(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-01-14
(45)【発行日】2022-01-25
(54)【発明の名称】点検システム、移動ロボット装置及び点検方法
(51)【国際特許分類】
G01N 29/12 20060101AFI20220118BHJP
G01N 29/04 20060101ALI20220118BHJP
【FI】
G01N29/12
G01N29/04
(21)【出願番号】P 2017116677
(22)【出願日】2017-06-14
【審査請求日】2020-05-15
(31)【優先権主張番号】P 2016119753
(32)【優先日】2016-06-16
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成28年度、経済産業省「橋梁・トンネル点検用打音検査飛行ロボットシステムの研究開発」に関する委託事業、産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000004237
【氏名又は名称】日本電気株式会社
(73)【特許権者】
【識別番号】515100042
【氏名又は名称】株式会社ACSL
(73)【特許権者】
【識別番号】591216473
【氏名又は名称】一般財団法人首都高速道路技術センター
(74)【代理人】
【識別番号】100077838
【氏名又は名称】池田 憲保
(74)【代理人】
【識別番号】100129023
【氏名又は名称】佐々木 敬
(72)【発明者】
【氏名】西澤 俊広
(72)【発明者】
【氏名】山下 敏明
(72)【発明者】
【氏名】橋本 並樹
(72)【発明者】
【氏名】安達 英夫
(72)【発明者】
【氏名】室伏 洋
(72)【発明者】
【氏名】清水 大晃
(72)【発明者】
【氏名】小屋敷 晃
(72)【発明者】
【氏名】野波 健蔵
(72)【発明者】
【氏名】岩倉 大輔
(72)【発明者】
【氏名】ヴォイタラ ティトゥス
(72)【発明者】
【氏名】稲垣 航治
(72)【発明者】
【氏名】式田 直孝
(72)【発明者】
【氏名】青木 聡
【審査官】横尾 雅一
(56)【参考文献】
【文献】特開2015-194069(JP,A)
【文献】特開2005-265710(JP,A)
【文献】特開2003-127994(JP,A)
【文献】特開2013-090230(JP,A)
【文献】国際公開第2015/113962(WO,A1)
【文献】中国特許出願公開第104850134(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 29/00 - G01N 29/52
G01N 21/00 - G01N 21/61
B64C 39/02
E01D 22/00
(57)【特許請求の範囲】
【請求項1】
移動ロボット装置、ユーザインタフェース装置、及び、前記移動ロボット装置の現在位置を取得するための位置取得手段を備え、
前記移動ロボット装置は、
変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、
前記移動ロボット装置を飛行させる飛行手段、
前記ユーザインタフェース装置を介して指定された
複数の点検箇所
の位置座標と、前記位置取得手段にて取得した現在位置
の位置座標とに基づいて、前記移動ロボット装置の現在位置と前記
複数の点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、
前記現在位置及び
前記複数の点検箇所の位置座標に基づいて
、前記複数の点検箇所へ誘導する飛行経路を生成し、前記飛行手段を制御することにより、
前記飛行経路に沿いつつ、前記点検手段を用いて前記
複数の点検箇所の
各点検を実行可能な
各位置に、前記移動ロボット装置を自律的に
順次移動させる自律制御手段を備え、
前記ユーザインタフェース装置は、
ユーザによる前記
複数の点検箇
所の入力を受け付
け各点検個所の位置座標に変換するまたは各点検個所の位置座標を受け付ける点検箇所入力手段、及び、
前記複数の点検箇
所と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段
、
を備える点検システム。
【請求項2】
前記移動ロボット装置は、前記打診手段に加えて、可視カメラ、赤外カメラ、超音波センサ、振動センサ、力覚センサ、レーダセンサの少なくとも
もうひとつを
前記点検手段として備え
、
前記ユーザインタフェース装置を介して指定された各点検箇所の点検項目の緒元に基づき、一つの点検箇所に複数の点検項目を指定された場合、前記自律制御手段は、前記飛行経路に沿いつつ、前記点検手段を用いて前記複数の点検箇所の各点検を実行可能な各位置に、前記移動ロボット装置を自律的に移動させる、
請求項1に記載の点検システム。
【請求項3】
前記位置取得手段は、
前記移動ロボット装置を自動追尾するトータルステーション
を含み、
前記位置取得手段の少なくとも一部は、前記移動ロボット装置に搭載され
、前記トータルステーションから測定された前記移動ロボット装置の相対位置と角度と、前記トータルステーションを配置した既知点の絶対位置とを、測位データとして通信回線を介して前記移動ロボット装置が受信し、測位データに基づいて現在位置を計算する、
請求項1又は請求項2に記載の点検システム。
【請求項4】
前記打診手段は、
前記点検箇所に衝突するハンマと、
前記ハンマを駆動して、前記点検個所に衝突させるアクチュエータと、
前記ハンマが前記点検箇所に衝突したときの影響を測定するための打診センサと
を備える、請求項1乃至請求項3のいずれか
一項に記載の点検システム。
【請求項5】
前記打診センサは、
前記ハンマが前記点検箇所に衝突したときに発生する音を集音するためのマイクロフォン、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所に発生する振動を測定するための振動センサ、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所を介して伝達される力の大きさを測定するための力覚センサ
のうち、少なくともひとつを備える、請求項4に記載の点検システム。
【請求項6】
ユーザインタフェース装置、及び、当該移動ロボット装置の現在位置を取得するための位置取得手段と共に用いる移動ロボット装置であって、
変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、
当該移動ロボット装置を飛行させる飛行手段、
前記ユーザインタフェース装置を介して指定された
複数の点検箇所
の位置座標と、前記位置取得手段にて取得した現在位置
の位置座標とに基づいて、
当該移動ロボット装置の現在位置と前記
複数の点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、
前記現在位置及び
前記複数の点検箇所の位置座標に基づいて
、前記複数の点検箇所へ誘導する飛行経路を生成し、前記飛行手段を制御することにより、
前記飛行経路に沿いつつ、前記点検手段を用いて前記
複数の点検箇所の
各点検を実行可能な
