(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-07
(45)【発行日】2022-02-16
(54)【発明の名称】磁気センサ
(51)【国際特許分類】
G01R 33/09 20060101AFI20220208BHJP
H01L 43/08 20060101ALI20220208BHJP
【FI】
G01R33/09
H01L43/08 B
(21)【出願番号】P 2018032791
(22)【出願日】2018-02-27
【審査請求日】2021-01-21
(73)【特許権者】
【識別番号】000003067
【氏名又は名称】TDK株式会社
(74)【代理人】
【識別番号】100115738
【氏名又は名称】鷲頭 光宏
(74)【代理人】
【識別番号】100121681
【氏名又は名称】緒方 和文
(74)【代理人】
【識別番号】100130982
【氏名又は名称】黒瀬 泰之
(72)【発明者】
【氏名】原谷 進
(72)【発明者】
【氏名】山口 仁
(72)【発明者】
【氏名】五木田 剛男
【審査官】永井 皓喜
(56)【参考文献】
【文献】国際公開第2013/141124(WO,A1)
【文献】国際公開第2017/126397(WO,A1)
【文献】国際公開第2010/143718(WO,A1)
【文献】米国特許出願公開第2016/0313413(US,A1)
【文献】特開2009-2911(JP,A)
【文献】国際公開第2017/204151(WO,A1)
【文献】国際公開第2006/098372(WO,A1)
【文献】特開2005-326373(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01R 33/09
G01R 33/06
G01R 33/20
G01R 15/20
H01L 43/08
(57)【特許請求の範囲】
【請求項1】
第1の方向を長手方向とし、前記第1の方向と直交する第2の方向を感磁方向とする感磁素子と、
前記感磁素子に巻回され、前記第1の方向を軸方向とするコイル状部分を有する導体パターンと、
前記感磁素子に沿って前記第1の方向に延在するエッジを有する第1の磁性体層と、を備え、
前記感磁素子には、前記導体パターンによって前記第1の方向に磁気バイアスが印加されるとともに、第1の磁性体層によって前記第2の方向に磁気バイアスが印加されることを特徴とする磁気センサ。
【請求項2】
前記感磁素子に沿って前記第1の方向に延在するエッジを有する第2の磁性体層をさらに備え、
前記感磁素子は、前記第1の磁性体層の前記エッジと前記第2の磁性体層の前記エッジからなるギャップによって形成される磁路上に配置されることを特徴とする請求項1に記載の磁気センサ。
【請求項3】
前記導体パターンは、前記コイル状部分に接続され、平面視で前記第1及び第2の磁性体層の少なくとも一方と重なる引き出し部分をさらに含むことを特徴とする請求項2に記載の磁気センサ。
【請求項4】
前記導体パターンの前記コイル状部分は、一端が前記第1の磁性体層と重なり、他端が前記第2の磁性体層と重なり、積層方向における一方側で前記感磁素子と交差する複数の第1平面導体部と、一端が前記第1の磁性体層と重なり、他端が前記第2の磁性体層と重なり、前記積層方向における他方側で前記感磁素子と交差する複数の第2平面導体部と、前記第1平面導体部の前記一端と前記第2平面導体部の前記一端を接続する複数の第1スルーホール導体部と、前記第1平面導体部の前記他端と前記第2平面導体部の前記他端を接続する複数の第2スルーホール導体部とを含むことを特徴とする請求項2又は3に記載の磁気センサ。
【請求項5】
前記第1平面導体部の前記一端と前記他端の前記第1の方向における位置の差は、前記第2平面導体部の前記一端と前記他端の前記第1の方向における位置の差と異なることを特徴とする請求項4に記載の磁気センサ。
【請求項6】
前記第2平面導体部は、前記積層方向において前記感磁素子と前記第1及び第2の磁性体層との間に位置することを特徴とする請求項4又は5に記載の磁気センサ。
【請求項7】
前記第2平面導体部は、前記第1平面導体部よりも導体厚が薄いことを特徴とする請求項6に記載の磁気センサ。
【請求項8】
前記感磁素子は、検出対象となる外部磁界によって互いに逆方向に磁界が印加され、且つ、前記導体パターンに流れる電流によって互いに同方向に磁気バイアスが印加される第1及び第2の感磁素子を含み、
