、項目1から12のいずれか1つに記載の使用。
【0052】
14. 転位エレメントが、T細胞受容体又はキメラ抗原受容体の発現のための遺伝情報を含有し、哺乳動物細胞がヒトTリンパ球である、項目1から13のいずれか1つに記載の使用。
【0053】
15. T細胞受容体又はキメラ抗原受容体が、腫瘍反応性であり、使用により得られるヒトTリンパ球が、がんの養子免疫療法における使用に適している腫瘍反応性ヒトTリンパ球である、項目14に記載の使用。
【0054】
16. 転位エレメントが、キメラ抗原受容体のための遺伝情報を含有する、項目14又は15に記載の使用。
【0055】
17. キメラ抗原受容体が、CD19、CD20、CD22、CD33、CD44v6、CD123、CD135、EpCAM、EGFR、EGFRバリアント、GD2、ROR1、ROR2、CD269、CD319、CD38又はCD138に特異的である、項目16に記載の使用。
【0056】
18. 転位エレメントをコードしている小環DNAが、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーをコードする、項目1から17のいずれか1つに記載の使用。
【0057】
19. 使用がin vitro使用である、項目1から18のいずれかに記載の使用。
【0058】
20. トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、エレクトロポレーション、ヌクレオフェクション等のエレクトロトランスファー;ケモトランスファー、リン酸カルシウム;又はナノ粒子により細胞に導入される、項目2から6又は8から19のいずれか1つに記載の使用。
【0059】
21. ゲノムへの転位エレメントの転位を媒介するトランスポザーゼが、Sleeping Beauty、PiggyBac、Frog Prince、Himarl、Passport、Minos、hAT、Tol1、Tol2、AciDs、PIF、Harbinger、Harbinger3-DR、及びHsmar1、又は転位活性を有するその誘導体である、項目2から7又は9から20のいずれか1つに記載の使用。
【0060】
22. 哺乳動物細胞のゲノムに転位エレメントを安定して組み込むための、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼの供給源
の組合せの使用であって、
転位エレメントをコードしているDNAが、複製起点を欠いていており、且つ/又は抗生物質耐性遺伝子を欠いている使用。
【0061】
23. 転位エレメントをコードしているDNAが、複製起点を欠いている、項目22に記載の使用。
【0062】
24. 転位エレメントをコードしているDNAが、抗生物質耐性遺伝子を欠いている、項目22に記載の使用。
【0063】
25. 転位エレメントをコードしているDNAが、複製起点を欠いており、且つ抗生物質耐性遺伝子を欠いている、項目22から24のいずれか1つに記載の使用。
【0064】
26. 転位エレメントをコードしているDNAが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択されるプラスミドから前記複製起点及び/又は前記抗生物質耐性遺伝子を欠失させることにより得ることが可能である、項目22から25のいずれか1つに記載の使用。
【0065】
27. 哺乳動物細胞のゲノムに転位エレメントを安定して組み込むための、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼの供給源
の組合せの使用であって、
転位エレメントをコードしているDNAが、少なくとも1塩基対プラスミドを短縮することによって得ることが可能であり、プラスミドが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択される使用。
【0066】
28. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても3.0kb、好ましくは長くても2.0kbを超えない、項目22から27のいずれか1つに記載の使用。
【0067】
29. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.5kbを超えない、項目22から28のいずれか1つに記載の使用。
【0068】
30. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.0kbを超えない、項目22から29のいずれか1つに記載の使用。
【0069】
31. 転位エレメントをコードしているDNAが、項目1から21のいずれか1つで使用される小環DNAである、項目22から30のいずれか1つに記載の使用。
【0070】
32. 導入遺伝子が、項目14から17のいずれか1つに定義されるT細胞受容体又はキメラ抗原受容体であり、哺乳動物細胞がヒトTリンパ球である、項目22から31のいずれか1つに記載の使用。
【0071】
33. 導入遺伝子が、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーである、項目22から31のいずれか1つに記載の使用。
【0072】
34. 使用がin vitro使用である、項目22から33のいずれか1つに記載の使用。
【0073】
35. トランスポザーゼの供給源が、項目2から6、8又は21のいずれか1つに規定の通りである、項目22から34のいずれか1つに記載の使用。
【0074】
36. 哺乳動物細胞が、項目9から14のいずれか1つに規定の通りである、項目22から31及び33から35のいずれか1つに記載の使用。
【0075】
37. 哺乳動物細胞が、初代細胞、好ましくは初代ヒト細胞である、項目1から36のいずれか1つに記載の使用。
【0076】
38. 非ウイルス使用である、項目1から37のいずれか1つに記載の使用。
【0077】
39. 安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸の組合せを導入する工程
を含み、それによって組換え哺乳動物細胞を得る方法。
【0078】
40. トランスポザーゼをコードしている核酸が、項目3から6、8又は21のいずれか1つに規定の通りである、項目39に記載の方法。
【0079】
41. トランスポザーゼが、SB100Xである、項目39又は40のいずれか1つに記載の方法。
【0080】
42. 哺乳動物細胞が、哺乳動物リンパ球である、項目39から41のいずれか1つに記載の方法。
【0081】
43. 哺乳動物リンパ球が、ヒトリンパ球である、項目42に記載の方法。
【0082】
44. リンパ球がTリンパ球である、項目42又は43に記載の方法。
【0083】
45. 哺乳動物細胞が、CD8+キラーT細胞、CD4+ヘルパーT細胞、ナイーブT細胞、メモリーT細胞、セントラルメモリーT細胞、エフェクターメモリーT細胞、メモリー幹T細胞、インバリアントT細胞、NKT細胞、サイトカイン誘導性キラーT細胞、g/d T細胞、Bリンパ球、ナチュラルキラー細胞、単球、マクロファージ、樹状細胞、又は顆粒球である、項目39から41のいずれか1つに記載の方法。
【0084】
46. 哺乳動物細胞が、CD8+キラーT細胞又はCD4+ヘルパーT細胞である、項目39から45のいずれか1つに記載の方法。
【0085】
47. 転位エレメントが、T細胞受容体又はキメラ抗原受容体の発現のための遺伝情報を含有し、哺乳動物細胞がヒトTリンパ球である、項目39から46のいずれか1つに記載の方法。
【0086】
48. T細胞受容体又はキメラ抗原受容体が、腫瘍反応性であり、方法により得られるヒトTリンパ球が、がんの養子免疫療法における使用に適している腫瘍反応性ヒトTリンパ球である、項目47に記載の方法。
【0087】
49. 転位エレメントが、キメラ抗原受容体のための遺伝情報を含有する、項目47又は48に記載の方法。
【0088】
50. キメラ抗原受容体が、CD19、CD20、CD22、CD33、CD44v6、CD123、CD135、EpCAM、EGFR、EGFRバリアント、GD2、ROR1、ROR2、CD269、CD319、CD38又はCD138に特異的である、項目49に記載の方法。
【0089】
51. 転位エレメントをコードしている小環DNAが、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーをコードする、項目39から50のいずれか1つに記載の方法。
【0090】
52. in vitro方法である、項目39から51のいずれか1つに記載の方法。
【0091】
53. トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、エレクトロポレーション、ヌクレオフェクション等のエレクトロトランスファー;ケモトランスファー、リン酸カルシウム;又はナノ粒子により細胞に導入される、項目39から52のいずれか1つに記載の方法。
【0092】
54. ゲノムへの転位エレメントの転位を媒介するトランスポザーゼが、Sleeping Beauty、PiggyBac、Frog Prince、Himarl、Passport、Minos、hAT、Tol1、Tol2、AciDs、PIF、Harbinger、Harbinger3-DR、及びHsmar1、又は転位活性を有するその誘導体である、項目39から41又は43から53のいずれか1つに記載の方法。
【0093】
55. 転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸の組合せを、哺乳動物細胞に一緒に導入する、項目1からの54いずれか1つに記載の方法又は使用。
【0094】
56. 転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸が、同じ小環DNAである、項目54に記載の方法又は使用。
【0095】
57. トランスポザーゼをコードしている核酸及び転位エレメントをコードしている小環DNAが、モル比1:1以上、好ましくはモル比2:1から10:1、より好ましくはモル比3:1から9:1、なおより好ましくはモル比4:1から8:1で哺乳動物細胞に導入される、項目39から56のいずれか1つに記載の方法。
【0096】
58. 安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼをコードしている核酸
の組合せを導入する工程
を含み、それによって組換え哺乳動物細胞を得、
転位エレメントをコードしているDNAが、複製起点を欠いており、且つ/又は抗生物質耐性遺伝子を欠いている方法。
【0097】
59. 転位エレメントをコードしているDNAが、複製起点を欠いている、項目58に記載の方法。
【0098】
60. 転位エレメントをコードしているDNAが、抗生物質耐性遺伝子を欠いている、項目58又は59に記載の方法。
【0099】
61. 転位エレメントをコードしているDNAが、複製起点を欠いており、且つ抗生物質耐性遺伝子を欠いている、項目58から60のいずれか1つに記載の方法。
【0100】
