(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023174740
(43)【公開日】2023-12-08
(54)【発明の名称】撮像装置
(51)【国際特許分類】
H04N 23/60 20230101AFI20231201BHJP
G06T 5/00 20060101ALI20231201BHJP
H04N 5/21 20060101ALI20231201BHJP
【FI】
H04N23/60 500
G06T5/00 705
H04N5/21
【審査請求】有
【請求項の数】14
【出願形態】OL
(21)【出願番号】P 2023172451
(22)【出願日】2023-10-04
(62)【分割の表示】P 2022104994の分割
【原出願日】2018-02-28
(71)【出願人】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】110001678
【氏名又は名称】藤央弁理士法人
(72)【発明者】
【氏名】雄賀多(澤邉) 暢志
(72)【発明者】
【氏名】金藤 浩史
(72)【発明者】
【氏名】土井田 茂
(72)【発明者】
【氏名】宮田 公佳
(72)【発明者】
【氏名】海老原 慎哉
【テーマコード(参考)】
5B057
5C122
【Fターム(参考)】
5B057CA01
5B057CA08
5B057CA12
5B057CA16
5B057CB01
5B057CB08
5B057CB12
5B057CB16
5B057CE02
5B057CE06
5B057CE08
5B057DA17
5B057DB02
5B057DB06
5B057DB09
5B057DC30
5C122DA03
5C122EA22
5C122EA24
5C122EA37
5C122FH18
5C122FH23
5C122HA42
5C122HA88
5C122HB01
(57)【要約】
【課題】ノイズ低除去の高精度化を図ること。
【解決手段】撮像装置は、被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第2画像データ内の残像を低減する残像低減処理部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記残像低減処理部による残像低減処理済みの第2画像データからノイズを除去する除去部と、を有する。
【選択図】
図6
【特許請求の範囲】
【請求項1】
被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、
前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、
前記第2画像データ内の残像を低減する残像低減処理部と、
前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記残像低減処理部による残像低減処理済みの第2画像データからノイズを除去する除去部と、
を有する撮像装置。
【請求項2】
請求項1に記載の撮像装置であって、
前記残像低減処理部は、ローパスフィルタを用いて、前記第2画像データ内の残像を低減する、撮像装置。
【請求項3】
請求項1に記載の撮像装置であって、
前記残像低減処理部は、前記第1画像データと前記第2画像データとを合成し、合成された画像データにおいて、前記第1画像データ内の被写体像と前記第2画像データ内の被写体像との間を補間する、撮像装置。
【請求項4】
請求項2に記載の撮像装置であって、
前記撮像部は、前記第2画像データよりも時間的に後の第3画像データを出力し、
前記算出部は、前記除去部によって前記第2画像データからノイズ除去された第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みを算出し、
前記残像低減処理部は、前記第3画像データ内の残像を低減し、
前記除去部は、前記第2ノイズ除去画像データと、前記算出部によって算出された第3重みと、に基づいて、前記残像低減処理部による残像低減処理済みの第3画像データからノイズを除去する、撮像装置。
【請求項5】
請求項1に記載の撮像装置であって、
前記第1ノイズ除去画像データおよび前記第2画像データの少なくとも一方から、画像に含まれる空間構造の特徴を示す第1空間情報を抽出する抽出部を有し、
前記算出部は、前記抽出部によって抽出された第1空間情報に基づいて、前記第1重みを算出する、撮像装置。
【請求項6】
被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、
前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、
前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、
前記除去部によって前記第2画像データからノイズ除去された第2ノイズ除去画像データ内の残像を低減する残像低減処理部と、
を有する撮像装置。
【請求項7】
請求項6に記載の撮像装置であって、
前記残像低減処理部は、ローパスフィルタを用いて、前記第2ノイズ除去画像データ内の残像を低減する、撮像装置。
【請求項8】
請求項6に記載の撮像装置であって、
前記残像低減処理部は、前記第1ノイズ除去画像データと前記第2ノイズ除去画像データとを合成し、合成された画像データにおいて、前記第1ノイズ除去画像データ内の被写体像と前記第2ノイズ除去画像データ内の被写体像との間を補間する、撮像装置。
【請求項9】
請求項7に記載の撮像装置であって、
重みを調整する調整部を有し、
前記撮像部は、前記第2画像データよりも時間的に後の第3画像データを出力し、
前記算出部は、前記残像低減処理部による残像低減処理済みの第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みを算出し、
前記除去部は、前記残像低減処理済みの第2ノイズ除去画像データと、前記算出部によって算出された第3重みと、に基づいて、前記第3画像データからノイズを除去し、
前記残像低減処理部は、前記除去部によって前記第3画像データからノイズ除去された第3ノイズ除去画像データ内の残像を低減する、撮像装置。
【請求項10】
