(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023089832
(43)【公開日】2023-06-28
(54)【発明の名称】鋳造条件の設定装置、連続鋳造装置、鋳造条件の設定方法、連続鋳造方法、及び高張力鋼鋳片の製造方法
(51)【国際特許分類】
B22D 11/04 20060101AFI20230621BHJP
B22D 11/00 20060101ALI20230621BHJP
B22D 11/11 20060101ALI20230621BHJP
B22D 11/115 20060101ALI20230621BHJP
B22D 11/10 20060101ALI20230621BHJP
【FI】
B22D11/04 311J
B22D11/00 A
B22D11/11 D
B22D11/115 C
B22D11/115 B
B22D11/10 330E
【審査請求】未請求
【請求項の数】16
【出願形態】OL
(21)【出願番号】P 2021204579
(22)【出願日】2021-12-16
(71)【出願人】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】100106909
【弁理士】
【氏名又は名称】棚井 澄雄
(74)【代理人】
【識別番号】100175802
【弁理士】
【氏名又は名称】寺本 光生
(74)【代理人】
【識別番号】100134359
【弁理士】
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100188592
【弁理士】
【氏名又は名称】山口 洋
(72)【発明者】
【氏名】木原 研吾
(72)【発明者】
【氏名】田口 謙治
(72)【発明者】
【氏名】内藤 大幹
【テーマコード(参考)】
4E004
【Fターム(参考)】
4E004AA09
4E004FB04
4E004MB11
4E004MB12
4E004NB01
4E004NC04
(57)【要約】
【課題】鋳型内部の長辺壁における隅部付近の部分で生じる溶鋼の構成元素の偏析を防止して、鋼鋳片の割れを抑制することができる鋳造条件の設定装置、連続鋳造装置、鋳造条件の設定方法、連続鋳造方法、及び高張力鋼鋳片の製造方法を提供することを目的とする。
【解決手段】本発明の一態様に係る鋳造条件の設定装置は、鋳型と、浸漬ノズルと、電磁撹拌装置と、電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定装置であって、高張力鋼鋳片を製造する場合において、吐出流が前記鋳型の前記長辺壁へ衝突するときの衝突速度が、所定の基準値未満になるための鋳造条件を算出する鋳造条件算出部と、鋳造条件算出部により算出された前記鋳造条件で鋳造可能な設定値を前記連続鋳造装置に対して設定する設定部と、を備える。
【選択図】
図7
【特許請求の範囲】
【請求項1】
一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、前記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、前記吐出孔のそれぞれから前記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、前記鋳型内部の前記溶鋼に電磁力を作用させて前記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、前記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する前記溶鋼に電磁力を作用させて前記吐出流を制動する電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定装置であって、
前記吐出流が前記電磁撹拌装置及び前記電磁ブレーキ装置による電磁力の作用を受けて前記鋳型の前記長辺壁へ衝突するときの衝突速度を、所定の基準値未満にするための前記鋳造条件を算出する鋳造条件算出部と、
前記鋳造条件算出部により算出された前記鋳造条件で鋳造可能な設定値を前記連続鋳造装置に対して設定する設定部と、を備える、鋳造条件の設定装置。
【請求項2】
高張力鋼鋳片を製造する場合において、前記所定の基準値は、前記吐出流による、前記溶鋼に含まれるSi及びMnの濃度変化が包晶凝固に及ぼす影響度に基づいて決定される値である、請求項1に記載の鋳造条件の設定装置。
【請求項3】
前記鋳造条件には、少なくとも前記電磁撹拌装置が発生する磁場の強度が含まれる、請求項1又は2に記載の鋳造条件の設定装置。
【請求項4】
前記鋳造条件には、前記電磁ブレーキ装置が発生する磁場の強度が含まれる、請求項1~3のいずれか一項に記載の鋳造条件の設定装置。
【請求項5】
前記設定部は、前記衝突速度が下記(1)式を満たすように前記設定値を設定する、請求項1~4のいずれか一項に記載の鋳造条件の設定装置。
U2<0.015×7500×V/{(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)-0.015} ・・・(1)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
U2:衝突速度(m/s)
Vc:鋳造速度(m/s)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
K:凝固係数(mm/min0.5)
【請求項6】
前記設定部は、下記(2)式で表されるΔCEが0.015未満になるように前記設定値を設定する、請求項1~5のいずれか一項に記載の鋳造条件の設定装置。
ΔCE=(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)/(7500×V/U2+1) ・・・(2)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
U2=U0-(σ×Lb×Bb2) (ただし、U0>σ×Lb×Bb2の場合)
U2=0 (ただし、U0≦σ×Lb×Bb2の場合)
U0=(Vp2+4×Cs×Ls)0.5
Ls=(Hb―D)/sinθ
Lb=0.5×(W―D1)/cosθ―Ls
Cs=0.5×σ×f×Δx×Bs2
Vp=Vc×(Ss/Sp)
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
σ:前記溶鋼の単位質量当たりの導電率(Sm2/kg)
U2:衝突速度(m/s)
Bb:前記電磁ブレーキ装置が発生する磁場の平均磁束密度(T)
Bs:前記電磁撹拌装置が発生する磁場の平均磁束密度(T)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
Vc:鋳造速度(m/s)
Vp:前記浸漬ノズルの前記吐出孔における前記吐出流の流速(m/s)
Sp:前記吐出孔の断面積(m2)
Ss:前記鋳型の内部空間の水平断面における断面積(m2)
W:前記鋳型の内部空間における前記長辺壁間の距離(m)
Δx:前記電磁撹拌装置に印加される交流電流の極間距離(m)
f:前記電磁撹拌装置に印加される交流電流の周波数(1/s)
D:前記吐出孔の深さ位置(m)
D1:前記浸漬ノズルの外径(m)
θ:前記吐出孔の下向き角度(rad)
K:凝固係数(mm/min0.5)
【請求項7】
前記U0、前記Bb及び前記Lbが、U0≦σ×Lb×Bb2を満たすようにして鋳造する、請求項6に記載の鋳造条件の設定装置。
【請求項8】
前記溶鋼が、C:0.1~0.5質量%、かつ、Si:0.8質量%以上又はMn:4.0質量%以上の少なくともいずれかを含有する、請求項1~7のいずれか一項に記載の鋳造条件の設定装置。
【請求項9】
請求項1~8のいずれか一項に記載の鋳造条件の設定装置により設定された前記鋳造条件で鋼鋳片を鋳造する、連続鋳造装置。
【請求項10】
一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、前記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、前記吐出孔のそれぞれから前記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、前記鋳型内部の前記溶鋼に電磁力を作用させて前記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、前記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する前記溶鋼に電磁力を作用させて前記吐出流を制動する電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定方法であって、
高張力鋼鋳片を製造する場合において、前記吐出流が前記電磁撹拌装置及び前記電磁ブレーキ装置による電磁力の作用を受けて前記鋳型の前記長辺壁へ衝突するときの衝突速度が、所定の基準値未満になるための前記鋳造条件を算出する鋳造条件算出ステップと、
前記鋳造条件算出ステップにおいて算出された前記鋳造条件で鋳造可能な設定値を前記連続鋳造装置に対して設定する設定ステップと、を有する、鋳造条件の設定方法。
【請求項11】
請求項10に記載の鋳造条件の設定方法により設定された前記鋳造条件で鋼鋳片を鋳造する、連続鋳造方法。
【請求項12】
一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、前記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、前記吐出孔のそれぞれから前記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、前記鋳型内部の前記溶鋼に電磁力を作用させて前記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、前記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する前記溶鋼に電磁力を作用させて前記吐出流を制動する電磁ブレーキ装置と、を備える連続鋳造装置を用いて連続的に高強度鋼鋳片を鋳造する高張力鋼鋳片の製造方法であって、
前記電磁撹拌装置が発生した磁場によって前記鋳型内の前記溶鋼に電磁力を作用させて、前記溶鋼が水平方向に旋回する旋回流を生じさせ、
前記電磁ブレーキ装置が発生した磁場によって前記吐出流を構成する前記溶鋼に作用する電磁力が、前記吐出流を制動し、
前記旋回流により湾曲して前記鋳型の長辺壁へ衝突する前記吐出流の衝突速度を所定の基準値未満にすることを特徴とする、高張力鋼鋳片の製造方法。
【請求項13】
前記衝突速度が下記(1)式を満たす、請求項12に記載の高張力鋼鋳片の製造方法。
U2<0.015×7500×V/{(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)-0.015} ・・・(1)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
U2:衝突速度(m/s)
Vc:鋳造速度(m/s)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
K:凝固係数(mm/min0.5)
【請求項14】
前記基準値が下記(2)式で表されるΔCEであり、前記ΔCEが0.015未満になるように前記連続鋳造装置の設定値を定める、請求項12又は13に記載の高張力鋼鋳片の製造方法。
ΔCE=(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)/(7500×V/U2+1) ・・・(2)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
U2=U0-(σ×Lb×Bb2) (ただし、U0>σ×Lb×Bb2の場合)
U2=0 (ただし、U0≦σ×Lb×Bb2の場合)
U0=(Vp2+4×Cs×Ls)0.5
Ls=(Hb―D)/sinθ
Lb=0.5×(W―D1)/cosθ―Ls
Cs=0.5×σ×f×Δx×Bs2
Vp=Vc×(Ss/Sp)
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
σ:前記溶鋼の単位質量当たりの導電率(Sm2/kg)
U2:衝突速度(m/s)
Bb:前記電磁ブレーキ装置が発生する磁場の平均磁束密度(T)
Bs:前記電磁撹拌装置が発生する磁場の平均磁束密度(T)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
Vc:鋳造速度(m/s)
Vp:前記浸漬ノズルの前記吐出孔における前記吐出流の流速(m/s)
Sp:前記吐出孔の断面積(m2)
Ss:前記鋳型の内部空間の水平断面における断面積(m2)
W:前記鋳型の内部空間における前記長辺壁間の距離(m)
Δx:前記電磁撹拌装置に印加される交流電流の極間距離(m)
f:前記電磁撹拌装置に印加される交流電流の周波数(1/s)
D:前記吐出孔の深さ位置(m)
D1:前記浸漬ノズルの外径(m)
θ:前記吐出孔の下向き角度(rad)
K:凝固係数(mm/min0.5)
【請求項15】
前記U0、前記Bb及び前記Lbが、U0≦σ×Lb×Bb2を満たすようにして鋳造する、請求項14に記載の高張力鋼鋳片の製造方法。
【請求項16】
前記溶鋼が、C:0.1~0.5質量%、かつ、Si:0.8質量%以上又はMn:4.0質量%以上の少なくともいずれかを含有する、請求項12~15のいずれか一項に記載の高張力鋼鋳片の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、鋳造条件の設定装置、連続鋳造装置、鋳造条件の設定方法、連続鋳造方法、及び高張力鋼鋳片の製造方法に関する。
【背景技術】
【0002】
鋼鋳片は、連続鋳造設備により連続的に鋳造されることがある。連続鋳造設備において、鋼鋳片の表面品質を良くするために、鋳型内で電磁撹拌装置及び電磁ブレーキ装置が広く用いられている。
【0003】
例えば特許文献1には、鋳造中の湯面変動に関して安定した状態を確保して、表面及び内部品質に優れた鋳片を容易に得るために、浸漬ノズルの吐出口における磁束密度が電磁撹拌装置の最大磁束密度の50%以下である位置に浸漬ノズルの吐出口を設置して浸漬ノズルから吐出流を吐出させ、この吐出流を電磁ブレーキにより形成される静磁場に導入する連続鋳造方法が開示されている。
【0004】
また、特許文献2には、連続鋳造される鋳片に含まれるArガス気泡や介在物を減少させ、鋳片の品質を向上させるために、浸漬ノズル内にArガスを吹き込みながら、電磁撹拌装置によって、前記鋳型内の上部の溶鋼を撹拌して前記鋳型の水平断面内で溶鋼の旋回流を形成し、かつ、電磁ブレーキ装置によって、前記浸漬ノズルの吐出孔から吐出された溶鋼に直流磁界を作用させて溶鋼を鋳造する鋼の連続鋳造方法において、前記浸漬ノズルから吐出される溶鋼を制御する鋼の連続鋳造方法が開示されている。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2001-47195号公報
【特許文献2】特開2009-66618号公報
【非特許文献】
【0006】
【非特許文献1】高橋忠義、市川洌、工藤昌行、島原皓一、「鋼塊の凝固偏析におよぼす溶湯流動の影響」、鉄と鋼、61(1975)、第9号、2198~2213頁.