前記第1及び第2の感磁素子がハーフブリッジ接続されていることを特徴とする請求項1乃至7のいずれか一項に記載の磁気センサ。
【請求項9】
前記感磁素子は、前記外部磁界によって互いに逆方向に磁界が印加され、且つ、前記導体パターンに流れる電流によって互いに同方向に磁気バイアスが印加される第3及び第4の感磁素子をさらに含み、
前記第1乃至第4の感磁素子がフルブリッジ接続されていることを特徴とする請求項8に記載の磁気センサ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は磁気センサに関し、特に、感磁素子に2方向から磁気バイアスを印加することが可能な磁気センサに関する。
【背景技術】
【0002】
磁気センサに用いられる感磁素子には、検出対象となる外部磁界とは別に磁気バイアスが印加されることがある。例えば、特許文献1,2に記載された磁気センサは、感磁素子の感磁方向(固定磁化方向)と直交する長手方向に磁気バイアスを印加することによって、感磁素子のヒステリシス性を抑制している。
【0003】
一方、感磁素子の感磁方向である短手方向に磁気バイアスを印加すれば、動作点がシフトすることから、より高い検出感度を得ることが可能である。
【0004】
したがって、感磁素子に対し、短手方向と長手方向の2方向から磁気バイアスを印加すれば、検出感度が高められると同時に、感磁素子のヒステリシス性を抑制することが可能となる。
【先行技術文献】
【特許文献】
【0005】
【文献】特開平5-54342号公報
【文献】特開2008-249556号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、感磁素子に対して2方向から磁気バイアスを印加するためには、長手方向に磁気バイアスを与える手段と、短手方向に磁気バイアスを与える手段の両方を設ける必要があるため、センサの装置構成が複雑化するという問題があった。
【0007】
したがって、本発明は、比較的簡単な構成によって感磁素子に2方向から磁気バイアスを印加することが可能な磁気センサを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明による磁気センサは、第1の方向を長手方向とし、第1の方向と直交する第2の方向を感磁方向とする感磁素子と、感磁素子に巻回され、第1の方向を軸方向とするコイル状部分を有する導体パターンと、感磁素子に沿って第1の方向に延在するエッジを有する第1の磁性体層と、を備え、感磁素子には、導体パターンによって第1の方向に磁気バイアスが印加されるとともに、第1の磁性体層によって第2の方向に磁気バイアスが印加されることを特徴とする。
【0009】
本発明によれば、検出対象となる外部磁界が第1の磁性体層によって効率よく感磁素子に印加されるとともに、導体パターンと第1の磁性体層によって第1及び第2の方向から磁気バイアスを与えることができるため、比較的簡単な構成によって感磁素子に2方向から磁気バイアスを印加することが可能となる。
【0010】
本発明による磁気センサは、感磁素子に沿って第1の方向に延在するエッジを有する第2の磁性体層をさらに備え、感磁素子は、第1の磁性体層のエッジと第2の磁性体層のエッジからなるギャップによって形成される磁路上に配置されるものであっても構わない。これによれば、検出対象となる外部磁界を第1及び第2の磁性体層によって効率よく感磁素子に印加することが可能となる。
【0011】
本発明において、導体パターンは、コイル状部分に接続され、平面視で第1及び第2の磁性体層の少なくとも一方と重なる引き出し部分をさらに含むものであっても構わない。これによれば、引き出し部分の向きや長さなどに基づいて、第2の方向の磁気バイアスの向きや強さを調整することが可能となる。
【0012】
本発明において、導体パターンのコイル状部分は、一端が第1の磁性体層と重なり、他端が第2の磁性体層と重なり、積層方向における一方側で感磁素子と交差する複数の第1平面導体部と、一端が第1の磁性体層と重なり、他端が第2の磁性体層と重なり、積層方向における他方側で感磁素子と交差する複数の第2平面導体部と、第1平面導体部の一端と第2平面導体部の一端を接続する複数の第1スルーホール導体部と、第1平面導体部の他端と第2平面導体部の他端を接続する複数の第2スルーホール導体部とを含むものであっても構わない。これによれば、基板上に形成された多層配線によってコイル状部分を構成することが可能となる。