62. 転位エレメントをコードしているDNAが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択されるプラスミドから前記複製起点及び/又は前記抗生物質耐性遺伝子を欠失させることにより得ることが可能である、項目58から61のいずれか1つに記載の方法。
【0101】
63. 安定して組み込まれた転位エレメントを含有する組換え哺乳動物細胞を得る方法であって、
哺乳動物細胞に、
導入遺伝子の発現カセットを含有する転位エレメントをコードしているDNA及び
トランスポザーゼをコードしている核酸
の組合せを導入する工程
を含み、それによって組換え哺乳動物細胞を得、
転位エレメントをコードしているDNAが、少なくとも1塩基対プラスミドを短縮することによって得ることが可能であり、プラスミドが、
pT、
pT2、
pTのDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、
pT2のDNA配列と少なくとも90%同一であるDNA配列を有するプラスミド、及び
転位エレメントのドナープラスミドとして適切な任意の他のプラスミド
からなる群から選択される方法。
【0102】
64. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても3.0kb、好ましくは長くても2.0kbを超えない、項目58から63のいずれか1つに記載の方法。
【0103】
65. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.5kbを超えない、項目58から64のいずれか1つに記載の方法。
【0104】
66. 転位エレメントをコードしている前記DNAの全長が、前記発現カセットの長さより長くても1.0kbを超えない、項目58から65のいずれか1つに記載の方法。
【0105】
67. 転位エレメントをコードしているDNAが、項目1から21のいずれか1つで使用される小環DNAである、項目58から66のいずれか1つに記載の方法。
【0106】
68. 導入遺伝子が、項目14から17のいずれか1つに定義されるT細胞受容体又はキメラ抗原受容体であり、哺乳動物細胞がヒトTリンパ球である、項目58から67のいずれか1つに記載の方法。
【0107】
69. 導入遺伝子が、a/b若しくはg/d T細胞受容体、サイトカイン、自殺遺伝子又は形質導入マーカーである、項目58から67のいずれか1つに記載の方法。
【0108】
70. in vitro方法である、項目58から69のいずれか1つに記載の方法。
【0109】
71. トランスポザーゼをコードしている核酸が、項目40に規定の通りである、項目58から70のいずれか1つに記載の方法。
【0110】
72. 哺乳動物細胞が、項目9から14のいずれか1つに規定の通りである、項目58から67及び69から71のいずれか1つに記載の方法。
【0111】
73. 哺乳動物細胞が、初代細胞、好ましくは初代ヒト細胞である、項目39から72のいずれか1つに記載の方法。
【0112】
74. 非ウイルス方法である、項目39から73のいずれか1つに記載の方法。
【0113】
75. 前記組合せが、
転位エレメントをコードしているDNA又は小環DNA及び
トランスポザーゼをコードしている核酸
を同時に導入することによって導入される、項目58から74のいずれか1つに記載の方法。
【0114】
76. 転位エレメントをコードしている前記DNA又は小環DNA及び
トランスポザーゼをコードしている前記核酸
が、同じ小環DNAである、項目75に記載の方法。
【0115】
77. 前記組合せが、トランスポザーゼをコードしている前記核酸及び
転位エレメントをコードしている前記DNA又は小環DNA
を順次導入することによって導入される、項目39から54及び56から74のいずれか1つに記載の方法。
【0116】
78. 前記組合せが、
転位エレメントをコードしている前記DNA又は小環DNA及び
トランスポザーゼをコードしている前記核酸
を順次導入することによって導入される、項目39から54及び56から74のいずれか1つに記載の方法。
【0117】
79. 転位エレメントをコードしている小環DNAが、直鎖化DNA又は環状DNAである、項目1から79のいずれか1つに記載の方法又は使用。
【0118】
80. トランスポザーゼの供給源又はトランスポザーゼをコードしている核酸が、トランスポザーゼをコードしている小環DNAであり、その小環DNAが、直鎖化小環DNA又は環状小環DNAである、項目1から79のいずれか1つに記載の方法又は使用。
【0119】
81. トランスポザーゼをコードしている核酸及び転位エレメントをコードしているDNA又は小環DNAが、質量比1:1以上、好ましくは質量比2:1から10:1、より好ましくは質量比3:1から9:1、なおより好ましくは質量比4:1から8:1で哺乳動物細胞に導入される、項目39から80のいずれか1つに記載の方法。
【0120】
82. 項目38から81のいずれか1つに記載の方法によって得ることが可能な組換え哺乳動物細胞。
【0121】
83. 導入遺伝子の発現カセットを含有する転位エレメントを少なくとも1コピー含有する組換えヒトT細胞。
【0122】
84. 前記細胞における転位エレメントのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、項目82又は83に記載の組換え細胞。
【0123】
85. 前記細胞における転位エレメントのコピー数が、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、項目82又は83に記載の組換え細胞。
【0124】
86. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの0%~5%が、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0125】
87. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも5%が、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0126】
88. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも10%が、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0127】
89. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも15%が、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0128】
90. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも20%が、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
の全てを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0129】
91. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも40%が、以下の基準:
(v)転写単位の外側
を満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細胞。
【0130】
92. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも1つ、好ましくは全てが、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
のうち少なくともいずれか1つを満たすゲノム染色体領域に組み込まれる、項目82から85のいずれか1つに記載の組換え細
【0131】
93. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも1つ、好ましくは全てが、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
のうち少なくともいずれか2つを満たすゲノム染色体領域に組み込まれる、項目82から92のいずれか1つに記載の組換え細胞。
【0132】
94. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも1つ、好ましくは全てが、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
のうち少なくともいずれか3つを満たすゲノム染色体領域に組み込まれる、項目82から93のいずれか1つに記載の組換え細胞。
【0133】
95. 組換え細胞の染色体ゲノムにおける転位エレメントのコピーの少なくとも1つ、好ましくは全てが、以下の基準:
(i)超保存でない、
(ii)miRNA遺伝子から300kb超離れている、
(iii)転写開始部位から50kb超離れている、
(iv)がんに関与する遺伝子から300kb超離れている、且つ
(v)転写単位の外側
のうち少なくともいずれか4つを満たすゲノム染色体領域に組み込まれる、項目82から94のいずれか1つに記載の組換え細胞。
【0134】
96. 組換え細胞の染色体ゲノムにおける転位エレメントのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、項目82から95のいずれか1つに記載の組換え細胞。
【0135】
97. 組換え細胞における転位エレメントの一時的なコピーのコピー数が、少なくとも1個、少なくとも2個、少なくとも3個、少なくとも4個、少なくとも5個、少なくとも6個、少なくとも7個、少なくとも8個、少なくとも9個又は少なくとも10個である、項目81から94のいずれか1つに記載の組換え細胞。
【0136】
98. 医療に使用するための、項目82から97のいずれか1つに記載の組換え細胞。
【0137】
99. がんの処置に使用するための、項目82から97のいずれか1つに記載の組換え細胞。
【0138】
100. 免疫療法における使用である、項目97又は98のいずれか1つに規定の使用のための項目98又は99のいずれか1つに記載の組換え細胞。
【0139】
101. 免疫療法における使用が、自己免疫性疾患の処置に対する使用である、項目100に規定の使用のための項目100に記載の組換え細胞。
【0140】
102. 免疫療法における使用が、感染性疾患の処置に対する使用である、項目100に規定の使用のための項目100に記載の組換え細胞。
【0141】
103. 感染性疾患が、細菌感染、ウイルス感染又は真菌感染である、項目102に規定の使用のための項目102に記載の組換え細胞。
【0142】
104. 組換え細胞がT細胞である、項目98から103のいずれか1つに規定の使用のための項目98から103のいずれか1つに記載の組換え細胞。
【0143】
105. 遺伝子治療に使用するための、項目82から97のいずれか1つに記載の組換え細胞。
【0144】