【非特許文献2】長田修次、松宮徹、小澤浩作、大橋徹郎、「連続鋳造スラブの内部割れ発生限界歪みの推定」、鉄と鋼、76(1990)、第2号、214~221頁.
【非特許文献3】A. Jablonka, K. Harste and K. Schwerdtfeger, “Thermomechanical properties of iron and iron-carbon alloys: density and thermal contraction, Steel Research, 62 (1991), 24-33.
【非特許文献4】J. Ni and C. Beckermann, “A Volume-Averaged Two-Phase model for Transport Phenomena during Solidification”, Metallurgical Transactions B, 22B, June, 1991, 349-361
【発明の概要】
【発明が解決しようとする課題】
【0007】
近年、高付加価値製品のニーズの増加に伴い、鋼鋳片の高合金化が進んでおり、高合金鋼の連続鋳造においては、電磁撹拌による含有成分の偏析が問題になり得る。例えば、SiやMnを多く含有する高張力鋼においては、電磁撹拌と吐出流による流動により、鋳型内部の隅部付近に局所的な偏析が生じる。これにより、高合金の鋼鋳片の組織が不均一となり、当該鋼鋳片に割れが発生しやすくなる。
【0008】
本発明は、上述した状況に鑑みてなされたものであって、鋳型内部の長辺壁における隅部付近の部分で生じる溶鋼の構成元素の偏析を防止して、鋼鋳片の割れを抑制することができる鋳造条件の設定装置、連続鋳造装置、鋳造条件の設定方法、連続鋳造方法、及び高張力鋼鋳片の製造方法を提供することを目的としている。
【課題を解決するための手段】
【0009】
上記課題を解決するために、本発明者らが鋭意検討した結果、合金の凝固では、凝固に伴いCやSi、Mnといった合金成分が固相から溶鋼側に排出されるが、溶鋼が流動している場合、溶鋼に排出された上記合金成分が流されるため、凝固後に数mmスケールの成分の濃淡、いわゆるマクロ偏析ができやすいことを見出した。そして、そのマクロ偏析は、電磁撹拌装置を備える連続鋳造設備が鋼鋳片の製造に使用される場合、鋳型内部の長辺壁における隅部付近の部分で生じやすいという知見を得た。本発明者らは、更なる検討を行った結果、電磁ブレーキ装置によって、吐出流を制動し、鋳型内部の長辺壁における隅部付近の部分のマクロ偏析を抑制することで、包晶凝固が空間的に不均一に生じるのを抑制することができ、それにより、鋼鋳片の割れを防止することができることが分かった。そして、本発明者らは本発明をするに至った。
【0010】
本発明の要旨は、以下のとおりである。
[1] 本発明のある観点によれば、一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、上記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、上記吐出孔のそれぞれから上記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、上記鋳型内部の上記溶鋼に電磁力を作用させて上記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、上記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する上記溶鋼に電磁力を作用させて上記吐出流を制動する電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定装置であって、上記吐出流が上記電磁撹拌装置及び上記電磁ブレーキ装置による電磁力の作用を受けて上記鋳型の上記長辺壁へ衝突するときの衝突速度を、所定の基準値未満にするための上記鋳造条件を算出する鋳造条件算出部と、上記鋳造条件算出部により算出された上記鋳造条件で鋳造可能な設定値を上記連続鋳造装置に対して設定する設定部と、を備える、鋳造条件の設定装置が提供される。
[2] 上記[1]に記載の鋳造条件の設定装置では、高張力鋼鋳片を製造する場合において、上記所定の基準値が、上記吐出流による、上記溶鋼に含まれるSi及びMnの濃度変化が包晶凝固に及ぼす影響度に基づいて決定される値であってもよい。
[3] 上記[1]又は[2]に記載の鋳造条件の設定装置では、上記鋳造条件に、少なくとも上記電磁撹拌装置が発生する磁場の強度が含まれてもよい。
[4] 上記[1]~[3]のいずれかに記載の鋳造条件の設定装置では、上記鋳造条件に、上記電磁ブレーキ装置が発生する磁場の強度が含まれてもよい。
[5] 上記[1]~[4]のいずれかに記載の鋳造条件の設定装置では、上記設定部が、上記衝突速度が下記(1)式を満たすように上記設定値を設定してもよい。
U2<0.015×7500×V/{(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)-0.015} ・・・(1)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
U2:衝突速度(m/s)
Vc:鋳造速度(m/s)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
K:凝固係数(mm/min0.5)
[6] 上記[1]~[5]のいずれかに記載の鋳造条件の設定装置では、上記設定部が、下記(2)式で表されるΔCEが0.015未満になるように上記設定値を設定してもよい。
ΔCE=(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)/(7500×V/U2+1) ・・・(2)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
U2=U0-(σ×Lb×Bb2) (ただし、U0>σ×Lb×Bb2の場合)
U2=0 (ただし、U0≦σ×Lb×Bb2の場合)
U0=(Vp2+4×Cs×Ls)0.5
Ls=(Hb―D)/sinθ
Lb=0.5×(W―D1)/cosθ―Ls
Cs=0.5×σ×f×Δx×Bs2
Vp=Vc×(Ss/Sp)
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
σ:上記溶鋼の単位質量当たりの導電率(Sm2/kg)
U2:衝突速度(m/s)
Bb:上記電磁ブレーキ装置が発生する磁場の平均磁束密度(T)
Bs:上記電磁撹拌装置が発生する磁場の平均磁束密度(T)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
Vc:鋳造速度(m/s)
Vp:上記浸漬ノズルの上記吐出孔における上記吐出流の流速(m/s)
Sp:上記吐出孔の断面積(m2)
Ss:上記鋳型の内部空間の水平断面における断面積(m2)
W:上記鋳型の内部空間における上記長辺壁間の距離(m)
Δx:上記電磁撹拌装置に印加される交流電流の極間距離(m)
f:上記電磁撹拌装置に印加される交流電流の周波数(1/s)
D:上記吐出孔の深さ位置(m)
D1:上記浸漬ノズルの外径(m)
θ:上記吐出孔の下向き角度(rad)
K:凝固係数(mm/min0.5)
[7] 上記[6]に記載の鋳造条件の設定装置では、上記U0、上記Bb及び上記Lbが、U0≦σ×Lb×Bb2を満たすようにして鋳造してもよい。
[8] 上記[1]~[7]のいずれかに記載の鋳造条件の設定装置では、上記溶鋼が、C:0.1~0.5質量%、かつ、Si:0.8質量%以上又はMn:4.0質量%以上の少なくともいずれかを含有してもよい。
【0011】
[9] 本発明の別の観点によれば、上記[1]~[8]のいずれかに記載の鋳造条件の設定装置により設定された上記鋳造条件で鋼鋳片を鋳造する、連続鋳造装置が提供される。
【0012】
[10] 本発明の更に別の観点によれば、一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、上記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、上記吐出孔のそれぞれから上記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、上記鋳型内部の上記溶鋼に電磁力を作用させて上記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、上記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する上記溶鋼に電磁力を作用させて上記吐出流を制動する電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定方法であって、高張力鋼鋳片を製造する場合において、上記吐出流が上記電磁撹拌装置及び上記電磁ブレーキ装置による電磁力の作用を受けて上記鋳型の上記長辺壁へ衝突するときの衝突速度が、所定の基準値未満になるための上記鋳造条件を算出する鋳造条件算出ステップと、上記鋳造条件算出ステップにおいて算出された上記鋳造条件で鋳造可能な設定値を上記連続鋳造装置に対して設定する設定ステップと、を有する、鋳造条件の設定方法が提供される。
【0013】
[11] 本発明の更に別の観点によれば、上記[10]に記載の鋳造条件の設定方法により設定された上記鋳造条件で鋼鋳片を鋳造する、連続鋳造方法が提供される。
【0014】