【0013】
本発明において、第1平面導体部の一端と他端の第1の方向における位置の差は、第2平面導体部の一端と他端の第1の方向における位置の差と異なるものであっても構わない。これによれば、コイル状部分に流れる電流によって生じる磁束に第1の方向成分だけでなく、第2の方向成分も重畳することから、コイル状部分によって第2の方向に磁気バイアスを与えることが可能となる。
【0014】
本発明において、第2平面導体部は、積層方向において感磁素子と第1及び第2の磁性体層との間に位置するものであっても構わない。これによれば、導体パターンと第1及び第2の磁性体層の干渉を防止することが可能となる。この場合、第2平面導体部は、第1平面導体部よりも導体厚が薄くても構わない。これによれば、ギャップを介して流れる磁束を効率よく感磁素子に印加することが可能となる。
【0015】
本発明において、感磁素子は、検出対象となる外部磁界によって互いに逆方向に磁界が印加され、且つ、導体パターンに流れる電流によって互いに同方向に磁気バイアスが印加される第1及び第2の感磁素子を含み、第1及び第2の感磁素子がハーフブリッジ接続されていても構わない。これによれば、高い信号レベルを得ることが可能となる。
【0016】
本発明において、感磁素子は、外部磁界によって互いに逆方向に磁界が印加され、且つ、導体パターンに流れる電流によって互いに同方向に磁気バイアスが印加される第3及び第4の感磁素子をさらに含み、第1乃至第4の感磁素子がフルブリッジ接続されていても構わない。これによれば、より高い信号レベルを得ることが可能となる。
【発明の効果】
【0017】
このように、本発明による磁気センサは、比較的簡単な構成によって感磁素子に2方向から磁気バイアスを印加することが可能となる。
【図面の簡単な説明】
【0018】
【
図1】
図1は、本発明の第1の実施形態による磁気センサ10の構造を説明するための平面図である。
【
図2】
図2は、
図1に示すA1-A1線に沿った略断面図である。
【
図3】
図3は、磁束φが均等に分配される様子を説明するための模式図である。
【
図4】
図4は、感磁素子R1~R4と端子電極51~54の接続関係を説明するための回路図である。
【
図5】
図5は、
図1に示す領域B1を拡大して示す透視平面図である。
【
図6】
図6は、
図5に示す領域B2をさらに拡大して示す透視平面図である。
【
図7】
図7は、
図6に示すA2-A2線に沿った略断面図である。
【
図8】
図8は、
図7に示す領域B3をさらに拡大して示す透視平面図である。
【
図9】
図9は、導体パターン60に電流を流した場合に生じる磁界のシミュレーション結果である。
【
図10】
図10は、導体パターン60に電流を流した場合に生じる磁界のシミュレーション結果である。
【
図11】
図11は、本発明の第2の実施形態による磁気センサ10Aの構造を説明するための平面図である。
【発明を実施するための形態】
【0019】
以下、添付図面を参照しながら、本発明の好ましい実施形態について詳細に説明する。
【0020】
<第1の実施形態>
図1は、本発明の第1の実施形態による磁気センサ10の構造を説明するための平面図である。また、
図2は、
図1に示すA1-A1線に沿った略断面図である。
【0021】
図1及び
図2に示すように、本実施形態による磁気センサ10は、センサ基板20と外部磁性体31~33を備えている。センサ基板20は、略直方体形状を有するチップ部品であり、その素子形成面21には4つの感磁素子R1~R4及び3つの磁性体層41~43が形成されている。また、素子形成面21には6つの端子電極51~56が設けられており、ボンディングワイヤなどを介して図示しない回路基板に接続される。
【0022】
外部磁性体31~33は、フェライトなど透磁率の高い軟磁性材料からなるブロックである。外部磁性体31は素子形成面21の略中央部に配置され、z方向に突出する形状を有している。これに対し、外部磁性体32,33は、センサ基板20のx方向における両側にそれぞれ配置され、その先端はL字状に折れ曲がって素子形成面21を覆っている。
【0023】