106. 転位エレメントをコードしている小環DNA及びトランスポザーゼをコードしている核酸を含む組成物。
【0145】
107. トランスポザーゼをコードしている核酸が、項目3から6、8又は21のいずれか1つに規定の通りである、項目106に記載の組成物。
【0146】
108. 転位エレメントが、項目14から18のいずれか1つに規定の通りである、項目106又は107に記載の組成物。
【0147】
109. in vivo使用又はin vivo方法である、項目1から18、20から33、35から51、53から69、又は71から81のいずれか1つに記載の使用又は方法。
【0148】
110. 遺伝子治療における使用又は遺伝子治療のための方法である、項目109に記載の使用又は方法。
【0149】
本発明は、以下の非限定的な例によって例示される:
【実施例0150】
(実施例1)
mRNAにコードされている機能亢進性sleeping beautyトランスポザーゼ100X(SB100X)及び小環DNAにコードされているeGFP又はCD19-CAR導入遺伝子によるsleeping beautyに媒介される転位を使用するCAR改変ヒトCD8+及びCD4+ T細胞の調製。
材料及び方法
ヒト対象
血液サンプルを、Wurzburg大学(Universitatsklinikum Wurzburg、UKW)の施設内倫理委員会に承認された調査プロトコールに参加するための書面による同意書を準備した健康なドナーから得た。末梢血単核細胞(PBMC)を、Ficoll-Hypaque(Sigma、St.Louis、MO)上での遠心分離によって単離した。
【0151】
細胞株
293T細胞(ATCC:CRL-11268、アメリカンタイプカルチャーコレクション、Manassas、VA)を、10%ウシ胎仔血清及び100U/mLペニシリン/ストレプトマイシンで補充したダルベッコ改変イーグル培地中で培養した。K562(ATCC:CCL-243)、K562/ROR1、K562/CD19、Raji(ATCC:CCL-86)、JeKo-1(ATCC:CRL-3006)及びJeKo-1-ffluc細胞を、10%ウシ胎仔血清及び100U/mLペニシリン/ストレプトマイシンで補充したRPMI1640培地中で培養した(全ての細胞培養培地及び補助剤: GIBCO、Carlsbad、CA)。
【0152】
免疫表現型検査
PBMC及びT細胞系を、以下のコンジュゲートしたmAb:CD3、CD4、CD8、CD25、CD45、CD45RA、CD45RO、CD62L、CD69のうち1つ又は複数及び対応するアイソタイプ対照(BD Biosciences、San Jose、CA)で染色した。形質導入されたT細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Incorporated、Branchburg、NJ)及びストレプトアビジンPE(BD Biosciences、San Jose、CA)で染色した参考文献 27。生/死細胞識別のために、製造者による指示の通り7-AAD(BD Biosciences)による染色を実施した。フロー分析をFACSCantoで、選別精製をFACSAriaII(Becton Dickinson、Franklin Lakes、NJ)で行い、FlowJoソフトウェア(Treestar、Ashland、OR)を使用してデータを分析した。
【0153】
レンチウイルスベクター構築、レンチウイルスの調製及びCAR T細胞の生成
短いスペーサー及び4-1BB同時刺激ドメインと共にCD19特異的CARを含有するepHIV7レンチウイルスベクターの構築について記述されている(Hudecek Clin Cancer Res 2013)。全てのCAR構築物は、CARの下流に、短縮された上皮成長因子受容体(EGFRt;別名tEGFR)配列(Wang Blood 2011)をコードした。遺伝子を、T2Aリボソームスキップエレメントによって連結した。
【0154】
CAR/EGFRt及びffluc/eGFPをコードしているレンチウイルス上清を、Calphosトランスフェクション試薬(Clontech、Mountain View、CA)を使用してレンチウイルスベクタープラスミド並びにパッケージングベクターpCHGP-2、pCMV-Rev2及びpCMV-Gのそれぞれで同時トランスフェクトした293T細胞において作製した。培地を、トランスフェクション16時間後に交換し、レンチウイルスを、24、48及び72時間後に採集した。記述されている通り(Hudecek Clin Cancer Res 2013)、CAR T細胞を生成した。手短には、CD8+バルクT細胞、CD8+ TCM及びCD4+バルクT細胞を、健康なドナーのPBMCから選別し、抗CD3/CD28ビーズ(Life Technologies)で活性化し、レンチウイルス上清で形質導入した。レンチウイルス形質導入を、スピノキュレーションによって1日目に実施し、T細胞を、10%ヒト血清、グルタミン(glutamin)、100U/mLペニシリンストレプトマイシン及び50U/mL IL-2を含むRPMI-1640中で増殖させた。トリパンブルー染色を実施して、生T細胞を定量化した。増大後、EGFRt+ T細胞を濃縮し、照射B-LCLで刺激した。
【0155】
トランスポゾンベクター構築
トランスポゾンベクターpT2/HB(Addgen、#26557)を、Addgeneから入手した。強化緑色蛍光タンパク質(pT2/HB:eGFP)をコードしているトランスポゾンベクターを得るために、商業的な供給元(GeneArt、Regensburg)を使用してHindIII制限部位をコードしているコドン最適化した遺伝子、EF1/HTLVハイブリッドプロモーター、Kozak配列の上流にあるNheI制限部位及び強化GFP(eGFP)をコードしている配列、その後に終止コドン、並びにNotI及びBamHI制限部位を合成し、HindIII及びBamHI部位を使用してpT2/HBにサブクローニングした。CD19特異的CARをコードしているトランスポゾンベクター(pT2/HB:CD19-CAR)を得るために、上記(節:レンチウイルスベクター構築)のCD19-CAR_tEGFR遺伝子を、制限消化によってレンチウイルスベクターから得、NheI及びNotI制限部位を使用してpT2/HB:eGFPにサブクローニングして、eGFP導入遺伝子を置き換えた。機能亢進性sleeping beauty 100X(SB100X)トランスポザーゼをコードしているベクターを、Addgene(Addgene#34879:pCMV(CAT)T7-SB100)から入手した。
【0156】
小環DNA及びSB100X mRNAの調製
小環DNAは、Plasmid Factory(Bielefeld)によって専売のプロトコールを使用して作製された:i)pT2/HB:eGFP→MC-GFP;ii)pT2/HB:CD19-CAR→MC-CD19 CAR;及びiii)pCMV(CAT)T7-SB100→MC-SB100X。小環を、親和性クロマトグラフィーによって精製した。SB100X mRNAを、EUFETS(Idar-Oberstein)で標準的なプロトコールを使用するin vitro転写(IVT)によって作製し、又はmMessage mMachineキット(Ambion)を使用して組織内で作製した。
【0157】
SB転位によるGFP及びCAR発現T細胞の生成
CD8+バルクT細胞、CD8+ TCM及び/又はCD4+バルクT細胞を、健康なドナーのPBMCから選別し、抗CD3/CD28ビーズ(Life Technologies)で活性化し、活性化型ヒトTリンパ球に最適化されたプロトコールを使用してプラスミドDNA、小環DNA及び/又はmRNAを含有するヌクレオフェクション緩衝液/補助剤中で製造者(Lonza、Koln)の指示に従って4D nucleofector装置でヌクレオフェクトした。T細胞を、T細胞培地(RPMI/10%ヒト血清/グルタミン/pen-strp)中で維持し、増殖させた。表現型分析を、ヌクレオフェクション後に一定の間隔で実施して、導入した導入遺伝子を発現しているT細胞の割合を決定した。トリパンブルー染色による細胞計数を実施して、ヌクレオフェクション後及び増大中の固有の時点における細胞培養中の生細胞の数を決定した。
【0158】
細胞毒性、サイトカイン分泌及びCFSE増殖アッセイ
ホタルルシフェラーゼを安定して発現している標的細胞を、5×103個細胞/ウェルの3つ組で、様々なエフェクター対標的比(E:T)でエフェクターT細胞とインキュベートした。4時間インキュベーションした後、ルシフェリン基質を共培養に添加し、標的細胞及びT細胞を含有するウェルにおける発光シグナルの低下を、標的細胞単独と比較して、照度計(Tecan)を使用して測定した。特異的溶解を、標準的な式を使用して算出した参考文献 31。サイトカイン分泌分析の場合、50×103個T細胞を、1:1(K562/CD64)、2:1(Raji)、又は4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養し、IFNγ、TNFα及びIL-2を、インキュベーション24時間後に除去した上清において多重サイトカインイムノアッセイ(Luminex)又はELISA(Biolegend)により測定した。増殖分析の場合、50×103個T細胞を、0.2μMカルボキシフルオレセインスクシンイミジルエステル(CFSE、Invitrogen)で標識し、洗浄し、外因性サイトカインを含まないCTL培地中で2:1(Raji)又は4:1(K562/CD19、K562/ROR1及びK562)の比で標的細胞と共に3つ組ウェルで平板培養した。インキュベーションの72時間後に、細胞を、抗CD3又は抗CD4又は抗CD8 mAb及び分析から死細胞を除外するために7-AADで標識した。サンプルを、フローサイトメトリーによって分析し、生T細胞の細胞分裂をCFSE希釈物で評価した。増殖インデックスを、FlowJoソフトウェアを使用して算出した。
【0159】
NOD/SCID/γc-/-(NSG)マウスにおけるT細胞の養子移入
UKW動物飼育使用委員会は、全てのマウス実験を承認した。6~8週齢の雌NSGマウスを、Charles River Laboratoryから入手した又は組織内で飼育した。0日目に6~8週齢の雌NSGマウスを、尾静脈注射によってホタルルシフェラーゼを発現しているRaji腫瘍細胞5×105個で接種した。7日目に、n=5のマウス群は、CAR改変又は無改変対照T細胞(等しい割合のCD8+及びCD4+ T細胞を含有する)5×106個のi.v.注射を受けた。生物発光画像診断を実施して、腫瘍負荷量及び分布を決定し、カプランマイヤー分析を行って、生存を測定した。
【0160】
T細胞クローンにおけるトランスポゾン挿入のコピー数決定
T細胞クローンを、SB100X mRNA及びCD19-CAR MCでのトランスフェクションの少なくとも1カ月後に限界希釈法によって調製し、そのゲノムDNAを、FspBI及びDpnI制限酵素で消化した。ツーステップネステッドPCRを実施し(詳細:下記参照)、PCR産物をゲル電気泳動によって分析した。