[12] 本発明の更に別の観点によれば、一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、上記鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、上記吐出孔のそれぞれから上記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、上記鋳型内部の上記溶鋼に電磁力を作用させて上記溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、上記吐出孔から吐出された溶鋼の主な流れである吐出流を構成する上記溶鋼に電磁力を作用させて上記吐出流を制動する電磁ブレーキ装置と、を備える連続鋳造装置を用いて連続的に高強度鋼鋳片を鋳造する高張力鋼鋳片の製造方法であって、上記電磁撹拌装置が発生した磁場によって上記鋳型内の上記溶鋼に電磁力を作用させて、上記溶鋼が水平方向に旋回する旋回流を生じさせ、上記電磁ブレーキ装置が発生した磁場によって上記吐出流を構成する上記溶鋼に作用する電磁力が、上記吐出流を制動し、上記旋回流により湾曲して上記鋳型の長辺壁へ衝突する上記吐出流の衝突速度を所定の基準値未満にすることを特徴とする、高張力鋼鋳片の製造方法が提供される。
[13] 上記[12]に記載の高張力鋼鋳片の製造方法は、上記衝突速度が下記(1)式を満たしてもよい。
U2<0.015×7500×V/{(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)-0.015} ・・・(1)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
U2:衝突速度(m/s)
Vc:鋳造速度(m/s)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
K:凝固係数(mm/min0.5)
[14] 上記[12]又は[13]に記載の高張力鋼鋳片の製造方法は、上記基準値が下記(2)式で表されるΔCEであり、当該ΔCEが0.015未満になるように上記連続鋳造装置の設定値を定めてもよい。
ΔCE=(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)/(7500×V/U2+1) ・・・(2)式
ここで、
V=6.45×10-5×K×(Vc/Hb)0.5
U2=U0-(σ×Lb×Bb2) (ただし、U0>σ×Lb×Bb2の場合)
U2=0 (ただし、U0≦σ×Lb×Bb2の場合)
U0=(Vp2+4×Cs×Ls)0.5
Ls=(Hb―D)/sinθ
Lb=0.5×(W―D1)/cosθ―Ls
Cs=0.5×σ×f×Δx×Bs2
Vp=Vc×(Ss/Sp)
ただし、
%X:成分Xの質量濃度(質量%)
k_X:成分Xの平衡分配係数(-)
σ:上記溶鋼の単位質量当たりの導電率(Sm2/kg)
U2:衝突速度(m/s)
Bb:上記電磁ブレーキ装置が発生する磁場の平均磁束密度(T)
Bs:上記電磁撹拌装置が発生する磁場の平均磁束密度(T)
Hb:溶鋼表面から電磁ブレーキのコア上端までの距離(m)
Vc:鋳造速度(m/s)
Vp:上記浸漬ノズルの上記吐出孔における上記吐出流の流速(m/s)
Sp:上記吐出孔の断面積(m2)
Ss:上記鋳型の内部空間の水平断面における断面積(m2)
W:上記鋳型の内部空間における上記長辺壁間の距離(m)
Δx:上記電磁撹拌装置に印加される交流電流の極間距離(m)
f:上記電磁撹拌装置に印加される交流電流の周波数(1/s)
D:上記吐出孔の深さ位置(m)
D1:上記浸漬ノズルの外径(m)
θ:上記吐出孔の下向き角度(rad)
K:凝固係数(mm/min0.5)
[15] 上記[14]に記載の高張力鋼鋳片の製造方法は、上記U0、上記Bb及び上記Lbが、U0≦σ×Lb×Bb2を満たすようにして鋳造してもよい。
[16] 上記[12]~[15]のいずれかに記載の高張力鋼鋳片の製造方法では、上記溶鋼が、C:0.1~0.5質量%、かつ、Si:0.8質量%以上又はMn:4.0質量%以上の少なくともいずれかを含有してもよい。
【0015】
本発明によれば、吐出流が鋳型の長辺壁へ衝突するときの衝突速度が基準値未満になるため、鋳型内部の長辺壁における隅部付近の部分で生じる溶鋼の構成元素の偏析を防止して、鋼鋳片の割れを抑制することが可能となる。
【図面の簡単な説明】
【0016】
【
図1】連続鋳造製造装置の一例を示す概略説明図である。
【
図2】鋳型と、電磁撹拌装置及び電磁ブレーキ装置の位置関係並びに電磁撹拌装置及び電磁ブレーキ装置の構成を示すY-Z平面での部分断面図である。
【
図6】電磁ブレーキ装置によって溶鋼に対して作用する電磁力の方向について説明するための図である。
【
図7】本発明の一実施形態に係る鋳造条件の設定装置の構成を示すブロック図である。
【
図8】電磁ブレーキが作用しない場合及び十分に作用する場合における吐出流の流動を説明するための概念図である。
【
図9】吐出流の流れを説明するための概念図である。
【
図10】EMS強度を変更したときのEMBr強度と偏析比率Δ%Si/%Siの関係のグラフである。
【
図11】鋳造速度Vcを変更したときのEMBr強度と偏析比率Δ%Si/%Siとの関係のグラフである。
【
図12】EMS強度を変更したときのEMBr強度とΔCE’の関係のグラフである。
【
図13】鋳造速度Vcを変更したときのEMBr強度とΔCE’の関係のグラフである。
【
図14】鋼種が0.13%C-0.1%Si-0.1%Mn鋼であるときの、ΔCE=0.015なるEMS強度とEMBr電磁ブレーキ強度の関係を示すグラフである。
【
図15】鋼種が0.13%C-1.0%Si-0.1%Mn鋼であるときの、ΔCE=0.015なるEMS強度とEMBr電磁ブレーキ強度の関係を示すグラフである。
【
図16】鋼種が0.13%C-0.1%Si-6.0%Mn鋼であるときの、ΔCE=0.015なるEMS強度とEMBr電磁ブレーキ強度の関係を示すグラフである。
【発明を実施するための形態】
【0017】
以下に、本発明の実施形態である鋼鋳片の製造設備について、添付した図面を参照して説明する。なお、本発明は、以下の実施形態に限定されるものではない。また、本明細書に示す各図面では、説明のため、一部の構成部材の大きさを誇張して表現している場合がある。各図面において図示される各部材の相対的な大きさは、必ずしも実際の部材間における大小関係を正確に表現するものではない。
【0018】
<<連続鋳造装置の構成>>
まず、
図1を参照して、本発明の一実施形態に係る鋳造条件の設定装置が適用され得る連続鋳造装置の全体構成を説明する。
図1は、連続鋳造装置の一例を示す概略説明図である。
【0019】
図1に示すように、本実施形態に係る連続鋳造装置1は、連続鋳造用の鋳型110を用いて溶鋼2を連続鋳造し、スラブ等の鋳片3を製造するための装置である。連続鋳造装置1は、鋳型110と、取鍋4と、タンディッシュ5と、浸漬ノズル6と、二次冷却装置7と、鋳片切断機8と、を備える。
【0020】
取鍋4は、溶鋼2を外部からタンディッシュ5まで搬送するための可動式の容器である。取鍋4は、タンディッシュ5の上方に配置され、取鍋4内の溶鋼2がタンディッシュ5に供給される。タンディッシュ5は、鋳型110の上方に配置され、溶鋼2を貯留して、当該溶鋼2中の介在物を除去する。浸漬ノズル6は、タンディッシュ5の下端から鋳型110に向けて下方に延び、その先端は鋳型110内の溶鋼2に浸漬されている。当該浸漬ノズル6は、タンディッシュ5にて介在物が除去された溶鋼2を鋳型110内に連続供給する。
【0021】
鋳型110は、鋳片3の幅及び厚さに応じた四角筒状であり、例えば、一対の長辺鋳型板(後述する
図2等に示す長辺鋳型板111に対応する)で一対の短辺鋳型板(後述する
図4等に示す短辺鋳型板112に対応する)を両側から挟むように組み立てられる。長辺鋳型板及び短辺鋳型板(以下、鋳型板と総称することがある)は、例えば冷却水が流動する水路が設けられた水冷銅板である。鋳型110は、かかる鋳型板と接触する溶鋼2を冷却して、鋳片3を製造する。鋳片3が鋳型110下方に向かって移動するにつれて、内部の未凝固部3bの凝固が進行し、外殻の凝固シェル3aの厚さは、徐々に厚くなる。かかる凝固シェル3aと未凝固部3bを含む鋳片3は、鋳型110の下端から引き抜かれる。
【0022】
なお、以下の説明では、上下方向(すなわち、鋳型110から鋳片3が引き抜かれる方向)を、Z軸方向とも呼称する。Z軸方向のことを鉛直方向とも呼称する。また、Z軸方向と垂直な平面(水平面)内における互いに直交する2方向を、それぞれ、X軸方向及びY軸方向とも呼称する。また、X軸方向を、水平面内において鋳型110の長辺と平行な方向(すなわち、鋳型幅方向)として定義し、Y軸方向を、水平面内において鋳型110の短辺と平行な方向(すなわち、鋳型厚み方向)として定義する。X-Y平面と平行な方向のことを水平方向とも呼称する。また、以下の説明では、各部材の大きさを表現する際に、当該部材のZ軸方向の長さのことを高さともいい、当該部材のX軸方向又はY軸方向の長さのことを幅ともいうことがある。
【0023】
ここで、
図1では図面が煩雑になることを避けるために図示を省略しているが、本実施形態では、鋳型110の長辺鋳型板の外側面に電磁力発生装置170が設置される。そして、当該電磁力発生装置170を駆動させながら連続鋳造を行う。当該電磁力発生装置170は、電磁撹拌装置150及び電磁ブレーキ装置160を備えるものである。本実施形態では、当該電磁力発生装置170を駆動させながら連続鋳造を行うことにより、鋳片の品質を確保しつつ、より高速での鋳造が可能になる。当該電磁力発生装置170の構成及び鋳型110に対する設置位置等については、
図2~
図5を参照して後述する。
【0024】
二次冷却装置7は、鋳型110の下方の二次冷却帯9に設けられ、鋳型110下端から引き抜かれた鋳片3を支持及び搬送しながら冷却する。この二次冷却装置7は、鋳片3の厚さ方向両側に配置される複数対の支持ロール(例えば、サポートロール11、ピンチロール12及びセグメントロール13)と、鋳片3に対して冷却水を噴射する複数のスプレーノズル(図示せず)とを有する。