センサ基板20の素子形成面21には、磁性体層41~43が形成されている。磁性体層41は、素子形成面21の略中央に位置し、そのx方向における両側に磁性体層42,43が配置される。特に限定されるものではないが、磁性体層41~43としては、樹脂材料に磁性フィラーが分散された複合磁性材料からなる膜であっても構わないし、ニッケル又はパーマロイなどの軟磁性材料からなる薄膜もしくは箔であっても構わないし、フェライトなどからなる薄膜又はバルクシートであっても構わない。
【0024】
磁性体層41は、中央に位置し、外部磁性体31によって覆われる主領域M1と、主領域M1からx方向に離れるに従ってy方向における幅が狭くなる収束領域S1~S4を含む。
図1に示すように、収束領域S1,S3は主領域M1に対してx方向マイナス側(左側)に位置し、収束領域S2,S4は主領域M1に対してx方向プラス側(右側)に位置する。
【0025】
一方、磁性体層42は、外部磁性体32によって覆われる主領域M2と、主領域M2からx方向(プラス側)に離れるに従ってy方向における幅が狭くなる収束領域S5,S7を含む。同様に、磁性体層43は、外部磁性体33によって覆われる主領域M3と、主領域M3からx方向(マイナス側)に離れるに従ってy方向における幅が狭くなる収束領域S6,S8を含む。
【0026】
外部磁性体31は、z方向の磁束φを取り込む役割を果たす。外部磁性体31を介して取り込まれた磁束φは、主領域M1に入射され、
図3に示すように収束領域S1~S4に対してほぼ均等に分配される。収束領域S1~S4に達した磁束φは、それぞれy方向に延在するギャップG1~G4を介して、収束領域S5~S8に供給される。収束領域S5,S7に到達した磁束は、主領域M2を介して外部磁性体32に回収される。同様に、収束領域S6,S8に到達した磁束は、主領域M3を介して外部磁性体33に回収される。
【0027】
図1に示すように、ギャップG1~G4によって形成される磁路上には、それぞれy方向を長手方向とする感磁素子R1~R4が配置されている。感磁素子R1~R4は、ギャップG1~G4内に配置されていても構わないが、ギャップG1~G4外であっても、当該ギャップによって形成される磁路上に配置されていれば足りる。また、ギャップG1~G4の幅方向はx方向であっても構わないし、感磁素子R1~R4にx方向成分を有する磁束φを印加可能である限り、ギャップG1~G4の幅方向がz方向成分を有していても構わない。
【0028】
感磁素子R1~R4は、磁束密度によって物理特性の変化する素子であれば特に限定されないが、磁界の向きに応じて電気抵抗が変化する磁気抵抗素子であることが好ましく、スピンバルブ型GMR素子又はスピンバルブ型TMR素子であることが特に好ましい。本実施形態においては、感磁素子R1~R4の感磁方向(固定磁化方向)は、
図1の矢印Pが示す方向(x方向におけるプラス側)に全て揃えられている。
【0029】
かかる構成により、外部磁性体31を介して主領域M1に集められた磁束φは、感磁素子R1~R4を介してほぼ均等に分配される。このため、感磁素子R1,R3と感磁素子R2,R4には、互いに逆方向の磁束が与えられることになる。上述の通り、感磁素子R1~R4の磁化固定方向は、矢印Pが示すxプラス方向に向けられていることから、磁束のx方向における成分に対して感度を持つ。
【0030】
図4は、感磁素子R1~R4と端子電極51~54の接続関係を説明するための回路図である。
【0031】
図4に示すように、端子電極51,54には、それぞれグランド電位Gnd及び電源電位Vddが供給される。また、端子電極51,54間には、感磁素子R1,R2が直列に接続されるとともに、感磁素子R4,R3が直列に接続される。そして、感磁素子R3,R4の接続点は端子電極52に接続され、感磁素子R1,R2の接続点は端子電極53に接続される。このようなフルブリッジ接続により、端子電極53に現れる電位Vaと端子電極52に現れる電位Vbを参照することにより、磁束密度に応じた感磁素子R1~R4の電気抵抗の変化を高感度に検出することが可能となる。
【0032】
具体的には、感磁素子R1~R4が全て同一の磁化固定方向を有していることから、外部磁性体31からみて一方側に位置する感磁素子R1,R3の抵抗変化量と、外部磁性体31からみて他方側に位置する感磁素子R2,R4の抵抗変化量との間には差が生じる。この差は、
