IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 新日鐵住金株式会社の特許一覧

<>
  • 特開-溶融亜鉛めっき鋼板 図1
  • 特開-溶融亜鉛めっき鋼板 図2
  • 特開-溶融亜鉛めっき鋼板 図3
  • 特開-溶融亜鉛めっき鋼板 図4
  • 特開-溶融亜鉛めっき鋼板 図5
  • 特開-溶融亜鉛めっき鋼板 図6
  • 特開-溶融亜鉛めっき鋼板 図7
  • 特開-溶融亜鉛めっき鋼板 図8
  • 特開-溶融亜鉛めっき鋼板 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2023090240
(43)【公開日】2023-06-29
(54)【発明の名称】溶融亜鉛めっき鋼板
(51)【国際特許分類】
   C23C 2/06 20060101AFI20230622BHJP
   C23C 2/20 20060101ALI20230622BHJP
   C22C 18/04 20060101ALI20230622BHJP
   C22C 21/10 20060101ALI20230622BHJP
   C22C 38/00 20060101ALN20230622BHJP
   C22C 38/04 20060101ALN20230622BHJP
【FI】
C23C2/06
C23C2/20
C22C18/04
C22C21/10
C22C38/00 301T
C22C38/04
【審査請求】未請求
【請求項の数】2
【出願形態】OL
(21)【出願番号】P 2021205108
(22)【出願日】2021-12-17
(71)【出願人】
【識別番号】000006655
【氏名又は名称】日本製鉄株式会社
(74)【代理人】
【識別番号】110001553
【氏名又は名称】アセンド弁理士法人
(72)【発明者】
【氏名】小西 剛嗣
(72)【発明者】
【氏名】福田 悠人
(72)【発明者】
【氏名】南木 なつき
(72)【発明者】
【氏名】金田一 勇介
(72)【発明者】
【氏名】眞嶋 康裕
【テーマコード(参考)】
4K027
【Fターム(参考)】
4K027AA05
4K027AA22
4K027AB05
4K027AB15
4K027AB44
4K027AC52
4K027AE03
4K027AE33
(57)【要約】
【課題】優れた耐食性と、優れた外観品質とを有する溶融亜鉛めっき鋼板を提供する。
【解決手段】本開示による溶融亜鉛めっき鋼板(1)は、母材鋼板(10)と、母材鋼板(10)上に形成された溶融亜鉛めっき層(20)とを備える。溶融亜鉛めっき層(20)は、明細書に記載の化学組成を有する。溶融亜鉛めっき層(20)の表面(S)を含み、L方向長さが120μm、H方向長さが96μmである長方形の観察視野領域(50)において、表面(S)の長さSL、及び、表面(S)の一方の端部(P1)と他方の端部(P2)との最短距離SDが式(1)を満たし、L方向とH方向とを含む断面において、溶融亜鉛めっき層(20)の表面(S)に形成され、明細書に記載の式(2)~(4)を満たす凹部の個数が、L方向に10cmあたり1.0個以上である、溶融亜鉛めっき鋼板(1)。
SL/SD≦α (1)
【選択図】図3
【特許請求の範囲】
【請求項1】
溶融亜鉛めっき鋼板であって、
母材鋼板と、
前記母材鋼板上に形成された溶融亜鉛めっき層とを備え、
前記溶融亜鉛めっき層は、質量%で、
Al:0.1~60.0%、
Mg:0~30.0%、
Si:0~1.0%、
B:0~0.50%、
Ca:0~3.0%、
Y:0~3.0%、
La:0~3.0%、
Ce:0~3.0%、
Cr:0~0.5%、
Ti:0~0.5%、
Ni:0~0.5%、
Co:0~0.5%、
V:0~0.5%、
Nb:0~0.5%、
Cu:0~0.5%、
Mn:0~0.5%、
Sr:0~0.5%、
Sb:0~0.5%、
Pb:0~0.5%、
Sn:0~2.0%、
Bi:0~2.0%、
In:0~2.0%、
Fe:0~5.0%、及び、
残部:35.0%以上のZn及び不純物からなる化学組成を有し、
前記溶融亜鉛めっき鋼板の圧延方向をL方向、前記溶融亜鉛めっき鋼板の板厚方向をH方向と定義したとき、
前記溶融亜鉛めっき層の表面を含み、前記溶融亜鉛めっき鋼板の前記L方向に延びる辺の長さが120μmであり、前記H方向に延びる辺の長さが96μmである長方形の観察視野領域において、
前記溶融亜鉛めっき層の表面の長さをSL、
前記溶融亜鉛めっき層の表面の一方の端部をP1点、
前記溶融亜鉛めっき層の表面の他方の端部をP2点、
前記P1点と前記P2点との最短距離をSDと定義したとき、
前記SLと、前記SDとが、式(1)を満たし、
前記溶融亜鉛めっき層の厚さをTμmと定義したとき、
前記L方向と前記H方向とを含む断面において、
前記溶融亜鉛めっき層の表面に形成され、
前記L方向の長さWμmと、前記H方向の深さDμmとが、式(2)~式(4)を満たす凹部の個数が、前記L方向に10cmあたり1.0個以上である、
溶融亜鉛めっき鋼板。
SL/SD≦α (1)
D≦0.7×T (2)
D≦5.0 (3)
0.2×D≦W≦5.0×D (4)
ここで、式(1)中のαは、前記溶融亜鉛めっき層におけるMg含有量が0~0.5質量%未満の場合は1.10であり、前記溶融亜鉛めっき層におけるMg含有量が0.5~30.0質量%の場合は1.50である。
【請求項2】
請求項1に記載の溶融亜鉛めっき鋼板であって、
前記溶融亜鉛めっき層の前記化学組成は、第1群~第8群から選択される1種又は2種以上の元素を含有する、
溶融亜鉛めっき鋼板。
第1群:Mg:0.1~30.0%、
第2群:Si:0.1~1.0%、
第3群:B:0.01~0.50%、
第4群:Ca、Y、La、及び、Ce:0.1~3.0%、
第5群:Cr、Ti、Ni、Co、V、Nb、Cu、及び、Mn:0.1~0.5%、
第6群:Sr、Sb、及び、Pb:0.1~0.5%、
第7群:Sn、Bi、及び、In:0.1~2.0%、
第8群:Fe:0.1~5.0%
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、溶融亜鉛めっき鋼板に関する。
【背景技術】
【0002】
表層に溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板は、自動車、家電、建材等の様々な分野に適用されている。近年、特に建材用の溶融亜鉛めっき鋼板の分野においては、より過酷な環境で使用されることを前提とした、優れた耐食性を示す溶融亜鉛めっき鋼板が求められてきている。ここで、本明細書では、合金化されていない溶融亜鉛めっき鋼板を、単に「溶融亜鉛めっき鋼板」とも称する。すなわち、本明細書において溶融亜鉛めっき鋼板は、合金化溶融亜鉛めっき鋼板を含まない。
【0003】
特開2011-144429号公報(特許文献1)、特開2014-118584号公報(特許文献2)、特開2013-014794号公報(特許文献3)、及び、特開2000-336467号公報(特許文献4)は、耐食性に優れる溶融亜鉛めっき鋼板を提案する。
【0004】
特許文献1に開示されている溶融亜鉛めっき鋼板は、鋼板の表面に、質量%で、Mg:1~10%、Al:4~20%、Si:0.0001~0.5%を含有し、残部がZn及び不純物からなる溶融亜鉛めっき層を有し、めっき/鋼板界面にAl-Fe-Si-Zn四元系合金層を有する。この溶融亜鉛めっき鋼板は、高い耐食性と高いめっき密着性とを有する、と特許文献1には記載されている。
【0005】
特許文献2に開示されている溶融亜鉛めっき鋼板は、質量%で、C:0.05~0.1%、Si:0.10%以下、Mn:0.30~0.70%、P:0.040%以下、S:0.010%以下、N:0.005%以下、Al:0.10%以下を含有し、残部がFe及び不純物からなる鋼板と、鋼板の表面の少なくとも一部に形成された、Alを0.3~0.6%含む溶融亜鉛めっき層と、鋼板と溶融亜鉛めっき層の間に存在する、0.12~0.22g/mのAlを含み、かつ平均粒径1μm以下のFeAlを含む金属間化合物とを有し、降伏強度が260~350MPaである。この溶融亜鉛めっき鋼板は、プレス加工後のめっき密着性及びスポット溶接性、プレス加工後の塗装後耐食性に優れ、優れた塗装後外観を有する、と特許文献2には記載されている。
【0006】
特許文献3に開示されている溶融亜鉛めっき鋼板は、鋼板の表面に、質量%で、Al:4~22%、Mg:1~6%、残部がZn及び不純物からなる溶融亜鉛めっき層を有し、めっき原板表層の未再結晶率が30%以上である鋼板であって、めっき層の構成相のうち、Al/MgZn/Znの3元共晶相の平均径が10~100μmである。この溶融亜鉛めっき鋼板は、めっき原板の清浄度の均一性に関わらず外観均一性に優れ、高耐食性を示す、と特許文献3には記載されている。
【0007】
特許文献4に開示されている溶融亜鉛めっき鋼板は、鋼板の表面に、質量%で、Mg:0.1~3.0%、Al:0.02~1.0%、Fe:2%以下含有し、残部がZn及び不純物からなる溶融亜鉛めっき層を有し、かつ、溶融亜鉛めっき層の上層にMgを含む酸化物層を有する。この溶融亜鉛めっき鋼板は、耐食性、めっき密着性及びスポット溶接性に優れる、と特許文献4には記載されている。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2011-144429号公報
【特許文献2】特開2014-118584号公報
【特許文献3】特開2013-014794号公報
【特許文献4】特開2000-336467号公報
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、たとえば建材用の溶融亜鉛めっき鋼板は、建築物の外観に大きな影響を与える。したがって、溶融亜鉛めっき鋼板には、優れた耐食性に加えて、外観の美麗さも求められる。しかしながら、上記特許文献1及び4には、溶融亜鉛めっき鋼板の外観の美麗さに関して検討されていない。また、上記特許文献2及び3に記載の技術以外の他の技術によって、優れた外観品質を有する溶融亜鉛めっき鋼板が得られてもよい。
【0010】
本開示の目的は、優れた耐食性と、優れた外観品質とを有する溶融亜鉛めっき鋼板を提供することである。
【課題を解決するための手段】
【0011】
本開示による溶融亜鉛めっき鋼板は、
母材鋼板と、
前記母材鋼板上に形成された溶融亜鉛めっき層とを備え、
前記溶融亜鉛めっき層は、質量%で、
Al:0.1~60.0%、
Mg:0~30.0%、
Si:0~1.0%、
B:0~0.50%、
Ca:0~3.0%、
Y:0~3.0%、
La:0~3.0%、
Ce:0~3.0%、
Cr:0~0.5%、
Ti:0~0.5%、