各位置に、
当該移動ロボット装置を自律的に
順次移動させる自律制御手段を備え、
前記ユーザインタフェース装置は、
ユーザによる前記
複数の点検箇
所の入力を受け付
け各点検個所の位置座標に変換するまたは各点検個所の位置座標を受け付ける点検箇所入力手段、及び、
前記複数の点検箇
所と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段を備える
、
移動ロボット装置。
【請求項7】
前記打診手段に加えて、可視カメラ、赤外カメラ、超音波センサ、振動センサ、力覚センサ、レーダセンサの少なくとも
もうひとつを
前記点検手段として備える
、
前記ユーザインタフェース装置を介して指定された各点検箇所の点検項目の緒元に基づき、一つの点検箇所に複数の点検項目を指定された場合、前記自律制御手段は、前記飛行経路に沿いつつ、前記点検手段を用いて前記複数の点検箇所の各点検を実行可能な各位置に、当該移動ロボット装置を自律的に移動させる、
請求項6に記載の移動ロボット装置。
【請求項8】
前記位置取得手段は、
前記移動ロボット装置を自動追尾するトータルステーション
を含み、
前記位置取得手段の少なくとも一部は、
当該移動ロボット装置に搭載され
、前記トータルステーションから測定された前記移動ロボット装置の相対位置と角度と、前記トータルステーションを配置した既知点の絶対位置を、測位データとして通信回線を介して当該移動ロボット装置が受信し、測位データに基づいて現在位置を計算する、
請求項6又は請求項7に記載の移動ロボット装置。
【請求項9】
前記打診手段は、
前記点検箇所に衝突するハンマと、
前記ハンマを駆動して、前記点検個所に衝突させるアクチュエータと、
前記ハンマが前記点検箇所に衝突したときの影響を測定するための打診センサと
を備える、請求項6乃至請求項8のいずれか
一項に記載の移動ロボット装置。
【請求項10】
各点検箇所
の位置座標を
変換して得るため
ユーザによる点検箇所を指定する入力
または各点検個所の位置座標をユーザインタフェース装置にて受け付ける段階、
前記ユーザインタフェース装置
に対する入力
により得られた各点検箇所の位置座標、及び、移動ロボット装置の現在位置
の位置座標に基づいて、
前記各点検箇所へ誘導する飛行経路を生成し、該飛行経路に基づいて前記移動ロボット装置が自律的に飛行し
て、
前記飛行経路に沿いつつ前記
各点検箇所
の各点検を実行可能な各位置に
逐次移動する段階、及び、
前記各点検箇所の各点検を実行可能な各位置で、前記移動ロボット装置が備える打診手段を含む一乃至複数の点検手段を用いて、前記
各点検箇所を点検する段階
、
を含む点検方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、トンネルや橋梁等の構造物、建造物を点検するためのシステム及び方法に関する。
【背景技術】
【0002】
移動体を用いてトンネルや橋梁等の構造物の壁面の欠陥検査を行う技術として例えば特許文献1に記載の外壁浮き検知システムがある。このシステムは、屋外に配置される検知装置と、検知装置を遠隔操作する監視・操縦装置からなる。検知装置はラジコンヘリコプター等の移動飛行体に搭載される。移動飛行体は、監視・操縦装置から送信される制御信号を受信する移動飛行体操縦受信機を備えると共に、打音検査のための打診器、集音装置、打診音送信器を備える。一方、監視・操縦装置は移動飛行体操縦送信器、打診音受信機、スピーカを備える。利用者は、監視・操縦装置を用いて移動飛行体を遠隔操作し、打診器を用いて点検対象を打診する。打診により点検対象が発した音を集音装置にて集音し、打診音送信器、打診音受信機を経て、スピーカにて再生する。これにより、利用者は、点検対象に接近することなく、打診音を聞いて点検箇所の変状の有無を判断することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
特許文献1によれば、移動飛行体を点検対象に接近させる際、利用者が移動飛行体を遠隔操縦する必要がある。このため、特許文献1によれば、利用者は、点検箇所の打診が目的であるにも関わらず、移動飛行体を遠隔操縦する技量をある程度要求される。その結果、特許文献1のシステムは利用者をある程度選ぶことになっていた。トンネルや橋梁の周辺は必ずしもラジコンヘリコプター等の操縦に適した環境ではなく、むしろ操縦に不向きな環境の場合もある。こうした場合は特に、高い技量を有する一部の者しか点検作業を行うことができない。また、こうした場合に、一般的な技量を有する者が点検作業を行うと、所望の点検箇所に移動飛行体を誘導するためだけに時間を要し、その結果、点検作業が全体として長時間化する。
【0005】
本発明はこのような状況に鑑みてなされたものであり、本発明が解決しようとする課題は、トンネル、橋梁等の構造体、高層ビル等の建築物等の外壁を、打診器を備える移動飛行体を用いて打診する際、簡単な操作で所望の点検箇所の打診を行うことが可能となる技術を提供することである。
【課題を解決するための手段】
【0006】
上述の課題を解決するため、本発明は、その一態様として、移動ロボット装置、ユーザインタフェース装置、及び、前記移動ロボット装置の現在位置を取得するための位置取得手段を備え、前記移動ロボット装置は、変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、前記移動ロボット装置を飛行させる飛行手段、前記ユーザインタフェース装置を介して指定された複数の点検箇所の位置座標と、前記位置取得手段にて取得した現在位置の位置座標とに基づいて、前記移動ロボット装置の現在位置と前記複数の点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、前記現在位置及び前記複数の点検箇所の位置座標に基づいて、前記複数の点検箇所へ誘導する飛行経路を生成し、前記飛行手段を制御することにより、前記飛行経路に沿いつつ、前記点検手段を用いて前記複数の点検箇所の各点検を実行可能な各位置に、前記移動ロボット装置を自律的に順次移動させる自律制御手段を備え、前記ユーザインタフェース装置は、ユーザによる前記複数の点検箇所の入力を受け付け各点検個所の位置座標に変換するまたは各点検個所の位置座標を受け付ける点検箇所入力手段、及び、前記複数の点検箇所と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段、を備える点検システムを提供する。
【0007】
また、本発明は、他の一態様として、ユーザインタフェース装置、及び、当該移動ロボット装置の現在位置を取得するための位置取得手段と共に用いる移動ロボット装置であって、変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、当該移動ロボット装置を飛行させる飛行手段、前記ユーザインタフェース装置を介して指定された複数の点検箇所の位置座標と、前記位置取得手段にて取得した現在位置の位置座標とに基づいて、当該移動ロボット装置の現在位置と前記複数の点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、前記現在位置及び前記複数の点検箇所の位置座標に基づいて、前記複数の点検箇所へ誘導する飛行経路を生成し、前記飛行手段を制御することにより、前記飛行経路に沿いつつ、前記点検手段を用いて前記複数の点検箇所の各点検を実行可能な各位置に、当該移動ロボット装置を自律的に順次移動させる自律制御手段を備え、前記ユーザインタフェース装置は、ユーザによる前記複数の点検箇所の入力を受け付け各点検個所の位置座標に変換するまたは各点検個所の位置座標を受け付ける点検箇所入力手段、及び、前記複数の点検箇所と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段を備える、移動ロボット装置を提供する。