【0025】
二次冷却装置7に設けられる支持ロールは、鋳片3の厚さ方向両側に対となって配置され、鋳片3を支持しながら搬送する支持搬送手段として機能する。当該支持ロールにより鋳片3を厚さ方向両側から支持することで、二次冷却帯9において凝固途中の鋳片3のブレイクアウトやバルジングを防止できる。
【0026】
支持ロールであるサポートロール11、ピンチロール12及びセグメントロール13は、二次冷却帯9における鋳片3の搬送経路(パスライン)を形成する。このパスラインは、
図1に示すように、鋳型110の直下では垂直であり、次いで曲線状に湾曲して、最終的には水平になる。二次冷却帯9において、当該パスラインが垂直である部分を垂直部9A、湾曲している部分を湾曲部9B、水平である部分を水平部9Cと称する。このようなパスラインを有する連続鋳造装置1は、垂直曲げ型の連続鋳造装置1と呼称される。なお、本発明は、
図1に示すような垂直曲げ型の連続鋳造装置1に限定されず、湾曲型又は垂直型など他の各種の連続鋳造装置にも適用可能である。
【0027】
サポートロール11は、鋳型110の直下の垂直部9Aに設けられる無駆動式ロールであり、鋳型110から引き抜かれた直後の鋳片3を支持する。鋳型110から引き抜かれた直後の鋳片3は、凝固シェル3aが薄い状態であるため、ブレイクアウトやバルジングを防止するために比較的短い間隔(ロールピッチ)で支持する必要がある。そのため、サポートロール11としては、ロールピッチを短縮することが可能な小径のロールが用いられることが望ましい。
図1に示す例では、垂直部9Aにおける鋳片3の両側に、小径のロールからなる3対のサポートロール11が、比較的狭いロールピッチで設けられている。
【0028】
ピンチロール12は、モータ等の駆動手段により回転する駆動式ロールであり、鋳片3を鋳型110から引き抜く機能を有する。ピンチロール12は、垂直部9A、湾曲部9B及び水平部9Cにおいて適切な位置にそれぞれ配置される。鋳片3は、ピンチロール12から伝達される力によって鋳型110から引き抜かれ、上記パスラインに沿って搬送される。なお、ピンチロール12の配置は
図1に示す例に限定されず、その配置位置は任意に設定されてよい。
【0029】
セグメントロール13(ガイドロールともいう)は、湾曲部9B及び水平部9Cに設けられる無駆動式ロールであり、上記パスラインに沿って鋳片3を支持及び案内する。セグメントロール13は、パスライン上の位置によって、及び、鋳片3のF面(Fixed面、
図1では左下側の面)とL面(Loose面、
図1では右上側の面)のいずれに設けられるかによって、それぞれ異なるロール径やロールピッチで配置されてよい。
【0030】
鋳片切断機8は、上記パスラインの水平部9Cの終端に配置され、当該パスラインに沿って搬送された鋳片3を所定の長さに切断する。切断された厚板状の鋳片14は、テーブルロール15により次工程の設備に搬送される。
【0031】
以上、
図1を参照して、本実施形態に係る連続鋳造装置1の全体構成について説明した。なお、本実施形態では、鋳型110に対して後述する構成を有する電磁力発生装置170が設置され、当該電磁力発生装置170を用いて連続鋳造が行われればよく、連続鋳造装置1における当該電磁力発生装置170以外の構成は、一般的な従来の連続鋳造装置と同様であってよい。従って、連続鋳造装置1の構成は図示したものに限定されず、連続鋳造装置1としては、あらゆる構成のものが用いられてよい。
【0032】
<<電磁力発生装置170>>
<電磁力発生装置170の構成>
図2~
図5を参照して、上述した鋳型110に対して設置される電磁力発生装置170の構成について詳細に説明する。
【0033】
図2は、本実施形態に係る鋳型設備10のY-Z平面での断面図である。
図3は、鋳型設備10の、
図2に示すA-A断面での断面図である。
図4は、鋳型設備10の、
図3に示すB-B断面での断面図である。
図5は、鋳型設備10の、
図3に示すC-C断面での断面図である。なお、鋳型設備10は、Y軸方向において、鋳型110の中心に対して対称な構成を有するため、
図2、
図4及び
図5では、一方の長辺鋳型板111に対応する部位のみを図示している。また、
図2、
図4及び
図5では、理解を容易にするため、鋳型110内の溶鋼2も併せて図示している。
【0034】
図2~
図5を参照すると、本実施形態に係る鋳型設備10は、鋳型110の長辺鋳型板111の外側面に、バックアッププレート121を介して、2つの水箱130、140と、電磁力発生装置170と、が設置されて構成される。
【0035】
鋳型110は、上述したように、一対の長辺鋳型板111で一対の短辺鋳型板112を両側から挟むように組み立てられる。鋳型板111、112は銅板からなる。ただし、本実施形態はかかる例に限定されず、鋳型板111、112は、一般的に連続鋳造装置の鋳型として用いられる各種の材料によって形成されてよい。
【0036】
ここで、本実施形態では、鉄鋼スラブの連続鋳造を対象としており、その鋳片サイズは、幅(すなわち、X軸方向の長さ)800~2300mm程度、厚み(すなわち、Y軸方向の長さ)200~300mm程度である。つまり、鋳型板111、112も、当該鋳片サイズに対応した大きさを有する。すなわち、長辺鋳型板111は、少なくとも鋳片3の幅800~2300mmよりも長いX軸方向の幅を有し、短辺鋳型板112は、鋳片3の厚み200~300mmと略同一のY軸方向の幅を有する。
【0037】
一般的に、鋳型110内で溶鋼2の凝固が進行すると、凝固収縮のために鋳片3が鋳型110の内壁から離れてしまい、当該鋳片3の冷却が不十分になる場合があることが知られている。そのため、鋳型110のZ軸方向の長さは、溶鋼湯面から、長くても1000mm程度が限界とされている。
【0038】
バックアッププレート121、122は、例えばステンレスからなり、鋳型110の鋳型板111、112を補強するために、当該鋳型板111、112の外側面を覆うように設けられる。以下、区別のため、長辺鋳型板111の外側面に設けられるバックアッププレート121のことを長辺側バックアッププレート121ともいい、短辺鋳型板112の外側面に設けられるバックアッププレート122のことを短辺側バックアッププレート122ともいう。
【0039】
電磁力発生装置170は、長辺側バックアッププレート121を介して鋳型110内の溶鋼2に対して電磁力を付与するため、少なくとも長辺側バックアッププレート121は非磁性体(例えば、非磁性のステンレス等)によって形成され得る。
【0040】
長辺側バックアッププレート121には、更に、当該長辺側バックアッププレート121と垂直な方向(すなわち、Y軸方向)に向かって延伸する一対のバックアッププレート123が設けられる。
図3~
図5に示すように、この一対のバックアッププレート123の間に電磁力発生装置170が設置される。このように、バックアッププレート123は、電磁力発生装置170の幅(すなわち、X軸方向の長さ)、及びX軸方向の設置位置を規定し得るものである。換言すれば、電磁力発生装置170が鋳型110内の溶鋼2の所望の範囲に対して電磁力を付与し得るように、バックアッププレート123の取り付け位置が決定される。以下、区別のため、当該バックアッププレート123のことを、幅方向バックアッププレート123ともいう。幅方向バックアッププレート123も、バックアッププレート121、122と同様に、例えばステンレスによって形成される。
【0041】
水箱130、140は、鋳型110を冷却するための冷却水を貯水する。本実施形態では、図示するように、一方の水箱130を長辺鋳型板111の上端から所定の距離の領域に設置し、他方の水箱140を長辺鋳型板111の下端から所定の距離の領域に設置する。このように、水箱130、140を鋳型110の上部及び下部にそれぞれ設けることにより、当該水箱130、140の間に電磁力発生装置170を設置する空間を確保することが可能になる。以下、区別のため、長辺鋳型板111の上部に設けられる水箱130のことを上部水箱130ともいい、長辺鋳型板111の下部に設けられる水箱140のことを下部水箱140ともいう。
【0042】
長辺鋳型板111の内部、又は長辺鋳型板111と長辺側バックアッププレート121との間には、冷却水が通過する水路(図示せず)が形成される。当該水路は、水箱130、140まで延設されている。図示しないポンプによって、一方の水箱130、140から他方の水箱130、140に向かって(例えば、下部水箱140から上部水箱130に向かって)、当該水路を通過して冷却水が流される。これにより、長辺鋳型板111が冷却され、当該長辺鋳型板111を介して鋳型110内部の溶鋼2が冷却される。なお、図示は省略しているが、短辺鋳型板112に対しても、同様に、水箱及び水路が設けられ、冷却水が流動されることにより当該短辺鋳型板112が冷却される。
【0043】
電磁力発生装置170は、電磁撹拌装置150と、電磁ブレーキ装置160と、を備える。図示するように、電磁撹拌装置150及び電磁ブレーキ装置160は、水箱130、140の間の空間に設置される。当該空間内で、電磁撹拌装置150が上方に、電磁ブレーキ装置160が下方に設置される。
【0044】
電磁撹拌装置150は、鋳型110内の溶鋼2に対して、動磁場を印加することにより、当該溶鋼2に対して電磁力を作用させる。電磁撹拌装置150は、自身が設置される長辺鋳型板111の幅方向(すなわち、X軸方向)の電磁力が溶鋼2に作用するように駆動される。