Ni:0~0.5%、
Co:0~0.5%、
V:0~0.5%、
Nb:0~0.5%、
Cu:0~0.5%、
Mn:0~0.5%、
Sr:0~0.5%、
Sb:0~0.5%、
Pb:0~0.5%、
Sn:0~2.0%、
Bi:0~2.0%、
In:0~2.0%、
Fe:0~5.0%、及び、
残部:35.0%以上のZn及び不純物からなる化学組成を有し、
前記溶融亜鉛めっき鋼板の圧延方向をL方向、前記溶融亜鉛めっき鋼板の板厚方向をH方向と定義したとき、
前記溶融亜鉛めっき層の表面を含み、前記溶融亜鉛めっき鋼板の前記L方向に延びる辺の長さが120μmであり、前記H方向に延びる辺の長さが96μmである長方形の観察視野領域において、
前記溶融亜鉛めっき層の表面の長さをSL、
前記溶融亜鉛めっき層の表面の一方の端部をP1点、
前記溶融亜鉛めっき層の表面の他方の端部をP2点、
前記P1点と前記P2点との最短距離をSDと定義したとき、
前記SLと、前記SDとが、式(1)を満たし、
前記溶融亜鉛めっき層の厚さをTμmと定義したとき、
前記L方向と前記H方向とを含む断面において、
前記溶融亜鉛めっき層の表面に形成され、
前記L方向の長さWμmと、前記H方向の深さDμmとが、式(2)~式(4)を満たす凹部の個数が、前記L方向に10cmあたり1.0個以上である。
SL/SD≦α (1)
D≦0.7×T (2)
D≦5.0 (3)
0.2×D≦W≦5.0×D (4)
ここで、式(1)中のαは、前記溶融亜鉛めっき層におけるMg含有量が0~0.5質量%未満の場合は1.10であり、前記溶融亜鉛めっき層におけるMg含有量が0.5~30.0質量%の場合は1.50である。
【発明の効果】
【0012】
本開示による溶融亜鉛めっき鋼板は、優れた耐食性と、優れた外観品質とを有する。
【図面の簡単な説明】
【0013】
図1図1は、溶融亜鉛めっき層20の表面Sを含む、溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。
図2図2は、上述の化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。
図3図3は、本実施形態による溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。
図4図4は、本実施形態による溶融亜鉛めっき鋼板1の他の一例の断面を示す模式図である。
図5図5は、図4の領域60の拡大図である。
図6図6は、本実施形態による溶融亜鉛めっき鋼板1の他の一例の断面を示す模式図である。
図7図7は、従前の溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の一例を示す側面図である。
図8図8は、本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の一例を示す側面図である。
図9図9は、本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の他の一例を示す側面図である。
【発明を実施するための形態】
【0014】
溶融亜鉛めっき鋼板の表層に形成された溶融亜鉛めっき層に、易酸化元素が含有されていれば、溶融亜鉛めっき鋼板の耐食性が高まる。具体的には、Alは酸化されやすいため、Alを溶融亜鉛めっき層に含有することによって犠牲防食の効果が高まり、溶融亜鉛めっき鋼板の耐食性が顕著に高まる。そこで本発明者らは、溶融亜鉛めっき層にAlを含有した溶融亜鉛めっき鋼板であれば、優れた耐食性が得られると考えた。より具体的には、溶融亜鉛めっき層が、質量%で、Al:0.1~60.0%、及び、Zn:35.0%以上を含有すれば、溶融亜鉛めっき鋼板の耐食性が高まる可能性がある。
【0015】
一方、上述の化学組成の溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板では、外観品質が優れない場合があった。そこで本発明者らは、溶融亜鉛めっき鋼板の外観品質を高めるために、溶融亜鉛めっき層の表面状態に着目した。具体的には、溶融亜鉛めっき層の表面の凹凸を定量し、外観品質との関係を調査することを本発明者らは考えた。ここで、溶融亜鉛めっき鋼板の分野では、一般に、溶融亜鉛めっき層の表面の凹凸は、主に触針式の粗度計によって定量されてきた。そこで本発明者らは、上述の化学組成の溶融亜鉛めっき層の表面を触針式の粗度計によって評価した。その結果、上述の化学組成の溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板では、触針式の粗度計で評価した溶融亜鉛めっき層の表面の凹凸が同じ程度であっても、外観品質が異なる場合があることが明らかになった。
【0016】
そのため、本発明者らは、溶融亜鉛めっき鋼板の外観の美麗さは、触針式の粗度計で計測できる凹凸のレベルだけではなく、触針式の粗度計で測定可能な凹凸よりもさらに微細な凹凸も影響しているのではないかと考えた。すなわち、触針式の粗度計で測定可能な凹凸よりも、さらに微細な凹凸を低減することにより、外観の美麗さがさらに高まる可能性がある。そこで、本発明者らは溶融亜鉛めっき層の表面について、さらに微細な凹凸を低減することを検討した。まず、溶融亜鉛めっき鋼板の断面を走査電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、二次電子像を観察することにより、溶融亜鉛めっき層の表面における微細な凹凸を評価した。この点について、模式図を用いて具体的に説明する。
【0017】
図1は、溶融亜鉛めっき層20の表面Sを含む、溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。図1は、SEM観察による微細な凹凸の評価を説明するため、凹凸を極端に示した模式図である。図1の観察視野領域50の左右方向が溶融亜鉛めっき鋼板1の圧延方向に相当し、図1の観察視野領域50の上下方向が溶融亜鉛めっき鋼板1の板厚方向に相当する。なお、本明細書において、溶融亜鉛めっき鋼板1の圧延方向を「L方向」ともいう。また、溶融亜鉛めっき鋼板1の板厚方向を「H方向」ともいう。ここで、図1において、観察視野領域50のL方向長さは120μmであり、H方向長さは96μmである。
【0018】
図1において、領域10は母材鋼板であり、領域20は溶融亜鉛めっき層である。なお、観察視野領域50中において、母材鋼板10及び溶融亜鉛めっき層20は、当業者であればコントラストから特定することができる。図1を参照して、観察視野領域50における溶融亜鉛めっき層20の表面Sは、曲線状で表される。図1においてさらに、溶融亜鉛めっき層20の表面Sと、観察視野領域50との2つの交点を、P1点及びP2点と定義する。すなわち、P1点とは、観察視野領域50における表面Sの一方の端部として定義され、P2点とは、観察視野領域50における表面Sの他方の端部として定義される。さらに、図1中に示される破線Aは、P1点とP2点とを繋ぐ線分である。
【0019】
観察視野領域50における表面Sと、破線Aとはいずれも、その一方の端部がP1点であり、他方の端部がP2点である。そのため、観察視野領域50における表面Sの長さと、破線Aの長さとを比較すれば、溶融亜鉛めっき層20の表面Sの微細な凹凸を評価できる。そこで、本実施形態では、観察視野領域50における溶融亜鉛めっき層20の表面Sの長さをSLと定義する。さらに、観察視野領域50における破線Aの長さ、すなわち、P1点とP2点との最短距離をSDと定義する。上述のとおり、観察視野領域50において、母材鋼板10及び溶融亜鉛めっき層20は、コントラストから特定することができる。そのため、SL及びSDは、観察視野領域50に対して画像解析を実施することにより適宜求めることができる。
【0020】
ここで、Fn1=SL/SDと定義する。Fn1は、観察視野領域50中の溶融亜鉛めっき層20の表面Sに形成された微細な凹凸の指標である。Fn1は1以上の正の数であり、Fn1が1に近いほど、溶融亜鉛めっき層20の表面Sに形成された微細な凹凸が低減されている。このように、Fn1であれば溶融亜鉛めっき層20の表面Sについて、その微細な凹凸を定量的に評価することができる。
【0021】
続いて本発明者らは、上述の化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の断面について、SEMを用いて二次電子像により観察し、溶融亜鉛めっき層20の表面Sの微細な凹凸を評価した。その結果、まず本発明者らは、溶融亜鉛めっき層20の化学組成についてさらに、質量%で、Mgが0.5%以上含有される場合、Fn1が顕著に高まることを知見した。そこで本発明者らは、具体的にMgを0.5%以上含有する溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1について、溶融亜鉛めっき層20の表面SのFn1を種々測定した。
【0022】
図2は、上述の化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。図2は、Mgを0.5質量%以上含有する、従来の溶融亜鉛めっき鋼板1を用いて作成した。図2においても、図1と同様に、左右方向が溶融亜鉛めっき鋼板1の圧延方向(L方向)であり、上下方向が溶融亜鉛めっき鋼板1の板厚方向(H方向)である。また、図2においても、図1と同様に、観察視野領域50のL方向長さは120μmであり、H方向長さは96μmである。
【0023】
図2に示される溶融亜鉛めっき層20の表面Sは、微細な凹凸が多数形成されている。具体的に、図2に対して画像解析を実施して、観察視野領域50における溶融亜鉛めっき層20の表面Sの長さSL、及び、P1点とP2点との最短距離SDを求め、Fn1(=SL/SD)を求めた。その結果、図2に示される溶融亜鉛めっき層20の表面Sでは、Fn1が2.50であった。
【0024】
このように本発明者らは、上述の化学組成に加えてさらに、Mgを0.5質量%以上含有する溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の外観品質を十分に高められるFn1について、詳細に検討した。その結果、上述の化学組成に加えてさらに、Mgを0.5質量%以上含有する溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1では、Fn1が1.50以下であれば、優れた外観品質を有することが明らかになった。
【0025】