【0008】
また、本発明は、他の一態様として、各点検箇所の位置座標を変換して得るためユーザによる点検箇所を指定する入力または各点検個所の位置座標をユーザインタフェース装置にて受け付ける段階、前記ユーザインタフェース装置に対する入力により得られた各点検箇所の位置座標、及び、移動ロボット装置の現在位置の位置座標に基づいて、前記各点検箇所へ誘導する飛行経路を生成し、該飛行経路に基づいて前記移動ロボット装置が自律的に飛行して、前記飛行経路に沿いつつ前記各点検箇所の各点検を実行可能な各位置に逐次移動する段階、及び、前記各点検箇所の各点検を実行可能な各位置で、前記移動ロボット装置が備える打診手段を含む一乃至複数の点検手段を用いて、前記各点検箇所を点検する段階、を含む点検方法を提供する。
【発明の効果】
【0009】
本発明によれば、打診器を備える移動飛行体を用いて打診する際、簡単な操作で所望の点検箇所の打診を行うことが可能となる。
【図面の簡単な説明】
【0010】
【
図1】本発明の一実施の形態である点検システム1のブロック図である。
【
図2】移動ロボット装置2の飛行部4について説明するためのブロック図である。
【
図3】移動ロボット装置2の点検部5について説明するためのブロック図である。
【
図4】ユーザインタフェース装置3について説明するためのブロック図である。
【
図5】点検部5の動作について説明するためのフローチャートである。
【
図6】移動ロボット装置2の動作について説明するためのフローチャートである。
【
図7】ユーザインタフェース装置3の動作について説明するためのフローチャートである。
【
図8】打診部51の一変形について説明するためのブロック図である。
【発明を実施するための形態】
【0011】
本発明の一実施の形態である点検システム1について説明する。
図1を参照すると、点検システム1は、移動ロボット装置2、ユーザインタフェース装置3を備える。移動ロボット装置2は、飛行部4、点検部5を備える。尚、移動ロボット装置2とユーザインタフェース装置3とは有線乃至無線データ通信回線を介してデータ通信を行うものとする。
【0012】
移動ロボット装置2は所謂ドローンであり自律飛行する無人機である。一般に、ドローンは回転翼で揚力を発生して飛行する回転翼機が多く、特に、3つのローターを備えるトライコプター、4つのローターをもつクワッドローター等のマルチコプターが多いが、移動ロボット装置2として用いるドローンはローター数がいくつであってもよく、シングルローター式やツインローター式であってもよい。
【0013】
また、移動ロボット装置2は必ずしも回転翼機である必要はない。移動ロボット装置2は、高所に位置する点検箇所に対し、点検部5が点検を行うことが可能であればよい。従って、飛行可能であって、かつ、点検作業を実行可能な時間だけ点検箇所付近の空中に留まることが可能であれば、移動ロボット装置2の飛行原理は問わない。回転翼機の他には、例えば気球、飛行船を移動ロボット装置2として用いることができる。
【0014】
移動ロボット装置2は、初期に配置された位置PSから、飛行部4を用いて予め入力された位置にある点検箇所に向かって飛行する。そして、点検部5を用いて点検箇所に対して点検作業を行う。そして、再び飛行部4を用いて所定の位置PE(例えば前述の初期配置された位置)に移動する。位置PSから点検箇所を経て位置PEに至るまでの飛行は移動ロボット装置2が自律的に行う。
【0015】
図2に示すように、移動ロボット装置2は、位置取得部41、地図作成部42、自律制御部43、駆動部44を備える。
【0016】
位置取得部41は、予め定められた原点を基準としたときの移動ロボット装置2の絶対的な位置を計測するための装置である。また、位置取得部41は、移動ロボット装置2の現在位置を基準としたときの障害物の相対的な位置を計測する。障害物とは、移動ロボット装置2が飛行する際、その飛行経路上及びその周辺に存在し、飛行を妨げる物体であり、構造物、建築物等の地上に固定されたものだけではなく、例えば鳥や他のドローン等の移動体も含む。
【0017】
位置取得部41は、具体的には、位置取得部41は、慣性計測装置45、GPS(Global Positioning System)受信機46、トータルステーション47、レーザスキャナ48といった測位のためのセンサのいずれか或いはこれらの複数を備える。以下、位置取得部41が備える測位のためのセンサを総称して測位センサと呼ぶこともある。トータルステーション47は、自動追尾式のトータルステーションである。予め絶対位置の座標が分かっている既知点に全周プリズムを配置しておく。トータルステーション47は、この全周プリズムを自動的に追尾して、トータルステーション47から見た全周プリズムの相対位置及び角度を測定する。
【0018】
位置取得部41は更に座標演算部49を備える。座標演算部49は演算処理装置であり、測位センサが出力する計測データに基づいて、移動ロボット装置2の現在の位置(X,Y,Z)、姿勢(ロール、ピッチ、ヨー)を計算する処理を実行する。また、これらの時間微分である速度加速度、角速度、角加速度を計算する処理を実行する。これらの計算処理の結果を位置計測データとして出力する。位置計測データの出力先は地図生成部42、自律制御部43である。
【0019】
地図作成部42は演算処理装置であり、位置取得部41から入力された位置計測データに基づいて地図データを生成する処理を実行する。地図データは移動ロボット装置2の現在位置と点検箇所の位置関係を示す。また、地図作成部42は障害物を回避しながら点検箇所に移動ロボット装置2を誘導するための飛行経路データを生成する。点検箇所の位置は後述するようにユーザインタフェース装置3から受け取る。
【0020】
自律制御部43は、地図作成手段42が生成した地図データ、飛行経路データに基づいて、駆動部44を制御することにより、移動ロボット装置2を飛行経路データに沿って飛行させる。移動ロボット装置の飛行は、風、乱気流、障害物との接触等の外乱により、飛行経路データが定める経路を外れる場合がある。こうした移動ロボット装置2に発生する外乱を位置取得部41により検出すると、自律制御部43はこの乱れを解消し、移動ロボット装置2が安定して飛行するように駆動部44を制御する。このため、ユーザは、こうした外乱の発生に対応するために移動ロボット装置2を操縦する必要はない。
【0021】
