(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023000395
(43)【公開日】2023-01-04
(54)【発明の名称】永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置
(51)【国際特許分類】
H01F 6/06 20060101AFI20221222BHJP
【FI】
H01F6/06 140
H01F6/06 150
【審査請求】未請求
【請求項の数】7
【出願形態】OL
(21)【出願番号】P 2021101174
(22)【出願日】2021-06-17
(71)【出願人】
【識別番号】000005108
【氏名又は名称】株式会社日立製作所
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】藤田 晋士
(72)【発明者】
【氏名】一木 洋太
(72)【発明者】
【氏名】和久田 毅
(57)【要約】
【課題】巻回する際の作業性がよく、かつ、超電導特性が劣化しない永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置を提供することを課題とする。
【解決手段】本発明に係る永久電流スイッチ(PCS1)は、鍔部21を有するボビン2と、前記ボビン2に巻回された複数本の超電導線材3と、前記複数本の超電導線材3の少なくとも一方の端部同士が超電導接続された超電導接続部4と、を有する。本発明に係るPCS1の製造方法は、複数のドラム30から超電導線材3を送出させて、鍔部21を有するボビン2に複数本の前記超電導線材3を巻回させる巻回工程と、複数本の前記超電導線材3の少なくとも一方の端部31同士を超電導接続部4で超電導接続させる超電導接続工程と、を有する。本発明に係る超電導磁石装置10は、前記PCS1を用いている。
【選択図】
図2
【特許請求の範囲】
【請求項1】
鍔部を有するボビンと、
前記ボビンに巻回された複数本の超電導線材と、
前記複数本の超電導線材の少なくとも一方の端部同士が超電導接続された超電導接続部と、
を有することを特徴とする永久電流スイッチ。
【請求項2】
請求項1において、
前記超電導接続部が、超電導材料により形成されていることを特徴とする永久電流スイッチ。
【請求項3】
請求項1において、
前記超電導接続部が、10Kで超電導特性を有する高温超電導材料により形成されていることを特徴とする永久電流スイッチ。
【請求項4】
請求項1において、
前記超電導接続部が前記鍔部と一体化されていることを特徴とする永久電流スイッチ。
【請求項5】
請求項1において、
前記超電導接続部が、前記鍔部に、前記超電導線材の巻き方向に移動可能に設けられていることを特徴とする永久電流スイッチ。
【請求項6】
複数のドラムから超電導線材を送出させて、鍔部を有するボビンに複数本の前記超電導線材を巻回させる巻回工程と、
複数本の前記超電導線材の少なくとも一方の端部同士を超電導接続部で超電導接続させる超電導接続工程と、
を有することを特徴とする永久電流スイッチの製造方法。
【請求項7】
請求項1~5のいずれか1項に記載の永久電流スイッチを用いたことを特徴とする超電導磁石装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置に関する。
【背景技術】
【0002】
磁気共鳴イメージング(Magnetic Resonance Imaging;MRI)装置や核磁気共鳴(Nuclear Magnetic Resonance;NMR)装置などの超電導機器には超電導磁石装置が用いられている。これらの超電導機器は、超電導磁石装置を構成する超電導コイルの両端を実質的に電気抵抗ゼロで短絡し、超電導コイルを永久電流運転することで運用される。また、これらの超電導機器は、必要に応じて超電導コイルで抵抗を発生させて、永久電流運転のオン/オフ動作を行っている。当該オン/オフ動作は、超電導コイルに備えられた永久電流スイッチ(Persistent Current Switch;PCS)で行われる。
【0003】
MRI装置やNMR装置などに用いられる超電導コイルでは、運転中は直流電源から切り離してPCSで超電導コイル両端を短絡し、実質的な電気抵抗ゼロの閉ループ回路を形成する。この閉ループ回路中を長期間にわたって電流が減衰することなく流れ続ける状態が永久電流モードである。一般的に、永久電流モードで超電導コイルを励磁することにより、時間的な変動がない磁場を得ることができ、また、電源と接続することなく磁場を得ることができる。このため、MRI装置やNMR装置などの超電導コイルは永久電流モードで使用することが一般的である。そのため、超電導コイル、PCSおよびそれらをつなぐ配線については、超電導体を介して接続する技術が必須である。
【0004】
図14は、一般的な超電導磁石装置100の構成例を示す概略図である。