具体的に、図3は、本実施形態による溶融亜鉛めっき鋼板1の一例の断面を示す模式図である。図3は後述する方法によって作成された。図3においても、図1及び図2と同様に、左右方向が溶融亜鉛めっき鋼板1の圧延方向(L方向)であり、上下方向が溶融亜鉛めっき鋼板1の板厚方向(H方向)である。また、図3においても、図1及び図2と同様に、観察視野領域50のL方向長さは120μmであり、H方向長さは96μmである。
【0026】
図3に示される溶融亜鉛めっき層20の表面Sは、図2と比較して、微細な凹凸が大きく低減されている。具体的に、図3に対して画像解析を実施して、観察視野領域50における溶融亜鉛めっき層20の表面Sの長さSL、及び、P1点とP2点との最短距離SDを求め、Fn1(=SL/SD)を求めた結果、Fn1は1.00であった。このように図3に示される本実施形態による溶融亜鉛めっき鋼板1は、その溶融亜鉛めっき層20の表面Sが、非常に平滑である。その結果、本実施形態による溶融亜鉛めっき鋼板1は、図2に示される従来の溶融亜鉛めっき鋼板1と比較して、優れた外観品質を有する。
【0027】
同様に、本発明者らは、上述の化学組成に加えてさらに、Mgを0~0.5質量%未満含有する溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1についても、表面SのFn1を種々測定した。その結果、上述の化学組成に加えてさらに、Mgを0~0.5質量%未満含有する溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1では、Fn1が1.10以下であれば、優れた外観品質を有することが、本発明者らの詳細な検討により明らかになった。
【0028】
以上の知見に基づいて、本実施形態による溶融亜鉛めっき鋼板1の溶融亜鉛めっき層20の表面Sでは、観察視野領域50において、Fn1(=SL/SD)が、次の式(1)を満たす。
SL/SD≦α (1)
ここで、式(1)中のαは、溶融亜鉛めっき層20におけるMg含有量が0~0.5質量%未満の場合は1.10であり、溶融亜鉛めっき層20におけるMg含有量が0.5~30.0質量%の場合は1.50である。
【0029】
すなわち、質量%で、Mg:0~30.0%、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1は、Mg含有量が0~0.5%未満の場合はFn1が1.10以下であり、Mg含有量が0.5~30.0%の場合はFn1が1.50以下であれば、優れた外観品質を有することが、本発明者らの詳細な検討により明らかになった。
【0030】
一方、溶融亜鉛めっき層20の表面Sにおいて、Fn1を低減した場合、一部に凹みが確認される場合があった。具体的に、図4を参照して、溶融亜鉛めっき層20の表面Sのうち、観察視野領域50のL方向中央部近傍では、一部に凹み(凹部)が確認される。この理由について、本発明者らは次のように考えている。
【0031】
上述の化学組成に記載されるように、本実施形態による溶融亜鉛めっき層20は、易酸化元素であるAlを含有する。そのため、本実施形態による溶融亜鉛めっき層20の原料である、溶融亜鉛めっき浴では、酸化ドロスが形成されやすい。なお、MgはAlよりもさらに酸化されやすい。そのため、Mgを0.5%以上含有する場合、酸化ドロスが多量に形成され、Fn1がより大きくなるものと考えられる。ここで、本明細書において酸化ドロスとは、溶融亜鉛めっき浴に含まれる元素と、空気中の酸素とが反応して形成された酸化物を意味する。
【0032】
さらに、溶融亜鉛めっき鋼板1を製造する工程においては、母材鋼板10を溶融亜鉛めっき浴に浸漬させ、母材鋼板10の表面に溶融亜鉛めっきを付着させる。すなわち、Alを含有する溶融亜鉛めっき浴を用いた場合、溶融亜鉛めっきとともに溶融亜鉛めっき浴の液面に浮遊している酸化ドロスが母材鋼板10の表面に付着しやすい。
【0033】
すなわち、上述の化学組成の溶融亜鉛めっき層20の表面Sに形成される微細な凹凸は酸化ドロスが残存することによって形成されるものであると、本発明者らは考えている。そこで本実施形態では、溶融亜鉛めっき浴の液面のうち、母材鋼板10の通板ラインの近傍において、酸化ドロスの形成を大幅に抑制する。その結果、本実施形態による溶融亜鉛めっき鋼板1では、上述の化学組成を有する溶融亜鉛めっき層20であっても、Fn1を低減することができる。
【0034】
一方、このように溶融亜鉛めっき浴の液面の一部で酸化ドロスの形成を大幅に抑制した結果、溶融亜鉛めっきの付着量に振れが生じる場合がある。溶融亜鉛めっきの付着量が部分的に少なくなった領域は、溶融亜鉛めっきが凝固した後に凹部として残存する。このようにして溶融亜鉛めっき層20の表面Sには、凹部が形成されるものと本発明者らは考えている。
【0035】
ここで、溶融亜鉛めっき層20の表面Sにおいて、凹部が形成されていても、凹部の大きさが小さく、かつ、凹部の個数が多すぎなければ、溶融亜鉛めっき鋼板1の外観品質には大きな影響を与えない。そこで、本実施形態では、まず、溶融亜鉛めっき層20の表面Sに形成される凹部の大きさを、次のとおりに定義する。溶融亜鉛めっき層20の厚さをTμmと定義したとき、溶融亜鉛めっき鋼板1の圧延方向(L方向)と、溶融亜鉛めっき鋼板1の板厚方向(H方向)とを含む断面において、溶融亜鉛めっき層20の表面Sに形成され、L方向の長さWμmと、H方向の深さDμmとが、式(2)~式(4)を満たす。
D≦0.7×T (2)
D≦5.0 (3)
0.2×D≦W≦5.0×D (4)
【0036】
上記のとおりに定義される凹部の個数は、L方向に10cmあたり1.0個以上である。なお、凹部の個数が多すぎれば、Fn1が上述の範囲を超える。したがって、本実施形態による溶融亜鉛めっき鋼板1では、Fn1が式(1)を満たし、かつ、凹部の大きさが式(2)~式(4)を満たす。その結果、溶融亜鉛めっき層20が、質量%で、Mg:0~30.0%、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成を有していても、優れた外観品質を有する溶融亜鉛めっき鋼板1を得ることができる。
【0037】
以上の知見に基づいて完成した本実施形態による溶融亜鉛めっき鋼板1の要旨は次のとおりである。
【0038】
[1]
溶融亜鉛めっき鋼板であって、
母材鋼板と、
前記母材鋼板上に形成された溶融亜鉛めっき層とを備え、
前記溶融亜鉛めっき層は、質量%で、
Al:0.1~60.0%、
Mg:0~30.0%、
Si:0~1.0%、
B:0~0.50%、
Ca:0~3.0%、
Y:0~3.0%、
La:0~3.0%、
Ce:0~3.0%、
Cr:0~0.5%、
Ti:0~0.5%、
Ni:0~0.5%、
Co:0~0.5%、
V:0~0.5%、
Nb:0~0.5%、
Cu:0~0.5%、
Mn:0~0.5%、
Sr:0~0.5%、
Sb:0~0.5%、
Pb:0~0.5%、
Sn:0~2.0%、
Bi:0~2.0%、
In:0~2.0%、
Fe:0~5.0%、及び、
残部:35.0%以上のZn及び不純物からなる化学組成を有し、
前記溶融亜鉛めっき鋼板の圧延方向をL方向、前記溶融亜鉛めっき鋼板の板厚方向をH方向と定義したとき、
前記溶融亜鉛めっき層の表面を含み、前記溶融亜鉛めっき鋼板の前記L方向に延びる辺の長さが120μmであり、前記H方向に延びる辺の長さが96μmである長方形の観察視野領域において、
前記溶融亜鉛めっき層の表面の長さをSL、
前記溶融亜鉛めっき層の表面の一方の端部をP1点、
前記溶融亜鉛めっき層の表面の他方の端部をP2点、
前記P1点と前記P2点との最短距離をSDと定義したとき、
前記SLと、前記SDとが、式(1)を満たし、
前記溶融亜鉛めっき層の厚さをTμmと定義したとき、
前記L方向と前記H方向とを含む断面において、
前記溶融亜鉛めっき層の表面に形成され、
前記L方向の長さWμmと、前記H方向の深さDμmとが、式(2)~式(4)を満たす凹部の個数が、前記L方向に10cmあたり1.0個以上である、
溶融亜鉛めっき鋼板。
SL/SD≦α (1)
D≦0.7×T (2)
D≦5.0 (3)
0.2×D≦W≦5.0×D (4)
ここで、式(1)中のαは、前記溶融亜鉛めっき層におけるMg含有量が0~0.5質量%未満の場合は1.10であり、前記溶融亜鉛めっき層におけるMg含有量が0.5~30.0質量%の場合は1.50である。
【0039】
[2]
[1]に記載の溶融亜鉛めっき鋼板であって、
前記溶融亜鉛めっき層の前記化学組成は、第1群~第8群から選択される1種又は2種以上の元素を含有する、
溶融亜鉛めっき鋼板。
第1群:Mg:0.1~30.0%、
第2群:Si:0.1~1.0%、
第3群:B:0.01~0.50%、
第4群:Ca、Y、La、及び、Ce:0.1~3.0%、
第5群:Cr、Ti、Ni、Co、V、Nb、Cu、及び、Mn:0.1~0.5%、
第6群:Sr、Sb、及び、Pb:0.1~0.5%、
第7群:Sn、Bi、及び、In:0.1~2.0%、
第8群:Fe:0.1~5.0%
【0040】
以下、本実施形態による溶融亜鉛めっき鋼板1について詳述する。本明細書において、元素の含有量に関する「%」は、特に断りのない限り、「質量%」を意味する。
【0041】
[溶融亜鉛めっき鋼板について]
本実施形態による溶融亜鉛めっき鋼板1は、母材鋼板10と、母材鋼板10上に形成された溶融亜鉛めっき層20とを備える。以下、母材鋼板10と、溶融亜鉛めっき層20とを詳述する。
【0042】
[母材鋼板について]
本実施形態による母材鋼板10は、特に限定されない。すなわち、本実施形態において母材鋼板10は、製造する溶融亜鉛めっき鋼板1に求められる機械的特性(たとえば、引張強度や、加工性等)に応じて、溶融亜鉛めっき鋼板1に適用される公知の鋼板を使用すればよい。たとえば、母材鋼板10として、建材用途の鋼板を使用してもよく、自動車外板用途の鋼板を使用してもよく、電気機器用途の鋼板を使用してもよい。また、母材鋼板10は熱延鋼板であってもよく、冷延鋼板であってもよい。
【0043】
[溶融亜鉛めっき層について]
本実施形態による溶融亜鉛めっき層20は、母材鋼板10の表面上に形成されている。溶融亜鉛めっき層20は、溶融亜鉛めっきが母材鋼板10上に付着した後、凝固することによって形成される。
【0044】
[溶融亜鉛めっき層の化学組成について]
本実施形態による溶融亜鉛めっき層20の化学組成は、次の元素を含有する。
【0045】
Al:0.1~60.0%
アルミニウム(Al)は易酸化元素であり、犠牲防食によって溶融亜鉛めっき層20の耐食性を高める。Al含有量が低すぎれば、他の元素含有量が本実施形態の範囲内であっても、この効果が十分に得られない。一方、Al含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶接後の耐食性が極端に低下する場合がある。したがって、Al含有量は0.1~60.0%である。Al含有量の好ましい下限は0.1%であり、さらに好ましくは1.0%であり、さらに好ましくは5.0%であり、さらに好ましくは7.0%であり、さらに好ましくは10.0%である。Al含有量の好ましい上限は55.0%であり、さらに好ましくは50.0%であり、さらに好ましくは45.0%である。