請求項6に記載の撮像装置であって、
前記第1ノイズ除去画像データおよび前記第2画像データの少なくとも一方から、画像に含まれる空間構造の特徴を示す第1空間情報を抽出する抽出部を有し、
前記算出部は、前記抽出部によって抽出された第1空間情報に基づいて、前記第1重みを算出する、撮像装置。
【請求項11】
請求項6に記載の撮像装置であって、
前記残像低減処理部は、前記第1ノイズ除去画像データと前記第2画像データとの差分に基づいて、前記第2ノイズ除去画像データ内に存在する残像の画像データを検出し、前記残像の画像データを、前記残像の検出領域に対応する前記第2画像データ内の領域の画像データに置換する、撮像装置。
【請求項12】
被写体を撮像する際のフレームレートの入力を受け付ける入力部と、
前記入力部によって入力されたフレームレートに対応する第1光量情報から前記第1光量情報よりも大きい第2光量情報に調整する調整部と、
前記フレームレートおよび前記調整部によって調整された第2光量情報に基づいて、前記被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、
前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、
前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、
を有する撮像装置。
【請求項13】
請求項12に記載の撮像装置であって、
前記フレームレートおよび前記第1光量情報に基づいて、残像を低減する撮像条件を設定する設定部を有し、
前記撮像部は、前記フレームレート、前記第2光量情報、および前記設定部によって設定された撮像条件に基づいて、前記被写体を撮像して、前記第1画像データおよび前記第2画像データを出力する、撮像装置。
【請求項14】
請求項12に記載の撮像装置であって、
重みを調整する調整部を有し、
前記撮像部は、前記第2画像データよりも時間的に後の第3画像データを出力し、
前記算出部は、前記除去部によってノイズ除去された第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みを算出し、
前記除去部は、前記第2ノイズ除去画像データと、前記算出部によって算出された第3重みと、に基づいて、前記第3画像データからノイズを除去する、撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像装置に関する。
【背景技術】
【0002】
動画に対するノイズ除去手法として、過去のフレームと現在のフレームの重み付き平均処理がある(たとえば、下記特許文献1を参照)。しかしながら、特許文献1のノイズ低減システムは、より精度を上げるには画像メモリーにより多くの過去のフレームを保持しなければならないが、画像メモリーの使用メモリ量にも限界がある。一方、使用メモリ量を制限すると、ノイズ低減の精度向上が見込めない。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【0004】
本願において開示される発明の第1側面となる撮像装置は、被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データと前記第2画像データよりも時間的に後の第3画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出し、前記第2画像データからノイズ除去された第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みをする算出部と、前記算出部によって算出された第3重みに基づいて、前記第3画像データのノイズを除去する除去部と、を有する。
【0005】
本願において開示される発明の第2側面となる撮像装置は、被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データの少なくとも一方から、画像に含まれる空間構造の特徴を示す第1空間情報を抽出する抽出部と、前記抽出部によって抽出された第1空間情報に基づいて、前記第1画像データの第1重みを算出する算出部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、を有する。
【0006】
本願において開示される発明の第3側面となる撮像装置は、被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第2画像データ内の残像を低減する残像低減処理部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記残像低減処理部による残像低減処理済みの第2画像データからノイズを除去する除去部と、を有する。
【0007】
本願において開示される発明の第4側面となる撮像装置は、被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、前記除去部によって前記第2画像データからノイズ除去された第2ノイズ除去画像データ内の残像を低減する残像低減処理部と、を有する。
【0008】
本願において開示される発明の第5側面となる撮像装置は、被写体を撮像する際のフレームレートの入力を受け付ける入力部と、露光時間を、前記入力部によって入力されたフレームレートに対応する第1露光時間から前記第1露光時間よりも長い第2露光時間に調整する調整部と、前記フレームレートおよび前記調整部によって調整された第2露光時間に基づいて、前記被写体を撮像して、第1画像データと前記第1画像データよりも時間的に後の第2画像データとを出力する撮像部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、を有する。
【0009】
本願において開示される発明の第6側面となる画像処理装置は、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データと前記第2画像データよりも時間的に後に撮像された第3画像データとを取得する取得部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出し、前記第2画像データからノイズ除去された第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みを算出する算出部と、前記算出部によって算出された第3重みに基づいて、前記第3画像データのノイズを除去する除去部と、を有する。