【0161】
より具体的には、ゲノムDNAを、SB100X mRNA及びMCトランスポゾンのトランスフェクションの少なくとも1カ月後にEGFRt+ T細胞クローンから単離した。クローン当たり1μgのDNAを、FspBI(Thermo)及びDpnI(NEB)で消化した。その後の消化を適用して、親MCを断片化した、そうしないと、親MCが、コピー数決定を妨げる可能性があった。消化したDNAを、カラム精製し、20μLに溶出した。5μLを、FspBI突出特異的リンカー50pmolと16℃で終夜ライゲートした。リンカーは、10mM Tris-Cl pH8、50mM NaCl、0.5mM EDTA中でオリゴヌクレオチドL(+)及びL(-)FspBI 100-100pmolをアニールすることによって形成した。1μLのライゲーション反応物を、以下の条件:94℃ 3分間;94℃ 30秒間、63℃まで傾斜(1℃/秒)、30秒間、72℃ 1分間を10サイクル;94℃ 30秒間、61℃まで傾斜(1℃/秒)、30秒間、72℃ 1分間を25サイクル;72℃ 10分間、を使用するプライマーLinker(ライゲートしたリンカーに特異的)及びT-Bal-rev(トランスポゾンの5'末端逆位反復に特異的)を用いる第1のPCR反応の鋳型として使用した。1μLの100倍希釈したPCR反応物を、これらの条件:94℃ 3分間;94℃ 30秒間、65℃まで傾斜(1℃/秒)、30秒間、72℃ 1分間を10サイクル;94℃ 30秒間、63℃まで傾斜(1℃/秒)、30秒間、72℃ 1分間を25サイクル;72℃ 10分間で、プライマーNested及びT-Balを用いるネステッドPCRに使用した。5μLのネステッドPCR反応物を、1%アガロースゲルにロードしてバンドを可視化し、そのバンドは、隣接するゲノムDNAを含む挿入部位に対応する。
【0162】
SB挿入ライブラリの構築及び配列決定
ゲノムDNAを、ドナーのCD8+ CAR T細胞系n=3から単離し、超音波破砕器を使用して剪断し、3ステップPCRによって各組み込み部位の周りのゲノム領域を増幅した(詳細:下記参照)。最終PCR産物を、1%アガロースゲルに流し、200~500bpスミアを精製し、配列決定した(IlluminaHiSeq、BeckmanCoulter Genomics)。
【0163】
より具体的には、3つのドナーのCD8+ EGFRt+ T細胞のゲノムDNAを、トランスフェクションの少なくとも1カ月後に単離した。DNA 2μgを、Covaris M220超音波破砕器で、50μLのScrew-Cap microTUBE中で以下の設定:ピーク入射力50W、デューティ比20%、バースト当たり200サイクル、処理28秒間を使用して平均断片サイズ600bpに剪断した。1.2μgの剪断したDNAを、NEBNext End Repair Module(NEB)を使用して平滑化し、5'リン酸化し、製造者の推奨に従ってNEBNext dA-Tailing Module(NEB)を用いて3'Aテールを付加した。DNAを、Clean and Concentrator Kit(Zymo)で精製し、10mM Tris pH8(EB) 8μLに溶出して、容積20μL中でT4リガーゼ(NEB)を用いてT-リンカー(下記参照)50pmolと16℃で終夜ライゲーションした。T-リンカーは、10mM Tris-Cl pH8、50mM NaCl、0.5mM EDTA中でオリゴヌクレオチドLinker_TruSeq_T+及びLinker_TruSeq_T- 100-100pmolをアニールすることによって形成した。熱不活化後に、組み込まれていないトランスポゾンドナープラスミドDNAの断片を囲むライゲーション産物を、50μL中で、DpnI(NEB)で3時間消化し、DNAをカラム精製し、EB 20μLに溶出した。溶出液6μLを、リンカー及びトランスポゾン逆位反復に特異的なプライマー:それぞれLinker及びT-Bal-Long 25pmolを用いて、条件:98℃ 30秒間;98℃ 10秒間、72℃ 30秒間を10サイクル;98℃ 10秒間、62℃まで傾斜(1℃/秒)、30秒間、72℃ 30秒間を15サイクル、72℃ 5分間でPCR Iに使用した。全てのPCR反応は、NEBNext High-Fidelity 2× PCR Master Mix(PCRプライマー配列については下表を参照のこと)で実施した。PCRをカラム精製し、EB 20μLに溶出し、10μLをプライマー: Nested及びLAM-SB-50を用いて、以下のプログラム:98℃ 30秒間;98℃ 10秒間、65℃まで傾斜(1℃/秒) 30秒間、72℃ 30秒間を12サイクル、72℃ 5分間でPCR IIに使用した。カラム精製したPCR IIの1/3を、異なるT細胞ドナーのサンプルをバーコード化するためのプライマーPE-nest-ind-N及びSB-20-bc-ill-N(Nは、Illumina配列決定後に異なるT細胞ドナーのサンプルを追跡するためだけにサンプルをバーコード化するIllumina TrueSeq指標の番号である)を用いて、以下のPCRプログラム:98℃ 30秒間;98℃ 10秒間、64℃まで傾斜(1℃/秒)、30秒間、72℃ 30秒間を12サイクル、72℃ 5分間を使用して、PCR IIIに使用した。最終PCR産物を、1%アガロースゲルで分離し、200~500bpのスミアをゲル単離し、精製した。ライブラリを、Beckman Coulter GenomicsのIllumina HiSeq機器においてシングルエンド100ヌクレオチド配列決定構成を使用して、rapidフローセル上で配列決定した。
【0164】
【表1A】
【0165】
【表1B】
【0166】
生物情報学分析
リードを、バーコードを使用して各ドナーに割り当て、RソフトウェアのShortreadツールを使用してトリミングし参考文献51、5ヌクレオチドのうちの2つが20未満のphredスコアになったらすぐに、残りの配列をクオリティートリミングした。得られたリードを、Bowtieを用いてhg19ヒトゲノムアセンブリに一意的にマップした参考文献52。それを支持する独立したリードが少なくとも10個ある場合、任意のSB挿入部位を有効であるとみなした。SB挿入部位のヌクレオチド組成を、RソフトウェアのSeqLogoツールを使用して算出し、プロットした。
【0167】
BEDtools v2.17.0を使用して参考文献53、挿入部位又は注釈付きのヒトゲノム特性(http://genome.ucsc.edu)において計算的に生成した10000個のランダムなゲノム位置の一組に注釈をつけた。がん関連遺伝子の組は、http://www.bushmanlab.org/links/genelistsから入手した参考文献39。非遺伝子部類は、hg19ゲノムアセンブリの染色体長から全ての注釈付き転写産物の座標を減算することによって形成した。遺伝子発現レベルに対するSB及びHIVの関連する挿入部位頻度について、本発明者らは、活性化型ヒトT細胞の公開されている遺伝子発現データを使用した参考文献37
【0168】
活性化型ヒトT細胞において得られるChIP-SeqデータのBEDファイルを、http://dir.nhlbi.nih.gov/papers/lmi/epigenomes/hgtcell.aspx参考文献54及びMACS ChIP-Seq peak calling アルゴリズム参考文献55「macs14-t *.bed-g hs--nomodel--nolambda--space=30」から取り出した。
【0169】
超保存エレメントのゲノム座標を入手し参考文献56、全てのヒトmiRNA遺伝子をダウンロードした(http://www.mirbase.org/ftp.shtml)。「ゲノムセーフハーバー」座標を、hg19ヒトゲノムアセンブリに対して全てのセーフハーバーサブカテゴリの全ての座標を交差させることによって得た。
【0170】
統計
統計的分析を、Prismソフトウェア(GraphPad)を使用して実施した。p<0.05の結果を、有意とみなした。
【0171】
結果
MCにコードされているトランスポザーゼ及びトランスポゾンを使用する転位は、高レベルの安定な遺伝子移入を可能にし、DNAトランスフェクションと関連する毒性を減少させる
MCを、EGFRt形質導入マーカー又はeGFPとcisで最適化されたCD19-CARを発現する一組の親pT2トランスポゾンドナーベクターから、及び機能亢進性SB100Xトランスポザーゼをコードしているプラスミドから調製した(図1B)。その後、トランスフェクションを、健康なドナーのCD8+ T細胞に実施し、トランスポゾン及びトランスポザーゼが、MC(MC-MC)又はプラスミド(P-P)として送達された際に達成され得る転位率並びに導入遺伝子発現の安定性を比較した。全ての実験において等量のトランスポゾン及びトランスポザーゼベクター、並びに等モル量のMC及び対応するプラスミドをトランスフェクトした。著しく高い転位率が、トランスフェクション後の全ての分析時点においてMCの組合せで改変されたT細胞に見られた。14日目に、CAR改変(即ちEGFRt+)T細胞の平均パーセンテージは、MCでは49.8%だがプラスミドではわずか12.8%であり、従ってプラスミドにコードされているSB100Xトランスポザーゼ及びCARトランスポゾンよりも、MCのトランスフェクション後に平均で4.4倍高かった(n=7、p<0.0001)。潜在的なCD19-CAR33の内因性シグナル伝達により、14日後に静止T細胞におけるEGFRt+ T細胞のパーセンテージは安定なままであり、更に経時的にやや増加した(図3B)。EGFRtに対して選択し、CD19+支持細胞と共に増大させたT細胞は、培養中の複数の増大サイクルにわたって及び少なくとも更なる6週間、安定な導入遺伝子発現を示した。転位有効性に対する類似のデータが、CD8+ T細胞におけるeGFP(図8A、B)で、及び複数のドナー由来CD4+ T細胞におけるCD19-CARとeGFPの両方で得られ、これにより転位の媒介においてMCが従来のプラスミドより優れているという本観察が確認された(図9)。
【0172】
SB転位による遺伝子改変T細胞の治療的に妥当な数の迅速な製造は、プラスミドDNAの電気的トランスフェクション後の激しい毒性により限定されてきた。本発明者らは、優れた転位を媒介することに加えて、MCがT細胞に対する毒性も少ないことを見出した。トランスフェクション後48時間の生T細胞のパーセンテージは、プラスミドと比較してMCで改変されたCD8+ T細胞において平均で1.4倍(CD19-CAR)及び3.2倍(eGFP)高かった(両方とも:n=3、p<0.05)(図2D;図3B;図8C)。MCのより高い転位率及びより低い毒性は、抗原依存的な増大なしでも培養14日以内に得ることができるCD19-CAR T細胞のおよそ6倍高い収量に換算された(n=4、p<0.05)(図3E)。全体的に、これらのデータにより、トランスポゾン及びトランスポザーゼドナーベクターとしてのMCの使用が、ヒトT細胞における転位の媒介に実行可能であり、非常に効果的であり、プラスミドDNAより優れていることが実証される。
【0173】