【0046】
本実施形態による溶融亜鉛めっき層20の化学組成の残部は、Zn及び不純物からなる。ここで、不純物とは、溶融亜鉛めっき処理を実施する際に、原料から混入されるものであって、意図的に含有させるものではなく、本実施形態による溶融亜鉛めっき鋼板1に悪影響を与えない範囲で許容されるものを意味する。
【0047】
[任意元素について]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、次の第1群~第8群から選択される1元素以上を含有してもよい。以下、第1群~第8群について説明する。
第1群:
Mg:0~30.0%
第2群:
Si:0~1.0%
第3群:
B:0~0.50%
第4群:
Ca:0~3.0%
Y:0~3.0%
La:0~3.0%
Ce:0~3.0%
第5群:
Cr:0~0.5%
Ti:0~0.5%
Ni:0~0.5%
Co:0~0.5%
V:0~0.5%
Nb:0~0.5%
Cu:0~0.5%
Mn:0~0.5%
第6群:
Sr:0~0.5%
Sb:0~0.5%
Pb:0~0.5%
第7群:
Sn:0~2.0%
Bi:0~2.0%
In:0~2.0%
第8群:
Fe:0~5.0%
【0048】
[第1群(Mg)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Mgを含有してもよい。
【0049】
Mg:0~30.0%
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。すなわち、Mg含有量は0%であってもよい。Mgは易酸化元素であり、犠牲防食によって溶融亜鉛めっき層20の耐食性を高める。Mg含有量が少しでも含有されれば、上記効果はある程度得られる。一方、Mg含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Mg含有量は0~30.0%である。なお、Mg含有量が0.5%以上であれば、溶融亜鉛めっき鋼板1の耐食性がさらに高まる。一方、この場合、溶融亜鉛めっき層20の表面Sに酸化ドロスがさらに形成されやすくなり、Fn1(=SL/SD)が高くなりやすい。Mg含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.5%であり、さらに好ましくは1.0%であり、さらに好ましくは2.0%である。Mg含有量の好ましい上限は25.0%であり、さらに好ましくは20.0%であり、さらに好ましくは15.0%である。
【0050】
[第2群(Si)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Siを含有してもよい。
【0051】
Si:0~1.0%
ケイ素(Si)は任意元素であり、含有されなくてもよい。すなわち、Si含有量は0%であってもよい。Siは溶融亜鉛めっき鋼板1の耐食性を高める。Siが少しでも含有されれば、上記効果はある程度得られる。一方、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Si含有量は0~1.0%である。Si含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Si含有量の好ましい上限は0.9%であり、さらに好ましくは0.8%であり、さらに好ましくは0.7%である。
【0052】
[第3群(B)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Bを含有してもよい。
【0053】
B:0~0.50%
ホウ素(B)は任意元素であり、含有されなくてもよい。すなわち、B含有量は0%であってもよい。Bは溶接後の溶融亜鉛めっき鋼板1の溶融割れを抑制する。Bが少しでも含有されれば、上記効果はある程度得られる。一方、B含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の融点が高まり、溶融亜鉛めっき処理が困難になる場合がある。したがって、B含有量は0~0.50%である。B含有量の好ましい下限は0%超であり、さらに好ましくは0.01%であり、さらに好ましくは0.02%である。B含有量の好ましい上限は0.45%であり、さらに好ましくは0.40%である。
【0054】
[第4群(Ca、Y、La、及び、Ce)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Ca、Y、La、及び、Ceからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、溶融亜鉛めっき鋼板1の耐食性を高める。
【0055】
Ca:0~3.0%
カルシウム(Ca)は任意元素であり、含有されなくてもよい。すなわち、Ca含有量は0%であってもよい。Caは溶融亜鉛めっき層20中でAl及びZnと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Caが少しでも含有されれば、上記効果はある程度得られる。一方、Ca含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Ca含有量は0~3.0%である。Ca含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Ca含有量の好ましい上限は2.8%であり、さらに好ましくは2.5%であり、さらに好ましくは2.0%である。
【0056】
Y:0~3.0%
イットリウム(Y)は任意元素であり、含有されなくてもよい。すなわち、Y含有量は0%であってもよい。YはCaと同様に、溶融亜鉛めっき層20中でAl及びZnと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Yが少しでも含有されれば、上記効果はある程度得られる。一方、Y含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Y含有量は0~3.0%である。Y含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Y含有量の好ましい上限は2.8%であり、さらに好ましくは2.5%であり、さらに好ましくは2.0%である。
【0057】
La:0~3.0%
ランタン(La)は任意元素であり、含有されなくてもよい。すなわち、La含有量は0%であってもよい。LaはCaと同様に、溶融亜鉛めっき層20中でAl及びZnと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Laが少しでも含有されれば、上記効果はある程度得られる。一方、La含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、La含有量は0~3.0%である。La含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。La含有量の好ましい上限は2.8%であり、さらに好ましくは2.5%であり、さらに好ましくは2.0%である。
【0058】
Ce:0~3.0%
セレン(Ce)は任意元素であり、含有されなくてもよい。すなわち、Ce含有量は0%であってもよい。CeはCaと同様に、溶融亜鉛めっき層20中でAl及びZnと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Ceが少しでも含有されれば、上記効果はある程度得られる。一方、Ce含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Ce含有量は0~3.0%である。Ce含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Ce含有量の好ましい上限は2.8%であり、さらに好ましくは2.5%であり、さらに好ましくは2.0%である。
【0059】
[第5群(Cr、Ti、Ni、Co、V、Nb、Cu、及び、Mn)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Cr、Ti、Ni、Co、V、Nb、Cu、及び、Mnからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、溶融亜鉛めっき鋼板1の外観品質を高める。
【0060】
Cr:0~0.5%
クロム(Cr)は任意元素であり、含有されなくてもよい。すなわち、Cr含有量は0%であってもよい。Crは溶融亜鉛めっき鋼板1の外観品質を高める。Crはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Crが少しでも含有されれば、上記効果はある程度得られる。一方、Cr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Cr含有量は0~0.5%である。Cr含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Cr含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0061】
Ti:0~0.5%
チタン(Ti)は任意元素であり、含有されなくてもよい。すなわち、Ti含有量は0%であってもよい。Tiは溶融亜鉛めっき鋼板1の外観品質を高める。Tiはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Tiが少しでも含有されれば、上記効果はある程度得られる。一方、Ti含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Ti含有量は0~0.5%である。Ti含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Ti含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0062】
Ni:0~0.5%
