IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浜松ホトニクス株式会社の特許一覧

<>
  • 特開-放射線検出装置 図1
  • 特開-放射線検出装置 図2
  • 特開-放射線検出装置 図3
  • 特開-放射線検出装置 図4
  • 特開-放射線検出装置 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公開特許公報(A)
(11)【公開番号】P2024015295
(43)【公開日】2024-02-01
(54)【発明の名称】放射線検出装置
(51)【国際特許分類】
   G01T 1/20 20060101AFI20240125BHJP
【FI】
G01T1/20 L
G01T1/20 E
G01T1/20 C
G01T1/20 G
【審査請求】有
【請求項の数】12
【出願形態】OL
(21)【出願番号】P 2023207594
(22)【出願日】2023-12-08
(62)【分割の表示】P 2020016128の分割
【原出願日】2020-02-03
(71)【出願人】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(72)【発明者】
【氏名】中尾 圭介
(72)【発明者】
【氏名】宮口 和久
(57)【要約】
【課題】回路領域への放射線の入射に起因する受光センサの劣化を抑制することができる放射線検出装置を提供する。
【解決手段】放射線検出装置1は、回路基板2と、受光領域32及び複数の回路領域33,34を有する受光センサ3と、FOP6と、シンチレータ層8と、複数のワイヤ4A,4Bと、を備える。FOP6は、受光領域32と向かい合い、受光センサ3に固定された第1部分61と、受光センサ3から離間した状態で回路領域33と向かい合う第2部分62と、受光センサ3から離間した状態で回路領域34と向かい合う第2部分63と、を有する。ワイヤ4Aの一端部4aは、受光センサ3と第2部分62との間の領域において回路領域33に接続され、ワイヤ4Bの一端部4cは、受光センサ3と第2部分63との間の領域において回路領域34に接続される。
【選択図】図2

【特許請求の範囲】
【請求項1】
端子を有する回路基板と、
前記回路基板上に設けられ、受光領域及び回路領域を有する受光センサと、
前記受光センサ上に設けられたファイバオプティックプレートと、
前記ファイバオプティックプレート上に設けられたシンチレータ層と、
前記回路領域と前記端子とに掛け渡された複数のワイヤと、を備え、
前記ファイバオプティックプレートは、
前記受光領域と向かい合い、前記受光センサに固定された第1部分と、
前記受光センサから離間した状態で前記回路領域と向かい合っている第2部分と、を有し、
前記第1部分は、前記受光領域に導光する光の入射面及び出射面を有し、前記入射面は、前記受光センサとは反対側を向いており、前記出射面は、前記受光センサ側を向いており、
前記第1部分及び前記第2部分を構成する複数の光ファイバは、互いに平行となるように延在しており、
前記複数のワイヤのそれぞれの一端部は、前記受光センサと前記第2部分との間の領域において前記回路領域に接続されており、
前記複数のワイヤのそれぞれの他端部は、前記回路基板に接続されており、
前記回路基板の厚さ方向から見た場合に、前記第2部分の外縁のうち前記第1部分とは反対側の部分は、前記複数のワイヤのそれぞれの前記他端部よりも外側に位置しており、
前記回路基板の厚さ方向における前記受光センサの端部と前記第2部分との間の距離は、前記受光センサの厚さよりも大きい、放射線検出装置。
【請求項2】
前記回路基板の厚さ方向から見た場合に、前記第2部分の前記外縁のうち前記第1部分とは反対側の前記部分は、前記受光センサの外縁のうち前記回路領域に対して前記第1部分とは反対側の部分よりも外側に位置している、請求項1に記載の放射線検出装置。
【請求項3】
前記第2部分は、少なくとも一部が前記複数のワイヤと対向している光の出射面を有する、請求項1又は2に記載の放射線検出装置。
【請求項4】
前記複数のワイヤを覆う保護部材を更に備える、請求項1~3のいずれか一項に記載の放射線検出装置。
【請求項5】
前記受光センサと前記第2部分との間の前記領域は、前記受光センサにおける前記第2部分側の表面、前記第2部分における前記受光センサ側の表面、及び前記第1部分の側面によって、画定されている、請求項1~4のいずれか一項に記載の放射線検出装置。
【請求項6】
前記ファイバオプティックプレートを構成する複数の光ファイバのそれぞれの光軸は、前記回路基板の厚さ方向に延在している、請求項1~5のいずれか一項に記載の放射線検出装置。
【請求項7】
前記受光センサと前記第1部分との間に配置された接着部材を更に備え、
前記接着部材は、前記受光センサと前記第2部分との間の前記領域にはみ出している、請求項1~6のいずれか一項に記載の放射線検出装置。
【請求項8】