図4には、電磁撹拌装置150によって溶鋼2に対して作用する電磁力の方向を、模擬的に太線矢印で示している。ここで、図示を省略している長辺鋳型板111(すなわち、図示する長辺鋳型板111に対向する長辺鋳型板111)に設けられる電磁撹拌装置150は、その自身が設置される長辺鋳型板111の幅方向に沿って、図示する方向とは逆向きの電磁力が作用するように駆動される。このように、一対の電磁撹拌装置150が、水平面内において旋回流を発生させるように駆動される。電磁撹拌装置150によれば、このような旋回流を生じさせることにより、凝固シェル界面における溶鋼2が流動され、凝固シェル3aへの気泡や介在物の捕捉を抑制する洗浄効果が得られ、鋳片3の表面品質を良化させることができる。
【0045】
電磁撹拌装置150の詳細な構成について説明する。電磁撹拌装置150は、ケース151と、当該ケース151内に格納される鉄芯(コア)152(以下、電磁撹拌コア152ともいう)と、当該電磁撹拌コア152に導線が巻回されて構成される複数のコイル153と、から構成される。
【0046】
ケース151は、略直方体形状を有する中空の部材である。ケース151の大きさは、電磁撹拌装置150によって溶鋼2の所望の範囲に対して電磁力を付与し得るように、すなわち、内部に設けられるコイル153が溶鋼2に対して適切な位置に配置され得るように、適宜決定され得る。また、電磁撹拌装置150では、コイル153からケース151の側壁を通過して溶鋼2に対して電磁力が付与されるため、ケース151の材料としては、例えば非磁性体ステンレス又はFRP(Fiber Reinforced Plastics)等の、非磁性で、かつ強度が確保可能な部材が用いられる。
【0047】
電磁撹拌コア152は、略直方体形状の本体部と、当該本体部から突設される複数のティース部154と、を有する中実の部材であり、ケース151内において、その長手方向が長辺鋳型板111の幅方向(すなわち、X軸方向)と略平行になるように設置される。電磁撹拌コア152は、例えば電磁鋼板を積層することにより形成される。
【0048】
電磁撹拌コア152に対して、X軸方向を巻回軸方向として導線が巻回されることにより、コイル153が形成される(すなわち、電磁撹拌コア152をX軸方向に磁化するようにコイル153が形成される)。当該導線としては、例えば断面が10mm×10mmで、内部に直径5mm程度の冷却水路を有する銅製のものが用いられる。電流印加時には、当該冷却水路を用いて当該導線が冷却される。当該導線は、絶縁紙等によりその表層が絶縁処理されており、層状に巻回することが可能である。例えば、一のコイル153は、当該導線を2~4層程度巻回することにより形成される。同様の構成を有するコイル153が、X軸方向に所定の間隔を有して並列されて設けられる。
【0049】
具体的には、電磁撹拌コア152の略直方体形状の本体部がX軸方向に延伸するように設置され、当該本体部から鋳型110に向かって水平方向に突出するように複数のティース部154が設けられる。これら複数のティース部154はX軸方向に互いに所定の間隔を有して並べられて設けられる。そして、当該複数のティース部154の間の領域にX軸方向を巻回軸方向としてそれぞれ導線が巻回され、複数のコイル153が形成される。ティース部154の幅(すなわち、X軸方向の長さ)Wt、及びコイル153の幅(すなわち、コイル153のX軸方向の長さであって、X軸方向における隣り合うティース部154間の距離に対応する)Wcは、電磁撹拌コア152の幅W1の大きさ、及び鋳片3の品質を向上させ得るような所望の撹拌力が得られること等を考慮して、適宜設定される。例えば、ティース部154の幅Wtは30mm~120mm程度であり、コイル153の幅Wcは20mm~120mm程度である。
【0050】
複数のコイル153のそれぞれには、図示しない電源装置が接続される。当該電源装置によって、電流の位相が複数のコイル153の配列順に適宜ずれるように、当該複数のコイル153に対して交流電流が印加されることにより、溶鋼2に対して旋回流を生じさせるような電磁力が付与され得る。電源装置の駆動は、プロセッサ等からなる制御装置(図示せず)が所定のプログラムに従って動作することにより、適宜制御され得る。当該制御装置により、コイル153のそれぞれに印加される電流量や、コイル153のそれぞれに印加される交流電流の位相等が適宜制御され、溶鋼2に対して与えられる電磁力の強さが制御され得る。
【0051】
電磁撹拌コア152のX軸方向の幅W1は、電磁撹拌装置150によって溶鋼2の所望の範囲に対して電磁力を付与し得るように、すなわち、コイル153が溶鋼2に対して適切な位置に配置され得るように、適宜決定され得る。例えば、W1は1800mm程度である。
【0052】
なお、図示する構成例では、電磁撹拌コア152はティース部154を有しているが、第1の実施形態はかかる例に限定されない。第1の実施形態では、電磁撹拌コア152にはティース部154は設けられなくてもよい。この場合には、電磁撹拌コア152は、略直方体形状に構成され、当該電磁撹拌コア152に対して、X軸方向に互いに所定の間隔を有して導線がそれぞれ巻回されることにより、X軸方向に互いに所定の間隔を有して並べられる複数のコイル153が形成される。
【0053】
電磁ブレーキ装置160は、鋳型110内の溶鋼2に対して静磁場を印加することにより、当該溶鋼2に対して電磁力が作用する。ここで、
図6は、電磁ブレーキ装置160によって溶鋼2に対して作用する電磁力の方向について説明するための図である。
図6では、鋳型110近傍の構成の、X-Z平面での断面を概略的に図示している。また、
図6では、電磁撹拌コア152、及び後述する電磁ブレーキコア162の位置を模擬的に破線で示している。
【0054】
図6に示すように、浸漬ノズル6には、短辺鋳型板112に対向する位置に一対の吐出孔61が設けられ得る。電磁ブレーキ装置160は、浸漬ノズル6の当該吐出孔61からの溶鋼2の流れ(吐出流)を抑制する方向の電磁力を、当該溶鋼2に対して作用するように駆動される。
図6には、2つの吐出孔61から吐出する各吐出流の方向を模擬的に細線矢印で示すとともに、電磁ブレーキ装置160によって各吐出孔61からの溶鋼2に対して作用する電磁力の方向を模擬的に太線矢印で示している。電磁ブレーキ装置160によれば、このような吐出流を抑制する方向の電磁力を生じさせることにより、電磁ブレーキより下方の領域における流動を清流化することができる。なお、吐出流とは、吐出孔61より吐出された溶鋼2の主な流れを指し、その流れの方向は、例えば、吐出孔61が水平面より下向きに30度傾いている場合は、概ね下向きに30度傾いた向きになる。なお、吐出流は必ずしも直線的ではなく、上記の例で下向きに30度傾いた向きの流れが、その後鋳型壁にぶつかって、例えば鉛直方向に向きを変える場合、向きを変えた後の流れまで含めて吐出流と呼称する場合もある。
【0055】
電磁ブレーキ装置160の詳細な構成について説明する。電磁ブレーキ装置160は、
図5に示すように、ケース161と、当該ケース161内に格納される電磁ブレーキコア162と、当該電磁ブレーキコア162に導線が巻回されて構成されるコイル163と、から構成される。
【0056】
ケース161は、略直方体形状を有する中空の部材である。ケース161の大きさは、電磁ブレーキ装置160によって溶鋼2の所望の範囲に対して電磁力が作用し得るように、すなわち、内部に設けられるコイル163が溶鋼2に対して適切な位置に配置され得るように、適宜決定され得る。ただし、電磁撹拌装置150の幅と電磁ブレーキ装置160の幅は異なっていてもよい。
【0057】
また、電磁ブレーキ装置160では、コイル163からケース161の側壁を通過して溶鋼2に対して電磁力が付与されるため、ケース161は、ケース151と同様に、例えば非磁性体ステンレス又はFRP等の、非磁性で、かつ強度が確保可能な材料によって形成される。
【0058】
電磁ブレーキコア162の端部に対して、Y軸方向を巻回軸方向として導線が巻回されることにより、コイル163が形成される(すなわち、電磁ブレーキコア162をY軸方向に磁化するようにコイル163が形成される)。当該コイル163の構造は、上述した電磁撹拌装置150のコイル153と同様である。
【0059】
コイル163のそれぞれには、図示しない電源装置が接続される。当該電源装置によって、各コイル163に直流電流が印加されることにより、溶鋼2に対して吐出流の勢いを弱めるような電磁力が付与され得る。なお、当該電源装置の駆動は、プロセッサ等からなる制御装置(図示せず)が所定のプログラムに従って動作することにより、適宜制御され得る。当該制御装置により、各コイル163に印加する電流量等が適宜制御され、溶鋼2に対して与えられる電磁力の強さが制御され得る。
【0060】
電磁ブレーキコア162のX軸方向の幅W0は、電磁撹拌装置150によって溶鋼2の所望の範囲に対して電磁力を付与し得るように、すなわち、コイル163が溶鋼2に対して適切な位置に配置され得るように、適宜決定され得る。例えば、W0は1600mm程度である。
ここまで、電磁力発生装置170について説明した。
【0061】
(溶鋼2)
溶鋼2は、鋳造される鋼鋳片が高張力鋼板の製造プロセスにおけるものであれば、次のものに特段制限されないが、C:0.1~0.5質量%である包晶凝固を伴う組成の溶鋼で、Si、Mnを比較的多く含む場合に、鋼鋳片製造時に割れが発生しやすくなる。したがって、本発明は、溶鋼2が、C:0.1~0.5質量%、かつ、Si:0.8質量%以上又はMn:4.0質量%以上の少なくともいずれかを含有する場合に適用されることが特に好ましい。
【0062】
ここまで、鋼鋳片の製造装置(連続鋳造装置1)を説明した。連続鋳造装置1は、後述する鋳造条件の設定装置によって設定された鋳造条件で高張力鋼鋳片を製造することができる。
【0063】
<<鋳造条件の設定装置>>
次に、
図7を参照して、本発明の一実施形態に係る鋳造条件の設定装置を説明する。
図7は、本発明の一実施形態に係る鋳造条件の設定装置の構成を示すブロック図である。