ニッケル(Ni)は任意元素であり、含有されなくてもよい。すなわち、Ni含有量は0%であってもよい。Niは溶融亜鉛めっき鋼板1の外観品質を高める。Niはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Niが少しでも含有されれば、上記効果はある程度得られる。一方、Ni含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Ni含有量は0~0.5%である。Ni含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Ni含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0063】
Co:0~0.5%
コバルト(Co)は任意元素であり、含有されなくてもよい。すなわち、Co含有量は0%であってもよい。Coは溶融亜鉛めっき鋼板1の外観品質を高める。Coはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Coが少しでも含有されれば、上記効果はある程度得られる。一方、Co含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Co含有量は0~0.5%である。Co含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Co含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0064】
V:0~0.5%
バナジウム(V)は任意元素であり、含有されなくてもよい。すなわち、V含有量は0%であってもよい。Vは溶融亜鉛めっき鋼板1の外観品質を高める。Vはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Vが少しでも含有されれば、上記効果はある程度得られる。一方、V含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、V含有量は0~0.5%である。V含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。V含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0065】
Nb:0~0.5%
ニオブ(Nb)は任意元素であり、含有されなくてもよい。すなわち、Nb含有量は0%であってもよい。Nbは溶融亜鉛めっき鋼板1の外観品質を高める。Nbはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Nbが少しでも含有されれば、上記効果はある程度得られる。一方、Nb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Nb含有量は0~0.5%である。Nb含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Nb含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0066】
Cu:0~0.5%
銅(Cu)は任意元素であり、含有されなくてもよい。すなわち、Cu含有量は0%であってもよい。Cuは溶融亜鉛めっき鋼板1の外観品質を高める。Cuはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Cuが少しでも含有されれば、上記効果はある程度得られる。一方、Cu含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Cu含有量は0~0.5%である。Cu含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Cu含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0067】
Mn:0~0.5%
マンガン(Mn)は任意元素であり、含有されなくてもよい。すなわち、Mn含有量は0%であってもよい。Mnは溶融亜鉛めっき鋼板1の外観品質を高める。Mnはさらに、溶融亜鉛めっき層20中でAlと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性が高まる。Mnが少しでも含有されれば、上記効果はある程度得られる。一方、Mn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Mn含有量は0~0.5%である。Mn含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Mn含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0068】
[第6群(Sr、Sb、及び、Pb)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Sr、Sb、及び、Pbからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、溶融亜鉛めっき鋼板1の外観品質を高める。
【0069】
Sr:0~0.5%
ストロンチウム(Sr)は任意元素であり、含有されなくてもよい。すなわち、Sr含有量は0%であってもよい。Srは溶融亜鉛めっき層20の金属光沢を高め、溶融亜鉛めっき鋼板1の外観品質を高める。Srが少しでも含有されれば、上記効果はある程度得られる。一方、Sr含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Sr含有量は0~0.5%である。Sr含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Sr含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0070】
Sb:0~0.5%
アンチモン(Sb)は任意元素であり、含有されなくてもよい。すなわち、Sb含有量は0%であってもよい。Sbは溶融亜鉛めっき層20の金属光沢を高め、溶融亜鉛めっき鋼板1の外観品質を高める。Sbが少しでも含有されれば、上記効果はある程度得られる。一方、Sb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Sb含有量は0~0.5%である。Sb含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Sb含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0071】
Pb:0~0.5%
鉛(Pb)は任意元素であり、含有されなくてもよい。すなわち、Pb含有量は0%であってもよい。Pbは溶融亜鉛めっき層20の金属光沢を高め、溶融亜鉛めっき鋼板1の外観品質を高める。Pbが少しでも含有されれば、上記効果はある程度得られる。一方、Pb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、酸化ドロスが形成されやすくなり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Pb含有量は0~0.5%である。Pb含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%である。Pb含有量の好ましい上限は0.5%未満であり、さらに好ましくは0.4%である。
【0072】
[第7群(Sn、Bi、及び、In)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Sn、Bi、及び、Inからなる群から選択される1種以上を含有してもよい。これらの元素はいずれも任意元素であり、溶融亜鉛めっき鋼板1の耐食性を高める。
【0073】
Sn:0~2.0%
スズ(Sn)は任意元素であり、含有されなくてもよい。すなわち、Sn含有量は0%であってもよい。Snは溶融亜鉛めっき層20中でMgと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Snが少しでも含有されれば、上記効果はある程度得られる。一方、Sn含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Sn含有量は0~2.0%である。Sn含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Sn含有量の好ましい上限は1.9%であり、さらに好ましくは1.8%であり、さらに好ましくは1.7%である。
【0074】
Bi:0~2.0%
ビスマス(Bi)は任意元素であり、含有されなくてもよい。すなわち、Bi含有量は0%であってもよい。Biは溶融亜鉛めっき層20中でMgと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Biが少しでも含有されれば、上記効果はある程度得られる。一方、Bi含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、Bi含有量は0~2.0%である。Bi含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。Bi含有量の好ましい上限は1.9%であり、さらに好ましくは1.8%であり、さらに好ましくは1.7%である。
【0075】
In:0~2.0%
インジウム(In)は任意元素であり、含有されなくてもよい。すなわち、In含有量は0%であってもよい。Inは溶融亜鉛めっき層20中でMgと金属間化合物を形成する。その結果、溶融亜鉛めっき鋼板1の耐食性を高める。Inが少しでも含有されれば、上記効果はある程度得られる。一方、In含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき浴の粘度が高まり、溶融亜鉛めっき鋼板1の外観品質が低下する。したがって、In含有量は0~2.0%である。In含有量の好ましい下限は0%超であり、さらに好ましくは0.1%であり、さらに好ましくは0.2%であり、さらに好ましくは0.3%である。In含有量の好ましい上限は1.9%であり、さらに好ましくは1.8%であり、さらに好ましくは1.7%である。
【0076】
[第8群(Fe)]
本実施形態による溶融亜鉛めっき層20の化学組成はさらに、Znの一部に代えて、Feを含有してもよい。
【0077】
Fe:0~5.0%
鉄(Fe)は任意元素であり、含有されなくてもよい。すなわち、Fe含有量は0%であってもよい。Feは溶融亜鉛めっき層20の硬さを高め、溶融亜鉛めっき鋼板1の加工性を高める。Feが少しでも含有されれば、上記効果がある程度得られる。一方、Fe含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、溶融亜鉛めっき層20の硬さが高くなりすぎ、溶融亜鉛めっき鋼板1の加工性がかえって低下する。したがって、Fe含有量は0~5.0%である。Fe含有量の好ましい下限は0%超であり、さらに好ましくは0.05%であり、さらに好ましくは0.1%であり、さらに好ましくは0.5%である。Fe含有量の好ましい上限は4.5%であり、さらに好ましくは4.0%であり、さらに好ましくは3.5%である。