前記第1部分の厚さは、前記シンチレータ層の厚さよりも大きい、請求項1~7のいずれか一項に記載の放射線検出装置。
【請求項9】
前記複数のワイヤのそれぞれの長さは、前記複数のワイヤのぞれぞれの前記一端部と前記第1部分の側面との間の距離よりも大きい、請求項1~8のいずれか一項に記載の放射線検出装置。
【請求項10】
前記第1部分及び前記第2部分は、一体的に形成されている、請求項1~9のいずれか一項に記載の放射線検出装置。
【請求項11】
前記第1部分における前記受光センサとは反対側の表面、及び前記第2部分における前記受光センサとは反対側の表面は、同一平面上に位置しており、
前記シンチレータ層は、前記第1部分における前記受光センサとは反対側の前記表面、及び前記第2部分における前記受光センサとは反対側の前記表面に渡って、一体的に形成されている、請求項1~10のいずれか一項に記載の放射線検出装置。
【請求項12】
前記シンチレータ層上に設けられた金属層を更に備え、
前記金属層は、前記第1部分における前記受光センサとは反対側の前記表面、及び前記第2部分における前記受光センサとは反対側の前記表面に渡って、一体的に形成されている、請求項11に記載の放射線検出装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、放射線検出装置に関する。
【背景技術】
【0002】
回路基板と、回路基板上に設けられた受光センサと、受光センサの受光領域上に設けられたファイバオプティックプレートと、ファイバオプティックプレート上に設けられたシンチレータ層と、受光センサから離間した状態で受光センサの回路領域と向かい合うように配置された遮蔽部材と、を備える放射線検出装置が知られている(例えば、特許文献1参照)。このような放射線検出装置では、遮蔽部材によって回路領域への放射線の入射が抑制されるため、回路領域の劣化に起因する受光センサの劣化を抑制することができる。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2001-42042号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
上述したような放射線検出装置では、シンチレータ層に入射する放射線を遮蔽部材が遮ることを防止するために、ファイバオプティックプレートの側面に接触するように遮蔽部材を配置する場合がある。しかし、そのような場合には、ファイバオプティックプレートに対して遮光部材が高精度に位置決めされていないと、ファイバオプティックプレートと遮蔽部材との間に隙間が形成され、当該隙間を介して回路領域に放射線が入射するおそれがある。特に、工業用の非破壊検査に用いられる放射線検出装置では、照射される放射線の強度が高いため、ファイバオプティックプレートの側面に接触するように遮光部材が高精度に位置決めされたとしても、ファイバオプティックプレートと遮蔽部材との間を介して回路領域に放射線が入射するおそれがある。
【0005】
本発明は、回路領域への放射線の入射に起因する受光センサの劣化を抑制することができる放射線検出装置を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明の放射線検出装置は、回路基板と、回路基板上に設けられ、受光領域及び回路領域を有する受光センサと、受光センサ上に設けられたファイバオプティックプレートと、ファイバオプティックプレート上に設けられたシンチレータ層と、回路領域と回路基板とに掛け渡されたワイヤと、を備え、ファイバオプティックプレートは、受光領域と向かい合い、受光センサに固定された第1部分と、受光センサから離間した状態で回路領域と向かい合い、第1部分と一体的に形成された第2部分と、を有し、ワイヤの一端部は、受光センサと第2部分との間の領域において回路領域に接続されている。
【0007】
この放射線検出装置では、ファイバオプティックプレートの第2部分が、受光センサから離間した状態で受光センサの回路領域と向かい合っており、受光センサと第2部分との間の領域において、ワイヤの一端部が回路領域に接続されている。これにより、ワイヤの一端部が回路領域に接続される領域を十分に確保しつつ、回路領域への放射線の入射を抑制することができる。特に、第2部分が第1部分と一体的に形成されているため、第1部分と第2部分との間を介して放射線が回路領域に入射するといった事態が防止される。よって、この放射線検出装置によれば、回路領域への放射線の入射に起因する受光センサの劣化を抑制することができる。
【0008】
本発明の放射線検出装置では、回路基板の厚さ方向から見た場合に、第2部分の外縁のうち第1部分とは反対側の部分は、受光センサの外縁のうち回路領域に対して第1部分とは反対側の部分よりも外側に位置していてもよい。これにより、受光センサに対するファイバオプティックプレートの位置が僅かにずれたとしても、回路基板の厚さ方向から見た場合に第2部分が回路領域を含む状態が維持され易くなるため、回路領域への放射線の入射を確実に抑制することができる。