駆動部44は移動ロボット装置2を飛行させるための動力装置、揚力発生機構、操舵機構等からなる。具体的には、移動ロボット装置2が回転翼機の場合には、回転翼を回転させるためのエンジン或いは電動機が動力装置であり、回転翼が揚力発生機構であり、回転翼の羽根の角度を制御する機構が操舵機構である。移動ロボット装置2がマルチコプターである場合には、回転翼の回転速度を変えることが操舵機構として作用する。
【0022】
点検部5について
図3を参照して説明する。点検部5は点検箇所の状態を測定する様々なセンサからなり、特に、打診部51を備える。打診部51は、点検箇所を打診してその結果を取得する。本実施形態では、点検部5は、打診部51の他に、可視カメラ52、赤外カメラ53、超音波センサ54、レーダセンサ55を備えるが、打診部51以外のセンサについては備えなくてもよいし、或いは、これらの一部だけを備えることとしてもよい。或いは、更に他のセンサを備えることとしてもよい。点検部5は、これらの様々なセンサによる測定値と、それら測定値に基づいて判定された点検箇所毎の変状の有無を、ユーザインタフェース装置3に送信する。
【0023】
打診部51はハンマ部51A、アクチュエータ部51B、集音部51C、信号処理部51Dを備える。ハンマ部51Aはアクチュエータ部51Bによって駆動されて、点検箇所に衝突する。アクチュエータ部51Bはハンマ部51Aが点検箇所に衝突するように駆動するためのアクチュエータである。集音部51Cはハンマ部51Aが点検箇所に衝突したときに発生する音を集音し、集音した音に基づく音声信号を出力するマイクロフォンである。信号処理部51Dは、集音部51Cが出力した音声信号に対して所定の信号処理を実行することにより、点検箇所が変状箇所か否かを判定する処理を実行する処理装置である。一般に、変状箇所と変状をしていない箇所では音声データの周波数スペクトルが変化する。このことに着目して、点検箇所にハンマ部51Aを衝突させたときに発生する音を集音部51Cにて集音し、その音声信号の周波数を分析する処理を実行する。この分析結果に基づいて点検箇所が変状箇所であるのか否かを判定することができる。
【0024】
可視カメラ52は撮像部52A、画像処理部52Bを備える。撮像部52Aは、点検箇所の可視画像を撮像して可視画像信号を出力する。画像処理部52Bは、撮像部52Aが出力した可視画像信号に対して所定の信号処理を実行することにより、点検箇所が変状箇所か否かを判定する。
【0025】
赤外カメラ53は撮像部53A、画像処理部53Bを備える。撮像部53Aは、点検箇所の赤外画像を撮像して赤外画像信号を出力する。画像処理部53Bは、撮像部53Aが出力した赤外画像信号に対して所定の信号処理を実行することにより、点検箇所が変状箇所か否かを判定する。
【0026】
超音波センサ54は超音波送信部54A、超音波受信部54B、信号処理部54Cを備える。超音波送信部54Aは点検箇所に超音波を照射する。超音波受信部54Bは点検箇所で反射した超音波を受信して、その超音波に基づく信号を出力する。信号処理部54Cは超音波受信部54Bが出力した信号に対して所定の信号処理を実行することにより、点検箇所が変状箇所であるか否かを判定する。
【0027】
レーダセンサ55はレーダ送信部55A、レーダ受信部55B、信号処理部55Cを備える。レーダ送信部55Aは点検箇所に電波を照射する。レーダ受信部55Bは点検箇所で反射した電波を受信し、その受信した電波に基づいて信号を出力する。信号処理部55Cは、レーダ受信部55Bが出力した信号に対して所定の信号処理を実行することにより、点検箇所が変状箇所であるか否かを判定する。
【0028】
ユーザインタフェース装置3について
図4を参照して説明する。ユーザインタフェース装置3は、複数のコンピュータからなる情報処理システムである。
【0029】
ユーザインタフェース装置3は点検箇所入力部31、点検結果記録部32を備える。点検箇所入力部31はユーザから点検箇所の指示を受け取り、点検箇所の座標等を含む点検箇所データを移動ロボット装置2へ出力する。
【0030】
より詳しくは、点検箇所入力部31は入力端末31A、座標計算部31B、データベース31C、現示端末31Dを備える。
【0031】
入力端末31Aは、少なくともキーボード、マウス、タッチディスプレイ等の入力装置を備えるコンピュータ、例えばパーソナルコンピュータ、ワークステーション、タブレットである。ユーザは入力端末31Aの入力装置を介して点検箇所を指定するための入力を行う。点検箇所の指定入力を行う際には、例えば、入力端末31Aの入力装置から点検箇所を特定するための番号や符号等の識別子を入力することとしてよい。または、入力端末31A或いは現示端末31Dの表示装置にて、点検箇所を含む地図を表示し、その地図上にて点検箇所をマウス等のポインティングデバイスにて指定することにより、入力してもよい。
【0032】
座標計算部31Bは、入力端末31A或いは現示端末31Dによって入力された点検箇所を、データベース31Cに格納されているデータに基づいて、座標データに変換する処理を実行する処理装置である。この座標データの座標系は、移動ロボット装置2の位置を計算する際に用いる座標系である。
【0033】
例えば、入力端末31Aで点検箇所を入力する際に、点検箇所を特定する識別子を入力する場合、座標計算部31Bは次のような変換処理を行うことが考えられる。点検箇所を示す識別子と、上述の座標系における点検箇所の座標データとを、予め互いに関連付けた状態で、データベース31Cに格納しておく。その上で、座標計算部31Bは、変換処理において、入力端末31Aにて入力された識別子に対応する座標データをデータベース31Cから読み出して移動ロボット装置2に渡す。
【0034】
また、入力端末31A或いは現示端末31Dで点検箇所を入力する際、その表示装置上に地図を表示して入力する場合、座標計算部31Bは次のような変換処理を行うことが考えられる。入力端末31A或いは現示端末31Dの表示装置に表示する地図の中における点検箇所の位置と、上述の座標系における点検箇所の座標データとを、予め互いに関連付けた状態で、データベース31Cに格納しておく。ポインティングデバイスにて地図上の位置が指定されると、座標計算部31Bは、指定された地図上の位置がどの点検箇所を示す入力であるのかを、データベース31Cに格納した地図上の点検箇所の位置に基づいて特定し、その特定した点検箇所の座標をデータベース31Cから読み出して移動ロボット装置2に渡す。
【0035】
データベース31Cはコンピュータ上で動作するデータベース管理システムである。入力端末31A、現示端末31Dとハードウェアを共用することとしてもよい。
【0036】
現示端末31Dは、液晶ディスプレイ装置、CRT(Cathode Ray Tube)、有機EL(Electro Luminesence)ディスプレイ装置等の表示装置を少なくとも備えるコンピュータ、例えばパーソナルコンピュータ、ワークステーション、タブレットである。現示端末31Dは、移動ロボット装置2から現在位置、点検結果データ等を受け取り、現示端末31Dの表示装置にリアルタイムに表示する。
【0037】
点検結果記録部32は、移動ロボット装置2から送られてきた点検結果データを、点検の日付、点検の時刻、点検箇所の名称、点検箇所の座標、点検の名称等のデータと関連付けて記録する装置である。点検結果記録部32は例えばハードディスクドライブ装置、SSD (Solid State Drive)等の読み書き可能な補助記憶装置を記録装置として備える。データベース31Cと共に同じコンピュータシステム上で動作するデータベース管理システムとして構成することとしてもよい。