【0078】
以上のとおり、本実施形態による溶融亜鉛めっき層20の化学組成は、Alを必須に含有し、第1群(Mg)、第2群(Si)、第3群(B)、第4群(Ca、Y、La、及び、Ce)、第5群(Cr、Ti、Ni、Co、V、Nb、Cu、及び、Mn)、第6群(Sr、Sb、及び、Pb)、第7群(Sn、Bi、及び、In)、及び、第8群(Fe)の元素のうち、一種以上を任意に含有し、残部はZn及び不純物である。ここで、Zn含有量が低すぎれば、溶融亜鉛めっき鋼板1として求められる機械的特性が得られない場合がある。したがって、Zn含有量は35.0%以上である。Zn含有量の好ましい下限は37.0%であり、さらに好ましくは39.0%である。Zn含有量の上限は特に限定されないが、実質的に99.9%である。
【0079】
本実施形態において溶融亜鉛めっき層20の化学組成は、次の方法で求めることができる。インヒビター入りの塩酸を用いて、溶融亜鉛めっき層20を溶解させる。インヒビターは、たとえば、朝日化学工業株式会社製の製品名イビットを用いることができる。溶解液に対して、誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析装置を用いた元素分析を実施する。以上の方法により、溶融亜鉛めっき層20の化学組成を求めることができる。
【0080】
[式(1)について]
本実施形態による溶融亜鉛めっき層20は、溶融亜鉛めっき層20の表面Sを含み、溶融亜鉛めっき鋼板1のL方向に延びる辺の長さが120μmであり、H方向に延びる辺の長さが96μmである長方形の観察視野領域50において、溶融亜鉛めっき層20の表面Sの長さをSL、溶融亜鉛めっき層20の表面Sの一方の端部をP1点、溶融亜鉛めっき層20の表面Sの他方の端部をP2点、P1点とP2点との最短距離をSDと定義したとき、SLと、SDとが、式(1)を満たす。
SL/SD≦α (1)
ここで、式(1)中のαは、溶融亜鉛めっき層20におけるMg含有量が0~0.5質量%未満の場合は1.10であり、溶融亜鉛めっき層20におけるMg含有量が0.5~30.0質量%の場合は1.50である。
【0081】
上述のとおり、Fn1(=SL/SD)は、観察視野領域50中の溶融亜鉛めっき層20の表面Sに形成された微細な凹凸の指標である。Fn1は1以上の正の数であり、Fn1が1に近いほど、溶融亜鉛めっき層20の表面Sに形成された微細な凹凸が低減されている。具体的に、質量%で、Mg:0~0.5%未満、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1では、Fn1が1.10以下であれば、優れた外観品質を有する。さらに、質量%で、Mg:0.5~30.0%、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1の化学組成の溶融亜鉛めっき層20を有する溶融亜鉛めっき鋼板1では、Fn1が1.50以下であれば、優れた外観品質を有する。
【0082】
上述のとおり、Alは易酸化元素であり、Alを含有する溶融亜鉛めっき浴では、酸化ドロスが形成されやすい。MgはAlよりもさらに酸化されやすい元素であるため、Mgを0.5質量%以上含有する溶融亜鉛めっき層20では、表面Sに酸化ドロスがさらに付着しやすい。その結果、溶融亜鉛めっき層20の表面Sにおいて、Fn1が大きくなりやすい。そこで、本実施形態による溶融亜鉛めっき鋼板1では、Mg含有量が0~0.5%未満の場合と、0.5~30.0%の場合とで、Fn1の上限を規定する。その結果、Mg含有量が0~30.0%において、従来の溶融亜鉛めっき鋼板1よりも優れた外観品質を有する。
【0083】
溶融亜鉛めっき層20が、質量%で、Mg:0~0.5%未満、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成を有する場合、Fn1の好ましい上限は1.09であり、さらに好ましくは1.08であり、さらに好ましくは1.07であり、さらに好ましくは1.05であり、さらに好ましくは1.04である。なお、上述のとおり、Fn1の下限は、Mg含有量に関わらず1.00である。
【0084】
溶融亜鉛めっき層20が、質量%で、Mg:0.5~30.0%、Al:0.1~60.0%、及び、Zn:35.0%以上を含有する化学組成を有する場合、Fn1の好ましい上限は1.45であり、さらに好ましくは1.40であり、さらに好ましくは1.35であり、さらに好ましくは1.30であり、さらに好ましくは1.25である。
【0085】
本実施形態において、Fn1は次の方法で求めることができる。本実施形態による溶融亜鉛めっき鋼板1の板幅中央部から、ミクロ組織観察用の試験片を作製する。ミクロ組織観察は、溶融亜鉛めっき鋼板1の板幅中央部において、圧延方向(L方向)と板厚方向(H方向)とを含む観察面で実施される。なお、ミクロ組織観察用の試験片の大きさは、特に限定されず、L方向5mmであって、溶融亜鉛めっき層20の表面Sを含む観察面が得られればよい。
【0086】
観察面に対して、SEMを用いて二次電子像(SEM像)を観察する。観察視野領域50の大きさは、L方向に120μm、H方向に96μmとする。また、観察視野の数は特に限定されないが、たとえば、5視野である。当業者であれば、各観察視野領域50において、コントラストから母材鋼板10と溶融亜鉛めっき層20とを特定することができる。すなわち、各観察視野領域50における、母材鋼板10、溶融亜鉛めっき層20、溶融亜鉛めっき層20の表面S、表面Sの一方の端部P1点、及び、表面Sの他方の端部P2点は、コントラストから特定される。さらに、各観察視野領域50について画像解析を実施して、表面Sの長さSL(μm)、及び、P1点とP2点との最短距離SD(μm)とを求める。画像解析の方法は特に限定されず、周知の方法でよい。得られたSL(μm)とSD(μm)とから、Fn1(=SL/SD)を求めることができる。
【0087】
[凹部について]
本実施形態による溶融亜鉛めっき鋼板1では、溶融亜鉛めっき層20の厚さをTμmと定義したとき、溶融亜鉛めっき鋼板1の圧延方向(L方向)と板厚方向(H方向)とを含む断面において、溶融亜鉛めっき層20の表面Sに形成され、L方向の長さWμmと、H方向の深さDμmとが、式(2)~式(4)を満たす凹部の個数が、L方向に10cmあたり1.0個以上である。
D≦0.7×T (2)
D≦5.0 (3)
0.2×D≦W≦5.0×D (4)
【0088】
上述のとおり、溶融亜鉛めっき層20の表面Sにおいて、凹部が形成されていても、凹部の大きさが式(2)~式(4)を満たせば、Fn1(=SL/SD)がα以下である限り、外観品質には大きな影響を与えない。そこで本実施形態では、溶融亜鉛めっき層20の表面Sにおいて凹部の形成を許容することによって、表面Sの微細な凹凸を低減する。本明細書において「凹部」とは、溶融亜鉛めっき層20の表層において、溶融亜鉛めっき層20の厚さが局所的に薄くなっている凹み部を意味する。
【0089】
ここで、凹部の大きさについて、図面を用いて具体的に説明する。図5図4の領域60の拡大図である。図5中、溶融亜鉛めっき層20の表面Sには、凹部が形成されている。図5を参照して、L方向に平行であって、凹部の底部と接する線分をL1と定義する。図5を参照して、表面Sは底部を起点として、線分L1から徐々に離れていく方向に変化する。さらに、表面Sは、底部から右方向において、上に凸の形状となる変曲点を有している。同様に、表面Sは、底部から左方向においても、上に凸の形状となる変曲点を有している。これら2つの変曲点のうち、線分L1との距離が近い方を凹部の上端と定義する。このように定義した凹部の上端を通り、L方向に平行な線分をL2と定義する。
【0090】
図5を参照して、L2と表面Sとの交点を通り、H方向に平行な線分をH1及びH2と定義する。このようにして定義された線分L1と線分L2との距離を、凹部のL方向の大きさと定義する。同様に、線分H1と線分H2との距離を、凹部のH方向の大きさと定義する。なお、図4及び図5から求めた凹部の大きさは、H方向の深さDμmが1.7μmであり、L方向の長さWμmが4.9μmである。また、図4及び図5に示す溶融亜鉛めっき層20の厚さTμmは12μmである。溶融亜鉛めっき層20の厚さは、後述する方法で求めることができる。
【0091】
したがって、図4及び図5に示される凹部は、H方向の深さDμmが溶融亜鉛めっき層20の厚さTμmの0.7倍(0.7×Tμm=8.4μm)以下であり、式(2)を満たす。また、H方向の深さDμmが5.0μm以下であり、式(3)を満たす。さらに、L方向の長さWμmが、H方向の深さDμmの0.2倍(0.2×Dμm=0.34μm)以上であり、かつ、H方向の深さDμmの5倍(5.0×Dμm=8.5μm)以下であり、式(4)を満たす。
【0092】
凹部の個数は、L方向に10cmあたり1.0個以上である。すなわち、L方向とH方向とを含む断面を観察した場合、観察視野領域50のL方向長さによっては、凹部が確認されない場合もあり得る。上述するFn1を求めるための観察視野領域50では、L方向長さを120μmとする。そのため、上述の観察視野領域50を基準とする場合、833視野のうち1視野以上で凹部が確認されることを意味する。また、凹部を確認するための視野の大きさは、特に限定されない。しかしながら、上述のFn1を求めるためのSEMを用いた二次電子像の観察によれば、凹部を同時に確認することができるため、好ましい。
【0093】
また、溶融亜鉛めっき層20の表面Sにおいて、凹部が形成されていても、凹部の大きさが小さく、かつ、凹部の個数が多すぎなければ、溶融亜鉛めっき鋼板1の外観品質には大きな影響を与えない。しかしながら、凹部の個数が多すぎる場合、上述のFn1がαを超える。したがって、凹部の個数の上限は特に限定されない。凹部の個数の上限は、たとえば、L方向に10cmあたり10000個である。
【0094】
[溶融亜鉛めっき層の厚さについて]
本実施形態による溶融亜鉛めっき層20の厚さTμmは特に限定されない。本実施形態による溶融亜鉛めっき層20の厚さTμmは、好ましくは3.0~35.0μmである。なお、本実施形態による溶融亜鉛めっき層20は、溶融亜鉛めっき鋼板1の両面にそれぞれ配置される。本明細書において、溶融亜鉛めっき層20の厚さTμmとは、溶融亜鉛めっき鋼板1の一方の面に形成された溶融亜鉛めっき層20の厚さを意味する。溶融亜鉛めっき層20の厚さTμmは、所望の特性を得る目的で、適宜調整して製造する。本実施形態による溶融亜鉛めっき鋼板1は、溶融亜鉛めっき層20の厚さTμmに関わらず、優れた外観品質を得ることができる。