図4に示したフルブリッジ回路によって2倍に増幅され、端子電極52,53に現れる。したがって、端子電極52,53に現れる電位Va,Vbの差を検出することによって、磁束密度を測定することが可能となる。
【0033】
図5は、
図1に示す領域B1を拡大して示す透視平面図であり、
図6は、
図5に示す領域B2をさらに拡大して示す透視平面図である。また、
図7は、
図6に示すA2-A2線に沿った略断面図であり、
図8は、
図7に示す領域B3をさらに拡大して示す透視平面図である。
【0034】
図5~
図8に示すように、センサ基板20の素子形成面21には、磁性体層41~43の下層に導体パターン60がさらに形成されている。導体パターン60は、感磁素子R1~R4の周囲に巻回され、y方向を軸方向とするコイル状部分Cと、コイル状部分Cの両端に接続された引き出し部分Dを有している。
図5~
図8には感磁素子R2の近傍のみが示されているが、他の感磁素子R1,R3,R4の周囲もコイル状部分Cで囲まれている。以下、感磁素子R2近傍の導体パターン60に着目して説明するが、他の感磁素子R1,R3,R4の近傍にも同様の導体パターン60が形成されている。
【0035】
導体パターン60は、
図1に示す端子電極55,56に接続され、外部から任意の電流を流すことが可能である。感磁素子R1~R4に対応するそれぞれの導体パターン60は、直列接続されていても構わないし、並列接続されていても構わないし、互いに独立して個別の端子電極が割り当てられていても構わない。
【0036】
導体パターン60のコイル状部分Cは、感磁素子R2よりも下層に位置する複数の第1平面導体部61と、感磁素子R2よりも上層に位置する複数の第2平面導体部62と、第1平面導体部61の一端と第2平面導体部62の一端を接続する複数の第1スルーホール導体部63と、第1平面導体部61の他端と第2平面導体部62の他端を接続する複数の第2スルーホール導体部64とを含んでいる。そして、第1平面導体部61についてはx方向にほぼ直線的に延在するのに対し、第2平面導体部62については、両端の位置が1ピッチ分だけy方向にシフトしていることから、コイル状部分Cはy方向を軸方向とするソレノイドコイルを構成する。
【0037】
このため、導体パターン60に直流電流を流すと、感磁素子R2にはy方向の磁気バイアスが印加されることになる。y方向は、感磁素子R2の感磁方向ではないが、y方向に所定の磁気バイアスを印加することにより、感磁素子R2のヒステリシス性を抑制することが可能となる。y方向の磁気バイアスの強さは、導体パターン60に流す電流によって任意に調整することが可能である。
【0038】
さらに、導体パターン60の引き出し部分Dは、平面視で磁性体層41,43と重なっているため、導体パターン60に直流電流を流すと、磁性体層41,43に磁束が発生する。例えば、
図5に示すように、引き出し部分Dのうち、磁性体層41と重なる部分D1はy方向に延在する部分を有し、磁性体層43と重なる部分D3はy方向に延在する部分を有していることから、導体パターン60に矢印Iで示す方向に電流を流すと、磁性体層41には矢印φ1で示す方向に磁束が発生し、磁性体層43には矢印φ3で示す方向に磁束が発生する。その結果、ギャップG2を介し、磁性体層41から磁性体層43に向かって磁界が発生することから、感磁素子R2にはx方向の磁気バイアスが印加されることになる。x方向は、感磁素子R2の感磁方向であり、x方向に所定の磁気バイアスを印加することにより感磁素子R2の動作点がシフトすることから、より高い検出感度を得ることが可能となる。
図8に示すように、ギャップG2は、感磁素子R2に沿ってy方向に延在する磁性金属板41のエッジ41aと、感磁素子R2に沿ってy方向に延在する磁性金属板43のエッジ43aによって構成される。
【0039】
x方向の磁気バイアスの強さは、導体パターン60に流す電流によって調整できるとともに、部分D1,D3のうちy方向に延在する部分に長さによって調整することができる。導体パターン60に流す電流の電流量は、コイル状部分Cが発生すべきy方向の磁気バイアスの強さによって決定されることから、x方向の磁気バイアスの強さは、引き出し部分Dの形状によって調整することが好ましい。
【0040】
このように、本実施形態による磁気センサ10は、導体パターン60に電流を流すことによって、感磁素子R1~R4に2方向から磁気バイアスを印加することができる。つまり、感磁素子R1~R4にx方向の磁気バイアスを印加する手段と、感磁素子R1~R4にy方向の磁気バイアスを印加する手段を別個に設ける必要がないことから、比較的簡単な構成によって感磁素子R1~R4に2方向から磁気バイアスを印加することが可能となる。