mRNAにコードされているSBトランスポザーゼを使用するMCからの転位
次に、MC DNAの代わりにmRNAとしてSB100Xを与えることが、MCトランスポゾンドナーベクターからの転位を達成するのに充分かどうか調査した。滴定実験を実施してSB100X mRNAとMCの最適比(1:1、2:1、4:1、8:1)を決定し、トランスフェクション後14日目にEGFRt発現をフローサイトメトリーによって分析した。プラスミドと比較して優れた転位率が、全ての比でmRNA-MCの組合せで見られた(図2B図2C)。SB100X mRNA及びCD19-CAR MCを、比4:1で使用した場合に最も高い転位率が実現され、それはプラスミドの組合せ(P-P)より3.7倍高い遺伝子移入率をもたらし(n=3;p<0.001)、MCの組合せと比較して実質的な差異はなかった(図2B図2C)。SB100X mRNAの量を更に増加させると(比8:1)、潜在的な過剰生産阻害効果により転位有効性の低下がもたらされた参考文献34。プラスミドと比較して、MCトランスポゾンと組み合わせたSB100X mRNAの使用は、トランスフェクション後48時間における生T細胞の著しく高い割合とも関連した(1.4倍より高い;n=3;p<0.05)。これは、14日間の培養期間の終了時に、遺伝子改変T細胞の実質的により高い収量に再び換算された(平均3.6倍より高い;n=4)(図3B)。重要なことに、本発明者らが最適なSB100X mRNAとCD19-CAR MCの組合せ(比4:1)で達成した転位率は、精製したナイーブ、セントラルメモリー、及びエフェクターメモリーCD8+ T細胞においても同様に高く(図10)、このことは、この遺伝子移入戦略が、バルクCD8+ T細胞集団においてCD19-CARで改変されるこれらの表現型的及び機能的に固有のサブセットに偏りを導入しないであろうことを示した。全体的に、これらのデータは、比較的短命なmRNAとしてSB100Xを与えることが、プラスミドと比較して優れたレベルの安定な遺伝子移入及び強化されたT細胞生存率でMCトランスポゾンドナーベクターからの転位を達成するのに十分であることを実証する。
【0174】
MC転位は、in vitro及びin vivoでCD19-CAR T細胞の強力な抗腫瘍性機能を与える
次に、MC及びプラスミドからのSB転位によってCAR改変されたT細胞の機能を分析し、その効力をLV形質導入により同じCD19-CAR構築物で改変したT細胞と比較した。CAR改変された及び対照の形質導入されていないCD8+及びCD4+ T細胞系の組を、ドナーn=3から調製し、CARを発現しているT細胞を、EGFRtマーカーを使用して純度>90%に濃縮した(図4A)。最初に、細胞溶解活性を、標的細胞としてCD19を安定して発現しているK562細胞、並びにRaji及びJeKo-1リンパ腫を使用して評価した。mRNA-MC、MC-MC及びP-P転位によって改変された様々なCD8+ CD19-CAR T細胞系は、LV形質導入によって生成されるCAR T細胞で観察されたそれと同等のレベルで同様に強力であり特異的な溶解を与えた(図4B)。CD19+リンパ腫との共培養後の定量的サイトカイン分析も、全てのCD8+並びにCD4+ CD19-CAR T細胞系におけるIFNγ及びIL-2の同程度の産生を示した(図4C)。更に、SB転位又はLV形質導入によって遺伝子改変されたかどうかに関わらず、同様に生産的な増殖(72時間に≧3回の細胞分裂)が、CFSE希釈によって全てのCD8+及びCD4+ CD19-CAR T細胞系に見られた(図4D図4E)。
【0175】
次に、抗腫瘍性有効性を、全身性CD19+リンパ腫異種移植片モデル(NSG/Raji-ffLuc)において分析し、SB100X mRNA及びCD19-CAR MCが、臨床転換に最も妥当な組合せになるので、分析をこれで改変されたCAR T細胞に集中した。実験により、SB改変CD8+及びCD4+ CD19-CAR T細胞の単回投与によって媒介される強力な抗腫瘍性効果が確認され、全ての処置マウス(それぞれn=5又はn=4)において急速なリンパ腫根絶が得られたが、対照T細胞を受けたマウスは進行性の有害なリンパ腫を示した(図5A図5B)。SB改変CAR T細胞は、応答のピーク時に末梢血中に検出され、リンパ腫クリアランス後に全てのマウスの骨髄中に持続され得る(図5D)。骨髄からの完全なリンパ腫根絶を、フローサイトメトリーによって確認した(図5E)。カプランマイヤー分析は、観察期間の終わりに全てのSB CD19-CAR処置群の生存を示し、比較のためにLV形質導入したCD19-CAR T細胞で処置したマウスと同等であった(図5C)。全体的に、これらのデータは、MCトランスポゾンドナーベクターからのSB転位によって生成されたCD19-CAR T細胞が、in vitro及びin vivoで非常に強力であり、LV形質導入によって生成されたCD19-CAR T細胞と等しく有効な抗腫瘍性応答を媒介することを実証している。
【0176】
トランスポゾン挿入部位分析によってほとんどランダムなゲノム組み込みパターンが明らかになる
安全性に関連する問題を解決するために、遺伝子コピー数及び挿入部位分析用のゲノムDNAを、SB100X mRNA及びCD19-CAR MCで改変されたT細胞から調製した。限界希釈法によって得られたCD8+ T細胞クローンにおけるCD19-CARトランスポゾンコピーの平均n=5(それぞれ3~8及び3~11)及びCD4+ T細胞クローンにおけるトランスポゾンコピーの平均n=6(3~12)が判明した(図6B図6C)。その後、ポリクローナルCD8+ CD19-CAR T細胞の挿入部位ライブラリを、Illumina MySeqプラットフォームにおける大規模並列配列決定のために構築した。MC由来CARトランスポゾン26834個の固有の挿入部位をマップし、特徴付けた。ヒトCD4+ T細胞におけるLV組み込み部位のデータベースを参照及び比較に役立てた参考文献35。トランスポゾン挿入部位の周囲20kbpウインドウにおけるヌクレオチド頻度の分析から、MCからの転位は、ほとんどランダムなヌクレオチド頻度で領域内に起こったが、LV挿入は、GCに富んだ染色体部分の方に偏ったことが明らかになった(図11A図11B)。しかしながら、挿入部位の周囲のより小さい1.5kbpウインドウにおいては、両方のベクター系が、ATに富んだDNAに優先傾向を呈した(図11C図11D)。パリンドロームのATATATATのモチーフが検出され、そのモチーフは、従来のドナープラスミドから起動されるトランスポゾンに見出されたものと同様に、存在するMC由来トランスポゾンの全てに隣接してSBのTAジヌクレオチド標的配列を含有する参考文献36(図12)。
【0177】
その後、ゲノムの固有の部位、例えばエクソン及びイントロン、遺伝子及びがん関連遺伝子へのCD19-CARトランスポゾン挿入の優先傾向があるかどうかを分析した。MCからの転位が、ごく少しであるが、遺伝子部類の方への統計的に有意(p<0.001)な偏りを伴って起こったことが判明し、しかしながら、評価した全ての部類において、この優先傾向は、LV組み込みで見られたそれより実質的に小さかった(図7A)。重要なことに、トランスポゾン挿入は、予想されるランダムな頻度と比較して遺伝子において1.15倍の濃縮及びがん関連遺伝子において1.29倍の濃縮しか示さなかったが、これらの部類においてそれぞれ2.11倍、2.64倍のLV関連挿入の濃縮があった(p<0.01及びp<0.05)。一致して、CD19-CARトランスポゾンも、ほとんどランダムな様式で非遺伝子領域に挿入された(ランダムと比較して0.89倍)が、これらの領域におけるLV導入遺伝子は、過少に示されている(ランダムと比較して0.23倍)ことが判明した(図7A)。
【0178】
更に、遺伝子内トランスポゾン挿入頻度と遺伝子発現レベルの間に関連があるかどうか決定した。活性化型ヒトT細胞の利用可能なトランスクリプトームプロファイル参考文献37を使用し、遺伝子を、発現レベルに従って等しいサイズの10個の群に集め、各群におけるトランスポゾン及びLV挿入を計数した。データは、MC由来トランスポゾンが、ほとんどランダムな様式で低度及び高度に発現されている遺伝子の両方に組み込まれたことを示し、高度に発現されている遺伝子に対してごくわずかな優先傾向を示した(図7B)。それに対し、LVは、高度に発現されている遺伝子への組み込みに対して強い優先傾向を示し、それぞれの遺伝子の挿入頻度と発現レベルの間に指数相関があった(R2 0.976)(図7B)。本発明者らは、H3K36及びH3K79トリメチル化並びにRNAポリメラーゼIIタグを持つ染色体領域におけるLV挿入の強い濃縮も見出し、それら全ては、高度に発現されている遺伝子に対するクロマチンの特徴である。LV挿入は、転写的に不活性なヘテロクロマチン染色体部分において過少に示され、H4K20、H3K27及びH3K9トリメチル化によって表れた(図13)。それに対し、トランスポゾン挿入は、活性な転写のマーカーの方にわずかな弱い親和性を示し、転写抑制されたクロマチンドメインへの組み込みに等しく有利に働いた(図13)。全体的に、これらのデータは、MCから起動されるSBトランスポゾンが、ヒトT細胞のゲノムにおいてランダムに近い組み込みパターンを示し、LVとは対照的に、高度に発現されている又は転写活性のある遺伝子に対して優先傾向がないことを示す。
【0179】
MCから起動されるCD19-CARトランスポゾンは、ゲノムセーフハーバーに効果的に組み込まれる
理想的には、転位は、CAR導入遺伝子の挿入が、遺伝子改変T細胞の転写完全性を損なわないであろうゲノム領域に起こることになる。従って、そのようなゲノムセーフハーバー(GSH)を定義するために確立した基準参考文献38、39を、MC改変CD19-CAR T細胞の挿入部位ライブラリに適用し、LV挿入部位データセットと比較した。コンピュータ生成した、ゲノム中のランダムな位置を頻度28%でGSHにマップする。CD19-CARトランスポゾン挿入部位の20.8%が、5つのGSH基準全てを満たしたが、LV組み込み部位のわずか3%しか、それを満たさないことが判明した(図7C)。特に、LVと比較して著しく高い割合のトランスポゾン挿入部位は、2つの最重要の基準を構成するがん関連遺伝子の外側>300kbp(59%対38%)及び遺伝子の外側(48%対12%)に位置した(図7C)。本分析において、SBトランスポゾン及びLV挿入のいずれも公知のがん遺伝子には起こらず参考文献39、挿入は、ゲノムの少数の画分しか構成しない超保存ゲノム領域には全く起こらなかった。要約すれば、本発明者らは、CAR T細胞等の機能的な組換え哺乳動物細胞を、MC DNAからのSBに媒介される転位等の転位によって生成できることを実証した。MC由来トランスポゾンは、非常に好ましいゲノム組み込みプロファイルを保有する。
【0180】
従って、本発明によると、本発明の強化された転位戦略は、LVに基づく遺伝子移入等公知のウイルス遺伝子移入よりも安全な利点を提供する。
【0181】
(実施例2)
非活性化T細胞におけるmRNAにコードされている機能亢進性Sleeping Beautyトランスポザーゼ100X (SB100X)及び小環DNAにコードされているCD19-CAR導入遺伝子によるSleeping Beautyに媒介される転位