【0095】
溶融亜鉛めっき層20の厚さは、JIS H0401(2013)に準拠した磁力式厚さ試験によって、求めることができる。具体的には、溶融亜鉛めっき層20に対して、渦電流位相式の膜厚測定器のプローブを接触させる。プローブの入力側の高周波磁界と、それにより励起された溶融亜鉛めっき層20上の渦電流との位相差を測定する。この位相差を溶融亜鉛めっき層20の厚さ(μm)に変換し、溶融亜鉛めっき層20の厚さTμmを求めることができる。
【0096】
[その他の構成について]
本実施形態による溶融亜鉛めっき鋼板1は、母材鋼板10と溶融亜鉛めっき層20との他に、任意の構成を有していてもよい。たとえば、溶融亜鉛めっき層20の上に化成被膜を有していてもよい。以下、化成被膜を有する場合について、図面を用いて詳細に説明する。
【0097】
図6は、本実施形態による溶融亜鉛めっき鋼板1の他の一例の断面を示す模式図である。図6においても、図1図4と同様に、左右方向が溶融亜鉛めっき鋼板1の圧延方向(L方向)であり、上下方向が溶融亜鉛めっき鋼板1の板厚方向(H方向)である。また、図6においても、図1図4と同様に、観察視野領域50のL方向長さは120μmであり、H方向長さは96μmである。
【0098】
図6に示される溶融亜鉛めっき鋼板1は、図3及び図4に示される溶融亜鉛めっき鋼板1の構成の他に、化成被膜30を有する。具体的に、図6に示される溶融亜鉛めっき鋼板1は、母材鋼板10の上の溶融亜鉛めっき層20の上に、化成被膜30が形成されている。溶融亜鉛めっき層20の上に化成被膜30が形成される場合、溶融亜鉛めっき鋼板1の耐食性がさらに高まる。
【0099】
本実施形態において、化成被膜30の種類は特に限定されない。化成被膜30は、たとえば、クロム化成被膜である。化成被膜30はまた、リン酸塩化成被膜であってもよく、シュウ酸塩化成被膜であってもよく、ホウ酸塩化成被膜であってもよい。化成被膜30の厚さは、特に限定されず、たとえば、1~10μmである。なお、本実施形態による溶融亜鉛めっき鋼板1では、溶融亜鉛めっき層20の表面S、表面Sの一方の端部P1点、及び、表面Sの他方の端部P2点は、化成被膜30を上に形成していてもコントラストから特定することができる。すなわち、本実施形態において、溶融亜鉛めっき層20の上に化成被膜30が形成されていても、溶融亜鉛めっき層20の表面Sの長さSL、及び、P1点とP2点との最短距離SDは、画像解析によって求めることができる。
【0100】
[製造方法]
本実施形態による溶融亜鉛めっき鋼板1の製造方法の一例を説明する。以下に説明する製造方法は、本実施形態による溶融亜鉛めっき鋼板1を製造するための一例である。すなわち、上述の構成を有する溶融亜鉛めっき鋼板1は、以下に説明する製造方法以外の他の製造方法によって製造されてもよい。しかしながら、以下に説明する製造方法は、本実施形態による溶融亜鉛めっき鋼板1の製造方法の好ましい一例である。
【0101】
本実施形態の製造方法は、母材鋼板10を準備する準備工程と、母材鋼板10に対して溶融亜鉛めっき層20を形成する溶融亜鉛めっき処理工程とを含む。以下、各工程について説明する。
【0102】
[準備工程]
準備工程では、母材鋼板10を準備する。上述のとおり、母材鋼板10は熱延鋼板であってもよく、冷延鋼板であってもよい。また、母材鋼板10の化学組成も特に限定されず、溶融亜鉛めっき鋼板1の母材鋼板10として求められる特性が得られればよい。
【0103】
[溶融亜鉛めっき処理工程]
溶融亜鉛めっき処理工程では、準備された母材鋼板10に対して、溶融亜鉛めっき処理を実施して、母材鋼板10の表面に溶融亜鉛めっき層20を形成する。以下、溶融亜鉛めっき処理工程で用いられる溶融亜鉛めっき設備と、それを用いた製造方法について、図面を用いて具体的に説明する。
【0104】
図7は、従前の溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の一例を示す側面図である。図7を参照して、溶融亜鉛めっき設備100では、母材鋼板10が搬送されて、溶融亜鉛ポット110に貯留されている、溶融亜鉛めっき浴120へと浸漬される。溶融亜鉛ポット110の内部には、シンクロール130が配置される。シンクロール130は、母材鋼板10の板幅方向と平行な回転軸を有している。母材鋼板10は、シンクロール130によって、進行方向が溶融亜鉛めっき設備100の上方へ転換される。
【0105】
溶融亜鉛めっき設備100では、溶融亜鉛めっき浴120の上方に、ガスワイピング装置140が配置される。ガスワイピング装置140は、一対のガス噴射装置を備え、母材鋼板10に対してガスを吹き付ける。このようにして、母材鋼板10は、両表面に付着した溶融亜鉛めっきの一部がかき落とされ、母材鋼板10の表面の溶融亜鉛めっきの付着量が調整される。
【0106】
溶融亜鉛めっき設備100ではさらに、ガスワイピング装置140のさらに上方に、トップロール150が配置される。トップロール150は、母材鋼板10の板幅方向と平行な回転軸を有している。母材鋼板10は、トップロール150によって、進行方向が水平方向に転換される。なお、母材鋼板10の表面の溶融亜鉛めっきは、ガスワイピング装置140とトップロール150との間に、その温度が低下して、凝固する。このようにして、母材鋼板10の表面に、溶融亜鉛めっき層20が形成される。なお、上述の化学組成を有する溶融亜鉛めっき層20を形成するには、溶融亜鉛めっき浴120の化学組成を、上述の化学組成になるように調製すればよい。
【0107】
一方、このような従前の溶融亜鉛めっき処理では、溶融亜鉛めっき層20の表面に酸化ドロスが付着して、微細な凹凸が形成されていた。特に、上述の化学組成を有する溶融亜鉛めっき層20を形成するため、上述の化学組成を有する溶融亜鉛めっき浴120を用いた場合、易酸化元素を含有するため、溶融亜鉛めっき浴120において酸化ドロスが形成されやすい。この場合、溶融亜鉛めっき浴120の液面に浮遊している酸化ドロスが溶融亜鉛めっきとともに、母材鋼板10に付着する。その結果、溶融亜鉛めっき層20の表層には酸化ドロスが残存し、溶融亜鉛めっき層20の表面Sにおいて微細な凹凸が形成されやすい。そこで本実施形態では、酸化ドロスが溶融亜鉛めっきとともに母材鋼板10に付着することを抑制して、溶融亜鉛めっき層20の表面Sにおける微細な凹凸を低減する。この点について、図面を用いて具体的に説明する。
【0108】
図8は、本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の一例を示す側面図である。図7及び図8を参照して、図8に記載の本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100では、図7に示される溶融亜鉛めっき設備100の構成に加えて、ガスワイピング装置140を覆うようにして、筐体200が配置されている。
【0109】
筐体200は、下面が開放されており、上面に母材鋼板10が通るための開口部が設けられている。筐体200はさらに、下端が溶融亜鉛めっき浴120中に配置され、上端がガスワイピング装置140の上端と同じか、又は、ガスワイピング装置140より上方に配置されている。このように、筐体200は、密閉されていないものの、溶融亜鉛めっき浴120の液面の一部と、ガスワイピング装置140を含む溶融亜鉛めっき浴120の上方の空間の一部とを、大気から遮蔽する。
【0110】
筐体200の内部ではさらに、図8に示されるように、ガスワイピング装置140が、母材鋼板10に対してガスを吹き付けることによって、溶融亜鉛めっきの付着量を調整する。そこで本実施形態では、ガスワイピング装置140から噴射されるガスとして、空気ではなく、窒素ガス等の不活性ガスを用いる。すなわち、筐体200の内部の気体は、ガスワイピング装置140から噴射されるガスによって、置換される。
【0111】
具体的には、本実施形態では、筐体200の内部の酸素濃度を、体積率で1000ppm未満まで低減する。この場合、筐体200の内部では、溶融亜鉛めっき浴120の液面において、酸化ドロスの形成が抑制される。そのため、母材鋼板10に溶融亜鉛めっきとともに付着する酸化ドロスを十分に低減することができる。その結果、製造された溶融亜鉛めっき鋼板1の溶融亜鉛めっき層20の表面Sにおいて、微細な凹凸を低減し、Fn1(=SL/SD)を1.50以下にすることができる。なお、筐体200の内部の酸素濃度は、低ければ低いほど好ましい。
【0112】
一方、上述のとおり、ガスワイピング装置140は、ガスを母材鋼板10に吹き付けることによって、母材鋼板10の表面の溶融亜鉛めっきをかき落として、溶融亜鉛めっきの付着量を調整する。上述のとおり、筐体200の内部は密閉されていないが、内部の気体は外部の空気からある程度遮蔽されている。そのため、ガスワイピング装置140から噴射されるガスによって、筐体200の内圧が高まる場合がある。特に、母材鋼板10の表面の溶融亜鉛めっきの付着量を少なくする場合、ガスワイピング装置140から噴射されるガスの量は多くなり、筐体200の内圧が高くなりやすい。
【0113】
ここで、筐体200の内圧が高まった結果、ガスワイピング装置140から噴射されるガスの軌道が不安定になり、溶融亜鉛めっきの付着量が不安定になる場合がある。この場合、製造された溶融亜鉛めっき鋼板1において、溶融亜鉛めっきの付着量が局所的に少なくなった領域が生じる。その結果、製造された溶融亜鉛めっき鋼板1では、溶融亜鉛めっき層20の表面Sにおいて凹部が形成される。上述のとおり、溶融亜鉛めっき層20の表面Sにおいて、凹部が形成されていても、凹部の大きさが式(2)~式(4)を満たせば、外観品質には大きな影響を与えない。しかしながら、筐体200の内圧の高まりは、抑制できた方が好ましい。この場合、製造された溶融亜鉛めっき鋼板1の溶融亜鉛めっき層20の表面Sにおいて、形成される凹部が小さく、かつ、数が少なくなる。
【0114】
ここで、筐体200の内圧の高まりを抑制する方法は、特に限定されない。たとえば、筐体200の上面に設けられた、母材鋼板10が通るための開口部の大きさを調整することによって、実施されてもよい。他の方法として、筐体200に可動式の通風孔を設けてもよい。可動式の通風孔を設けて、筐体200の内圧を調整する方法について、図面を用いて具体的に説明する。
【0115】