図14に示すように、超電導磁石装置100は、一般的には、クライオスタット101の内部に超電導コイル102とPCS103とが配置された構成となっている。超電導コイル102とPCS103とは、支持板104を介して、冷凍機(図示せず)によって冷却される。また、超電導コイル102とPCS103とは、超電導接続部106で超電導接続されている。
【0005】
超電導コイル102を励磁する際には、室温側に配置される電源(図示せず)から低温側の超電導コイル102に電流リード105を通じて電流を供給する。PCS103が超電導状態に転移すると、超電導体の電気抵抗がゼロであるため、超電導コイル102、PCS103および超電導接続部106で構成される閉ループ回路において、電流の減衰がない永久電流モードを実現し、超電導磁石装置100内の超電導コイル102において高い安定度を有する磁場を得ることができる。
【0006】
図15Aから
図15Cはいずれも一般的な超電導磁石装置100の電気回路構成の一例を示す回路図である。
図15Aから
図15C中の矢印は電流の方向を示している。
図15Aに示すように、超電導コイル102を励磁する際には、PCS103がオフ、すなわち、PCS103が電気抵抗を有した状態で電源107を用いて超電導コイル102を励磁する。PCS103がオフの状態では数Ω~数十Ω程度の電気抵抗が持つように設計される。
図15Bに示すように、永久電流運転時には、PCS103をオン、すわなち、PCS103を超電導状態にして超電導コイル102の両端を電気抵抗ゼロで短絡した状態にする。
図15Cに示すように、超電導コイル102の磁場を落とす際には、PCS103をオフにして、保護抵抗108で超電導コイル102に蓄えられたエネルギーを消費する。
【0007】
PCS103は、超電導線材(PCS線などと呼ばれることがある)とヒータ線とをボビンに巻回して構成されている。直流電源で励磁する際には、ヒータ線に電流を供給してPCS103に用いられている超電導線材が臨界温度を超える温度を保ち、超電導コイル102を励磁する。永久電流運転時には、ヒータ線に通電する電流をオフとすることでPCS103に用いられている超電導線材を臨界温度以下まで冷却し、超電導コイル102とPCS103とで構成される閉ループ回路に電流を循環させる。このように、PCS103は超電導線材の臨界温度を超える温度または臨界温度以下の状態を保つことにより、PCS103のオン/オフ動作を実現する。そのため、超電導線材とヒータ線とがそれぞれ密接するように巻回されている。また、超電導コイル102で発生する磁場の安定性を乱さぬよう、PCS103は無誘導巻きで構成される。PCS103の構成としては、以下の先行技術がある。
【0008】
例えば、特許文献1には、巻胴の両端に鍔板を固定した巻枠と、前記巻胴上に無誘導巻きされた超電導線(PCS線)とから成る永久電流スイッチが記載されている。また、特許文献1には、前記PCS線が、一方の鍔板の内側内部に設けられた係止部に所定半径で中央部を係止された折返し部を固定端として無誘導巻きされている旨記載されている。
【0009】
また、例えば、特許文献2には、PCS線の無誘導巻きの巻き始めの折り返し部の曲げ半径をPCSボビンの巻枠の半径に実質的に等しくする旨記載されている。特許文献2によれば、このようにすると、PCS線の曲げ半径が小さいことによるクエンチ発生の可能性を低減できる旨記載されている。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】実開昭62-34408号公報
【特許文献2】特開平3-261184号公報
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、特許文献1に記載の技術において、PCS線の折り返し部を構成する際に、PCS線の曲げ半径によっては、PCS線の超電導特性が劣化してクエンチが発生しやすくなる可能性がある。
【0012】
また、特許文献1および特許文献2に記載の技術において、いずれの場合も無誘導巻きを構成する際に、PCSボビンに溝を設けてPCS線の折り返し部を固定し、折り返して2本になったPCS線を同時に巻回する構成を採っている。
【0013】
ここで、
図16および
図17は、一般的なPCS103の製造プロセスの一例を説明する概略図である。前記した構成を採る場合は、
図16に示すように、超電導線材301の折り返し部302を構成するために、一度、超電導線材301をPCS線ドラム303に巻き直す。なお、
図16中の矢印は超電導線材301の巻取方向を示している。
その後、
図17に示すように、超電導線材301の折り返し部302をPCSコイルボビン304に設けた溝などに固定した後、折り返して2本になった超電導線材3をPCS線ドラム303から同時に送出し、PCSコイルボビン304に巻回することになる。なお、
図17中、PCS線ドラム303近傍の矢印は超電導線材301の送出方向を示しており、PCSコイルボビン304近傍の矢印は超電導線材301の巻取方向を示している。