材料及び方法
ヒト対象
末梢血を、Wurzburg大学の施設内倫理委員会によって承認された調査プロトコールに参加するための書面による同意書後に健康なドナーから得た。
【0182】
トランスポゾン及びレンチウイルスベクターの構築
EF1/HTLVハイブリッドプロモーター、Kozak及びeGFP配列その後に終止コドンを含むカセットを合成し(GeneArt)、pT2/HBトランスポゾンドナーベクター(Addgene、#26557)にサブクローニングした。その後、eGFPを、以前に記載されているレンチウイルスベクターepHIV7から得られたT2Aエレメント及び短縮された上皮成長因子受容体(EGFRt)とcisで、CD19-CAR(FMC63標的ドメイン、IgG4-Fcヒンジスペーサー、CD3zeta及び4-1BB同時刺激)をコードしている遺伝子と置き換えた。pCMV(CAT)T7-SB100Xベクターを、Addgene(#34879)から入手した。
【0183】
小環DNA及びSB100X mRNAの調製
eGFP及びCD19CAR_EGFRtトランスポゾン、並びにSB100XをコードしているMCを、PlasmidFactory(Bielefeld)によって部位特異的組換えを使用して親pT2プラスミドから生成し、親和性クロマトグラフィーによって精製した。ポリ(A)テール付加され、ARCAキャップされているSB100X mRNAを、mMessage mMachineキット(Ambion)、又はEUFETS(Idar-Oberstein)を使用して組織内で作製した。
【0184】
遺伝子改変T細胞の生成及びin vitro分析
末梢血単核細胞を、Ficoll-Hypaque上での遠心分離によって末梢血から得た。CD8+及びCD4+ T細胞を、免疫磁性ビーズ(Miltenyi)を使用するネガティブ単離によって、PBMCから精製した。SB100XトランスポザーゼmRNA及びCD19-CARをコードしているMC(質量比:4:1)のトランスフェクションを、単離直後又は10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシン(T細胞培地)及び50U/mL IL-2を含むRPMI-1640中で終夜培養した後のいずれかで実施した。トランスフェクションを、製造者(Lonza)の指示に従って、4D-Nucleofectorで1×106個T細胞に実施した。トランスフェクションの後、T細胞を、50U/mL IL-2で補充したT細胞培地中で増殖させた。トリパンブルー染色を実施して、生T細胞を定量化した。T細胞を、以下のコンジュゲートしたmAb:CD3、CD4、CD8、CD45RA、CD45RO、CD62L;及び生/死細胞識別のために7-AAD(BD Biosciences)で染色した。CAR+(即ちEGFRt+)T細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Inc.)及びストレプトアビジンPEを用いる染色によって検出した。フロー分析を、FACSCanto(BD)で行い、データを、FlowJoソフトウェア(Treestar)を使用して分析した。いくつかの実験において、T細胞を、機能的試験の前に、照射を受けたCD19+支持細胞と共に7日間増大させ、記述されるように機能分析を実施した参考文献29~31
【0185】
細胞毒性、サイトカイン分泌及びCFSE増殖アッセイ
ホタルルシフェラーゼを発現している標的細胞を、5×103個細胞/ウェルの3つ組で、様々なエフェクター対標的比(E:T)でエフェクターT細胞とインキュベートした。4時間インキュベーションした後、ルシフェリン基質を共培養に添加し、標的細胞及びT細胞を含有するウェルにおける発光シグナルの低下を、照度計(Tecan)を使用して測定し、標的細胞単独と比較した。特異的溶解を、標準的な式を使用して算出した。サイトカイン分泌分析の場合、50×103個T細胞を、2:1(Raji及びJeko-1)、又は4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養し、IFNγ及びIL-2産生を、インキュベーション24時間後に除去した上清においてELISA(Biolegend)により測定した。増殖分析の場合、50×103個T細胞を、0.2μMカルボキシフルオレセインスクシンイミジルエステル(CFSE、Thermo)で標識し、洗浄し、外因性サイトカインを含まない培地中で4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養した。インキュベーションの72時間後に、細胞を、抗CD8/CD4 mAb及び分析から死細胞を除外するために7-AADで標識した。サンプルを、フローサイトメトリーによって分析し、生T細胞の分裂をCFSE希釈物で評価した。増殖インデックスを、FlowJoソフトウェアを使用して算出した。
【0186】
結果:
CD8+ T細胞をPBMCから単離し、SB100XをコードしているmRNA及びCD19-CARをコードしているMC(質量比4:1)でトランスフェクトした。トランスフェクションの後、T細胞を、組換えIL-2(50U/mL)の存在下で、T細胞培地中で終夜休ませた。その後T細胞を、照射を受けたCD19+ Rajiリンパ腫細胞(エフェクター:標的比=1:7)で刺激し、増大させた。対照T細胞を模擬トランスフェクトし、組換えIL-2(50U/mL)の存在下で終夜休ませ、抗CD3/抗CD28ビーズ(Dynal)でその後刺激し、増大させた。EGFRt発現のフローサイトメトリー分析を、トランスフェクション後14日目に実施し、SB100X mRNA及びCD19-CAR MCでトランスフェクトしたT細胞への高率の安定な遺伝子移入が示された(図14A)が、模擬形質導入T細胞は示さなかった(図14B)。機能分析により、CD19-CAR T細胞の高レベルの特異的細胞溶解活性、サイトカイン分泌(IFN-g、IL-2、TNF-a)及び特異的生産的増殖が確認された。
【0187】
別の実験において、トランスフェクション後に、CD8+ T細胞を、Rajiリンパ腫細胞の代わりに照射を受けたCD19+ TM EBV-LCL(エプスタインバーウイルスで形質転換されたリンパ芽球状細胞系)によって刺激し(エフェクター:標的比=1:7)、増大させた。ヌクレオフェクション後14日目におけるEGFRt発現のフローサイトメトリー分析は、高率の安定なCD19-CAR遺伝子移入を示した(図15A)。機能分析により、CD19-CAR T細胞が、CD19+標的細胞に対する高レベルの特異的細胞溶解活性を与え(図15B)、サイトカインを産生し、CD19+標的細胞による刺激後に生産的増殖を受けることが確認された。
【0188】
別の実験において、トランスフェクション後にCD8+ T細胞を、50U/mL IL-2で補充したT細胞培地中で維持した。ヌクレオフェクション後14日目に実施したEGFRt発現のフローサイトメトリー分析は、高率の安定なCD19-CAR遺伝子移入を示した(図16A)。CD19+標的細胞による刺激後、機能分析により、CD19-CAR T細胞の高レベルの特異的細胞溶解性活性(図16B)、サイトカイン分泌(IFN-g、IL-2、TNF-a)及び特異的生産的増殖が確認された。
【0189】
(実施例3)
非活性化T細胞における小環DNAにコードされている機能亢進性Sleeping Beautyトランスポザーゼ100X (SB100X)及び小環DNAにコードされているCD19-CAR導入遺伝子によるSleeping Beautyに媒介される転位
材料及び方法
ヒト対象
末梢血を、Wurzburg大学の施設内倫理委員会によって承認された調査プロトコールに参加するための書面による同意書後に健康なドナーから得た。
【0190】
トランスポゾン及びレンチウイルスベクターの構築
EF1/HTLVハイブリッドプロモーター、Kozak及びeGFP配列その後に終止コドンを含むカセットを合成し(GeneArt)、pT2/HBトランスポゾンドナーベクター(Addgene、#26557)にサブクローニングした。その後、eGFPを、以前に記載されているレンチウイルスベクターepHIV7から得られたT2Aエレメント及び短縮された上皮成長因子受容体(EGFRt)とcisで、CD19-CAR(FMC63標的ドメイン、IgG4-Fcヒンジスペーサー、CD3zeta及び4-1BB同時刺激)をコードしている遺伝子と置き換えた参考文献27、28。pCMV(CAT)T7-SB100Xベクターを、Addgene(#34879)から入手した。
【0191】
小環DNA及びSB100X mRNAの調製
eGFP及びCD19CAR_EGFRtトランスポゾン、並びにSB100XをコードしているMCを、PlasmidFactory(Bielefeld)によって部位特異的組換えを使用して親pT2プラスミドから生成し、親和性クロマトグラフィーによって精製した。
【0192】
遺伝子改変T細胞の生成及びin vitro分析
末梢血単核細胞を、Ficoll-Hypaque上での遠心分離によって末梢血から得た。CD8+及びCD4+ T細胞を、免疫磁性ビーズ(Miltenyi)を使用するネガティブ単離によって、PBMCから精製した。トランスポザーゼ及びトランスポゾンドナーMCベクターのトランスフェクションを、単離直後又は10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシン及び50U/mL IL-2を含むRPMI-1640中で終夜培養した後のいずれかで実施した。トランスフェクションを、製造者(Lonza)の指示に従って、4D- Nucleofectorで1×106個T細胞に実施した。ヌクレオフェクションの後、T細胞を、10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシン及び50U/mL IL-2を含むRPMI-1640中で増殖させた。トリパンブルー染色を実施して、生T細胞を定量化した。T細胞を、以下のコンジュゲートしたmAb:CD3、CD4、CD8、CD45RA、CD45RO、CD62L;及び生/死細胞識別のために7-AAD(BD Biosciences)で染色した。CAR+(即ちEGFRt+)T細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Inc.)及びストレプトアビジンPEを用いる染色によって検出した。フロー分析を、FACSCanto(BD)で行い、データを、FlowJoソフトウェア(Treestar)を使用して分析した。いくつかの実験において、T細胞を、機能的試験の前に、照射を受けたCD19+支持細胞と共に7日間増大させ、記述されるようにCAR T細胞の機能分析を実施した参考文献29~31
【0193】
細胞毒性、サイトカイン分泌及びCFSE増殖アッセイ