図9は、本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100の他の一例を示す側面図である。図8及び図9を参照して、図9に記載の本実施形態による溶融亜鉛めっき処理に用いられる溶融亜鉛めっき設備100では、図8に示される溶融亜鉛めっき設備100の構成に加えて、筐体200に蓋が可動式の通風孔210が配置されている。図9に示す通風孔210Aは、通風孔210が開口していない状態を示す。図9に示す通風孔210Bは、通風孔210が開口している状態を示す。
【0116】
図9に示されるように、通風孔210は、可動式の蓋を備える。そのため、筐体200の内圧が高まった場合、可動式の蓋が動き、通風孔210が開口する(図9の通風孔210B参照)。さらに、筐体200の内圧がある程度以下まで下がった場合、可動式の蓋の自重により、通風孔210が閉じる(図9の通風孔210A参照)。このように、図9に示される構成によれば、筐体200の内圧が高まった場合であっても、筐体200の内圧の高まりを抑制することができる。
【0117】
以上のとおり、本実施形態による溶融亜鉛めっき処理工程では、図8に示される筐体200内の酸素濃度を体積率で1000ppm未満にまで低減する。その結果、製造された溶融亜鉛めっき鋼板1は、溶融亜鉛めっき層20の表面Sにおいて、微細な凹凸を低減し、Fn1(=SL/SD)をα以下にすることができる。一方、この場合筐体200の内圧が多少高まることから、溶融亜鉛めっき層20の表面Sにおいて、大きさが式(2)~式(4)を満たす凹部が1.0個/10cm以上形成される。
【0118】
[その他の製造方法]
本実施形態による溶融亜鉛めっき鋼板1の製造方法は、上述する製造工程以外の製造工程を含んでもよい。たとえば、本実施形態による溶融亜鉛めっき鋼板1の製造方法は、溶融亜鉛めっき処理工程の前に、Niプレめっき工程を含んでもよい。Niプレめっき工程では、上述の母材鋼板10に対してNiめっきを実施して、母材鋼板10の表面にNiめっき層を形成する。
【0119】
本実施形態による溶融亜鉛めっき鋼板1の製造方法はさらに、溶融亜鉛めっき処理工程の後に、化成処理工程を含んでもよい。化成処理工程では、製造された溶融亜鉛めっき鋼板1に対して化成処理を実施して、溶融亜鉛めっき層20の上に化成被膜30を形成する。化成処理工程を含む場合、化成処理の方法は特に限定されず、周知の方法でよい。たとえば、化成被膜30としてクロム化成被膜を形成する場合、次の方法で実施することができる。
【0120】
まず、クロム化成処理液を準備する。クロム化成処理液はたとえば、3価のクロムイオンを含有する。3価のクロムイオンはたとえば、塩化クロム(III)及び硫酸クロム(III)を溶解することによって含有させることができる。クロム化成処理液には、市販のクロメート処理液を用いればよい。上述の方法で製造された溶融亜鉛めっき鋼板1をクロム化成処理液に浸漬して、クロム化成処理を実施する。以上の方法により、クロム化成被膜を形成することができる。
【0121】
本実施形態による溶融亜鉛めっき鋼板1の製造方法はさらに、溶融亜鉛めっき処理工程の後に、調質圧延工程を実施してもよい。調質圧延工程では、製造された溶融亜鉛めっき鋼板1に対して調質圧延を実施する。上述の化成処理工程を実施する場合、化成処理工程の前に調質圧延工程を実施することにより、化成被膜の密着性を高めることができる。溶融亜鉛めっき鋼板1の製造方法はさらに、他の製造工程を含んでもよい。しかしながら、上述の製造方法は、本実施形態による溶融亜鉛めっき鋼板1を得るための製造方法の一例である。したがって、本実施形態による溶融亜鉛めっき鋼板1の製造方法は、上述の製造方法に限定されない。
【実施例0122】
以下、実施例によって本実施形態による溶融亜鉛めっき鋼板について、さらに具体的に説明する。なお、実施例で示す条件は、本実施形態の実施可能性及び効果を確認するための一例である。したがって、本実施形態による溶融亜鉛めっき鋼板1は、以下に説明する実施例によって限定されない。
【0123】
JIS G3141(2017)に規定される鋼板SPCC(化学組成は、C:0.15%以下、Mn:0.60%以下、P:0.100%以下、S:0.050%以下、残部:Fe及び不純物)を母材鋼板として用いて、溶融亜鉛めっき鋼板を製造した。具体的に、板厚0.8mmのSPCCを脱脂した後、N-H雰囲気中で800℃、60秒加熱した。
【0124】
加熱されたSPCCが490℃程度まで冷却した後、図9に示すような溶融亜鉛めっき設備を用いて、溶融亜鉛めっき処理を実施した。溶融亜鉛めっき浴の化学組成は、表1に示すとおりであった。なお、表1の「-」は、対応する元素の含有量が不純物レベルであったことを示す。
【0125】
【表1】
【0126】
各試験番号において、用いた溶融亜鉛めっき浴を表2に示す。なお、溶融亜鉛めっき浴は、いずれも490℃に加熱して用いた。各試験番号の母材鋼板に対して、ガスワイピング装置から噴射するガスの量を調整して、溶融亜鉛めっき層の厚さを調整した。また、図9に示す筐体200内部の酸素濃度を、図示しない酸素濃度センサによって測定した。各試験番号における、筐体200内部の平均酸素濃度を「酸素濃度(ppm)」として表2に示す。なお、各試験番号における筐体200内部の平均酸素濃度は、筐体200の大きさと、筐体200の開口部の大きさとを制御することによって調整した。
【0127】
【表2】
【0128】
その後、各試験番号の母材鋼板を、平均冷却速度20℃/秒以下で室温まで冷却した。以上の工程により、各試験番号の溶融亜鉛めっき鋼板を製造した。なお、製造された各試験番号の溶融亜鉛めっき鋼板は、いずれも優れた耐食性を有していた。
【0129】
[溶融亜鉛めっき層の厚さ]
各試験番号の溶融亜鉛めっき鋼板について、溶融亜鉛めっき層の厚さT(μm)を上述の方法で測定した。求めた各試験番号の溶融亜鉛めっき層の厚さを「めっき層厚さT(μm)」として表2に示す。なお、試験番号1~24の溶融亜鉛めっき鋼板はいずれも、溶融亜鉛めっき層の厚さTが3.0~35.0μmの範囲内であった。
【0130】
[溶融亜鉛めっき層表面の微細な凹凸の評価]
各試験番号の溶融亜鉛めっき鋼板について、板幅中央部からミクロ組織観察用の試験片を作製した。各試験番号の試験片の観察面に対して、L方向とH方向とを含み、溶融亜鉛めっき層の表面を含む断面について、SEMを用いて二次電子像にて観察した。観察視野領域はいずれも、L方向長さが120μmであり、H方向長さが96μmであった。得られた観察視野領域に対して画像解析を実施して、溶融亜鉛めっき層の表面の長さSL(μm)、溶融亜鉛めっき層の表面の両端P1点とP2点との最短距離SD(μm)、及び、SLとSDとから求めたFn1(=SL/SD)を求めた。求めた各試験番号のFn1を表2に示す。
【0131】
[溶融亜鉛めっき層表面の凹部の観察]
各試験番号の溶融亜鉛めっき鋼板について、溶融亜鉛めっき層の表面の凹部を観察した。具体的に、L方向に1mであって、L方向とH方向とを含み、溶融亜鉛めっき層の表面を含む断面を有する試験片を作製した。光学顕微鏡を用いて試験片をL方向に動かしながら観察し、凹部の有無を確認した。その結果、試験番号1~18については、凹部が確認された。そこで試験番号1~18の試験片のうち凹部を含む領域を、上述の微細な凹凸の評価と同様に、SEMを用いて二次電子像にて観察した。試験番号1~18に含まれる凹部は、いずれも式(2)~式(4)を満たした。1mの試験片で確認された凹部個数から、L方向に10cmあたりの凹部の個数密度を求めた。求めた凹部の個数密度を「凹部個数(個/10cm)」として表2に示す。
【0132】
[外観品質]
各試験番号の溶融亜鉛めっき鋼板に対して、肉眼で観察し、外観品質を評価した。具体的に、肉眼での観察の結果、優れた外観品質を有すると判断された場合、「E」(Excellent)と評価した。一方、肉眼での観察の結果、優れた外観品質を有しないと判断された場合、「NA」(Not Acceptable)と評価した。なお、優れた外観品質とは、溶融亜鉛めっき鋼板の外観について、艶の有無、変色の有無、欠陥の有無を目視で確認し、総合的に評価して決定した。評価結果を表2の「外観品質」欄に示す。
【0133】
[試験結果]
試験番号1及び7の溶融亜鉛めっき鋼板は、溶融亜鉛めっき浴におけるMg含有量が0.5%未満であった。さらに、筐体内部の酸素濃度が1000ppm未満であった。その結果、溶融亜鉛めっき層の表面において、Fn1が1.10以下、すなわち、α以下であった。さらに、凹部個数がL方向に10cmあたり1.0個以上であった。その結果、試験番号1及び7の溶融亜鉛めっき鋼板は、優れた外観品質を有していた。
【0134】
試験番号2~6及び8~12の溶融亜鉛めっき鋼板は、溶融亜鉛めっき浴におけるMg含有量が0.5%以上であった。さらに、筐体内部の酸素濃度が1000ppm未満であった。その結果、溶融亜鉛めっき層の表面において、Fn1が1.50以下、すなわち、α以下であった。さらに、凹部個数がL方向に10cmあたり1.0個以上であった。その結果、試験番号2~6及び8~12の溶融亜鉛めっき鋼板は、優れた外観品質を有していた。
【0135】
一方、試験番号13及び19の溶融亜鉛めっき鋼板は、溶融亜鉛めっき浴におけるMg含有量が0.5%未満であった。さらに、筐体内部の酸素濃度が1000ppm以上であった。その結果、溶融亜鉛めっき層の表面において、Fn1が1.10を超えた、すなわち、αを超えた。さらに、凹部個数がL方向に10cmあたり1.0個未満であった。その結果、試験番号13及び19の溶融亜鉛めっき鋼板は、優れた外観品質を有していなかった。
【0136】
試験番号14~18及び20~24の溶融亜鉛めっき鋼板は、溶融亜鉛めっき浴におけるMg含有量が0.5%以上であった。さらに、筐体内部の酸素濃度が1000ppm以上であった。その結果、溶融亜鉛めっき層の表面において、Fn1が1.50を超えた、すなわち、αを超えた。さらに、凹部個数がL方向に10cmあたり1.0個未満であった。その結果、試験番号14~18及び20~24の溶融亜鉛めっき鋼板は、優れた外観品質を有していなかった。
【0137】
以上、本開示の実施の形態を説明した。しかしながら、上述した実施の形態は本開示を実施するための例示に過ぎない。したがって、本開示は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変更して実施することができる。
【符号の説明】
【0138】
1 溶融亜鉛めっき鋼板
10 母材鋼板
20 溶融亜鉛めっき層
S 溶融亜鉛めっき層の表面
50 観察視野領域
P1 観察視野領域における溶融亜鉛めっき層の表面の一方の端部
P2 観察視野領域における溶融亜鉛めっき層の表面の他方の端部
30 化成被膜
100 溶融亜鉛めっき設備
120 溶融亜鉛めっき浴
140 ガスワイピング装置
200 筐体
210 通風孔
図1
図2
図3
図4
図5
図6
図7
図8
図9