【0038】
次に、点検システム1の動作について説明する。ユーザは、ユーザインタフェース装置3の点検箇所入力部31にて、点検対象となる建造物の点検箇所を指定するための入力操作を行う。入力操作を受けた点検箇所入力部31は、点検箇所の座標データを移動ロボット装置2に出力する。移動ロボット装置2が座標データを受け取ると、地図生成部42は、その座標データと、位置取得部41にて取得した移動ロボット装置2の現在位置データとに基づいて地図データを生成する。地図生成部42は所定の時間間隔毎に地図データを更新することが好ましい。自律制御部43は、地図生成部42が生成乃至更新した地図データに基づいて駆動部44を制御して、移動ロボット装置2を点検箇所に誘導する。移動ロボット装置2が点検箇所に到着すると、点検部5は点検箇所の点検を実施し、その結果として点検結果データを生成する。移動ロボット装置2は点検結果データをユーザインタフェース装置3に送信する。現示端末31Dが点検結果データをユーザに対して表示すると共に、点検結果記録部32が点検結果データを記録する。
【0039】
点検部5が行う点検動作について
図5を参照して説明する。最初に、点検部5は、打診部51、可視カメラ52、赤外カメラ53、超音波センサ54、レーダセンサ55の中から、点検に使用するセンサを選択する(ステップS501)。ここで行う選択は、ユーザインタフェース装置3でのユーザの入力操作に応じることとしてもよいし、予め定められた順に、これらセンサの一部乃至全部を、一の点検箇所に対して連続して使用することとしてもよい。ここでは、これらセンサをそれぞれ選択したときの動作について説明する。
【0040】
打診部51を選択した場合(ステップS502)、アクチュエータ部51Bを作動させて、ハンマ部51Aを点検箇所に衝突させる(ステップS503)。次に、その衝突により発生した衝突音を集音部51Cで集音し、音声データを生成する(ステップS504)。生成した音声データを信号処理部51Dで信号処理することにより、その点検箇所が変状しているか否かを判定する、即ち、変状判定を行う(ステップS505)。
【0041】
変状判定は、例えば、音声データの周波数を分析することにより行うことができる。一般に、変状した箇所と変状していない箇所では、音声データの周波数スペクトルが変化する。これを利用して、変状する前(例えば点検箇所を含む建造物の完成直後)に、各点検箇所の音声データの周波数スペクトルを基準値として測定、記録しておく。そして、記録してある基準値と、ステップS504で生成した音声データの周波数スペクトルとを比較することにより、変状したか否かを判定する。この方法で変状判定を行う場合、各点検箇所の基準値を記憶した記憶装置を点検システム1のどこかに備える。この記憶装置は例えば信号処理部51Dが備えることとしてもよい。或いは、ユーザインタフェース装置3に設けた記憶装置に記憶することとして、必要に応じて、この記憶装置から信号処理部51Dが基準値を読み出すこととしてもよい。その際、基準値はデータベース31Cや点検結果記録部32と共に同じ記憶装置に記憶してもよいし、別の記憶装置に記憶してもよい。
【0042】
次に、ステップS504にて生成した音声データと、ステップS505の変状判定の結果とを、その点検箇所の点検結果データとしてユーザインタフェース装置3に送信する(ステップS506)。ユーザインタフェース装置3は受信した点検結果データを点検結果記録部32に記録する(ステップS507)。その際、点検を実行した日時、使用したセンサの種類(この場合は打診部51)を関連付けて記録する。
【0043】
可視カメラ52を選択した場合(ステップS511)、点検部5は点検箇所の可視画像を撮像部52Aで撮像し、画像データを生成する(ステップS512)。次に、その画像データに対し、撮像した点検箇所が変状箇所か否かを判定する画像処理を、画像処理部52Bにて実行する(ステップS513)。
【0044】
ステップS513の画像処理では、点検箇所を可視光線で眺めたときの外観上の変状の有無を判定する。具体的には、例えば、点検箇所の画像内にひび割れた箇所があるか否かを判定する。ひび割れの有無を判定する際には、点検箇所の画像に対して微分処理を施すことにより、画像内のエッジを強調して行うことが好ましい。
【0045】
ステップS512で生成した画像データと、ステップS513での判定結果とを、その点検箇所の点検結果データとしてユーザインタフェース装置3に送信する(ステップS514)。ユーザインタフェース装置3は受信した点検結果データを点検結果記録部32に記録する(ステップS507)。その際、点検を実行した日時、使用したセンサの種類(この場合は可視カメラ52)を関連付けて記録する。
【0046】
赤外カメラ53を選択した場合(ステップS521)、点検箇所の赤外画像を撮像部53Aで撮像し、画像データを生成する(ステップS522)。次に、その画像データに対し、撮像した点検箇所が変状箇所か否かを判定する画像処理を、画像処理部53Bにて実行する(ステップS523)。
【0047】
ステップS523の画像処理では、点検箇所を赤外線で眺めたときの外観上の変状の有無を判定する。例えば、コンクリートの浮き等によって、本来は存在しないはずの空気の層が外壁内部に存在する変状が発生する場合がある。浮きがある箇所では、空気の層の存在により蓄熱しやすくなる。このため浮きがある箇所とない箇所で温度差が発生する。これを利用して、赤外画像から点検箇所の温度分布を測定し、周囲よりも温度が高い箇所があれば、その箇所に浮きがある可能性があると判定することができる。
【0048】
ステップS522で生成した赤外画像データと、ステップS523での判定結果とを、その点検箇所の点検結果データとしてユーザインタフェース装置3に送信する(ステップS524)。ユーザインタフェース装置3は受信した点検結果データを点検結果記録部32に記録する(ステップS507)。その際、点検を実行した日時、使用したセンサの種類(この場合は赤外カメラ53)を関連付けて記録する。
【0049】
超音波センサ54を選択した場合(ステップS531)、移動ロボット装置2は、点検箇所に超音波送信部54Aと超音波受信部54Bとを接触させる(ステップS532)。次に、超音波送信部54Aから点検箇所に対して超音波を発射し、その反射波を超音波受信部54Bで受信し、反射波データとして出力する(ステップS533)。反射波データに基づいて、信号処理部54Cは点検箇所が変状箇所か否かを判定する(ステップS534)。
【0050】