【0009】
本発明の放射線検出装置では、回路基板の厚さ方向から見た場合に、第2部分の外縁のうち第1部分とは反対側の部分は、回路基板に接続されたワイヤの他端部よりも外側に位置していてもよい。これにより、回路基板の厚さ方向において第2部分がワイヤを覆うため、ワイヤの破損を防止することができる。
【0010】
本発明の放射線検出装置は、ワイヤを覆う保護部材を更に備えていてもよい。当該保護部材においては、第2部分によって放射線の入射が遮られるため、劣化が抑制される。したがって、ワイヤの破損をより確実に防止することができる。
【0011】
本発明の放射線検出装置では、受光センサと第2部分との間の領域は、受光センサにおける第2部分側の表面、第2部分における受光センサ側の表面、及び第1部分の側面によって、画定されていてもよい。これにより、ワイヤの一端部が回路領域に接続される領域を十分に確保することができ、且つ第2部分において回路領域への放射線の入射を確実に抑制することができる部分を容易に確保することができる。
【0012】
本発明の放射線検出装置では、ファイバオプティックプレートを構成する複数の光ファイバのそれぞれの光軸は、回路基板の厚さ方向に延在していてもよい。これにより、ファイバオプティックプレートの小型化を図ることができる。
【0013】
本発明の放射線検出装置は、受光センサと第1部分との間に配置された接着部材を更に備え、接着部材は、受光センサと第2部分との間の領域にはみ出していてもよい。これにより、ファイバオプティックプレートと受光センサとの接着強度を向上させることができる。
【0014】
本発明の放射線検出装置では、第1部分における受光センサとは反対側の表面、及び第2部分における受光センサとは反対側の表面は、同一平面上に位置しており、シンチレータ層は、第1部分における受光センサとは反対側の表面、及び第2部分における受光センサとは反対側の表面に渡って、一体的に形成されていてもよい。これにより、回路領域への放射線の入射をより確実に抑制することができる。
【0015】
本発明の放射線検出装置は、シンチレータ層上に設けられた金属層を更に備え、金属層は、第1部分における受光センサとは反対側の表面、及び第2部分における受光センサとは反対側の表面に渡って、一体的に形成されていてもよい。これにより、回路領域への放射線の入射をより確実に抑制することができる。
【発明の効果】
【0016】
本発明によれば、回路領域への放射線の入射に起因する受光センサの劣化を抑制することができる放射線検出装置を提供することが可能となる。
【図面の簡単な説明】
【0017】
図1】一実施形態の放射線検出装置の平面図である。
図2図1に示されるII-II線に沿っての断面図である。
図3】変形例の放射線検出装置の断面図である。
図4】変形例の放射線検出装置の断面図である。
図5】変形例の放射線検出装置の断面図である。
【発明を実施するための形態】
【0018】
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[放射線検出装置の構成]
【0019】
図1及び図2に示されるように、放射線検出装置1は、回路基板2と、受光センサ3と、複数のワイヤ4A,4Bと、複数の保護部材5A,5Bと、FOP(ファイバオプティックプレート)6と、接着部材7と、シンチレータ層8と、金属層9と、を備えている。放射線検出装置1は、放射線源から出射されて被検査物を透過した放射線を検出する装置であって、例えば工業用の非破壊検査に用いられる。放射線は、例えば、X線、ガンマ線等である。回路基板2は、回路基板2の厚さ方向において互いに対向する表面2a及び表面2bを有している。以下、表面2a及び表面2bに平行な一方向をX軸方向、表面2a及び表面2bに平行且つX軸方向に垂直な方向をY軸方向、表面2a及び表面2bが互いに対向する方向をZ軸方向として、各構成について説明する。
【0020】
回路基板2は、例えば矩形板状を呈している。回路基板2は、複数の端子21,22を有している。回路基板2において、各端子21,22は、外部に露出するように表面2a側に設けられている。回路基板2は、複数の端子21,22を介して、受光センサ3に対する電気信号の入出力を行う。複数の端子21,22は、回路基板2の外縁のうちX軸方向において対向する二辺に沿って配列されている。具体的には、複数の端子21は、当該二辺のうちX軸方向における一方の側の辺に沿って配列されており、複数の端子22は、当該二辺のうちX軸方向における他方の側の辺に沿って配列されている。なお、図1では、複数の端子21及び複数の端子22の図示が省略されている。
【0021】