図7に示す鋳造条件設定装置50は、本発明の一実施形態に係る鋳造条件の設定装置であり、高張力鋼鋳片を製造する場合の、吐出流が鋳型110の長辺壁へ衝突するときの衝突速度を所定の基準値未満にするための鋳造条件を算出する鋳造条件算出部51と、鋳造条件算出部51により算出された鋳造条件で鋳造可能な設定値を連続鋳造装置1に対して設定する設定部52と、を備える。ここでいう高張力鋼鋳片とは、SiやMnを比較的多く含有し、例えば780MPa程度の引張強度をもつ高張力鋼板の製造プロセスにおいて鋳造された鋼鋳片のことをいう。
【0064】
<吐出流が鋳型110の長辺壁へ衝突するときの衝突速度の基準値>
図8を参照して、吐出流が鋳型110の長辺壁へ衝突するときの衝突速度の基準値について説明する。
図8は、電磁ブレーキが作用しない場合及び十分作用する場合における吐出流の流動を説明するための概念図である。
図8では、鋳型110中の溶鋼2をZ軸に垂直な断面(X-Y平面)における吐出流の流動を示している。
【0065】
浸漬ノズル6の吐出孔61より吐出した溶鋼2は、電磁撹拌装置150が発生する磁場により作用する電磁力によって加速し、また、鋳型110内の溶鋼2の旋回方向に湾曲する。電磁ブレーキが吐出流に作用しない場合、
図8の左図に示すように、加速されながら溶鋼2の旋回方向に湾曲した吐出流は、鋳型110の短辺壁に衝突した後、鋳型110における旋回方向に位置する、隅部の長辺壁側に強く衝突する(以下では、短辺壁に衝突するときの吐出流の速度≒長辺壁に衝突するときの吐出流の速度とみなす)。溶鋼2は隅部の長辺壁側においてもその凝固が進行するが、その凝固は、隅部の長辺壁側への吐出流の衝突も相まって、溶鋼2の強い流動の影響を受けることになる。一方、電磁ブレーキが吐出流に十分に作用する場合、吐出流を構成する溶鋼2に作用する電磁力により、吐出流の速度が小さくなり、当該吐出流は、長辺壁における隅部付近の部分に到達しないか、到達しても衝突の程度は弱くなる。
【0066】
通常、強い流動がない場合の溶鋼の凝固においては、数10μmスケールの成分の濃淡、いわゆるミクロ偏析は生じるが、スケールが小さいため、高温状態では拡散により均一になりやすく、ミクロ偏析が鋳造時に直接的に悪影響を及ぼす場合は少ない。
一方、溶鋼の強い流動がある場合、凝固の過程で溶鋼に排出される、CやSi、Mnといった成分が流動することでマクロ偏析が生じやすくなる。Si及びMnは、Cと比較して固相内の拡散速度が遅く、Si及びMnの偏析が鋼鋳片に悪影響を及ぼしやすい(鋼鋳片の組織が不均一になり、割れが発生しやすい)。普通鋼のようなSi及びMnの含有量が多くない鋼種を鋳造する場合、固相内の拡散速度が遅いSi及びMnの含有量が少ないため、鋳型110の内壁面付近に生じるマクロ偏析は悪影響を及ぼしにくい。しかし、高張力鋼のような、Si又はMnを多く含有し、さらにCを0.1~0.5質量%程度含有する包晶凝固を伴う鋼種では、マクロ偏析が鋼鋳片の品質に悪影響を及ぼす場合がある。上記の鋼種では、凝固時に、フェライト安定化元素であるSi又はオーステナイト安定化元素であるMnの濃度分布に局所的な濃淡があると、生成した包晶組織が空間的に不均一に分布する。例えば、Siの濃度が高い部分ではδ相が局所的に多く発生し、δ相が不均一に分布する。Si濃度が高い部分ではδ相からγ相に変態するδγ変態による体積収縮がδ相の生成が少ない領域におけるδγ変態よりも大きくなることで、凝固シェルに歪みが生じ、鋼鋳片の割れが発生する場合がある。
したがって、電磁ブレーキ装置160によって吐出流を制動し、電磁ブレーキ装置160が設置されていない場合に強く流動する隅部付近のマクロ偏析を抑制して、包晶凝固を空間的に均一にすることで、鋼鋳片の割れを抑制することができる。
【0067】
上記から、吐出流が鋳型110の長辺壁の隅部付近の部分へ衝突するときの衝突速度の基準値は、吐出流による、溶鋼2が含有するSiやMnの濃度変化が包晶凝固に及ぼす影響度に基づいて定められることが好ましい。
【0068】
続いて、
図9を参照して、吐出流が鋳型110の長辺壁へ衝突するときの衝突速度の基準値の一例を詳細に説明する。上記基準値の一例として、偏析による局所的なSiの濃度変化及びMnの濃度変化が包晶組織に与える影響度ΔCEを求める計算式があり、以下では、当該計算式により求まる影響度ΔCEを上記基準値とすることができる理由を説明する。
【0069】
(電磁ブレーキコア162の上端に流入するときの吐出流の流速U0)
吐出孔61から吐出された溶鋼2の吐出流速Vpは、吐出孔61の流路方向に垂直であり吐出孔61の四辺を含む断面の断面積Sp,鋳型110の内部空間のXY平面に沿った水平断面における断面積Ss,鋳造速度Vcを用いて以下の(1)式で表すことができる。
Vp=Vc×(Ss/Sp) ・・・(1)式
【0070】
吐出流は、吐出孔61の下端から電磁ブレーキコア162の上端までの間、電磁撹拌装置150が発生する磁場による電磁力F1によって加速する。電磁撹拌コア152の上端から吐出孔61の下端までの距離をD、電磁撹拌コア152の上端から、電磁ブレーキコア162の上端までの距離をHb、水平面と吐出流のなす角をθ(rad.)とすると、吐出流が加速する距離Lsは、以下の(2)式で表される。水平面と吐出流のなす角は、水平面と吐出孔61の下端における鋳型110の長辺壁に沿った方向のなす角である。
Ls=(Hb―D)/sinθ ・・・(2)式
【0071】
上記Lsは、電磁ブレーキコア162よりも上方に位置する領域における距離であり、当該領域は、溶鋼2が、電磁撹拌装置150が発生する磁場や、当該磁場や吐出流によって生じた乱流による運動量の拡散の影響を強く受けて、強制対流の支配的な領域である。上記Lsの範囲で電磁撹拌装置150によって吐出流に作用する電磁力F1は、以下の(3)式で近似できる。
F1=σ×Es×Bs ・・・(3)式
ここで、σは溶鋼2(吐出流)の単位質量あたりの導電率であり、Esは電磁撹拌装置150が発生する磁場の時間変化により発生する電場であり、Bsは電磁撹拌装置150が発生する磁場の空間平均磁束密度である。
【0072】
上記電場Esは、電磁撹拌装置150のコイル153に印加される交流電流の周波数fと交流電流の位相の波長Δxを用いて近似することができ、以下の(4)式で表される。
Es=f×Δx×Bs ・・・(4)式
【0073】
よって、上記(4)式により、上記(3)式は以下の(5)式で表される。
F1=σ×f×Δx×Bs2 ・・・(5)式
【0074】
したがって、電磁撹拌装置150が発生する磁場によって生じる電磁力F1が作用する溶鋼2の運動方程式は以下の(6)式で表される。
du/dt=σ×f×Δx×Bs2 ・・・(6)式
【0075】
そして、溶鋼2が吐出孔61から吐出する瞬間の時刻をt=0として、上記の運動方程式((6)式)を解くと、時刻tにおける溶鋼2の速度u1は、以下の(7)式で表される。
u1=Vp+2×Cs×t ・・・(7)式
ただし、Cs=0.5×σ×f×Δx×Bs2である。
【0076】
上記(7)式について、時刻t=0から吐出流が電磁ブレーキコア162の上端に達する時刻t=T1までの範囲で積分すると、以下の(8)式が得られ、当該(8)式をT1について解くと、吐出流が電磁ブレーキコア162の上端に達する時刻T1は、以下の(9)式で表される。
Vp×T1+Cs×T12=Ls ・・・(8)式
T1=0.5/Cs×(-Vp+(Vp2+4×Cs×Ls)0.5) ・・・(9)式
【0077】
ここで、上記(9)式を(7)式に代入することにより、時刻t=T1における吐出流の流速、すなわち電磁ブレーキコア162の上端Pに流入するときの吐出流の流速U0は以下の(10)式で表される。
U0=(Vp2+4×Cs×Ls)0.5 ・・・(10)式
【0078】
(鋳型110の内面に衝突するときの吐出流の流速U2(衝突速度U2))
電磁ブレーキコア162が配置された高さに流入した吐出流は、鋳型110の短辺壁に達するまで、電磁ブレーキ装置160が発生した磁場によって減速する。電磁ブレーキコア162が配置された高さに流入した吐出流が電磁ブレーキ装置160によって減速している間に進む距離Lbは、鋳型110の幅(短辺壁間の距離)W及び浸漬ノズル6の外径D1を用いて、以下の(11)式で表される。
Lb=0.5×(W―D1)/cosθ―Ls ・・・(11)式
【0079】
ここで、Lb>0となるような装置構成でなければ,電磁ブレーキ装置160による吐出流の直接的な制動効果は期待できない。
【0080】
電磁ブレーキ装置160によって減速している間に吐出流が進む距離Lbにおいて、電磁ブレーキ装置160が発生した磁場によって溶鋼2に生じる電磁力F2は、以下の(12)式で表される。
F2=σ×(u×Bb)×Bb ・・・(12)式
ここで、uは吐出流の流速、Bbは電磁ブレーキ装置160が生成する磁場の空間平均磁束密度である。
【0081】
この電磁力F2は溶鋼2の流速uと逆向きに作用するため、電磁ブレーキ装置160が発生する磁場によって生じる電磁力F2が作用する溶鋼2の運動方程式は以下の(13)式で表される。
du/dt=-σ×u×Bb2 ・・・(13)式
【0082】
そして、電磁ブレーキコア162の上端に吐出流が流入する時刻をt=0として、上記の運動方程式((13)式)を解くと、時刻tにおける溶鋼2の速度u2は、以下の(14)式で表される。
u2=U0×exp(-σ×Bb2×t) ・・・(14)式
【0083】
上記(14)式について、電磁ブレーキコア162の上端に吐出流が流入する時刻t=0から吐出流が距離Lだけ進んだときの時刻t=Tの範囲で積分すると、以下の(15)式が得られる。
(U0/(σ×Bb2))×(1-exp(-σ×Bb2×T))=L ・・・(15)式
【0084】