【0010】
本願において開示される発明の第7側面となる画像処理装置は、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データの少なくとも一方から、画像に含まれる空間構造の特徴を示す第1空間情報を抽出する抽出部と、前記抽出部によって抽出された第1空間情報に基づいて、前記第1画像データの第1重みを算出する算出部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、を有する。
【0011】
本願において開示される発明の第8側面となる画像処理装置は、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第2画像データ内の残像を低減する残像低減処理部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記残像低減処理部による残像低減処理済みの第2画像データからノイズを除去する除去部と、を有する。
【0012】
本願において開示される発明の第9側面となる画像処理装置は、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得部と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出部と、前記第1ノイズ除去画像データと、前記算出部によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去部と、前記除去部によって前記第2画像データからノイズ除去された第2ノイズ除去画像データ内の残像を低減する残像低減処理部と、を有する。
【0013】
本願において開示される発明の第10側面となる画像処理プログラムは、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データと前記第2画像データよりも時間的に後に撮像された第3画像データとを取得する取得処理と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出し、前記第2画像データからノイズ除去された第2ノイズ除去画像データおよび前記第3画像データに基づいて、前記第2画像データの第2重みを算出し、前記第1重みおよび前記第2重みに基づいて、第3重みを算出する算出処理と、前記算出処理によって算出された第3重みに基づいて、前記第3画像データのノイズを除去する除去処理と、をプロセッサに実行させる。
【0014】
本願において開示される発明の第11側面となる画像処理プログラムは、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得処理と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データの少なくとも一方から、画像に含まれる空間構造の特徴を示す第1空間情報を抽出する抽出処理と、前記抽出処理によって抽出された第1空間情報に基づいて、前記第1画像データの第1重みを算出する算出処理と、前記第1ノイズ除去画像データと、前記算出処理によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去処理と、をプロセッサに実行させる。
【0015】
本願において開示される発明の第12側面となる画像処理プログラムは、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得処理と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出処理と、前記第2画像データ内の残像を低減する残像低減処理と、前記第1ノイズ除去画像データと、前記算出処理によって算出された第1重みと、に基づいて、前記残像低減処理による残像低減処理済みの第2画像データからノイズを除去する除去処理と、をプロセッサに実行させる。
【0016】
本願において開示される発明の第13側面となる画像処理プログラムは、第1画像データと前記第1画像データよりも時間的に後に撮像された第2画像データとを取得する取得処理と、前記第1画像データからノイズ除去された第1ノイズ除去画像データおよび前記第2画像データに基づいて、前記第1画像データの第1重みを算出する算出処理と、前記第1ノイズ除去画像データと、前記算出処理によって算出された第1重みと、に基づいて、前記第2画像データからノイズを除去する除去処理と、前記除去処理によって前記第2画像データからノイズ除去された第2ノイズ除去画像データ内の残像を低減する残像低減処理と、をプロセッサに実行させる。
【図面の簡単な説明】
【0017】
【
図1】
図1は、撮像装置のハードウェア構成例を示すブロック図である。
【
図2】
図2は、実施例1にかかる撮像装置の機能的構成例を示すブロック図である。
【
図3】
図3は、実施例1にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図4】
図4は、調整済みの重みによる再帰的ノイズ除去例を示す説明図である。
【
図5】
図5は、調整済みの重みを適用しない再帰的ノイズ除去例を示す説明図である。
【
図6】
図6は、実施例2にかかる撮像装置の機能的構成例を示すブロック図である。
【
図7】
図7は、実施例2にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図8】
図8は、実施例3にかかる撮像装置の機能的構成例を示すブロック図である。
【
図9】
図9は、実施例3にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図10】
図10は、実施例4にかかる撮像装置の機能的構成例を示すブロック図である。
【
図11】
図11は、実施例4にかかる残像低減処理部による補間処理例を示す説明図である。
【
図12】
図12は、実施例4にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図13】