受光センサ3は、回路基板2上に設けられている。受光センサ3は、Z軸方向から見た場合に、複数の端子21と複数の端子22との間に位置している。受光センサ3は、例えば矩形板状を呈している。受光センサ3は、半導体基板31を有している。半導体基板31には、受光領域32、及び複数の回路領域33,34が形成されている。受光センサ3は、例えばCMOS等の固体撮像素子である。受光領域32は、光電変換を行う複数の画素によって構成されている。当該複数の画素は、例えば二次元状に配列されている。各回路領域33,34は、シフトレジスタ等の信号読出し回路である。
【0022】
受光領域32及び各回路領域33,34は、例えば、半導体基板31における表面31a側の部分に形成されている。表面31aは、半導体基板31における回路基板2とは反対側の表面である。受光領域32は、Z軸方向(回路基板2の厚さ方向)から見た場合に、例えば矩形状を呈している。各回路領域33,34は、Z軸方向から見た場合に、受光領域32と隣り合っている。本実施形態では、各回路領域33,34は、X軸方向において受光領域32を挟んで向かい合っている。回路領域33は、受光領域32に対してX軸方向における一方の側に配置されており、回路領域34は、受光領域32に対してX軸方向における他方の側に配置されている。
【0023】
複数のワイヤ4Aは、回路領域33と回路基板2とに掛け渡されている。具体的には、各ワイヤ4Aは、一端部4aにおいて回路領域33と接続されており、他端部4bにおいて回路基板2の各端子21と接続されている。つまり、各ワイヤ4Aは、回路領域33と回路基板2の端子21とを電気的に接続している。各ワイヤ4Aは、保護部材5Aによって覆われている。保護部材5Aは、例えば樹脂からなる。
【0024】
複数のワイヤ4Bは、回路領域34と回路基板2とに掛け渡されている。具体的には、各ワイヤ4Bは、一端部4cにおいて回路領域34と接続されており、他端部4dにおいて回路基板2の各端子22と接続されている。つまり、各ワイヤ4Bは、回路領域34と回路基板2の端子22とを電気的に接続している。各ワイヤ4Bは、保護部材5Bによって覆われている。保護部材5Bは、例えば樹脂からなる。
【0025】
FOP6は,受光センサ3上に設けられている。FOP6は、複数の光ファイバ6Aの束によって構成された光学デバイスである。FOP6は、例えば矩形板状に形成されている。各光ファイバ6Aは、受光センサ3に光を導光可能となるように延在している。本実施形態では、各光ファイバ6Aの光軸Aは、Z軸方向に延在している。
【0026】
FOP6は、第1部分61と、複数の第2部分62,63と、を有している。第1部分61は、Z軸方向において互いに対向する表面61a及び表面61bを含んでいる。表面61aは、第1部分61における受光センサ3とは反対側の表面であって、光の入射面である。表面61bは、第1部分61における受光センサ3側の表面であって、光の出射面である。第1部分61は、受光領域32と向かい合っている。具体的には、第1部分61は、受光領域32を覆うように受光センサ3に固定されている。第1部分61は、例えば直方体状の部分である。
【0027】
第2部分62と第2部分63とは、X軸方向において第1部分61を挟んで向かい合っている。第2部分62は、第1部分61に対してX軸方向における一方の側に配置されており、第2部分63は、第1部分61に対してX軸方向における他方の側に配置されている。各第2部分62,63は、例えば直方体状の部分である。各第2部分62,63は、第1部分61と一体的に形成されている。
【0028】
第2部分62は、Z軸方向において互いに対向する表面62a及び表面62bを含んでいる。表面62aは、第2部分62における受光センサ3とは反対側の表面である。表面62bは、第2部分62における受光センサ3側の表面である。第2部分63は、Z軸方向において互いに対向する表面63a及び表面63bを含んでいる。表面63aは、第2部分63における受光センサ3とは反対側の表面である。表面63bは、第2部分63における受光センサ3側の表面である。第1部分61の表面61aと、第2部分62の表面62aと、第2部分63の表面63aとは、同一平面上に位置している。
【0029】
第1部分61の表面61bは、半導体基板31の表面31aに固定されている。第2部分62は、受光センサ3から離間した状態で回路領域33と向かい合っている。第2部分63は、受光センサ3から離間した状態で回路領域34と向かい合っている。第2部分62の表面62bは、回路領域33と離間している。表面62bと回路領域33とが離間していることで、受光センサ3と第2部分62との間には、領域R1が画定されている。具体的には、領域R1は、受光センサ3における第2部分62側の表面31a、第2部分62における受光センサ3側の表面62b、及び第1部分61の側面61cによって、画定されている。第1部分61の側面61cは、第1部分61における第2部分62側の面である。各ワイヤ4Aの一端部4aは、領域R1において回路領域33に接続されている。
【0030】