【0014】
超電導線材301は数Ω~数十Ω程度の抵抗が必要であることから、数百m~数km程度の長尺となる。したがって、超電導線材301の折り返し部302を構成するために、PCS線ドラム303に超電導線材301を巻回する作業が非常に煩雑となる。また、1本の超電導線材301を折り返してなる2本の超電導線材301を同時にPCSコイルボビン304に巻回することになるため、巻き始めの作業性が悪い。
【0015】
本発明は、巻回する際の作業性がよく、かつ、超電導特性が劣化しない永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置を提供することを目的とする。
【課題を解決するための手段】
【0016】
前記課題をした本発明に係る永久電流スイッチ(以下、PCS)は、鍔部を有するボビンと、前記ボビンに巻回された複数本の超電導線材と、前記複数本の超電導線材の少なくとも一方の端部同士が超電導接続された超電導接続部と、を有する。
【発明の効果】
【0017】
本発明によれば、巻回する際の作業性がよく、かつ、超電導特性が劣化しないPCS、PCSの製造方法および超電導磁石装置を提供できる。
【図面の簡単な説明】
【0018】
【
図1】第1実施形態に係るPCS1の熱処理前の一態様を示す概略図である。
【
図2】第1実施形態に係るPCS1の熱処理後の一態様を示す概略図である。
【
図3】ボビン2にPCS1を構成する超電導線材3を巻回してPCS1を製造している様子を示す概略斜視図である。
【
図4】ボビン2に超電導線材3およびヒータ線(図示せず)を巻回した後の状態を示す斜視図である。
【
図5A】超電導接続部4に用いる接続容器40の構造を示す平面図である。
【
図6】PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例を説明する概略断面図である。
【
図7】PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例を説明する概略断面図である。
【
図8】PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例を説明する概略断面図である。
【
図9】PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例を説明する概略断面図である。
【
図10A】PCS1を構成するボビン2の構造を示す概略構成図である。
【
図11A】第2実施形態に係るPCS1の超電導接続部4を形成するプロセスの一例を説明する概略図である。
【
図11B】第2実施形態に係るPCS1の超電導接続部4を形成するプロセスの一例を説明する概略図である。
【
図11C】第2実施形態に係るPCS1の超電導接続部4を形成するプロセスの一例を説明する概略図である。
【
図12A】第3実施形態に係るPCS1の超電導接続部4に用いられるMgB
2粉体充填容器41とボビン2の鍔部21との固定構造を示した概略図である。
【
図13】本発明の第4実施形態に係る超電導磁石装置10の構成例を示す概略図である。
【
図14】一般的な超電導磁石装置100の構成例を示す概略図である。
【
図15A】一般的な超電導磁石装置100の電気回路構成の一例を示す回路図である。
【
図15B】一般的な超電導磁石装置100の電気回路構成の一例を示す回路図である。
【
図15C】一般的な超電導磁石装置100の電気回路構成の一例を示す回路図である。
【
図16】一般的なPCS103の製造プロセスの一例を説明する概略図である。
【
図17】一般的なPCS103の製造プロセスの一例を説明する概略図である。
【発明を実施するための形態】
【0019】
以下、適宜図面を参照して本発明の一実施形態に係るPCS、PCSの製造方法および超電導磁石装置について詳細に説明する。なお、参照する図面において各要素は見易さや説明のし易さなどの観点から形状や寸法を誇張して図示している。
【0020】
[永久電流スイッチ(PCS)]
(第1実施形態)
本発明の第1実施形態に係るPCS1について、
図1から
図9を参照して説明する。
図1は、第1実施形態に係るPCS1の熱処理前、つまり、完成前の一態様を示す概略図である。
図2は、第1実施形態に係るPCS1の熱処理後、つまり、完成後の一態様を示す概略図である。
図1に示すように、熱処理前のPCS1は、超電導接続部4を鍔部21に固定せずに取り扱うことができるが、熱処理後のPCS1は、
図2に示すように、超電導接続部4が鍔部21に固定されている。熱処理を行う前に超電導接続部4を鍔部21に固定し、熱処理を行ってPCS1を完成させる。
【0021】
図1および
図2に示すように、PCS1は、鍔部21を有するPCSコイルボビン(以下、ボビン2)と、このボビン2に巻回された複数本の超電導線材3と、これらの複数本の超電導線材3の少なくとも一方、一例としていずれか一方の端部31同士が超電導接続された超電導接続部4とを有する。