コンクリート内部の鉄筋等が腐食すると、隙間が発生して空気が入ることがある。このような隙間が内部に存在する箇所では超音波が反射しやすい。これを利用して外壁の内部に隙間があるか否かを判定する。例えば、打診部51の基準値と同様に、変状する前(例えば点検箇所を含む建造物の完成直後)に、各点検箇所の反射波データを基準値として測定、記録しておく。そして、記録してある基準値と、ステップS533で生成した反射波データとを比較することにより、内部に隙間があるか否かを判定する。この方法で判定する場合、各点検箇所の基準値を記憶した記憶装置を点検システム1のどこかに備える。この記憶装置は例えば信号処理部54Cが備えることとしてもよい。或いは、ユーザインタフェース装置3に設けた記憶装置に記憶することとして、必要に応じて、この記憶装置から信号処理部54Cが基準値を読み出すこととしてもよい。その際、基準値はデータベース31Cや点検結果記録部32と共に同じ記憶装置に記憶してもよいし、別の記憶装置に記憶してもよい。
【0051】
ステップS533で生成した反射波データと、ステップS534での判定結果とを、その点検箇所の点検結果データとしてユーザインタフェース装置3に送信する(ステップS535)。ユーザインタフェース装置3は受信した点検結果データを点検結果記録部32に記録する(ステップS507)。その際、点検を実行した日時、使用したセンサの種類(この場合は超音波センサ54)を関連付けて記録する。
【0052】
レーダセンサ55を選択した場合(ステップS541)、点検箇所にレーダ送信部55Aとレーダ受信部55Bを向ける(ステップS542)。次にレーダ送信部55Aから点検箇所に電波を送信し、レーダ受信部55Bで反射波を受信し、反射波データを生成する(ステップS543)。次に信号処理部55Cにて、反射波データに基づいてその点検箇所が変状箇所かどうかを判定する(ステップS544)。
【0053】
コンクリート内部の鉄筋等が腐食すると、隙間が発生して空気が入ることがある。このような隙間が内部に存在する箇所では、超音波と同様に、電波も反射しやすい。これを利用して外壁の内部に隙間があるか否かを判定する。例えば、打診部51の基準値と同様に、変状する前(例えば点検箇所を含む建造物の完成直後)に、各点検箇所の反射波データを基準値として測定、記録しておく。そして、記録してある基準値と、ステップS543で生成した反射波データとを比較することにより、内部に隙間があるか否かを判定する。この方法で判定する場合、各点検箇所の基準値を記憶した記憶装置を点検システム1のどこかに備える。この記憶装置は例えば信号処理部55Cが備えることとしてもよい。或いは、ユーザインタフェース装置3に設けた記憶装置に記憶することとして、必要に応じて、この記憶装置から信号処理部55Cが基準値を読み出すこととしてもよい。その際、基準値はデータベース31Cや点検結果記録部32と共に同じ記憶装置に記憶してもよいし、別の記憶装置に記憶してもよい。
【0054】
ステップS543で生成した反射波データと、ステップS544での判定結果とを、その点検箇所の点検結果データとしてユーザインタフェース装置3に送信する(ステップS545)。ユーザインタフェース装置3は受信した点検結果データを点検結果記録部32に記録する(ステップS507)。その際、点検を実行した日時、使用したセンサの種類(この場合はレーダセンサ55)を関連付けて記録する。
【0055】
次に、移動ロボット装置2の動作について
図6を参照して説明する。ユーザが移動ロボット装置2を起動する(ステップS601)と、移動ロボット装置2は自システムの起動チェックを実行する(ステップS602)。ユーザがユーザインタフェース装置3を介して点検箇所を一乃至複数入力し、ユーザインタフェース装置3が入力された各点検箇所の座標データを自律制御部43に渡す(ステップS603)と、自律制御部43は、各点検箇所へ誘導する一連の飛行経路を生成し、飛行ミッションとして登録する(ステップS604)。
【0056】
この状態で、ユーザから、ユーザインタフェース装置3を介して、点検箇所への誘導開始の命令が入力される(ステップS605)と、自律制御部43は、駆動部44を制御することにより、移動ロボット装置2を自律的に離陸させる(ステップS606)。続いて、自律制御部43は、ステップS604にて登録した飛行ミッションに従って、移動ロボット装置2を点検箇所に誘導する。その際、位置取得部41は定期的に移動ロボット装置2の現在位置を取得する。また、位置取得部41の現在位置の取得に応じて、地図生成部42は、ステップS603で受け取った点検箇所の座標データと現在位置とに基づいて、地図データを生成・更新する。
【0057】
この地図データとステップS604で登録した飛行ミッションに基づいて、自律制御部43は、移動ロボット装置2を各点検箇所に順次誘導する。各点検箇所において、移動ロボット装置2は、点検部5による点検作業を行う。その際、点検作業を実行した時刻情報を取得し、記録しておく。飛行ミッションの実行中、自律制御部43は、位置取得部41の測位結果と、地図生成部42の地図データに基づいて、移動ロボット装置2の飛行安定性を保ちつつ、前述の飛行経路に沿って移動ロボット装置2を誘導制御する(ステップS607、S608)。
【0058】
登録した飛行ミッションが全て完了すると、自律制御部43は移動ロボット装置2を自律的に着陸させる(ステップS609)。飛行ミッション中に各点検箇所にて取得した点検結果データは、取得のたびに有線乃至無線データ通信を行って点検結果記録部32に記録することとしてもよいし、或いは、移動ロボット装置2が備える記憶装置に格納し、飛行ミッションが完了した後、移動ロボット装置2とユーザインタフェース装置3とを有線乃至無線データ通信回線で接続して、点検結果記録部32に記録することとしてもよい(ステップS610)。この後、ユーザがユーザインタフェース装置3を介して入力する命令に従って、自律制御部43は移動ロボット装置2のシャットダウンを実行する(ステップS611)。
【0059】
次に、ユーザインタフェース装置3の動作について
図7を参照して説明する。ユーザは、入力端末31Aを介して、点検日、点検名称、点検で使用するセンサ(打診部51に加えて、可視カメラ52、赤外カメラ53、超音波センサ54、レーダセンサ55のうちの一乃至複数)などの点検作業諸元を入力する(ステップS701)。また、ユーザはユーザインタフェース装置3に対し、点検箇所を指定するための入力を行う。この入力は、ユーザが入力端末31Aを介して、点検箇所の識別子又は点検箇所の座標データを入力することとしてもよい。或いは、現示端末31Dの表示装置に表示した地図上の点を、ユーザがポインティングデバイス等で指定することによって入力することとしてもよい(ステップS702、S703)。尚、入力端末31A、現示端末31Dの表示装置に地図を表示する場合には、地図上で各点検箇所に対応するようにして、その点検箇所にある点検対象を示す図、写真等を表示することが好ましい。このような表示をすることにより、ユーザが点検箇所を誤って指定するのを避けることができる。
【0060】
点検箇所の座標が直接入力された場合、ユーザインタフェース装置3は、その座標をそのまま座標データとして移動ロボット装置2に渡す。点検箇所を識別子にて指定した場合、座標計算部31Bは、データベース31Cに格納されているデータを参照して、指定された識別子が示す点検箇所に予め関連付けられている座標データを取得し、移動ロボット装置2に渡す(ステップS704)。点検箇所を地図上の点として指定した場合、座標計算部31Bは、その点の地図上での座標を、データベース31Cに予め格納している、地図上における各点検箇所の座標とを比較する。そして、指定した点に最も近い位置にある点検箇所が指定されたものと判定し、その点検箇所の座標データをデータベース31Cから読み出して、移動ロボット装置2に渡す(ステップS705)。