第2部分63の表面63bは、回路領域34と離間している。表面63bと回路領域34とが離間していることで、受光センサ3と第2部分63との間には、領域R2が画定されている。具体的には、領域R2は、受光センサ3における第2部分63側の表面31a、第2部分63における受光センサ3側の表面63b、及び第1部分61の側面61dによって、画定されている。第1部分61の側面61dは、第1部分61における第2部分63側の面である。各ワイヤ4Bの一端部4cは、領域R2において回路領域34に接続されている。
【0031】
Z軸方向から見た場合に、第2部分62の外縁のうち第1部分61とは反対側の部分62cは、受光センサ3の部分3aよりも外側に位置している。部分3aは、受光センサ3の外縁のうち回路領域33に対して端子21側(第1部分61とは反対側)の部分である。本実施形態では、部分62cは、Z軸方向から見た場合に、回路基板2に接続されたワイヤ4Aの他端部4bよりも外側に位置している。言い換えれば、第2部分62は、Z軸方向から見た場合に、回路領域33、複数のワイヤ4A、及び保護部材5Aを含んでいる。
【0032】
Z軸方向から見た場合に、第2部分63の外縁のうち第1部分61とは反対側の部分63cは、受光センサ3の部分3bよりも外側に位置している。部分3bは、受光センサ3の外縁のうち回路領域34に対して端子22側(第1部分61とは反対側)の部分である。本実施形態では、部分63cは、Z軸方向から見た場合に、回路基板2に接続されたワイヤ4Bの他端部4dよりも外側に位置している。言い換えれば、第2部分63は、Z軸方向から見た場合に、回路領域34、複数のワイヤ4B、及び保護部材5Bを含んでいる。
【0033】
接着部材7は、受光センサ3と第1部分61との間に配置されている。接着部材7は、受光センサ3とFOP6とを接着している。接着部材7は、受光センサ3と第2部分62との間の領域R1、及び受光センサ3と第2部分63との間の領域R2にはみ出している。具体的には、接着部材7は、第1部分61の各側面61c,61dに接触している。接着部材7は、例えば光透過性を有する樹脂からなる。なお、図1では、接着部材7の図示が省略されている。
【0034】
シンチレータ層8は、FOP6上に設けられている。シンチレータ層8は、光が入射されることにより発光する。シンチレータ層8は、例えばCsI、GOS等によって構成されている。シンチレータ層8は、第1部分61の表面61a、第2部分62の表面62a、及び第2部分63の表面63aに渡って、一体的に形成されている。
【0035】
金属層9は、シンチレータ層8上に設けられている。金属層9は、シンチレータ層8で発生した光を反射することで、FOP6とは反対側に当該光が進行するのを防止する。金属層は、第1部分61の表面61a及び第2部分62の表面62a、及び第2部分63の表面63aに渡って、一体的に形成されている。
[作用及び効果]
【0036】
放射線検出装置1では、FOP6の第2部分62が、受光センサ3から離間した状態で受光センサ3の回路領域33と向かい合っており、受光センサ3と第2部分62との間の領域において、ワイヤ4Aの一端部4aが、回路領域33に接続されている。また、FOP6の第2部分63が、受光センサ3から離間した状態で受光センサ3の回路領域34と向かい合っており、受光センサ3と第2部分63との間の領域において、ワイヤ4Bの一端部4cは、回路領域34に接続されている。これにより、ワイヤ4Aの一端部4aが回路領域33に接続される領域R1、及びワイヤ4Bの一端部4cが回路領域34に接続される領域R2を十分に確保しつつ、回路領域33,34への放射線の入射を抑制することができる。特に、各第2部分62,63が、第1部分61と一体的に形成されているため、第1部分61と第2部分62との間を介して放射線が回路領域33に入射するといった事態、及び第1部分61及び第2部分63との間を介して放射線が回路領域34に入射するといった事態が防止される。よって、放射線検出装置1によれば、回路領域33,34への放射線の入射に起因する受光センサ3の劣化を抑制することができる。
【0037】
また、放射線検出装置1では、各第2部分62,63が第1部分61と一体的に形成されているため、部品点数を削減して低コスト化を図ることができる。更に、放射線検出装置1では、各第2部分62,63が第1部分61と一体的に形成されているため、第1部分61に対する第2部分62,63の位置合わせが不要となり、製造の効率化を図ることができる。
【0038】
各第2部分62,63が第1部分61と一体的に形成されている効果について更に述べる。例えば、第1部分61と各第2部分62,63とが別体であって、樹脂からなる接着部材等により第1部分61と各第2部分62,63とが接着されている場合、以下の問題が生じ得る。すなわち、第1部分61と第2部分62との間の接着部分を介して、放射線が回路領域33に入射し、第1部分61と第2部分63との間の接着部部分を介して、放射線が回路領域34に入射するおそれがある。これに対し、放射線検出装置1では、一体的に形成された第1部分61及び第2部分62,63によってFOP6が構成されるため、上述したような回路領域33,34への放射線の入射が生じるおそれがなく、受光センサ3の劣化を確実に抑制することができる。