【0022】
この超電導接続部4は、超電導材料、より好ましくは、10Kで超電導特性を有する高温超電導材料により形成されている。これについては後述する。また、この超電導接続部4は、PCS1において無誘導巻きの折り返し部となる。そのため、超電導接続部4は、複数本の超電導線材3を直線的に接続するのではなく、折り返すように接続することが好ましい。
また、超電導接続部4は、
図2に示すように、鍔部21において超電導線材3が巻回されている側の面、つまり、巻枠側24に固定させることが好ましい。このようにすると、その後の取り扱いが容易となり、超電導磁石装置10(
図13参照)製造時等における超電導接続部4の破損を防ぐことができる。鍔部21は、
図1などに示すように、超電導線材3が巻回されるボビン2の巻枠23(
図10A参照)の両端に設けられていることが好ましいが、いずれか一方の端部に設けられていてもよい。
【0023】
超電導線材3としては、MgB
2超電導フィラメント32(
図6参照)を中心に配置し、その周囲を金属シース33(
図6参照)で被覆したMgB
2線が好適に挙げられるが、これに限定されない。例えば、超電導線材3は、MgB
2超電導フィラメント32に替えてイットリウム系やビスマス系などその他の超電導材料を用いて構成されたフィラメントを有するものであってもよい。
【0024】
PCS1は次のようにして製造することができる。
図3は、ボビン2にPCS1を構成する超電導線材3を巻回してPCS1を製造している様子を示す概略斜視図である。
図3中、PCS線ドラム(以下、ドラム30)近傍の矢印は超電導線材3の送出方向を示しており、ボビン2近傍の矢印は超電導線材3の巻取方向を示している。
【0025】
図3に示すように、第1実施形態におけるPCS1の巻線作業は、複数(
図3に示す例では2つ)のドラム30から超電導線材3を同時に送出し、複数本の超電導線材3をボビン2に巻回する(巻回工程)。巻回工程では、独立した複数本の超電導線材3をボビン2に巻回するので、作業性が向上する。
ボビン2に超電導線材3を巻回す際に、各層毎にヒータ線(図示せず)が挿入されるようにヒータ線を巻回し、超電導線材3とヒータ線(図示せず)とが各層毎に配置されるようにする。超電導線材3とヒータ線(図示せず)とを交互に配置することで、小さな熱量で超電導線材3を常電導転移させることができる。このとき、ヒータ線(図示せず)はシート状のものなど所望の熱量を投入できる発熱体であれば、その構造は線に限る必要はない。
図4は、ボビン2に超電導線材3およびヒータ線(図示せず)を巻回した後の状態を示す斜視図である。
図4に示す例では、ボビン2に2本の超電導線材3を巻回したため、超電導線材3の端部31が、始端と終端の2か所で形成される。
【0026】
そして、第1実施形態では、これら2か所のうちの一方の端部31同士を超電導接続部4で超電導接続する(超電導接続工程)。この工程により、PCS1を製造できる。このPCS1は超電導接続部4で超電導接続を行うことによって、無誘導巻きを具現している。また、このようにして複数本の超電導線材3を超電導接続部4で超電導接続するので、特許文献1に記載の技術のように、1本の超電導線材の中央部を所定の曲げ半径で係止部に係止させて折返し部とし、これを固定端として無誘導巻きする場合と異なり、曲げ半径の影響を受けない。そのため、超電導線材3の超電導特性が劣化しない。
【0027】
図5Aは、超電導接続部4に用いる接続容器40の構造を示す平面図である。
図5Bは、
図5Aのvb-vb断面図である。
図5Cは、
図5Aのvc-vc断面図である。
図5Aに示すように、接続容器40は、直方体形状のMgB
2粉体充填容器41を有している。また、
図5Bに示すように、MgB
2粉体充填容器41は、上面部42にMgB
2粉末50(
図7参照)を充填するためのMgB
2粉体充填部43が設けられている。MgB
2粉体充填部43は、上面部42における開口部の形状が円形であり、所定の深さを有して形成されている。MgB
2粉体充填容器41は、加圧治具44によって、このMgB
2粉体充填部43の開口部が封止される。
【0028】
さらに、
図5Bに示すように、MgB
2粉体充填容器41は、超電導線材3(
図5Bにおいて図示せず)をMgB
2粉体充填容器41内に導入するための線材挿入部45を有している。そして、この線材挿入部45は、接続容器40の一側面側46からMgB
2粉体充填部43を介して、対抗する他側面側47にかけて連通している。
【0029】
また、
図5Cに示すように、MgB
2粉体充填容器41は、接続容器40の例えば下面部48に、超電導接続部4(接続容器40)をボビン2の鍔部21に固定する(一体化する)ための接続容器固定部49を備えている。接続容器固定部49は、図示しないネジなどにより鍔部21に固定される。接続容器40は、600℃以上の熱処理に耐え、かつ、熱処理中にMgやBと反応し難い材料で形成することが好ましい。そのような材料としては、例えば、Fe、Ni、Nb、Taなどの純金属またはそれらの純金属に他の元素を含ませた合金などが好適に挙げられる。