図13は、実施例5にかかる撮像装置の機能的構成例を示すブロック図である。
【
図14】
図14は、実施例5にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図15】
図15は、実施例6にかかる残像低減処理例を示す説明図である。
【
図16】
図16は、実施例6にかかる撮像装置の機能的構成例を示すブロック図である。
【
図17】
図17は、実施例6にかかる撮像装置による再帰的ノイズ除去手順例を示すフローチャートである。
【
図18】
図18は、実施例7にかかる動画撮像例を示す説明図である。
【
図19】
図19は、実施例7にかかる撮像装置の機能的構成例を示すブロック図である。
【
図20】
図20は、撮像装置による撮像処理手順例を示すフローチャートである。
【発明を実施するための形態】
【実施例0018】
実施例1について説明する。動画に対するノイズ除去手法として、ノイズ除去された過去の画像データとノイズが除去されていない現在の画像データとの重み付き平均処理がある。ノイズの除去精度を高めるためには過去フレーム数をメモリに多く保持しておく必要があるが、メモリ使用量が増加してしまう。
【0019】
このため、実施例1では、ノイズが除去されたノイズ除去画像データの数を必要最小限に抑制するため、撮像装置は、ノイズ除去に使用される重みを再帰的に利用することにより、ノイズ除去精度の向上を図り、メモリ使用量を低減する。
【0020】
重みとは、動画像において時間的に連続する先行画像データと後続画像データとを同一領域で比較した場合の当該領域ごとにおける後続画像データに対する先行画像データの信頼度である。領域とは、1画素以上の画素集合である。領域は画像データ全体であってもよい。
【0021】
重みは、たとえば、0.0以上1.0以下の範囲をとり、値が大きいほど信頼度が高いことを意味する。先行画像データおよび後続画像データの同一領域どうしが類似するほど、重みの値は大きくなる。重みを再帰的に利用することにより、過去の画像データの残像ほど重みの値が小さくなり、残像が低減される。以下、実施例1について詳細に説明する。
【0022】
<撮像装置のハードウェア構成例>
図1は、撮像装置のハードウェア構成例を示すブロック図である。撮像装置100は、動画撮影可能な装置であり、具体的には、たとえば、デジタルカメラ、デジタルビデオカメラ、スマートフォン、タブレット、パーソナルコンピュータ、ゲーム機である。
図1では、撮像装置の一例としてデジタルカメラを例に挙げて説明する。
【0023】
撮像装置100は、プロセッサ101と、記憶デバイス102と、駆動部103と、光学系104と、撮像素子105と、AFE(Analog Front End)106と、LSI(Large Scale Integration)107と、操作デバイス108と、センサ109と、表示デバイス110と、通信IF(Interface)111と、バス112と、を有する。プロセッサ101、記憶デバイス102、駆動部103、LSI107、操作デバイス108、センサ109、表示デバイス110、および通信IF111は、バス112に接続される。
【0024】
プロセッサ101は、撮像装置100を制御する。記憶デバイス102は、プロセッサ101の作業エリアとなる。また、記憶デバイス102は、各種プログラムやデータを記憶する非一時的なまたは一時的な記録媒体である。記憶デバイス102としては、たとえば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリがある。記憶デバイス102は、撮像装置100に複数実装されてもよく、そのうちの少なくとも1つは、撮像装置100に対し着脱自在でもよい。
【0025】
駆動部103は、光学系104を駆動制御する。駆動部103は、駆動回路103aと駆動源103bとを有する。駆動回路103aは、プロセッサ101からの指示により駆動源103bを制御する。駆動源103bは、たとえば、モータであり、駆動回路103aの制御により、光学系104内のズーミングレンズ141bおよびフォーカシングレンズ141cを光軸方向に移動させたり、絞り142を開閉制御する。
【0026】
光学系104は、光軸方向に配列された複数のレンズ(レンズ141a、ズーミングレンズ141b、およびフォーカシングレンズ141c)と、絞り142と、を含む。光学系104は、被写体光を集光し、撮像素子105に出射する。
【0027】
撮像素子105は、光学系104からの被写体光を受光して電気信号に変換する。撮像素子105は、たとえば、XYアドレス方式の固体撮像素子(たとえば、CMOS(Complementary Metal‐Oxide Semiconductor))であってもよく、順次走査方式の固体撮像素子(たとえば、CCD(Charge Coupled Device))であってもよい。
【0028】
撮像素子105の受光面には、複数の受光素子(画素)がマトリクス状に配列されている。そして、撮像素子105の画素には、それぞれが異なる色成分の光を透過させる複数種類のカラーフィルタが所定の色配列(たとえば、ベイヤ配列)に従って配置される。そのため、撮像素子105の各画素は、カラーフィルタでの色分解によって各色成分に対応するアナログの電気信号を出力する。
【0029】
AFE106は、撮像素子105からのアナログの電気信号に対して信号処理を施すアナログフロントエンド回路である。AFE106は、電気信号のゲイン調整、アナログ信号処理(相関二重サンプリング、黒レベル補正など)、A/D変換処理、デジタル信号処理(欠陥画素補正など)を順次実行してRAW画像データを生成し、LSIに出力する。上述した駆動部103、光学系104、撮像素子105、およびAFE106は、撮像部120を構成する。
【0030】
LSI107は、AFE106からのRAW画像データについて、色補間、ホワイトバランス調整、輪郭強調、ガンマ補正、階調変換などの画像処理や符号化処理、復号処理、圧縮伸張処理など、特定の処理を実行する集積回路である。LSI107は、具体的には、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field-Programmable Gate Array)などのPLD(Programmable Logic Device)によって実現してもよい。