【0039】
また、例えば、FOP6が、Z軸方向において隣り合う複数の部品から構成される場合には、以下の問題が生じ得る。すなわち、例えば、FOP6が、第1部材及び第1部材上で支持された第2部材から構成されているとする。第1部材は、FOP6において受光領域32と向かい合う部分のうち受光センサ3側の部分(図2に示される第1部分61のうちX軸方向において領域R1及び領域R2に挟まれた部分)である。第2部材は、FOP6のうち回路領域33と離間した状態で回路領域33と向かい合う部分(第2部分62に相当する部分)と、FOP6のうち回路領域34と離間した状態で回路領域34と向かい合う部分(第2部分63に相当する部分)と、受光領域32と向かい合う部分のうちシンチレータ層8側の部分(図2に示される第1部分61のうちX軸方向において第2部分62及び第2部分63に挟まれた部分)とからなる。その場合において、樹脂からなる接着部材等により第1部材と第2部材とが接着されていると、シンチレータ層8で発光した光が第1部分と第2部分との接着部分で拡散し、受光領域32への光の適切な入射が妨げられ、放射線検出装置1によって取得される画像の解像度が低下するおそれがある。これに対し、放射線検出装置1では、一体的に形成された第1部分61及び第2部分62,63によってFOP6が構成されるため、上述したような画像の解像度の低下が生じるおそれがなく、受光センサ3の劣化を確実に抑制することができる。
【0040】
ここで、放射線検出装置1によって奏される効果について、遮蔽部材を備えている放射線検出装置の例と比較して説明する。一例として、遮蔽部材は、受光センサから離間した状態で受光センサの回路領域と向かい合うように配置されている。例えば、X軸方向においてFOPと離れる側に回路領域側の遮蔽部材の位置が僅かにずれ、遮蔽部材とFOPとに隙間が形成された状態で遮蔽部材の組付けが行われた場合、当該隙間を介して回路領域に放射線が入射するおそれがある。また、例えば、遮蔽部材が金属層よりも上部に位置する場合は、以下の問題が生じ得る。すなわち、例えば、X軸方向においてFOPと近づく側に回路領域側の遮蔽部材の位置が僅かにずれ、回路領域及び受光領域の一部と遮蔽部材の一部とが向かい合った状態で遮蔽部材の組付けが行われた場合、遮蔽部材がシンチレータ層に入射する放射線を遮ることにより受光領域の有効受光面積が小さくなってしまう。放射線検出装置1によれば、FOP6が有する各第2部分62,63が遮蔽機能を有するため、そのようなリスクを回避しつつ、受光センサ3の劣化を抑制することができる。
【0041】
また、放射線検出装置1では、回路基板2の厚さ方向から見た場合に、第2部分62の外縁のうち第1部分61とは反対側の部分62cが、受光センサ3の外縁のうち回路領域33に対して第1部分61とは反対側の部分3aよりも外側に位置しており、第2部分63の外縁のうち第1部分61とは反対側の部分63cが、受光センサ3の外縁のうち回路領域34に対して第1部分61とは反対側の部分3bよりも外側に位置している。これにより、受光センサ3に対するFOP6の位置が僅かにずれたとしても、回路基板2の厚さ方向から見た場合に、第2部分62が回路領域33を含む状態、及び第2部分63が回路領域34を含む状態が維持され易くなるため、回路領域33,34への放射線の入射を確実に抑制することができる。
【0042】
また、放射線検出装置1では、回路基板2の厚さ方向から見た場合に、第2部分62の外縁のうち第1部分61とは反対側の部分62cが、回路基板2に接続されたワイヤ4Aの他端部4bよりも外側に位置しており、第2部分63の外縁のうち第1部分61とは反対側の部分63cが、回路基板2に接続されたワイヤ4Bの他端部4dよりも外側に位置している。これにより、回路基板2の厚さ方向において、第2部分62がワイヤ4Aを覆い、第2部分63がワイヤ4Bを覆うため、ワイヤ4A,4Bの破損を防止することができる。
【0043】
また、放射線検出装置1は、ワイヤ4Aを覆う保護部材5A、及びワイヤ4Bを覆う保護部材5Bを更に備えている。保護部材5Aにおいては、第2部分62によって放射線の入射が遮られ、保護部材5Bにおいては、第2部分63によって放射線の入射が遮られるため、劣化が抑制される。したがって、ワイヤ4A,4Bの破損をより確実に防止することができる。
【0044】
また、放射線検出装置1では、受光センサ3と第2部分62との間の領域R1が、受光センサ3における第2部分62側の表面31a、第2部分62における受光センサ3側の表面62b、及び第1部分61の側面61cによって、画定されている。また、受光センサ3と第2部分63との間の領域R2が、表面31a、第2部分63における受光センサ3側の表面63b、及び第1部分61の側面61dによって、画定されている。これにより、ワイヤ4Aの一端部4aが回路領域33に接続される領域R1、及びワイヤ4Bの一端部4cが回路領域34に接続される領域R2を十分に確保することができ、且つ第2部分62において回路領域33への放射線の入射を確実に抑制することができる部分、及び第2部分63において回路領域34への放射線の入射を確実に抑制することができる部分を容易に確保することができる。