【0030】
図6から
図9および
図1、
図2を参照して、PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例について、順を追って説明する。その際、
図5Bも参照して説明する。なお、
図6から
図9は、PCS1の無誘導巻きの折り返し部となる超電導接続部4を形成するプロセスの一例を説明する概略断面図である。
【0031】
先ず、
図6に示すように、MgB
2超電導フィラメント32を含む超電導線材3の表面の金属シース33を切削し、MgB
2超電導フィラメント32を露出させる。超電導線材3の表面の金属シース33を切削する際には、機械的な研磨や化学的なエッジング、電気的な切削などの方法を適用できる。このとき、超電導接続部4内における超電導層の生成を阻害する物質がMgB
2粉体充填部43に露出しないような形状に切削することが好ましい。その一態様としては、例えば、金属シース33を半周分切削することが挙げられる。また、MgB
2超電導フィラメント32を露出させる一態様としては、例えば、超電導線材3を斜めに切断することが挙げられる。
【0032】
露出させるMgB2超電導フィラメント32は、MgとBが未反応の状態でも、反応済みでMgB2が生成された状態のどちらでもよい。MgとBが未反応の場合には、超電導接続部4における超電導接続のための熱処理時に線材部分も熱処理を受けてMgB2化する。MgB2超電導フィラメント32を露出させた超電導線材3をMgB2粉体充填容器41に設けた線材挿入部45から挿入し、MgB2超電導フィラメント32の露出部分が、MgB2粉体充填部43に位置するように配置する。
【0033】
次に、
図7に示すように、MgB
2粉末50をMgB
2粉体充填容器41のMgB
2粉体充填部43に充填する。なお、充填する粉末は、MgB
2粉末でも、MgとBとの混合粉でもよい。また、Mgは粉末であっても塊であってもよい。これらはいずれも超電導材料であり、10Kで超電導特性を有する高温超電導材料に該当する。
【0034】
次に、
図8に示すように、加圧治具44でMgB
2粉体充填部43の開口部を塞ぐ。そして、プレス機(図示せず)などで加圧治具44を押圧して内部のMgB
2粉末50に圧力を加えてMgB
2粉末50を押し固める。プレス機による圧力は、例えば、500MPa以上などとすることができるが、これに限定されない。なお、プレス後の加圧治具44は、MgB
2粉体充填部43の開口部から外さずにそのままにしておくことが好ましい。このようにすると、熱処理時にMgが揮発して含有量が減じてしまうのを防ぐことができる。また、加圧治具44は、後記する熱処理後も外さずにそのままにしておくことが好ましい。このようにすると、機械的強度があまり高くないMgB
2焼結体52(
図9参照)が損壊してしまうのを防ぐことができる。
【0035】
そして、
図8に示すように、加圧時または加圧後に、超電導線材3と線材挿入部45との間の間隙を封止材51で封止する。封止材51としては、セラミックボンドや耐火パテなどが挙げられるが、600℃以上の熱処理に耐えられるものであることが好ましい。さらに、封止材51には、Mgと反応するような成分の含有量が少ないものを選定することがより好ましい。
【0036】
その後、
図9に示すように、超電導接続部4を熱処理することで2本の超電導線材3のMgB
2超電導フィラメント32の周辺にMgB
2焼結体52が生成される。このようにして生成されたMgB
2焼結体52は、2本の超電導線材3のMgB
2超電導フィラメント32を超電導接続する。
なお、MgB
2焼結体52の生成は、例えば、電気炉を用いてアルゴンや窒素などの不活性ガス中、500~900℃で加熱することで行うことができるが、誘導加熱などの方法を適用することもできる。ただし、温度が高い場合には、Mgの蒸発量が多くなるため、650~850℃程度で熱処理することが好ましい。
【0037】
超電導接続部4の熱処理時に、ボビン2の鍔部21などの構造体に超電導接続部4を固定することが好ましい。このようにすると、超電導接続部4周辺の超電導線材3に応力が加わり、超電導特性が劣化することを防ぐことができる。超電導接続部4の固定の際に、セラミック製の板やワッシャなど用いてボビン2の鍔部21と接続容器40とを電気的に絶縁してもよい。上記のようにして製造したPCS1全体の様子を図示したものが
図2である。なお、
図2は鍔部21に超電導接続部4を固定した態様を図示している。
【0038】