【0041】
ここで、x方向の磁気バイアス量は、導体パターン60の引き出し部分Dだけでなく、コイル状部分Cを構成する第1平面導体部61及び第2平面導体部62の形状によっても調整することが可能である。本実施形態においては、第1平面導体部61及び第2平面導体部62の一端が磁性体層41と重なっており、第1平面導体部61及び第2平面導体部62の他端が磁性体層43と重なっているため、この部分における平面形状によってx方向の磁気バイアスが変化する。例えば、第2平面導体部62は、両端の位置が1ピッチ分だけy方向にシフトした平面形状を有しているため、矢印Iで示す方向に電流を流すと、発生する磁束には、y方向成分のみならずx方向成分も含まれ、その結果、磁性体層41から磁性体層43に向かって磁界が発生する。
【0042】
また、本実施形態においては、積層方向(z方向)に見て、第2平面導体部62が感磁素子R2と磁性体層41,43の間に位置しているとともに、第2平面導体部62の導体厚T2が第1平面導体部61の導体厚T1よりも薄く設定されている。これにより、ギャップG2と感磁素子R2のz方向における距離が短縮されることから、ギャップG2を介して流れる磁束を効率よく感磁素子R2に印加することが可能となる。
【0043】
図9及び
図10は、導体パターン60に電流を流した場合に生じる磁界のシミュレーション結果である。
図9に示すように、導体パターン60に電流を流すと、主に引き出し部分Dのうちy方向に延在する部分からx方向の磁束が発生し、その結果、
図10に示すようにギャップG2に生じる磁界にx方向成分が重畳していることが分かる。
【0044】
<第2の実施形態>
図11は、本発明の第2の実施形態による磁気センサ10Aの構造を説明するための平面図である。また、
図12は、
図11に示す領域E1を拡大して示す透視平面図であり、
図13は、
図12に示す領域E2をさらに拡大して示す透視平面図である。また、
図14は、
図13に示すA3-A3線に沿った略断面図であり、
図15は、
図14に示す領域E3をさらに拡大して示す透視平面図である。
【0045】
図11~
図15に示すように、本実施形態による磁気センサ10Aは、外部磁性体32,33と磁性体層42,43が削除されている点において、第1の実施形態による磁気センサ10と相違している。その他の構成は、第1の実施形態による磁気センサ10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
【0046】
本実施形態においては、磁性体層42,43が存在しないことから、感磁素子R1~R4はギャップG1~G4によって形成される磁路上に配置されるのではなく、y方向に延在する磁性体層41のエッジ41aに沿って配置されることになる。このような構成であっても、外部磁性体31を介して取り込まれた磁束φが磁性体層41を介して感磁素子R1~R4に印加されることから、第1の実施形態と同様、端子電極52,53に現れる電位Va,Vbの差を検出することによって磁束密度を測定することが可能となる。そして、第1の実施形態と同様、端子電極55,56を介して導体パターン60に電流を流すことにより、感磁素子R1~R4にx方向の磁気バイアス及びy方向の磁気バイアスを印加することができる。
【0047】
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
【0048】
例えば、上記実施形態では4つの感磁素子R1~R4を用い、これらをフルブリッジ接続しているが、本発明による磁気センサに使用する感磁素子の数がこれに限定されるものではない。このため、感磁素子R1,R4を省略し、2つの感磁素子R2,R3をハーフブリッジ接続することも可能である。
【符号の説明】
【0049】
10,10A 磁気センサ
20 センサ基板
21 素子形成面
31~33 外部磁性体
41~43 磁性体層
41a,43a エッジ
51~56 端子電極
60 導体パターン
B1~B3,E1~E3 領域
C コイル状部分
D 引き出し部分
D1,D3 部分
G1~G4 ギャップ
M1~M3 主領域
R1~R4 感磁素子
S1~S8 収束領域
φ 磁束