【0045】
また、放射線検出装置1では、FOP6を構成する各光ファイバ6Aの光軸Aが、回路基板2の厚さ方向に延在している。これにより、FOP6の小型化を図ることができる。特に、例えば、FOP6が第1部分61において側面61cを有するように形成されている場合(図2図3及び図4参照)、各光ファイバ6Aの光軸Aが回路基板2の厚さ方向に対して第2部分62側に傾斜していると、受光センサ3とは反対側の端部において側面61cを構成する光ファイバ6Aには光が入射されない。つまり、第1部分61のうち、一端部において第1部分61の側面61cを構成する光ファイバ6Aに相当する部分(図2図3及び図4に示される第1部分61の右下部分)は、光の伝搬機能を有さず、そのような光の伝搬機能を有しない無駄な部分を有すると、FOP6が大型化してしまう。放射線検出装置1では、そのような無駄な部分がなく、各光ファイバ6Aが受光領域32に光を伝搬するため、FOP6の小型化を図ることができる。
【0046】
また、放射線検出装置1では、受光センサ3と第1部分61との間に配置された接着部材7が、受光センサ3と第2部分62との間の領域R1及び受光センサ3と第2部分63との間の領域R2にはみ出している。これにより、FOP6と受光センサ3との接着強度を向上させることができる。特に、接着部材7は、第1部分61の各側面61c,61dに接触しているため、FOP6と受光センサ3との接着強度を更に向上させることができる。
【0047】
また、放射線検出装置1では、第1部分61の表面61a、第2部分62の表面62a、及び第2部分63の表面63aが、同一平面上に位置しており、シンチレータ層8は、表面61a、表面62a、及び表面63aに渡って、一体的に形成されている。これにより、回路領域33への放射線の入射をより確実に抑制することができる。具体的には、第2部分62及びシンチレータ層8が回路領域33と向かい合っているため、第2部分62及びシンチレータ層8によって回路領域33への放射線の入射を確実に抑制することができる。また、第2部分63及びシンチレータ層8が回路領域34と向かい合っているため、第2部分63及びシンチレータ層8によって回路領域34への放射線の入射を確実に抑制することができる。更に、シンチレータ層8が表面61a、表面62a、及び表面63aに渡って一体的に形成されているため、元々発光層として放射線検出装置1に用いられているシンチレータ層8を、放射線の入射を抑制する層としても用いることができる。
【0048】
また、放射線検出装置1は、シンチレータ層8上に設けられた金属層9が、第1部分61の表面61a、第2部分62の表面62a、及び第2部分63の表面63aに渡って、一体的に形成されている。これにより、各回路領域33,34への放射線の入射をより確実に抑制することができる。具体的には、第2部分62、シンチレータ層8、及び金属層9が回路領域33と向かい合っているため、第2部分62、シンチレータ層8、及び金属層9によって回路領域33への放射線の入射をより確実に抑制することができる。また、第2部分63、シンチレータ層8、及び金属層9が回路領域34と向かい合っているため、第2部分63、シンチレータ層8、及び金属層9によって回路領域34への放射線の入射をより確実に抑制することができる。更に、金属層9が表面61a、表面62a、及び表面63aに渡って一体的に形成されているため、元々光の反射層として放射線検出装置1に用いられている金属層9を、放射線の入射を抑制する層としても用いることができる。
[変形例]
【0049】
本発明は、上述した実施形態に限定されない。例えば、第2部分62は、受光センサ3と離間した状態で回路領域33と向かいあっていればよく、第2部分63は、受光センサ3と離間した状態で回路領域34と向かいあっていればよい。一例として、図3に示される放射線検出装置1では、第2部分62の表面62bが、Y軸方向から見た場合に、受光センサ3側に近づくほど、第1部分61に近づくように傾斜して形成されている。また、FOP6は、第1部分61及び複数の第2部分62,63以外の部分を有していてもよい。一例として、図4に示される放射線検出装置1では、FOP6が、第1部分61、複数の第2部分62,63に加え、第3部分64を有している。第3部分64は、第2部分62の外側で、回路基板2と向かい合い、回路基板2に固定されている。第3部分64は、第1部分61及び複数の第2部分62,63と一体的に形成されている。
【0050】