【0031】
操作デバイス108は、コマンドやデータを入力する。操作デバイス108としては、たとえば、レリーズボタンを含む各種ボタン、スイッチ、ダイヤル、タッチパネルがある。センサは、情報を検出するデバイスであり、たとえば、AF(Automatic Focus)センサ、AE(Automatic Exposure)センサ、ジャイロセンサ、加速度センサ、温度センサなどがある。表示デバイス110は、画像データや設定画面を表示する。表示デバイス110には、撮像装置100の背面にある背面モニタと、電子ビューファインダと、がある。通信IF111は、ネットワークと接続し、データを送受信する。
【0032】
<撮像装置100の機能的構成例>
図2は、実施例1にかかる撮像装置100の機能的構成例を示すブロック図である。撮像装置100は、取得部201と、算出部202と、除去部203と、画像保存部204と、第1メモリ205と、を有する。取得部201、算出部202、除去部203、画像保存部204、および第1メモリ205は、画像処理装置200を構成する。
【0033】
取得部201は、撮像部120によって撮像された時間的に連続する一連の画像データを取得する。取得部201は、たとえば、記憶デバイス102の1つであるバッファメモリである。なお、撮像装置100が、撮像部120がない画像処理装置200である場合、記憶デバイス102または通信IF111からの一連の画像データを取得することになる。取得部201は、たとえば、記憶デバイス102の1つであるバッファメモリである。
【0034】
算出部202、除去部203および画像保存部204は、具体的には、たとえば、
図1に示した記憶デバイス102に記憶されたプログラムをプロセッサ101に実行させることにより、または、LSI107により実現される。また、第1メモリ205は、記憶デバイス102の1つである。
【0035】
ここで、一連の画像データを、連続する第1画像データ~第3画像データを例に挙げて説明する。なお、撮像部120は、被写体を撮像して、第1画像データ~第3画像データの順に出力するものとする。第1画像データは、連続する第1画像データ~第3画像データの中で、撮像部120から出力された時間的に最古の画像データとする。第2画像データは、第1画像データよりも時間的に後に撮像部120から出力された画像データとする。第3画像データは、第2画像データよりも時間的に後に撮像部120から出力された画像データとする。
【0036】
算出部202は、重み計算部221と、重み調整部222と、重み保存部223と、第2メモリ224と、を有する。重み計算部221は、除去部203によって第1画像データからノイズ除去された第1ノイズ除去画像データおよび第2画像データに基づいて、第1画像データの第1重みを算出する。算出部202は、第1重みを算出する際、第2画像データに先行する過去画像データとして、第1ノイズ除去画像データを第1メモリ205から読み出す。第1画像データは、第2画像データの先行画像データであり、第2画像データは、第1画像データの後続画像データである。
【0037】
また、算出部202は、除去部203によって第2画像データからノイズ除去された第2ノイズ除去画像データおよび第3画像データに基づいて、第2画像データの第2重みを算出する。算出部202は、第2重みを算出する際、第3画像データに先行する過去画像データとして、第1メモリ205から第2ノイズ除去画像データを読み出す。第2画像データは、第3画像データの先行画像データであり、第3画像データは、第2画像データの後続画像データである。
【0038】
重みとは、上述したように、時間的に連続する先行画像データと後続画像データとを同一領域で比較した場合の当該領域ごとにおける後続画像データに対する先行画像データの信頼度である。領域とは、1画素以上の画素集合である。領域は画像データ全体であってもよい。
【0039】
ここで、時刻tよりも前にノイズ除去処理された画像データをIoldと表記し、時刻tの画像データをItと表記する。IoldやItを区別しない場合は、単に画像データIと表記する。画像データIは、たとえば、マトリクス状の画素群の各値に対応する行列である。したがって、重みもまた行列により表現され、Wと表記する。重みWの各要素は、画像データI内の領域(x,y)に対応し、その領域の重みwは、たとえば、0.0以上1.0以下の範囲をとる。
【0040】
ある領域において、重み(信頼度)wが高いほど、当該領域において、先行画像データと後続画像データとの間で画像のブレが少ない、すなわち、残像が少ないことを示し、重み(信頼度)が低いほど、当該領域において、先行画像データと後続画像データとの間でブレが多い、すなわち、残像が多いことを示す。
【0041】
時刻tの後続画像データに対する先行画像データIold内の領域の重みwは、下記式(1)により算出される。
【0042】
w=f(It,Iold)・・・(1)
【0043】
関数f(・)は、先行画像データIold内の領域の重みwを求める関数である。なお、領域が先行画像データIoldの全体であれば、重みwは1つの値となる。また、重み計算部221は、先行画像データIoldのチャンネル数に応じて複数の重みWを求めてもよい。先行画像データIoldの領域の重みwは、後続画像データItの類似度が大きいほど大きくするのがよい。領域の重みwの求め方の一例としては下記式(2)がある。
【0044】
【0045】
関数fx,yは、領域(x,y)の重みwの算出を意味する。xは先行画像データIoldの領域の列方向における位置を示し、yは行方向の位置を示す。また,関数φx,yは領域(x,y)を中心とした近傍領域の部分画像データを取得する関数である。また,||・||はL2ノルムを意味する。また,σは、重みの算出結果を調整するパラメータである。σは上記式(2)の分子の値である画像の差に対する感度を調整するためパラメータであり、σの値を大きくすると画像の差が大きくても重みが大きく算出されることになる。
【0046】
重み調整部222は、第2メモリ224に保存されている最新の重みWoldに基づいて、重み計算部221によって計算された重みWを調整する。調整済みの重みWを重みW´とする。重み保存部223は、重み調整部222による調整前の重みWをWoldとして第2メモリ224に保存する(式(4)を参照)。第2メモリ224は、記憶デバイス102により構成される。