ホタルルシフェラーゼを発現している標的細胞を、5×103個細胞/ウェルの3つ組で、様々なエフェクター対標的比(E:T)でエフェクターT細胞とインキュベートした。4時間インキュベーションした後、ルシフェリン基質を共培養に添加し、標的細胞及びT細胞を含有するウェルにおける発光シグナルの低下を、照度計(Tecan)を使用して測定し、標的細胞単独と比較した。特異的溶解を、標準的な式を使用して算出した参考文献2。サイトカイン分泌分析の場合、50×103個T細胞を、2:1(Raji及びJeko-1)、又は4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養し、IFNγ及びIL-2産生を、インキュベーション24時間後に除去した上清においてELISA(Biolegend)により測定した。増殖分析の場合、50×103個T細胞を、0.2μMカルボキシフルオレセインスクシンイミジルエステル(CFSE、Thermo)で標識し、洗浄し、外因性サイトカインを含まない培地中で4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養した。インキュベーションの72時間後に、細胞を、抗CD8/CD4 mAb及び分析から死細胞を除外するために7-AADで標識した。サンプルを、フローサイトメトリーによって分析し、生T細胞の分裂をCFSE希釈物で評価した。増殖インデックスを、FlowJoソフトウェアを使用して算出した。
【0194】
結果:
CD4+及びCD8+ T細胞をPBMCから単離し、SB100XをコードしているMC及びCD19-CARをコードしているMCでトランスフェクトした(CD4+及びCD8+ T細胞を別々に)。トランスフェクションの後、T細胞を、50U/mL IL-2で補充したT細胞培地中で終夜休ませた。その後T細胞を、抗CD3/抗CD28ビーズで刺激し、増大させた。対照T細胞を模擬トランスフェクトし、50U/mL IL-2で補充したT細胞培地中で終夜休ませ、その後抗CD3/抗CD28ビーズで刺激し、増大させた。EGFRt発現のフローサイトメトリー分析を、トランスフェクション後14日目に実施し、SB100X MC及びCD19-CAR MCでトランスフェクトしたT細胞への高率の安定な遺伝子移入が示された(図17A図7B)が、模擬形質導入T細胞は示さなかった。機能的実験において、CD19-CAR形質導入されたT細胞は、CD19+標的細胞の特異的高レベル溶解を与え(図17C)、サイトカインを産生し、CD19+標的細胞による刺激後に生産的増殖を受けた。
【0195】
(実施例4)
従来の電気穿孔機を使用する、T細胞への小環DNAにコードされている機能亢進性Sleeping Beautyトランスポザーゼ100X(SB100X)及び小環DNAにコードされているCD19-CAR導入遺伝子によるSleeping Beautyに媒介される転位
材料及び方法
ヒト対象
末梢血を、Wurzburg大学の施設内倫理委員会によって承認された調査プロトコールに参加するための書面による同意書後に健康なドナーから得た。
【0196】
トランスポゾン及びレンチウイルスベクターの構築
EF1/HTLVハイブリッドプロモーター、Kozak及びeGFP配列その後に終止コドンを含むカセットを合成し(GeneArt)、pT2/HBトランスポゾンドナーベクター(Addgene、#26557)にサブクローニングした。その後、eGFPを、以前に記載されているレンチウイルスベクターepHIV7から得られたT2Aエレメント及び短縮された上皮成長因子受容体(EGFRt)とcisで、CD19-CAR(FMC63標的ドメイン、IgG4-Fcヒンジスペーサー、CD3zeta及び4-1BB同時刺激)をコードしている遺伝子と置き換えた参考文献27、28。pCMV(CAT)T7-SB100Xベクターを、Addgene(#34879)から入手した。
【0197】
小環DNAの調製
eGFP及びCD19CAR_EGFRtトランスポゾン、並びにSB100XをコードしているMCを、PlasmidFactory(Bielefeld)によって部位特異的組換えを使用して親pT2プラスミドから生成し、親和性クロマトグラフィーによって精製した。
【0198】
遺伝子改変T細胞の生成及びin vitro分析
末梢血単核細胞を、Ficoll-Hypaque上での遠心分離によって末梢血から得た。CD8+ T細胞を、免疫磁性ビーズ(Miltenyi)を使用するネガティブ単離によって、PBMCから精製した。T細胞を、抗CD3/抗CD28ビーズ(Dynal)で2日間活性化した。トランスポゾン及びトランスポザーゼMCベクターのトランスフェクションを、製造者(BTX)の指示に従って、Agile Pulse MAXシステムを使用して実施した。エレクトロポレーションの後、T細胞を、50U/mL IL-2で補充したT細胞培地中で終夜維持し、抗CD3/抗CD28ビーズ(Dynal)でその後刺激した。トリパンブルー染色を実施して、生T細胞を定量化した。T細胞を、以下のコンジュゲートしたmAb:CD3、CD4、CD8、CD45RA、CD45RO、CD62L;及び生/死細胞識別のために7-AAD(BD Biosciences)で染色した。CAR+(即ちEGFRt+)T細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Inc.)及びストレプトアビジンPEを用いる染色によって検出した。エレクトロポレーション後14日目にフロー分析を、FACSCanto(BD)で行い、データを、FlowJoソフトウェア(Treestar)を使用して分析した。
【0199】
細胞毒性、サイトカイン分泌及びCFSE増殖アッセイ
ホタルルシフェラーゼを発現している標的細胞を、5×103個細胞/ウェルの3つ組で、様々なエフェクター対標的比(E:T)でエフェクターT細胞とインキュベートした。4時間インキュベーションした後、ルシフェリン基質を共培養に添加し、標的細胞及びT細胞を含有するウェルにおける発光シグナルの低下を、照度計(Tecan)を使用して測定し、標的細胞単独と比較した。特異的溶解を、標準的な式を使用して算出した参考文献2。サイトカイン分泌分析の場合、50×103個T細胞を、2:1(Raji及びJeko-1)、又は4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養し、IFNγ及びIL-2産生を、インキュベーション24時間後に除去した上清においてELISA(Biolegend)により測定した。増殖分析の場合、50×103個T細胞を、0.2μMカルボキシフルオレセインスクシンイミジルエステル(CFSE、Thermo)で標識し、洗浄し、外因性サイトカインを含まない培地中で4:1(K562/CD19及びK562)の比で標的細胞と共に3つ組ウェルで平板培養した。インキュベーションの72時間後に、細胞を、抗CD8/CD4 mAb及び分析から死細胞を除外するために7-AADで標識した。サンプルを、フローサイトメトリーによって分析し、生T細胞の分裂をCFSE希釈物で評価した。増殖インデックスを、FlowJoソフトウェアを使用して算出した。
【0200】
結果:
CD8+ T細胞を、PBMCから単離した。一例において、3.5×10e6個CD8+ T細胞を、SB100XをコードしているMC 4μg及びCD19-CARをコードしているMC 4μg(比1:1)と4mmキュベット(容積:100μL)中でそれぞれエレクトロポレートした。エレクトロポレーションを、振幅1200V、パルス時間0.1ミリ秒(ms)、及びパルス間隔0.2msでパルス2回を使用してそれぞれ実施した。エレクトロポレーションの後、T細胞を、IL-2(50U/mL)で補充したT細胞培地中で終夜休ませた。その後T細胞を、抗CD3/抗CD28ビーズで刺激し、増大させた。対照T細胞を模擬トランスフェクトし、組換えIL-2の存在下で終夜休ませ、抗CD3/抗CD28ビーズでその後刺激し、増大させた。EGFRt発現のフローサイトメトリー分析を、トランスフェクション後14日目に実施し、SB100X MC及びCD19-CAR MCでトランスフェクトしたT細胞への高率の安定な遺伝子移入が示された(図18)が、模擬形質導入T細胞は示さなかった。機能的実験において、CD19-CAR形質導入されたT細胞は、CD19+標的細胞の特異的高レベル溶解を与え、サイトカインを産生し、CD19+標的細胞による刺激後に生産的増殖を受けた。
【0201】
(実施例5)
Sleeping Beautyに媒介される転位後のT細胞ゲノム中のトランスポゾンコピー数の滴定
材料及び方法
ヒト対象
末梢血を、Wurzburg大学の施設内倫理委員会によって承認された調査プロトコールに参加するための書面による同意書後に健康なドナーから得た。
【0202】
トランスポゾン及びレンチウイルスベクターの構築
EF1/HTLVハイブリッドプロモーター、Kozak及びeGFP配列その後に終止コドンを含むカセットを合成し(GeneArt)、pT2/HBトランスポゾンドナーベクター(Addgene、#26557)にサブクローニングした。その後、eGFPを、以前に記載されているレンチウイルスベクターepHIV7から得られたT2Aエレメント及び短縮された上皮成長因子受容体(EGFRt)とcisで、CD19-CAR(FMC63標的ドメイン、IgG4-Fcヒンジスペーサー、CD3zeta及び4-1BB同時刺激)をコードしている遺伝子と置き換えた参考文献27、28。pCMV(CAT)T7-SB100Xベクターを、Addgene(#34879)から入手した。
【0203】
小環DNAの調製
eGFP及びCD19CAR_EGFRtトランスポゾン、並びにSB100XをコードしているMCを、PlasmidFactory(Bielefeld)によって部位特異的組換えを使用して親pT2プラスミドから生成し、親和性クロマトグラフィーによって精製した。
【0204】
遺伝子改変T細胞の生成及びin vitro分析
末梢血単核細胞を、Ficoll-Hypaque上での遠心分離によって末梢血から得た。CD8+及びCD4+ T細胞を、免疫磁性ビーズ(Miltenyi)を使用するネガティブ単離によってPBMCから精製し、抗CD3/抗CD28ビーズ(Dynal)で刺激した。トランスポザーゼ及びトランスポゾン小環ベクターのトランスフェクションを、2日目に実施した。トランスフェクションを、製造者(Lonza)の指示に従って、4D-Nucleofectorで1×106個T細胞に実施した。ヌクレオフェクションの後、T細胞を、10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシン及び50U/mL IL-2を含むRPMI-1640中で増殖させた。トリパンブルー染色を実施して、生T細胞を定量化した。T細胞を、以下のコンジュゲートしたmAb:CD3、CD4、CD8、CD45RA、CD45RO、CD62L;及び生/死細胞識別のために7-AAD(BD Biosciences)で染色した。CAR+(即ちEGFRt+)T細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Inc.)及びストレプトアビジンPEを用いる染色によって検出した。フロー分析を、FACSCanto(BD)で行い、データを、FlowJoソフトウェア(Treestar)を使用して分析した。いくつかの実験において、T細胞を、機能的試験の前に、照射を受けたCD19+支持細胞と共に7日間増大させ、記述されるようにCAR T細胞の機能分析を実施した参考文献29~31