したがって、上記(15)式から、Lの最大値Lmax(流速が0になるまで吐出流が進む距離)が以下の(16)式を満足するとき、吐出流は、電磁ブレーキ装置160が発生する磁場によって作用する電磁力による制動、言い換えると、電磁ブレーキ装置160による電磁ブレーキで十分に減速されるため、マクロ偏析は発生しない。よって、好ましくは、U0/(σ×Bb2)≦Lbを満たすような条件で操業することで、鋳型110中の溶鋼2の表層における流動はほぼ完全に制動され、マクロ偏析をより一層防止することができる。
Lmax=U0/(σ×Bb2)≦Lb ・・・(16)式
【0085】
一方、Lの最大値Lmaxが上記(16)式を満足しないとき、言い換えるとU0/(σ×Bb2)>Lbのとき、L=Lbとなる時刻t=T2における吐出流の流速U2は、以下の(17)式のとおりに近似できる。
U2=U0-σ×Lb×Bb2 ・・・(17)式
【0086】
(溶鋼2が凝固するときの溶鋼2の流速が溶鋼成分の偏析に及ぼす影響)
次に、溶鋼が凝固するときの溶鋼の流速が溶鋼の成分の偏析に及ぼす影響について説明する。先述のマクロ偏析は、非特許文献1によると、溶鋼の流速Uと当該溶鋼の凝固速度Vの影響を受け、その程度は以下の(19)式で近似できるとされる。
Cm/C0=1-(1-k)/((7500×V/U)+1) ・・・(19)式
ここで、Cmは凝固後の固相の合金成分濃度、Coは凝固前の溶鋼の合金成分濃度、kは合金成分の平衡分配係数である。
【0087】
ここで、凝固速度Vについて、連続鋳造における凝固シェル厚みd(mm)に関して、以下の経験式((20)式)がよく用いられ、当該(20)式の時間微分と単位の変換により、電磁ブレーキコア162の上端位置Hbでの溶鋼2の凝固速度Vは、以下の(21)式のとおりに近似できる。
d=K√t ・・・(20)式
V=6.45×10-5×K×(Vc/Hb)0.5 ・・・(21)式
上記(20)式中、Kは15~30程度の定数であり、tは時刻(min.)である。また、上記(21)式中、Vcは鋳造速度である。
【0088】
(偏析による局所的なSiの濃度変化及びMnの濃度変化が包晶組織に与える影響度ΔCE)
次に、偏析による局所的なSiの濃度変化及びMnの濃度変化が包晶組織に与える影響について説明する。凝固前の溶鋼のSi濃度C0_Siと凝固後の固相のSi濃度Cm_Siとの差分であるSiの濃度変化ΔC_Si=C0_Si-Cm_Siは、上記(19)式から以下の(22)式で表される。
ΔC_Si=(C0_Si)×(1-k_Si)/((7500×V/U)+1) ・・・(22)式
上記(22)式中、k_SiはSiの平衡分配係数である。
【0089】
Mnについても同様に、凝固前の溶鋼のMn濃度C0_Mnと凝固後の固相のMn濃度Cm_Mnとの差分であるMnの濃度変化ΔC_Mn=C0_Mn-Cm_Mnは、以下の(23)式で表される。
ΔC_Mn=(C0_Mn)×(1-k_Mn)/((7500×V/U)+1) ・・・(23)式
上記(23)式中、k_MnはMnの平衡分配係数である。
【0090】
Siの濃度変化ΔC_Siが包晶凝固に及ぼす影響度は、C(炭素)の濃度変化が包晶凝固に及ぼす影響度を1.0とすると、0.1×ΔC_Siと見積もることができる。また、Mnに関しては0.02×ΔC_Mnと見積もることができる。Si濃度の濃淡及びMn濃度の濃淡は、それぞれがδ相やγ相の形成しやすさに影響するが、その相互作用は小さい。したがって、Siの濃度変化ΔC_Si及びMnの濃度変化ΔC_Mnが包晶凝固に及ぼす影響度ΔCEは、上記(22)式及び(23)式より、以下の(24)式で表すことができる。なお、以下では、Siの濃度変化ΔC_Si及びMnの濃度変化ΔC_Mnが包晶凝固に及ぼす影響度ΔCEを、単に影響度ΔCEと呼称することがある。)
ΔCE=(|0.1×(1-k_Si)×C0_Si|+|0.02×(1-k_Mn)×C0_Mn|)/(7500×V/U+1) ・・・(24)式
ここまで、影響度ΔCEを上記基準値とすることができる理由を説明した。
【0091】
(影響度ΔCE<0.015)
本発明者らは、上記影響度ΔCEを0.015未満にするように鋳造することで、高張力鋼の連続鋳造においても,鋳片の割れを抑制できることをつきとめた。溶鋼2のSi及びMnの含有量に応じて、操業条件を適正化して、影響度ΔCEを0.015未満にすることで、鋳片欠陥を低減することができる。
【0092】
影響度ΔCEの閾値を0.015と定めた根拠について説明する。
連続鋳造における鋼鋳片の割れの形態には様々あるが、特に軽度な歪みで割れが生じる高温脆化域での割れに関しては、臨界歪みεcrを超えて鋼鋳片が歪むときに、鋼鋳片に割れが生じる場合が多い。例えば、非特許文献2によれば、鋼鋳片に割れが発生するときの凝固シェルに臨界歪みεcrは0.32×10-2~3.8×10-2程度である。したがって、鋳造中の凝固シェルに生じる歪みを0.32×10-2未満にすることで、鋼鋳片の割れを低減することができる。
【0093】
亜包晶鋼のδγ変態により発生する歪みεは、歪みが等方的に生じる場合はε=|1-(ργ/ρδ)1/3|で表され、一方向に歪みが生じる場合はε=|1-(ργ/ρδ)|と表される。ここで、ργはγ相の密度であり、ρδはδ相の密度である。鋳型内で生じる凝固中の歪みは必ずしも等方的ではなく、また、歪みは等方的に生じる場合よりも一方向に集中する場合の方が大きい。そのため、鋼鋳片の割れを十分低減できる条件は、以下の(25)式で表すことができる。
ε=|1-(ργ/ρδ)|<εcr ・・・(25)式
【0094】
非特許文献3によると、γ相の密度ργは以下の(26)式で表され、δ相の密度ρδは以下の(27)式で表される。
ργ=8099.8-0.5×T ・・・(26)式
ρδ=7876.0-0.3×T ・・・(27)式
【0095】
鋳造中のおおよその温度としてT=1750Kを想定すると、δγ変態による歪みは、上記式ε=|1-(ργ/ρδ)|、上記(26)式及び上記(27)式から、ε≒0.017と算出される。したがって、包晶凝固において発生するδフェライト相の体積率をfδとし、濃度の不均一によりδフェライト相の体積率が|Δfδ|だけばらつくとすると、ばらつきにより凝固シェルに影響する歪みは0.017×|Δfδ|と見積もることができる。
【0096】
ここで、熱力学計算ソフトThermo-Calcにより、完全凝固した直後のδフェライト相の体積率を計算すると、表1のような結果が得られた。
【0097】
【0098】
この結果より、C濃度の変化ΔCによるδフェライト相の体積率の変化ΔfδCは以下の(28)式のように見積もることができる。
ΔfδC=-12.7×ΔC ・・・(28)式
【0099】
Siの濃度変化ΔC_Si及びMnの濃度変化ΔC_Mnの影響度をC濃度に換算した上記影響度ΔCEを用いると、上記(28)式は、以下の(29)式となる。
|Δfδ|=-12.7×ΔCE(ΔC_Si、ΔC_Mn) ・・・(29)式
【0100】
以上より、鋼鋳片の割れを低減するためには、上記(25)式、(29)式、及び、εcr=0.32×10-2から、以下の(30)式を満足すればよい。
0.017×12.7×ΔCE(ΔC_Si、ΔC_Mn)<0.32×10-2 ・・・(30)式
【0101】
上記(30)式から以下の(31)式が得られる。
ΔCE(ΔC_Si、ΔC_Mn)<1.5×10-2 ・・・(31)式
【0102】
したがって、上記(31)式より、ΔCEが0.015未満となるように鋳造条件を設定することで、鋼鋳片の割れを低減することができる。
ここまで、影響度ΔCEの閾値を0.015と定めた根拠について説明した。
【0103】
上記ΔCEの閾値0.015を用いると、鋳型110の内面に衝突するときの吐出流の流速U2は、以下の(32)式を満足するように設定されることが好ましい。
U2<0.015×7500×V/{(|0.1×(1-k_Si)×%Si|+|0.02×(1-k_Mn)×%Mn|)-0.015}・・・(32)式
【0104】
<鋳造条件算出部51>
鋳造条件算出部51は、上述したとおり、高張力鋼鋳片を製造する場合において、吐出流が鋳型110の長辺壁へ衝突するときの衝突速度を、所定の基準値未満にするための前記鋳造条件を算出する。そして、所定の基準値は、上述したとおり、吐出流による、溶鋼2が含有する固相内の拡散速度が小さい元素の濃度変化が包晶凝固に及ぼす影響度に基づいて決定される値であることが好ましく、影響度ΔCE=0.015を基準値とすることがより好ましい。従来、鋼鋳片の製造においては、鋼鋳片の長辺に割れが発生することが多い。そのため、鋳造条件算出部51が算出する鋳造条件は、吐出流が鋳型110の長辺壁へ衝突するときの衝突速度を所定の基準値未満とする条件とした。
【0105】
また、上述したとおり、Lの最大値Lmaxが上記(16)式を満足するとき、電磁ブレーキ装置160による電磁ブレーキで十分に減速されるため、マクロ偏析は発生しにくい。よって、U0/(σ×Bb2)≦Lbを満たすような条件で操業することが好ましい。
【0106】
また、上述したとおり、電磁撹拌装置150が発生する磁場の強度によって、吐出流の速度が変化する。また、電磁撹拌装置150が発生する磁場の強度によって、溶鋼2の旋回流の速度も変化し、旋回流の速度によって吐出流の挙動も変化する。したがって、鋳造条件算出部51が算出する鋳造条件には、少なくとも電磁撹拌装置150が発生する磁場の強度が含まれることが好ましい。
【0107】
また、上述したとおり、電磁ブレーキ装置160が発生する磁場の強度によって、吐出流の速度が変化する。したがって、鋳造条件算出部51が算出する鋳造条件には、電磁ブレーキ装置が発生する磁場の強度が含まれることが好ましい。
【0108】