以上のように、本実施形態で説明したPCS1は、複数本の超電導線材3を超電導接続した超電導接続部4で無誘導巻きを実現している。本実施形態ではこのようにして超電導線材3の折り返し部を構成するので、従来のように、一度、PCS線ドラムに超電導線材3を巻き直す必要がなくなる。また、独立した複数本の超電導線材3をボビン2に巻回するので、作業性が向上する。さらに、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、曲げ半径の影響を受けて超電導線材3の超電導特性が劣化するということがない。また、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、超電導線材3の曲げ応力による超電導特性の劣化を防ぐことができる。
【0039】
(第2実施形態)
本発明の第2実施形態に係るPCS1について、
図10Aから
図10Cおよび
図11Aから
図11Cを参照して説明する。なお、本実施形態は、第1実施形態の変形例であって、第1実施形態と同様の構成要素については同一の符号を付し、その詳細な説明を省略する場合がある。
【0040】
図10Aは、PCS1を構成するボビン2の構造を示す概略構成図である。
図10Bは、
図10Aのxb-xb断面図である。
図10Cは、
図10Bのxc-xc断面図である。
図10Aに示すように、第2実施形態におけるボビン2は、巻枠23と鍔部21とを備えている。第2実施形態に係るPCS1は、このボビン2に複数本の超電導線材3(
図10Aにおいて図示せず)が巻回されて成る。第2実施形態における鍔部21には、無誘導巻きの折り返し部となる超電導接続部4を形成するための構造が設けられている。この超電導接続部4として、具体的には、
図10Bおよび
図10Cに示すように、鍔部21にMgB
2粉体充填部43と加圧治具44とが設けられている。このMgB
2粉体充填部43は、鍔部21の巻枠側24からその裏側の反巻枠側25に向かって徐々に深さが深くなるとともに、平面視略I字状、略J字状(Jの鏡文字の形状を含む)および略C字状(Cの鏡文字の形状を含む)などに形成された超電導線材導入溝26が設けられている。第2実施形態では、鍔部21に設けられた超電導線材導入溝26と、これに連なって鍔部21内に設けられたMgB
2粉体充填部43とにより、無誘導巻きの折り返し部となる超電導接続部4を具現する。
なお、本実施形態では、巻枠側24から反巻枠側25まで超電導線材導入溝26が設けられている場合を示したが、巻枠側24にMgB
2粉体充填部43が設けられ、反巻枠側25まで超電導線材導入溝26が連続しない構造とすることもできる。
【0041】
図11Aから
図11Cは、第2実施形態に係るPCS1の超電導接続部4を形成するプロセスの一例を説明する概略図である。
図11Aは、第2実施形態におけるPCS1の巻線後の様子を示している。
図11Bは、
図11Aのxibc-xibc部における断面図であり、超電導線材導入溝26に超電導線材3を配置した様子を図示している。
図11Cは、
図11Aのxibc-xibc部における断面図であり、ボビン2を反転させ、MgB
2粉体充填部43にMgB
2粉末50を充填し、加圧治具44で塞いだ様子を図示している。
【0042】
第2実施形態では、第1実施形態と同様に複数本(例えば、2本)の超電導線材3をボビン2に同時に巻回する。このようにすると、第1実施形態と同様、超電導線材3の巻き始めと巻き終わりにそれぞれ超電導線材3の端部31が2本できる。その後、それらのうちの一方の端部31をボビン2の鍔部21に設けられた超電導線材導入溝26に沿って挿入し、MgB2粉体充填部43に配置する。その際、超電導線材3は、少なくともMgB2粉体充填部43に位置する部分の金属シース33を一部切削(例えば、半周分切削)し、超電導線材3内のMgB2超電導フィラメント32を露出させた状態にする。超電導線材3の表面の金属シース33の切削は、第1実施形態と同様に行うことができる。このとき、超電導接続部4内における超電導層の生成を阻害する物質がMgB2粉体充填部43に露出しないような形状に切削することが好ましい。
【0043】
露出させるMgB2超電導フィラメント32も第1実施形態と同様、MgとBが未反応の状態でも、反応済みでMgB2が生成された状態のどちらでもよい。MgとBが未反応の場合には、超電導接続部4における超電導接続のための熱処理時に線材部分も熱処理を受けてMgB2化する。
【0044】
そして、
図11Cに示すように、MgB
2粉末50をMgB
2粉体充填部43に充填する。なお、
図11Cは、
図11Aや
図11Bに示す状態からボビン2を反転させて、MgB
2粉体充填部43を上側に配置している。すなわち、ボビン2の巻枠側24と反巻枠側25は
図11Cに示すとおりであり、このようにすると、MgB
2粉体充填部43にMgB
2粉末50を充填し易くなるので好適である。充填する粉末は、MgB
2粉末でもよく、MgとBとの混合粉でもよい。また、Mgは粉末であっても塊であってもよい。
MgB
2粉体充填部43にMgB
2粉末50を充填した後、加圧治具44でMgB
2粉体充填部43の開口部を塞ぐ。そして、プレス機などで加圧治具44を押圧して内部のMgB
2粉末50に圧力を加えて押し固める。
【0045】