【0047】
調整済みの重みW´は、下記式(3)により算出される。
【0048】
W´=g(W,Wold)・・・(3)
【0049】
関数g(・)は、重みWを調整する関数である。Woldは、下記式(4)のように、調整前の重みWにより更新される。ここでは直接重みWをWoldに更新しているが,重みWのサイズを縮小してWoldに更新してもよい。重みを過去重みWoldと称す。
【0050】
Wold=W・・・(4)
【0051】
また、式(3)の右辺は、たとえば、下記式(5)により表現される。
【0052】
【0053】
また、調整済みの重みW´に上限や下限を設けたり、一律の調整係数を掛けたりしてもよい。また、式(3)の右辺は、たとえば、下記式(6)により表現されてもよい。
【0054】
g(W,Wold)=min(W,Wold)・・・(6)
【0055】
上記式(6)は、重みWと過去重みWoldを要素ごとに比較して、値が小さい方の重みwを採用する。このようにして、調整済みの重みW´の領域の重みw´は、調整前の重みwに比べて小さくなる。
【0056】
ここで、上述した第1画像データ~第3画像データを例に挙げて、重みWの調整について説明する。なお、第1画像データを先行画像データとし、第1画像データからノイズ除去された第1ノイズ除去画像データを過去画像Ioldとした場合の重みWを重みW1とする。また、第2画像データを先行画像データとし、第2画像データからノイズ除去された第2ノイズ除去画像データを過去画像Ioldとした場合の重みWを重みW2とする。また、第3画像データを先行画像データとし、第3画像データからノイズ除去された第3ノイズ除去画像データを過去画像Ioldとした場合の重みWを重みW3とする。
【0057】
なお、第1画像データが動画像データの先頭画像データである場合、第1画像データに先行する画像データは存在しないため、重みW1は重み調整部222によって調整されずに、重み保存部223により第2メモリ224に過去重みWoldとして保存される。第1画像データおよび第2画像データにより重みW2が計算された場合、重み調整部222は、第2メモリ224から過去重みWold(=重みW1)を読みだして、上記式(5)により重みW2と乗算して、調整済みの重みW2´を算出する。重み保存部223は、調整前の重みW2を過去重みWoldとして第2メモリ224に保存する。
【0058】
また、第2画像データおよび第3画像データにより重みW3が計算された場合、重み調整部222は、第2メモリ224から重みWold(=重みW2)を読みだして、上記式(5)により、重みW3と乗算して、調整済みの重みW3´を算出する。重み保存部223は、調整前の重みW3をWoldとして第2メモリ224に保存する。
【0059】
除去部203は、調整済みの重みW´に基づいて、ノイズ除去対象の画像データのノイズを除去し、ノイズ除去画像データを出力する。具体的には、たとえば、除去部203は、調整済みの重みW´を用いた重み付け平均により、ノイズ除去対象の画像データのノイズを除去する。重み付け平均は、たとえば、下記式(7)により表現される。
【0060】
【0061】
上記式(7)において、Ioutは、ノイズ除去された画像データ(ノイズ除去画像データ)である。
【0062】
画像保存部204は,除去部203から出力されたノイズ除去画像データIoutを過去画像データIoldとして第1メモリ205に保存する。第1メモリ205は、記憶デバイス102により構成される。
【0063】
<再帰的ノイズ除去処理>
図3は、実施例1にかかる撮像装置100による再帰的ノイズ除去手順例を示すフローチャートである。
図4は、調整済みの重みW´による再帰的ノイズ除去例を示す説明図である。
図4の比較例として、
図5を例示する。
図5は、調整済みの重みW´を適用しない再帰的ノイズ除去例を示す説明図である。なお、
図4および
図5において
図3のステップに該当する箇所には、
図3のステップ番号を付す。なお、
図5では調整済みの重みW´を適用しないため、ステップS304~S306は存在しない。また、
図4および
図5では、撮像装置100は、撮像方向を固定しており、被写体像が左から右に移動する動画像データを撮像する場合を例に挙げて説明する。
【0064】
まず、
図4および
図5の中央点線の左側について、
図3を用いて説明する。撮像装置100は、取得部201により現在画像データを取得して読み込み(ステップS301)、過去画像データを第1メモリ205から読み込む(ステップS302)。ここで、現在画像データとは、時刻t-1の後続画像データI(t-1)であり、過去画像データとは、時刻(t-1)以前の時刻(t-2)の先行画像データからノイズ除去されたノイズ除去画像データ、すなわちIoldである。Ioldには、被写体像OB(t-2)が存在するものとする。
【0065】
撮像装置100は、重み計算部221により、過去画像データIoldと現在画像データI(t-1)とを式(2)に与えて、重みW(t-1)を計算する(ステップS303)。過去画像データIoldと現在画像データI(t-1)とにおいて、同一領域の画像が類似するほど、重みは大きくなり、類似しなくなるほど、小さくなる。したがって、過去画像データIoldと現在画像データI(t-1)とにおいて、被写体像OB(t-2),OB(t-1)がいずれも存在しない領域は、ほぼ同じ画像となり、当該領域の重みw(t-1)は、たとえば、最大値の1.0となる。
【0066】
一方、過去画像データIoldと現在画像データI(t-1)とにおいて、被写体像OB(t-2),OB(t-1)のいずれか一方が存在する領域は、異なる画像となり、当該領域の重みw(t-1)は低くなる。ここでは、例として、当該領域の重みw(t-1)を0.0とする。なお、被写体像OB(t-2),OB(t-1)の境界部分の領域については、被写体像OB(t-2),OB(t-1)のいずれか一方が存在する領域よりも類似している。ここでは、例として、当該領域の重みw(t-1)を0.5とする。
【0067】