なお、鋳造条件算出部51が算出する鋳造条件は、上記の他に、鋳造速度、浸漬ノズル6の形状、鋳型サイズ等が含まれてもよい。鋳造条件算出部51は、例えば、調整したい鋳造条件(調整条件)以外の鋳造条件を入力することで、(24)式で計算されるΔCEが、(31)式を満たすような、調整条件の範囲を出力する機構にすればよい。例えば、鋳造速度を調整条件とする場合、その他の鋳型幅や電磁撹拌装置150の位置、電磁ブレーキ装置160の位置、浸漬深さ等の鋳造条件を入力し、ΔCEが0.015未満となる鋳造速度の範囲を算出し、出力すればよい。また、調整条件が複数ある場合は、鋳造条件算出部51は、ΔCEが(31)式を満足する閾値となるとき、すなわちΔCE=0.015となるときの、調整条件間の関係をグラフとして出力する機構であってもよく、その場合、グラフから目視してΔCEの条件を満たすような調整条件を決定すればよい。例えば、鋳造速度、電磁撹拌装置150の磁束密度、電磁ブレーキ装置160の磁束密度の3条件を調整条件とする場合、その他の鋳造条件を入力し、3つの調整条件をそれぞれx、y、z軸として、ΔCEが0.015となるときのグラフを作成し、出力すればよい。調整条件が2つの場合は2次元のグラフであり、4つ以上の場合は、例えば、4番目以降の調整条件を仮の値で固定してグラフを作成する処理を、複数の仮の値で行い、複数のグラフを作成すればよい。
【0109】
<設定部52>
設定部52は、上述したとおり、鋳造条件算出部51により算出された鋳造条件で鋳造可能な設定値を連続鋳造装置1に対して設定する。設定部52は、鋳造条件算出部51から鋳造条件の情報を受け取り、連続鋳造装置1に当該情報を出力する。連続鋳造装置1は、受け取った情報に基づいて鋼鋳片の鋳造を行う。
【0110】
以上、本発明の一実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例又は修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
【0111】
例えば、特許文献2には、電磁撹拌装置と電磁ブレーキ装置を併用する場合における、鋳片表面及び内部の気泡性欠陥を抑制するための方法が記載されている。それによると、電磁ブレーキを強くし過ぎると、電磁撹拌による流れが阻害されるために、表面の気泡性欠陥が発生し易くなることが述べられている。そのため、鋼鋳片の割れを抑制した上で更に気泡性欠陥を抑制したい場合は、上述した方法により、電磁ブレーキを用いてマクロ偏析及び鋳片割れを抑制したうえで、電磁ブレーキ強度に上限を設ければよい。
【0112】
<<鋳造条件の設定方法>>
鋳造条件を設定するには、上述のとおり、鋳造条件算出部51が鋳造条件を算出し、設定部52が鋳造条件算出部51により算出された鋳造条件で鋳造可能な設定値を連続鋳造装置1に対して設定する。よって、鋳造条件の設定方法は、一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、吐出孔のそれぞれから鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、鋳型内部の溶鋼に電磁力を作用させて溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、吐出孔から吐出された溶鋼の流れである吐出流を構成する溶鋼に電磁力を作用させて吐出流を制動する電磁ブレーキ装置と、を備え、連続的に鋼鋳片を鋳造する連続鋳造装置の鋳造条件を設定する鋳造条件の設定方法であって、高張力鋼鋳片を製造する場合において、吐出流が前記鋳型の長辺壁へ衝突するときの衝突速度が、所定の基準値未満になるための鋳造条件を算出する鋳造条件算出ステップと、鋳造条件算出ステップにおいて算出された鋳造条件で鋳造可能な設定値を連続鋳造装置に対して設定する設定ステップと、を有する。
【0113】
<<高張力鋼鋳片の製造方法>>
上記連続鋳造装置1及び鋳造条件設定装置50を用いれば、高張力鋼鋳片を製造することができる。具体的には、高張力鋼鋳片の製造方法は、一対の長辺壁及び一対の短辺壁により断面矩形状をなす鋳型と、鋳型の一対の短辺壁のそれぞれに対向して配された2つの吐出孔を有し、吐出孔のそれぞれから前記鋳型の内部に溶鋼を供給する浸漬ノズルと、磁場を発生して、鋳型内部の溶鋼に電磁力を作用させて溶鋼を撹拌する電磁撹拌装置と、磁場を発生して、吐出孔から吐出された溶鋼の流れである吐出流を構成する溶鋼に電磁力を作用させて前記吐出流を制動する電磁ブレーキ装置と、を備える連続鋳造装置を用いて連続的に高強度鋼鋳片を鋳造する高張力鋼片の製造方法であって、電磁撹拌装置が発生した磁場によって鋳型内の溶鋼に電磁力を作用させて、溶鋼が水平方向に旋回する旋回流を生じさせ、電磁ブレーキ装置が発生した磁場によって吐出流を構成する溶鋼に作用する電磁力が、吐出流を制動し、旋回流により湾曲して鋳型の長辺壁へ衝突する吐出流の衝突速度を所定の基準値未満にする。なお、上記高張力鋼鋳片の製造方法に用いられる各装置の構成は、連続鋳造装置1が備える構成に限られないことは言うまでもない。
【実施例0114】
(実施例1)
0.13%C-1.0%Si-0.1%Mnで表される鋼種を対象に、凝固と成分偏析を考慮した鋳型内熱流体シミュレーションを行い、Si及びMnの濃度偏析について計算した。上記鋳型内熱流体シミュレーションは、非特許文献4に記載の数値シミュレーションモデルを用いて行った。さらに、鋳型内熱流体シミュレーションで得られたSiとMnの濃度偏析の値の最大値から、Si及びMnの濃度変化が包晶凝固に及ぼす影響度ΔCE’を以下の式で算出した。
ΔCE’=|0.1×Δ%Si|+|0.02×Δ%Mn|
【0115】
表2に、組成0.13%C-1.0%Si-0.1%Mnの鋼種に関して、上記鋳型内熱流体数値シミュレーション結果より求めたΔCE’の値を示す。また、上記(24)式に基づいて算出したSiの濃度変化及びMnの濃度変化が包晶凝固に及ぼす影響度ΔCEを表2に示す。また、
図10に、EMS強度を変更したときのEMBr強度と偏析比率Δ%Si/%Siの関係のグラフを示す。
図11に、鋳造速度Vcを変更したときのEMBr強度と偏析比率Δ%Si/%Siとの関係のグラフを示す。偏析比率Δ%Si/%Siは、以下の式で算出されたものである。
Δ%Si/%Si=(C0_Si-Cm_Si)/Cm_Si=ΔC_Si/Cm_Si
図12に、EMS強度を変更したときのEMBr強度とΔCE’の関係のグラフを示す。
図13に、鋳造速度Vcを変更したときのEMBr強度とΔCE’の関係のグラフを示す。
図10、12は、鋳型の幅wを1.6m、鋳造速度1.6m/min.として、鋳型内熱流体シミュレーション結果より求めたものである。
図11、13は、鋳型の幅wを1.6m、電磁撹拌装置に印加する交流電流の大きさを300Aとして、鋳型内熱流体シミュレーション結果より求めたものである。
【0116】
【0117】
図10、11に示すとおり、電磁ブレーキが非印加の場合、偏析比率Δ%Si/%Siの値が大きく、電磁ブレーキの強度(電磁撹拌装置により発生する磁場の強度)を大きくするにつれて、偏析比率Δ%Si/%Siの値が小さくなることが分かった。また、
図12、13に示すとおり、電磁ブレーキが非印可の場合は、Siの偏析が大きく、Si含有量が1.0質量%と普通鋼に比べて多いために、ΔCE’の値が大きくなった。ΔCE’を抑えるためには、電磁ブレーキを印加するのが効果的であり、電磁撹拌装置に印加する交流電流が200A、300Aの場合、電磁ブレーキ装置が生成する磁場の平均磁束密度を0.1Tとした場合でも、ΔCE’を0.015未満に低減できることが分かった。電磁撹拌装置に印加する交流電流が400Aの場合、電磁ブレーキ装置によって発生する磁場の平均磁束密度を0.2T以上とした場合に、ΔCE’を0.015未満に低減できることが分かった。そして、ΔCEはΔCE’と高い相関があり、ΔCEを指標として設定値を定めることで、鋳型内部の長辺壁における隅部付近の部分で生じる溶鋼の構成元素の偏析を防止して、鋼鋳片の割れを抑制することができることが分かった。
なお、鋳型内熱流体数値シミュレーションによる数値計算においては、電磁ブレーキ装置により発生する磁場の平均磁束密度を0.2T以上とした場合でも、流体計算が内在する不安定性に起因して非定常な僅かな流動が生じるため、厳密に偏析率が0になることはないが、偏析比率が十分小さく、ほぼ一定値に収束していることが分かった。
【0118】
(実施例2)
表3に、組成0.13%C-0.1%Si-0.1%Mn(表3中、A)、0.13%C-1.0%Si-0.1%Mn(表3中、B)、及び0.13%C-0.1%Si-6.0%Mn(表3中、C)で表される鋼に関して、上記(24)式に基づいて算出したSi及びMnの濃度変化が包晶凝固に及ぼす影響度ΔCEを示す。
図14に鋼種が0.13%C-0.1%Si-0.1%Mn鋼であるときの、ΔCE=0.015なるEMS強度(電磁撹拌装置が発生する磁場の強度)とEMBr電磁ブレーキ強度(電磁ブレーキ装置が発生する磁場の強度)の関係を示し、
図15に鋼種が0.13%C-1.0%Si-0.1%Mn鋼であるときの、ΔCE=0.015なるEMS強度とEMBr電磁ブレーキ強度の関係を示し、
図16に鋼種が0.13%C-0.1%Si-6.0%Mn鋼であるときの、ΔCE=0.015なるEMS強度とEMBr電磁ブレーキ強度の関係を示す。ただし、鋳型の幅wを1.6m、鋳造速度1.6m/min.とした。
【0119】
【0120】
図14に示すように、普通鋼のようにSi及びMnを多量には含まない0.13%C-0.1%Si-0.1%Mn鋼の場合、電磁ブレーキを印加していなくても、偏析による成分濃度の絶対変化値が小さいために、ΔCEは0.015未満であった。しかし、SiやMnを多量に含む0.13%C-1.0%Si-0.1%Mn鋼、及び0.13%C-0.1%Si-6.0%Mn鋼に関しては、電磁ブレーキを印加しないとΔCEが大きくなり、品質に問題が生じうる。
図15、16に示す曲線と当該曲線よりEMBr強度の大きい範囲がΔCEが0.015以上となる範囲である。EMS強度とEMBr強度を調整することで、ΔCEを制御することができ、鋼鋳片の割れを抑制することが可能であることが分かった。