【0061】
座標計算部31Bは、移動ロボット装置2に各点検箇所の座標データを渡すと共に、現示端末31Dにもそれら点検箇所の座標データを渡す。現示端末31Dは、移動ロボット装置2の現在位置と、それら点検箇所の位置関係を表示装置に表示する(ステップS706)。この表示を見て、ユーザは意図した点検箇所が正しく指定されているか確認することができる。
【0062】
この後、移動ロボット装置2は
図6のフローチャートに従って動作して、自律的に飛行して、各点検箇所で点検結果データを取得し、有線乃至無線データ通信回線を介してユーザインタフェース装置3に送信する。点検結果データを受信する(ステップS707)と、ユーザインタフェース装置3は、現示端末31Dの表示装置に点検結果データを表示する。また、ユーザインタフェース装置3は、点検結果データと、点検日、点検名称、点検で使用するセンサ、点検時刻、点検箇所の座標を関連付けて点検結果記録部32に記録する(ステップS708、S709)。
【0063】
点検システム1によれば、移動ロボット装置2は、予めユーザインタフェース装置3にて指定された点検箇所に、自律的に飛行して、点検結果データを取得する。このため、ユーザは、移動ロボット装置2を点検箇所に誘導するための操縦操作を行う必要がない。このため、ユーザの技量に左右されることなく点検結果を得ることができる。また、移動ロボット装置2の操縦が自律的に行われるため、飛行の過程でユーザが判断する必要がなく、結果として点検作業の時間を短縮することができる。
【0064】
以上、本発明を実施の形態に即して説明したが、本発明はこれに限定されるものではない。点検システム1には様々な変形が考えられる。例えば、上述の点検システム1は、点検部5として、打診部51、可視カメラ52、赤外カメラ53、超音波センサ54、レーダセンサ55を備えているものとして説明したが、他のセンサを備えることとしてもよい。
【0065】
例えば、上述の説明では、打診部51は、ハンマ部51Aの衝突による影響を、集音部51Cにて音として入力したが、他の形で入力するセンサを備えることとしてもよい。具体的には、
図8に示すように、打診部51は、振動センサ51E、力覚センサ51Fを更に備えるようにすることが考えられる。或いは、打診部51は、振動センサ51E、力覚センサ51Fのいずれかを備えることとしてもよいし、集音部51C、振動センサ51E、力覚センサ51Fのうち2つの2つの組み合わせであってもよい。
【0066】
振動センサ51Eは、点検の際、ハンマ部51Aが点検箇所に衝突するよりも前に、点検箇所或いはその近傍に接触させておく。振動センサ51Eを接触させておく位置は、ハンマ部51Aの衝突位置の近傍であって、かつ、ハンマ部51Aと接触しないような位置が好ましい。このように振動センサ51Eを接触させた状態で、アクチュエータ部51Bにてハンマ部51Aを点検箇所に衝突させる。衝突により、点検対象となっている建築物の点検箇所及びその周辺には振動が発生する。この振動を振動センサ51Eにて測定し、振動データとして出力する。振動データは、点検箇所に変状がある場合とない場合とで異なる。これを利用して、変状がないときの各点検箇所の振動データを、例えばデータベース31Cに基準値として予め格納しておき、その基準値と、点検時の振動センサ51Eが生成した振動データとを比較することにより、変状の有無を判定することができる。
【0067】
力覚センサ51Fも、点検に先立って、振動センサ51Eと同様の位置に接触させておき、ハンマ部51Aによって点検箇所近傍に伝達される力の大きさを測定する。力覚センサ51Fが出力する力覚データも、振動センサ51Eが出力する振動データと同様に、点検箇所に変状がある場合とない場合とで異なる。変状の有無の判定方法も上述の振動センサ51Eと同様である。
【0068】
また、上述の点検システム1では、ユーザインタフェース装置3を複数のコンピュータからなる情報処理システムとして説明したが、単独のコンピュータ装置をユーザインタフェース装置3として用いることとしてもよい。
【0069】
また、上述の点検システム1では、移動ロボット装置2は位置取得部41を備え、位置取得部41は移動ロボット装置2と共に移動することとして説明していたが、位置取得部41を移動ロボット装置2の外部に配置することとしてもよい。例えば、予め座標が分かっている既知点に配置した測定装置を用いて、移動ロボット装置2を自動追尾しながら、移動ロボット装置2の位置を定期的に或いは継続的に測定し、その測定装置(既知点)の絶対座標と、その測定装置から見た移動ロボット装置2の相対座標とに基づいて移動ロボット装置2の絶対座標を求める。この測定装置は、自装置から見た移動ロボット装置2の相対座標を定期的に或いは継続的に求め、有線乃至無線データ通信回線を介して、移動ロボット装置2の座標演算部49に送信する。座標演算部49は、受信した相対座標と、移動ロボット装置2の記憶装置に予め記憶した、既知点の絶対座標とに基づいて、移動ロボット装置2の絶対座標を求める。この種の測定装置として例えば自動追尾式のトータルステーションを用いることが考えられる。自動追尾式のトータルステーションを既知点に配置する一方、移動ロボット装置2の例えば下部に全周プリズムを配置する。トータルステーションから測定した移動ロボット装置2の相対位置と角度と、トータルステーションを配置した既知点の絶対位置を、測位データとして有線乃至無線データ通信回線を介して移動ロボット装置2に送信する。移動ロボット装置2では、受信した測位データに基づいて座標演算部49が移動ロボット装置2の現在位置を計算する。
【0070】
また、上述の点検システム1では、移動ロボット装置2とユーザインタフェース装置3とは無線データ通信回線を介してデータ通信を行うものとするものとして説明したが、データ通信を行う際に用いる回線は、必ずしも無線回線である必要はなく、有線回線であってもよい。飛行ミッションの間、移動ロボット装置2とユーザインタフェース装置3の間はケーブルで接続され、そのケーブルの中にデータ通信回線を含むことになる。駆動部44の動力源として電動モーターを用いることができるが、その場合には、このケーブルの中に電力供給線を更に含むこととしてもよい。
【0071】
上記の実施形態の一部又は全部は以下の付記のようにも記載されうるが、これらに限定されるものではない。
【0072】
(付記1)
移動ロボット装置、ユーザインタフェース装置、及び、前記移動ロボット装置の現在位置を取得するための位置取得手段を備え、
前記移動ロボット装置は、
変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、
前記移動ロボット装置を飛行させる飛行手段、
前記ユーザインタフェース装置を介して指定された点検箇所と、前記位置取得手段にて取得した現在位置とに基づいて、前記移動ロボット装置の現在位置と前記点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、