その後、少なくとも鍔部21の超電導接続部4を熱処理することにより、2本の超電導線材3の周辺にMgB2焼結体52が生成され、MgB2粉体充填部43内のMgB2超電導フィラメント32がMgB2焼結体52によって超伝導接続される。MgB2焼結体52の生成は、第1実施形態と同様にして行うことができる。すなわち、MgB2焼結体52の生成は、例えば、電気炉を用いてアルゴンや窒素などの不活性ガス中、500~900℃で加熱することで行うことができるが、誘導加熱などの方法を適用することもできる。ただし、温度が高い場合には、Mgの蒸発量が多くなるため、650~850℃程度で熱処理することが好ましい。
【0046】
以上に説明した第2実施形態に係るPCS1は、ボビン2の鍔部21の内部に設けられた(一体化された)超電導接続部4で複数本の超電導線材3を超伝導接続してPCS1の無誘導巻きの折り返し部を具現している。第2実施形態に係るPCS1は、このような構成としているので、超電導線材3の折り返し部を構成するにあたって、従来のように、一度、PCS線ドラムに超電導線材3を巻き直す必要がなくなる。また、独立した複数本の超電導線材3をボビン2に巻回するので、作業性が向上する。さらに、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、曲げ半径の影響を受けて超電導線材3の超電導特性が劣化するということがない。また、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、超電導線材3の曲げ応力による超電導特性の劣化を防ぐことができる。加えて、第2実施形態に係るPCS1は、ボビン2の鍔部21にPCS1の無誘導巻きを形成する折り返し部(超電導接続部4)が一体化しているため、コンパクトな形状で無誘導巻きの折り返し部を具現し、PCS1を小型化できる。
【0047】
(第3実施形態)
本発明の第3実施形態に係るPCS1について、
図12Aおよび
図12Bを参照して説明する。なお、本実施形態は、第1実施形態の変形例であって、第1実施形態と同様の構成要素については同一の符号を付し、その詳細な説明を省略する場合がある。
【0048】
図12Aは、第3実施形態に係るPCS1の超電導接続部4に用いられるMgB
2粉体充填容器41とボビン2の鍔部21との固定構造を示した概略図である。
図12Bは、
図12Aのxiib-xiib断面図である。
【0049】
なお、第3実施形態では、第1実施形態と同様、2つのドラム30から超電導線材3を同時に供給し、ボビン2に巻回する。ボビン2に超電導線材3を巻回す際に、各層毎にヒータ線を挿入することが好適である点も第1実施形態と同様である。従って、ボビン2に2本の超電導線材3を巻回した後の状態は、第1実施形態で参照した
図4と同様の構造となる。
【0050】
その後、第1実施形態と同様、超電導線材3の一方の端部31の金属シース33を切削し、超電導線材3内のMgB2超電導フィラメント32を露出させ、接続容器40の線材挿入部45に挿入する。そして、接続容器40に設けられたMgB2粉体充填部43にMgB2粉末50を充填し、MgB2粉体充填部43の開口部を加圧治具44で塞ぐ。その後、加圧治具44をプレス機などで押圧し、充填したMgB2粉末50を押し固める。なお、このとき、充填する粉末は、MgB2粉末に限らず、MgとBとの混合粉であってもよい。また、Mgは粉末であっても塊であってもよい。
【0051】
MgB
2粉体充填部43にMgB
2粉末50を加圧した後のPCS1全体の構成は、第1実施形態で参照した
図1や
図2と同様になる。すなわち、ボビン2に巻回された超電導線材3の一方の端部31に無誘導巻きの折り返し部となる超電導接続部4が設けられた状態となる。第3実施形態においても熱処理時に、
図2に示すように、接続容器40をボビン2の鍔部21などの構造体に固定することが好ましい。これは、超電導接続部4周辺の超電導線材3に応力が加わり、超電導特性が劣化することを防ぐためである。このとき、熱処理時に超電導線材3が熱伸びすること、およびその後の冷却時に縮むことを考慮して、ボビン2の鍔部21に接続容器40を固定する際に、超電導線材3の長手方向に接続容器40が移動できる構造とすることが好ましい。
【0052】
図12Aおよび
図12Bはその具体的な固定方法を示したものである。
図12Aは、ボビン2の鍔部21と接続容器40の固定部を上面から見たものである。
図12Aおよび
図12Bに示すように、接続容器40は、鍔部21に設けられた接続容器固定部長穴27に固定される。この接続容器固定部長穴27は、超電導線材3の長手方向が長辺となるように加工されていることが好ましい。このようにすると、超電導線材3の長手方向に接続容器固定部長穴27の長辺が配置されているため、超電導線材3が熱伸びした際にも、接続容器40は超電導線材3の長手方向に移動できるようになる。そのため、熱伸びによる超電導線材3の超電導特性の劣化を防ぐことができる。また、その冷却時に超電導線材3が縮んでもそれに追従して接続容器40が移動できるので、超電導線材3の損壊等を防ぐことができる。