つぎに、撮像装置100は、第2メモリ224から過去重みWoldを読み込む(ステップS304)。この過去重みWoldを例として、全要素の値が「1.0」の行列とする。撮像装置100は、重み調整部222により、第2メモリ224からの過去重みWoldと、ステップS303で重み計算した重みW(t-1)とを式(3)に与えて、調整済みの重みW´を出力する(ステップS305)。
【0068】
調整済みの重みW´は、たとえば、式(5)に示したように、過去重みWoldと、重みW(t)との積により求められる。過去重みWoldは全要素の値が「1.0」の行列であるため、調整済みの重みW´は、重み計算した重みW(t-1)と同じである。
【0069】
そして、撮像装置100は、第2メモリ224に調整前の重みW(t-1)を格納して、あらたな過去重みWoldとする(ステップS306)。
【0070】
撮像装置100は、除去部203により、過去画像データIoldと現在画像データI(t-1)と調整済みの重みW´とを式(7)に与えて、現在画像データI(t-1)からノイズを除去し(ステップS307)、ノイズ除去画像データIout(t-1)を出力する(ステップS308)。出力されたノイズ除去画像データIout(t-1)は、表示デバイス110に表示される。ノイズ除去画像データIout(t-1)は、現在画像データI(t-1)と同じ位置に被写体像OB(t-1)が存在し、過去画像データIoldの被写体像OB(t-2)と同じ位置に残像A(t-2)が存在する。残像A(t-2)は、主に、被写体像OB(t-2)の輪郭が際立った画像データとなる。
【0071】
また、撮像装置100は、画像保存部204により、ノイズ除去画像データIout(t-1)を第1メモリ205に出力し、過去画像データIoldを更新する(ステップS309)。このあと、撮像装置100は、たとえば、ユーザの動作撮影の終了操作入力により、画像処理が終了するか否かを判断する(ステップS310)。終了しない場合(ステップS310:No)、撮像装置100は、取得部201におけるバッファメモリの読み込み位置を更新し(ステップS311)、ステップS301に戻る。
【0072】
つぎに、
図4および
図5の中央点線の右側について、
図3を用いて説明する。撮像装置100は、取得部201により時刻tの現在画像データI(t)を取得して読み込み(ステップS301)、過去画像データIoldを第1メモリ205から読み込む(ステップS302)。ここで、過去画像データIoldは、ステップS309で得られたノイズ除去画像データIout(t-1)である。
【0073】
撮像装置100は、重み計算部221により、過去画像データIoldと現在画像データI(t)とを式(2)に与えて、重みW(t)を計算する(ステップS303)。過去画像データIoldと現在画像データI(t)とにおいて、同一領域の画像が類似するほど、重みは大きくなり、類似しなくなるほど、小さくなる。したがって、過去画像データIoldと現在画像データI(t)とにおいて、被写体像OB(t-1),OB(t)がいずれも存在しない領域は、ほぼ同じ画像となり、当該領域の重みw(t)は、たとえば、最大値の1.0となる。
【0074】
一方、過去画像データIoldと現在画像データI(t)とにおいて、被写体像OB(t-1),OB(t)のいずれか一方が存在する領域は、異なる画像となり、当該領域の重みw(t)は低くなる。ここでは、例として、当該領域の重みw(t)を0.0とする。なお、被写体像OB(t-1),OB(t)の境界部分の領域については、被写体像OB(t-1),OB(t)のいずれか一方が存在する領域よりも類似している。ここでは、例として、当該領域の重みw(t)を0.5とする。また、過去画像データIold(ノイズ除去画像データIout(t-1))において、残像A(t-2)が存在する領域の重みを0.75とする。
【0075】
つぎに、撮像装置100は、第2メモリ224から過去重みWoldを読み込む(ステップS304)。この過去重みWoldは、ステップS306で先に算出された重みW(t-1)である。撮像装置100は、重み調整部222により、第2メモリ224からの過去重みWoldと、ステップS303で重み計算した重みW(t)とを式(3)に与えて、調整済みの重みW´を出力する(ステップS305)。
【0076】
調整済みの重みW´は、たとえば、式(5)に示したように、過去重みWoldと、重みW(t)との積により求められる。この場合の過去重みWoldは、ステップS306で先に算出された重みW(t-1)であるため、残像A(t-2)が存在する領域内部の重みw(t)は0になり、輪郭の重みw(t)は、0.375(=0.75×0.5)となる。また、残像A(t-1)が存在する領域内部の重みw(t)は0(=0.0×0.0)のままであるが、輪郭の重みw(t)は0.25(=0.5×0.5)である。
【0077】
そして、撮像装置100は、第2メモリ224に調整前の重みW(t)を格納して、あらたな過去重みWoldとする(ステップS306)。
【0078】
撮像装置100は、除去部203により、過去画像データIoldと現在画像データI(t)と調整済みの重みW´とを式(7)に与えて、現在画像データI(t)からノイズを除去し(ステップS307)、ノイズ除去画像データIout(t)を出力する(ステップS308)。出力されたノイズ除去画像データIout(t)は、表示デバイス110に表示される。ノイズ除去画像データIout(t)は、現在画像データI(t)と同じ位置に被写体像OB(t)が存在し、過去画像データIoldの被写体像OB(t-1)と同じ位置に残像A(t-1)が存在し、さらに、被写体像OB(t-2)と同じ位置に残像A(t-2)が存在する。
【0079】
また、撮像装置100は、画像保存部204により、ノイズ除去画像データIout(t)を第1メモリ205に出力し、過去画像データIoldを更新する(ステップS309)。このあと、撮像装置100は、たとえば、ユーザの動作撮影の終了操作入力により、画像処理が終了するか否かを判断する(ステップS310)。終了する場合(ステップS310:Yes)、撮像装置100は、画像処理を終了する。
【0080】
このように、過去画像データIoldと現在画像データI(t-1),I(t)との間で変換のない領域では過去画像データIoldを参照するための重みW(t-1),W(t)が大きくなるため、結果的に使用メモリを削減しつつノイズ除去率を増加させることができる。