前記現在位置及び前記地図データに基づいて前記飛行手段を制御することにより、前記点検手段を用いて前記点検箇所の点検を実行可能な位置に、前記移動ロボット装置を自律的に移動させる自律制御手段を備え、
前記ユーザインタフェース装置は、
ユーザによる前記点検箇所位置の入力を受け付ける点検箇所入力手段、及び、
点検箇所位置と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段を備える点検システム。
【0073】
(付記2)
前記打診手段に加えて、可視カメラ、赤外カメラ、超音波センサ、振動センサ、力覚センサ、レーダセンサの少なくともひとつを点検手段として備える、付記1に記載の点検システム。
【0074】
(付記3)
前記位置取得手段は、慣性計測装置、レーザスキャナ、GPS(Global Positioning System)受信機、トータルステーションの少なくともひとつを備え、
前記位置取得手段の少なくとも一部は、前記移動ロボット装置に搭載される付記1又は付記2に記載の点検システム。
【0075】
(付記4)
前記打診手段は、
前記点検箇所に衝突するハンマと、
前記ハンマを駆動して、前記点検個所に衝突させるアクチュエータと、
前記ハンマが前記点検箇所に衝突したときの影響を測定するための打診センサと
を備える、付記1乃至付記3のいずれかに記載の点検システム。
【0076】
(付記5)
前記打診センサは、
前記ハンマが前記点検箇所に衝突したときに発生する音を集音するためのマイクロフォン、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所に発生する振動を測定するための振動センサ、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所を介して伝達される力の大きさを測定するための力覚センサ
のうち、少なくともひとつを備える、付記4に記載の点検システム。
【0077】
(付記6)
ユーザインタフェース装置、及び、当該移動ロボット装置の現在位置を取得するための位置取得手段と共に用いる移動ロボット装置であって、
変状箇所に打撃を加えて点検箇所を点検する打診手段を少なくとも含む点検手段、
前記移動ロボット装置を飛行させる飛行手段、
前記ユーザインタフェース装置を介して指定された点検箇所と、前記位置取得手段にて取得した現在位置とに基づいて、前記移動ロボット装置の現在位置と前記点検箇所の位置関係を示す地図データを生成する地図生成手段、及び、
前記現在位置及び前記地図データに基づいて前記飛行手段を制御することにより、前記点検手段を用いて前記点検箇所の点検を実行可能な位置に、前記移動ロボット装置を自律的に移動させる自律制御手段を備え、
前記ユーザインタフェース装置は、
ユーザによる前記点検箇所位置の入力を受け付ける点検箇所入力手段、及び、
点検箇所位置と前記点検手段の出力とを互いに関連付けて記録する点検結果記録手段を備える
移動ロボット装置。
【0078】
(付記7)
前記打診手段に加えて、可視カメラ、赤外カメラ、超音波センサ、振動センサ、力覚センサ、レーダセンサの少なくともひとつを点検手段として備える、付記6に記載の移動ロボット装置。
【0079】
(付記8)
前記位置取得手段は、慣性計測装置、レーザスキャナ、GPS(Global Positioning System)受信機、トータルステーションの少なくともひとつを備え、
前記位置取得手段の少なくとも一部は、前記移動ロボット装置に搭載される
付記6又は付記7に記載の移動ロボット装置。
【0080】
(付記9)
前記打診手段は、
前記点検箇所に衝突するハンマと、
前記ハンマを駆動して、前記点検個所に衝突させるアクチュエータと、
前記ハンマが前記点検箇所に衝突したときの影響を測定するための打診センサと
を備える、付記6乃至付記8のいずれかに記載の移動ロボット装置。
【0081】
(付記10)
前記打診センサは、
前記ハンマが前記点検箇所に衝突したときに発生する音を集音するためのマイクロフォン、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所に発生する振動を測定するための振動センサ、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所を介して伝達される力の大きさを測定するための力覚センサ
のうち、少なくともひとつを備える、付記9に記載の移動ロボット装置。
【0082】
(付記11)
点検箇所を指定するための入力をユーザインタフェース装置にて受け付ける段階、
前記ユーザインタフェース装置での入力、及び、前記移動ロボット装置の現在位置に基づいて、移動ロボット装置が自律的に飛行し、前記点検箇所に移動する段階、及び、
前記移動ロボット装置が備える打診手段を含む一乃至複数の点検手段を用いて、前記点検箇所を点検する段階を含む点検方法。
【0083】
(付記12)
前記移動ロボット装置は、前記打診手段に加えて、可視カメラ、赤外カメラ、超音波センサ、振動センサ、力覚センサ、レーダセンサの少なくともひとつを点検手段として備え、
前記点検段階において、前記移動ロボット装置は、前記打診手段による点検に加えて、前記打診手段以外の点検手段を用いて点検を行う
付記11に記載の点検方法。
【0084】
(付記13)
前記移動ロボット装置の現在位置を、慣性計測装置、レーザスキャナ、GPS(Global Positioning System)受信機、トータルステーションの少なくともひとつを用いて取得する、付記11又は付記12に記載の点検方法。
【0085】
(付記14)
前記打診手段による点検は、アクチュエータによって駆動したハンマを前記点検箇所に衝突させて、衝突により生じた影響をセンサによって測定する段階を含む、付記11乃至付記13のいずれかに記載の点検方法。
【0086】
(付記15)
前記センサによる測定は、
前記ハンマが前記点検箇所に衝突したときに発生する音をマイクロフォンによって集音する段階、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所に発生する振動を振動センサによって測定する段階、
前記ハンマが前記点検箇所に衝突したときに前記点検箇所を介して伝達される力の大きさを力覚センサによって測定する段階
のうち、少なくともひとつを含む、付記14に記載の点検方法。
【符号の説明】
【0087】
1 点検システム
2 移動ロボット装置
3 ユーザインタフェース装置
4 飛行部
5 点検部
31 点検個所入力部
31A 入力端末
31B 座標計算部
31C データベース
31D 現示端末
32 点検結果記録部
41 位置取得部
42 地図生成部
43 自律制御部
44 駆動部
45 慣性計測装置
46 GPS受信機
47 トータルステーション
48 レーザスキャナ
49 座標演算部
51 打診部
51A ハンマ部
51B アクチュエータ部
51C 集音部
51D、54C、55C 信号処理部
51E 振動センサ
51F 力覚センサ
52 可視カメラ
52A、53A 撮像部
52B、53B 画像処理部
53 赤外カメラ
54 超音波センサ
54A 超音波送信部
54B 超音波受信部
55 レーダセンサ
55A レーダ送信部
55B レーダ受信部