【0053】
接続容器固定部長穴27に接続容器40を固定する際には、接続容器固定部材28を用いる。接続容器固定部材28としては、例えば、ネジやボルトが挙げられる。接続容器固定部材28の材質としては、高温の熱処理にも耐えられるステンレスやセラミックスなどが挙げられる。接続容器固定部材28は、鍔部21の面で接続容器40が長手方向に移動できる程度の強さで固定することが好ましい。また、接続容器40を固定する際に、セラミック製の板やワッシャなど用いて、鍔部21と接続容器40とを電気的に絶縁してもよい。
【0054】
その後、少なくとも超電導接続部4を熱処理することにより、接続容器40内において複数本(例えば、2本)の超電導線材3周辺にMgB2焼結体52が生成される。このようにして生成されたMgB2焼結体52は、2本の超電導線材3のMgB2超電導フィラメント32を超電導接続することができる。MgB2焼結体52の生成は、例えば、電気炉を用いてアルゴンや窒素などの不活性ガス中、500~900℃で加熱することで行うことができるが、誘導加熱などの方法を適用することもできる。ただし、温度が高い場合には、Mgの蒸発量が多くなるため、650~850℃程度で熱処理することが好ましい。
【0055】
本実施形態で説明したPCS1は、複数本の超電導線材3を超電導接続した超電導接続部4で無誘導巻きを実現している。本実施形態ではこのようにして超電導線材3の折り返し部を構成するので、従来のように、一度、PCS線ドラムに超電導線材3を巻き直す必要がなくなる。また、独立した複数本の超電導線材3をボビン2に巻回するので、作業性が向上する。さらに、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、曲げ半径の影響を受けて超電導線材3の超電導特性が劣化するということがない。また、従来のように、無誘導巻きの折り返し部で超電導線材3を曲げる必要がないため、超電導線材3の曲げ応力による超電導特性の劣化を防ぐことができる。
【0056】
(第4実施形態)
[超電導磁石装置]
次に、本発明の第4実施形態に係る超電導磁石装置10について、
図13を参照して説明する。
図13は、本発明の第4実施形態に係る超電導磁石装置10の構成例を示す概略図である。
図13に示すように、超電導磁石装置10は、クライオスタット11の内部に超電導コイル12と、第1実施形態から第3実施形態で説明したいずれかの態様のPCS1とを有している。また、このPCS1は、前述したように、ボビン2の鍔部21に無誘導巻きの折り返し部となる超電導接続部4を有している。
【0057】
超電導コイル12とPCS1とは、支持板13を介して冷凍機(図示せず)によって冷却される。また、超電導コイル12の超電導線材とPCS1の超電導線材3とは、超電導接続部14で超電導接続されている。
【0058】
超電導コイル12を励磁する際には、室温側に配置される電源(図示せず)から低温側の超電導コイル12に電流リード15を通じて電流を供給する。PCS1が超電導状態に転移すると、超電導体の電気抵抗がゼロであるため、超電導コイル12、PCS1、超電導接続部14で構成される閉ループ回路において、電流の減衰がない永久電流運転モードを実現することができる。そのため、超電導磁石装置10内の超電導コイル12において高い安定度を有する磁場を得ることができる。
【0059】
本実施形態に係る超電導磁石装置10は、前述したPCS1を有しているので、超電導磁石装置10を製造するにあたって、PCS1の製造時の作業性が向上する。また、超電導磁石装置10は、PCS1の超電導接続部4で超電導線材3を曲げる必要がないため、曲げ半径の影響を受けて超電導線材3の超電導特性が劣化するということがない。さらに、超電導磁石装置10は、PCS1の超電導接続部4で超電導線材3を曲げる必要がないため、超電導線材3の曲げ応力による超電導特性の劣化がない。
【0060】
以上、本発明に係る永久電流スイッチ、永久電流スイッチの製造方法および超電導磁石装置について実施形態により詳細に説明したが、本発明の主旨はこれに限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
【符号の説明】
【0061】
1 PCS(永久電流スイッチ)
2 ボビン
3 超電導線材
4 超電導接続部
10 超電導磁石装置
11 クライオスタット
12 超電導コイル
13 支持板
14 超電導接続部
15 電流リード
21 鍔部
23 巻枠
24 巻枠側
25 反巻枠側
26 超電導線材導入溝
27 接続容器固定部長穴
28 接続容器固定部材
30 ドラム
31 端部
32 MgB2超電導フィラメント
33 金属シース
40 接続容器
41 MgB2粉体充填容器
42 上面部
43 MgB2粉体充填部
44 加圧治具
45 線材挿入部
46 一側面側
47 他側面側
48 下面部
49 接続容器固定部
50 MgB2粉末
51 封止材
52 MgB2焼結体