また、上記実施形態では、領域R1が、受光センサ3における第2部分62側の表面31a、第2部分62における受光センサ3側の表面62b、及び第1部分61の側面61cによって画定され、領域R2が、表面31a、第2部分63における受光センサ3側の表面63b、及び第1部分61の側面61dによって画定されていた。しかしながら、領域R1及びR2は、第1部分の各側面61c,61dによって画定されていなくてもよい。一例として、図5に示される放射線検出装置1では、第2部分62が、第1部分61における第2部分62側の側部全体を覆うように形成されている。Y軸方向から見た場合に、第2部分62の表面62bは、受光センサ3側に近づくほど、第1部分61に近づくように傾斜し、表面62bの受光センサ3側の端部は、第1部分61の表面61bに接続されている。つまり、領域R1は、受光センサ3における第2部分62側の表面31a、及び第2部分62における受光センサ3側の表面62bのみによって画定されている。なお、図3~5に示される上記例は、第2部分63側に適用されてもよい。
【0051】
また、第1部分61における受光センサ3への固定の態様は、上記実施形態に限定されない。例えば、第1部分61は、受光センサ3とFOP6との間に設けられた光透過部材を介して受光センサ3に固定されていてもよい。また、例えば、第1部分61は、固定部材を介して受光センサ3に固定されていてもよい。一例として、固定部材は、Z軸方向から見た場合にFOP6を囲む矩形枠状を呈しており、回路基板2上に固定されている。固定部材は、固定部材の内側の側面が第1部分61の側面、第2部分62の側面、及び第2部分63の側面に接触した状態でFOP6を固定している。これにより、第1部分61は、固定部材を介して受光センサ3に固定されている。
【0052】
また、第2部分62及び第2部分63は、互いに異なる形状であってもよい。また、回路領域及び第2部分の位置及び数は、上記実施形態と異なっていてもよい。一例として、複数の回路領域33,34が、受光領域32における隣接する2面に沿って設けられており、複数の第2部分62,63が、受光領域32と向かい合うように、第1部分61における隣接する2面に沿って形成されていてもよい。また、一例として、放射線検出装置1は、回路領域33及び第2部分62の組合せ及び回路領域34及び第2部分63の組合せの一方のみを有していてもよい。また、一例として、放射線検出装置1では、一又は複数の回路領域が、受光領域を包囲するように設けられていており、一又は複数の第2部分が、当該回路領域と向かい合うように且つ第1部分を包囲するように設けられていてもよい。
【0053】
また、第2部分62においては、第2部分62の外縁のうち第1部分61とは反対側の部分62cが、回路基板2の厚さ方向から見た場合に、回路基板2に接続されたワイヤ4Aの他端部4bよりも内側に位置していてもよく、また受光センサ3の外縁のうち回路領域33に対して第1部分61とは反対側の部分3aよりも内側に位置していてもよい。第2部分63においては、第2部分63の外縁のうち第1部分61とは反対側の部分63cが、回路基板2の厚さ方向から見た場合に、回路基板2に接続されたワイヤ4Bの他端部4dよりも内側に位置していてもよく、また受光センサ3の外縁のうち回路領域34に対して第1部分61とは反対側の部分3bよりも内側に位置していてもよい。
【0054】
また、各光ファイバ6Aは、回路基板2の厚さ方向に対して傾斜していてもよい。また、接着部材7は、領域R1及び領域R2にはみ出してなくてもよい。また、放射線検出装置1は、保護部材5A,5Bを備えていなくてもよく、接着部材7を備えていなくてもよい。
【0055】
また、第1部分61の表面61a、第2部分62の表面62a、及び第2部分63の表面63aは、同一平面上に位置していなくてもよい。また、シンチレータ層8は、表面61a、表面62a、及び表面63aに渡って、一体的に形成されていなくてもよい。また、放射線検出装置1では、第2部分62の表面62a上にシンチレータ層8が設けられていなくてもよい。
【0056】
また、金属層9は、表面61a、表面62a、及び表面63aに渡って、一体的に形成されていなくてもよい。また、放射線検出装置1では、第2部分62の表面62a上に金属層9が設けられていなくてもよく、放射線検出装置1は、金属層9を備えていなくてもよい。
【0057】
また、受光センサ3は、フォトダイオードアレイから構成されるフォトダイオードアレイチップであってもよい。また、放射線検出装置1では、受光領域32が、一次元状に配列された画素によって構成されていてもよい。
【符号の説明】
【0058】
1…放射線検出装置、2…回路基板、3…受光センサ、3a,3b,62c,63c…部分、31a,62a,62b,63a,63b…表面、4A,4B…ワイヤ、5A,5B…保護部材、6…FOP(ファイバオプティックプレート)、6A…光ファイバ、7…接着部材、8…シンチレータ層、9…金属層、32…受光領域、33,34…回路領域、4a,4c…一端部、4b,4d…他端部、61…第1部分、61c,61d…側面、62,63…第2部分、A…光軸、R1,R2…領域。
図1
図2
図3
図4
図5