【0081】
ただし、
図5の例の場合、過去画像データIoldと現在画像データI(t-1),I(t)との間で重みの算出がうまくいっていない領域、すなわち失敗している領域がある場合、その結果も保持される。したがって、長期にわたり失敗が残ってしまう。これが残像として画質を著しく劣化させてしまう原因となる。
【0082】
たとえば、
図5の中の太矢印5A1で示した被写体像OB(t-2)の輪郭の残像A(t-2)のように、次のフレーム(画像データI(t))でのステップS303の重み算出結果が太矢印5a1のように大きくなっており(w(t-1)=0.75)、結果として太矢印5A2のように失敗した輪郭の残像A(t-2)が残ってしまっている。
【0083】
一方、実施例1の撮像装置100は、過去画像データIoldに、その時算出した重みが付随した状態で保持され、これを再利用する。これにより、残像が発生しているような信頼度の低い領域で過去画像データIoldを参照するための重みW(t-1),W(t)が小さくなりやすくなるため、結果的に残像発生を抑制することができる。
【0084】
たとえば、
図4中の太矢印4B1で示した被写体像OB(t-2)の輪郭の重みw(t-1)が太矢印4b1のように大きく出ている一方(0.75)、調整を掛けた太矢印4b2では重みw(t)が小さくなっており(0.375=0.5×0.75)、結果として太矢印5B2のように失敗した輪郭の残像A(t-2)の残り具合が低減できている。
【0085】
このように、
図5の場合、ノイズ除去精度が
図4に比べて低いため、
図4と同等のノイズ除去精度を出すためには、過去の画像データの枚数を
図4の場合よりも第1メモリ205に多く保持しておく必要があり、メモリ使用量が増加する。これに対し、
図4では、直近の過去画像データを第1メモリ205に保持しておけばよいため、ノイズ除去精度の向上と省メモリ化とを両立することができる。
実施例2は、画像データに含まれる空間情報を利用することで残像の発生を抑制する例である。なお、実施例2では、実施例1との相違点を中心に説明し、実施例1と共通部分については同一符号を用いて説明を省略する。
空間情報とは、抽出対象となる画像データに含まれる空間構造の特徴を示す情報であり、具体的には、たとえば、空間周波数成分がある。空間周波数成分の場合、たとえば、空間情報抽出部621は、下記式(8)~(13)のように、2種類のサイズのローパスフィルタを用いて低周波成分Slowと高周波成分Shighを抽出することができる。
式(8),(9)のIは、抽出対象となる画像データである。また、式(11)の関数abs(・)は、領域(x,y)ごとの絶対値を算出する関数である。式(13)は、式(8),(9)に代入される。式(8)に代入される場合、式(13)は、Hσ1(x,y)となり、σはσ1となる。同様に、式(9)に代入される場合、式(13)は、Hσ2(x,y)となり、σはσ2となる。
なお、抽出対象となる画像データIについては、空間情報を抽出しやすくするために事前に画像データIに変換を掛けてもよい。さらに、空間情報抽出部621は、低周波成分Slowと高周波成分Shighの2成分だけでなく複数の帯域の周波数成分を算出してもよい。
重み計算部622は、現在画像データと、過去画像データと、空間情報抽出部621によって抽出された空間情報と、に基づいて、過去画像データの重みWを計算する。残像が目立ちやすい領域は明るい領域であったり、エッジ付近(過去画像データにおける被写体像の輪郭)のようにであったりすることが多い。このため、そのような領域の重みを小さくするのがよい。
式(14)のSlow,It,Slow,Ioldは、それぞれ現在画像データItと過去画像データIoldの低周波成分Slowを意味する。式(14)のmax(・)は、領域(x,y)ごとに最大値を算出する関数である。式(15)のS´lowは、現在画像データItと過去画像データIoldの低周波成分Slowの最大値となるが、平均値でもよい。
また、σ(・)は領域(x,y)ごとに値を算出するシグモイド関数で、入力値が大きいほど1に近づく。Tlowはしきい値を表すパラメータである。これにより、式(15)の低周波成分Slowによる調整値Klowは、低周波成分Slowが大きいほど、すなわち、明るい領域ほど小さい値になる。
式(16)のShigh,It,Shigh,Ioldは、それぞれ現在画像データItと過去画像データIoldの高周波成分Shighを意味する。式(16)のmax(・)は、領域(x,y)ごとに最大値を算出する関数である。式(17)のS´highは、現在画像データItと過去画像データIoldの高周波成分Shighの最大値となるが、平均値でもよい。
また、σ(・)は領域(x,y)ごとに値を算出するシグモイド関数で、入力値が大きいほど1に近づく。Thighはしきい値を表すパラメータである。これにより、式(17)の高周波成分Shighによる調整値Khighは、高周波成分Shighが大きいほど、すなわち、エッジ付近であるほど小さい値になる。
求められた低周波成分Slowによる調整値Klowと高周波成分Shighによる調整値Khighとを用いて,最終的に更新された重みWnewは、下記式(18)で求められる。除去部203は、更新済みの重みWnewを用いて、実施例1と同様な処理で現在画像データItからノイズを除去し、ノイズ除去画像データとして出力する。また、画像保存部204は、ノイズ除去画像データを過去画像データIoldとして第1メモリ205に保存する。
式(18)において、右辺のWは、過去画像データIoldを参照するための重みである。式(18)で重みWを重みWnewに更新することにより、残像が目立ちやすい領域である明るい領域やエッジ付近の重みが小さくなるため、残像発生を抑制することができる。ここでは現在画像データItと過去画像データIoldの低周波成分Slowおよび高周波成分Shighを用いたが、低周波成分Slowおよび高周波成分Shighのいずれか一方だけを用いてもよい。
撮像装置100は、画像保存部204により、ノイズ除去画像データIoutを過去画像データIoldとして第1メモリ205に保存する(ステップS309)。このような処理を撮像が終了するまで、再帰的に実行することで、残像が目立ちやすい領域での重みが低く調整され、結果的に残像発生を抑制することができる。