【0205】
ドロップレットデジタルPCR
ドロップレットデジタルPCR(ddPCR)の前に、300ngのサンプルを、NEB 3.1緩衝液3μL中のメチル化され、組み込まれていないベクターだけを切断する酵素DpnI(20000U/mL)1μLで、最終容積30μLで、37℃で消化した。その後DpnI消化したサンプルに0.5μLのNEB 3.1緩衝液及び3.5μLのH2Oを添加し、最終容量35μLを得て、CviQI(10000U/mL)1μLで、25℃で2時間断片化した。
【0206】
液滴生成のために、プライマー(600nM)、プローブ(200nM)及び消化した鋳型(それぞれ17ng)を、最終容量25μLで、室温で既製のddPCR Supermix(Bio-Rad)に添加した。20μLのPCR混合物をDG8 Cartridgesの特定のウェルに添加した。その後、70μLのDroplet Generationオイルを各ウェルに添加し、室温で2分間インキュベートした。ウェルを覆い、QX100 Droplet Generatorに設置した。2、3分後、およそ20000個の液滴を、ウェル当たり生成した。40μLの生成した液滴を、96ウェルPCRプレートに移し、PX1 PCR Plate Sealer(Bio-Rad)中で1枚の密封ホイルで封入した。PCR反応を、以下の条件:95℃ 10分間:94℃ 30秒間、60℃ 60秒間を40サイクル、98℃ 10分間を使用して、傾斜率2℃/秒で、サイクラーで実施した。
【0207】
各液滴に対する蛍光測定を、QX100 Droplet Readerで実施し、リボヌクレアーゼP/MRP 30サブユニット(RPP30)を、コピー数参照として使用した(ゲノム当たり2コピー)。分析を、QuantaSoftソフトウェアを使用して実施した。ドロップレットデジタルPCRコピー数分析に以下のプライマー及びオリゴを使用した:
【0208】
【表2】
【0209】
結果:
トランスフェクションを、SB100XをコードしているMC及びCD19-CARをコードしているMCを使用して実施した。T細胞にトランスフェクトしたSB100X MC及びCD19-CAR MCベクターの量を滴定して、遺伝子移入率及びT細胞のゲノム中の遺伝子コピー数(即ちトランスポゾンコピー数)に対する影響を決定した。SB100X MC及びCD19-CAR MCの段階希釈(2倍段階希釈で、SB100X MC DNA 500ng~31ng、及びCD19-CAR MC DNA 600ng~37.5ng)を使用した(図19A)。トランスフェクション後14日目に、遺伝子改変T細胞のパーセンテージを、EGFRtマーカーを使用してフローサイトメトリーによって決定した(図19B)。より多量のMCベクターをトランスフェクトした場合に、より高い遺伝子移入率、より少量MCベクターをトランスフェクトした場合に、より低い遺伝子移入率であることを見出した(図19A図19B)。また、より多量のMCベクターをトランスフェクトした場合に、EGFRtマーカーの発現に対するフローサイトメトリーでより高レベルのMFI、より少量のMCベクターをトランスフェクトした場合に、フローサイトメトリーでより低レベルのMFIを見出した(図19A図19B)。
【0210】
その後、全てのEGFRt+ T細胞(低、中、高EGFRt発現細胞)を含むゲート制御戦略を使用して純度>90%にEGFRt+ T細胞をFACS選別し、ddPCRを使用するその後のコピー数分析のためにゲノムDNAを単離した。トランスフェクトしたMC DNAベクターの量とCD19-CARトランスポゾンコピー数の間の相関、即ちより多量のMCベクターをトランスフェクトした場合に、より多くのトランスポゾンコピー数が得られ、より少量のMCベクターをトランスフェクトした場合に、より少ないトランスポゾンコピー数が得られることを見出した(図19C)。500ngのSB100X MC DNA及び600ngのCD19-CAR MC DNAベクターをトランスフェクトした場合、T細胞のゲノム中の平均トランスポゾンコピー数は、11.3個であった。31ngのSB100X MC DNA及び37.5ngのMC-DNAベクターのCD19-CAR MC DNAをトランスフェクトした場合、T細胞のゲノム中の平均トランスポゾンコピー数は、2.8個に減少した(図19C)。
【0211】
要約すれば、これらのデータは、T細胞にトランスフェクトされるMCにコードされているSB100X及びMCにコードされているCD19-CARの量を滴定して、所望の遺伝子移入率、所望の導入遺伝子発現レベル及び所望の遺伝子コピー数を得られることを実証する。これは、遺伝子コピー数(即ちトランスポゾンコピー数)を所望の数に微調整する、例えば、遺伝子コピー数を減らして、ゲノム挿入数、従って遺伝毒性及び挿入突然変異生成に対するリスクを減少させる;遺伝子コピー数を増加させて、導入遺伝子発現のレベルを増加させる;導入遺伝子発現を増減させて、最適な機能的出力を得る、例えば、CAR発現を増減させて、CAR改変T細胞の最適な機能的出力を得るのに有用である。
【0212】
(実施例6)
MCトランスポゾンを使用する、CD4+ヘルパー及びCD8+キラーT細胞以外の白血球サブセットへのSleeping Beautyに媒介される遺伝子移入
材料及び方法
ヒト対象
末梢血を、Wurzburg大学の施設内倫理委員会によって承認された調査プロトコールに参加するための書面による同意書後に健康なドナーから得た。
【0213】
トランスポゾン及びレンチウイルスベクターの構築
EF1/HTLVハイブリッドプロモーター、Kozak及びeGFP配列その後に終止コドンを含むカセットを合成し(GeneArt)、pT2/HBトランスポゾンドナーベクター(Addgene、#26557)にサブクローニングした。その後、eGFPを、以前に記載されているレンチウイルスベクターepHIV7から得られたT2Aエレメント及び短縮された上皮成長因子受容体(EGFRt)とcisで、CD19-CAR(FMC63標的ドメイン、IgG4-Fcヒンジスペーサー、CD3zeta及び4-1BB同時刺激)をコードしている遺伝子と置き換えた参考文献27、28。pCMV(CAT)T7-SB100Xベクターを、Addgene(#34879)から入手した。
【0214】
小環DNAの調製
eGFP及びCD19CAR_EGFRtトランスポゾン、並びにSB100XをコードしているMCを、PlasmidFactory(Bielefeld)によって部位特異的組換えを使用して親pT2プラスミドから生成し、親和性クロマトグラフィーによって精製した。
【0215】
遺伝子改変白血球の生成及びin vitro分析
末梢血単核細胞を、Ficoll-Hypaque上での遠心分離によって末梢血から得、トランスポザーゼ及びトランスポゾン小環ベクターのトランスフェクションを、10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシンを含み、50U/mL IL-2及び終濃度5μMのゾレドロン酸で補充したRPMI-1640中で終夜培養した後に実施した。トランスフェクションを、製造者(Lonza)の指示に従って、4D-Nucleofectorで10×106個PBMCに実施した。ヌクレオフェクションの後、PBMCを、10%ヒト血清、グルタミン、100U/mLペニシリンストレプトマイシン、50U/mL IL-2及びゾレドロン酸(f.c. 5μM)を含むRPMI-1640中で増殖させた。トランスフェクション後9日目に、トリパンブルー染色を実施して、生細胞を定量化し、染色を、以下のコンジュゲートしたmAb:Vγ9V δ2、CD3、CD4、CD8、CD19、CD45RA、CD45RO、CD56、CD62L;及び生/死細胞識別のために7-AAD(BD Biosciences)で実施した。CAR+(即ちEGFRt+)細胞を、ビオチンコンジュゲートした抗EGFR抗体(ImClone Systems Inc.)及びストレプトアビジンPEを用いる染色によって検出した。フロー分析を、FACSCanto(BD)で行い、データを、FlowJoソフトウェア(Treestar)を使用して分析した。いくつかの実験において、T細胞を、免疫磁性ビーズを使用して単離し、機能的試験の前に、照射を受けたCD19+支持細胞で増大させ、記述されるようにCAR T細胞の機能分析を実施した参考文献29~31
【0216】
結果:
SB100X MC及びCD19-CAR MCのトランスフェクションを、バルクPBMCに実施した。IL-2を、T細胞、NKT細胞及びNK細胞の増大を支持するために培養培地に添加した。ゾレドロン酸を、γδ(ガンマデルタ) T細胞の増大を支持するために、培養培地に添加した。EGFRt発現のフローサイトメトリー分析を、トランスフェクション後9日目に実施し、Vγ9Vδ2 γδ T細胞への高率の安定な遺伝子移入を示した(図20A)。γδ T細胞を、その後CD19+ EBV-LCL(エプスタインバーウイルスで形質転換されたリンパ芽球状細胞系)で刺激し、IL-2及びゾレドロン酸で補充したT細胞培地中で増殖させた。増大サイクルの最後に、EGFRt発現のフローサイトメトリーによる分析を実施し、CD19-CAR発現γδ T細胞のパーセンテージが、更に増加したことを示した(図20B)。CD19-CAR改変されたγδ T細胞によるCD19+標的細胞の特異的認識を、細胞毒性アッセイ及びサイトカイン分泌アッセイで確認した(図20C図20D)。別の実験において、SB100X MC及びCD19-CAR MCのトランスフェクションを、バルクPBMCに実施し、IL-2を、T細胞、NKT細胞及びNK細胞の増大を支持するために、培養培地に添加し、ゾレドロン酸を、γδ(ガンマデルタ) T細胞の増大を支持するために培養培地に添加した。EGFRt発現のフローサイトメトリー分析を、トランスフェクション後9日目に実施し、Vγ9Vδ2 γδ T細胞(CD3+ Vγ9Vδ2+)、NKT細胞(CD3+、CD56+)、NK細胞(CD3-、CD56+)及びB細胞(CD3-、CD19+)への高率の安定な遺伝子移入を示した(図21)。
【0217】
(参考文献)
図1A
図1B
図1C
図1D
図2A
図2B-1】
図2B-2】
図2B-3】
図2B-4】
図2C
図2D
図3A-1】
図3A-2】
図3B
図3C
図3D
図3E
図4A-1】
図4A-2】
図4A-3】
図4A-4】
図4A-5】
図4A-6】
図4B
図4C
図4D
図4E
図5A
図5B
図5C
図5D
図5E
図6A
図6B
図6C
図7A
図7B
図7C
図8A
図8B
図8C
図9
図10
図11A
図11B
図11C
図11D
図12-1】
図12-2】
図12-3】
図12-4】
図13
図14A
図14B
図15A
図15B
図16A
図16B
図17A
図17B
図17C
図18
図19A
図19B
図19C
図20A
図20B
図20C
図20D
図21
【配列表】
2022097517000001.app
【外国語明細書】