IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 独立行政法人 宇宙航空研究開発機構の特許一覧 ▶ 学校法人東海大学の特許一覧

<>
  • 特許-空間光通信装置 図1
  • 特許-空間光通信装置 図2
  • 特許-空間光通信装置 図3
  • 特許-空間光通信装置 図4
  • 特許-空間光通信装置 図5
  • 特許-空間光通信装置 図6
  • 特許-空間光通信装置 図7
  • 特許-空間光通信装置 図8
  • 特許-空間光通信装置 図9
  • 特許-空間光通信装置 図10
  • 特許-空間光通信装置 図11
  • 特許-空間光通信装置 図12
  • 特許-空間光通信装置 図13
  • 特許-空間光通信装置 図14
  • 特許-空間光通信装置 図15
  • 特許-空間光通信装置 図16
  • 特許-空間光通信装置 図17
  • 特許-空間光通信装置 図18
  • 特許-空間光通信装置 図19
  • 特許-空間光通信装置 図20
  • 特許-空間光通信装置 図21
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-02-17
(45)【発行日】2022-02-28
(54)【発明の名称】空間光通信装置
(51)【国際特許分類】
   H04B 10/118 20130101AFI20220218BHJP
   H04B 10/07 20130101ALI20220218BHJP
【FI】
H04B10/118
H04B10/07
【請求項の数】 11
(21)【出願番号】P 2019142616
(22)【出願日】2019-08-01
(65)【公開番号】P2021027438
(43)【公開日】2021-02-22
【審査請求日】2021-03-18
(73)【特許権者】
【識別番号】503361400
【氏名又は名称】国立研究開発法人宇宙航空研究開発機構
(73)【特許権者】
【識別番号】000125369
【氏名又は名称】学校法人東海大学
(74)【代理人】
【識別番号】100104215
【弁理士】
【氏名又は名称】大森 純一
(74)【代理人】
【識別番号】100196575
【弁理士】
【氏名又は名称】高橋 満
(74)【代理人】
【識別番号】100168181
【弁理士】
【氏名又は名称】中村 哲平
(74)【代理人】
【識別番号】100117330
【弁理士】
【氏名又は名称】折居 章
(74)【代理人】
【識別番号】100160989
【弁理士】
【氏名又は名称】関根 正好
(74)【代理人】
【識別番号】100168745
【弁理士】
【氏名又は名称】金子 彩子
(74)【代理人】
【識別番号】100176131
【弁理士】
【氏名又は名称】金山 慎太郎
(74)【代理人】
【識別番号】100197398
【弁理士】
【氏名又は名称】千葉 絢子
(74)【代理人】
【識別番号】100197619
【弁理士】
【氏名又は名称】白鹿 智久
(72)【発明者】
【氏名】向井 達也
(72)【発明者】
【氏名】高山 佳久
【審査官】前田 典之
(56)【参考文献】
【文献】特開2002-335218(JP,A)
【文献】特開2005-277810(JP,A)
【文献】特開2001-264440(JP,A)
【文献】国際公開第2017/029808(WO,A1)
【文献】特開2007-150455(JP,A)
【文献】特表2017-526287(JP,A)
【文献】E. Ciaramella et al.,1.28 terabit/s (32x40 Gbit/s) wdm transmission system for free space optical communications,IEEE Journal on Selected Areas in Communications,IEEE,2009年12月01日,Volume: 27, Issue: 9,pages.1639-1645
(58)【調査した分野】(Int.Cl.,DB名)
H04B 10/118
H04B 10/07
(57)【特許請求の範囲】
【請求項1】
宇宙機へ向けて第1レーザ光を送信する送信部と、
前記宇宙機から送信される第2レーザ光を受信する受信部と、
前記第1レーザ光の出射方向上空を飛行する飛翔体を監視する監視ユニット、
前記第1レーザ光の前記送信部からの出射方向を検出するビームモニタと、
前記ビームモニタの出力に基づいて前記第1レーザ光の周囲を区画する第1監視領域を設定し、前記監視ユニットの出力に基づいて前記飛翔体の前記第1監視領域への進入を判定したときに前記第1レーザ光の送信を停止させる制御信号を生成する制御部と
を具備する空間光通信装置。
【請求項2】
請求項1に記載の空間光通信装置であって、
前記制御部は、前記飛翔体が前記送信部から遠ざかるほど前記第1監視領域を広く設定する
空間光通信装置。
【請求項3】
請求項1又は2に記載の空間光通信装置であって、
警報器をさらに具備し、
前記制御部は、前記第1監視領域の周囲を区画する第2監視領域をさらに設定し、前記飛翔体の前記第2監視領域への進入を判定したときに前記警報器を発動させる制御信号を生成する
空間光通信装置。
【請求項4】
請求項1~3のいずれか1つに記載の空間光通信装置であって、
前記ビームモニタは、前記第1レーザ光の大気での散乱光を撮影するカメラユニットを有し、
前記カメラユニットは、所定の角度で相互に交差する2つの方向から観察した前記散乱光の画像を取得する
空間光通信装置。
【請求項5】
請求項1~4のいずれか1つに記載の空間光通信装置であって、
前記監視ユニットは、監視距離がそれぞれ異なる複数の監視装置を含む
空間光通信装置。
【請求項6】
請求項5に記載の空間光通信装置であって、
前記監視ユニットは、熱赤外線カメラを含む
空間光通信装置。
【請求項7】
請求項5に記載の空間光通信装置であって、
前記監視ユニットは、レーダー装置を含む
空間光通信装置。
【請求項8】
請求項5に記載の空間光通信装置であって、
前記監視ユニットは、前記飛翔体から送信される識別情報を受信する受信装置を含む
空間光通信装置。
【請求項9】
請求項1~8のいずれか1つに記載の空間光通信装置であって、
前記第1レーザ光、前記飛翔体及び前記第1監視領域の相対位置関係を表示することが可能な表示部をさらに具備する
空間光通信装置。
【請求項10】
請求項1~9のいずれか1つに記載の空間光通信装置であって、
前記第2レーザ光を受光する受光面を有し、前記第2レーザ光の伝播経路上における大気に揺らぎを検出するシーイングモニタをさらに具備し、
前記制御部は、前記シーイングモニタの出力に基づいて、前記第1監視領域の広さを設定する
空間光通信装置。
【請求項11】
請求項1~10のいずれか1つに記載の空間光通信装置であって、
前記第2レーザ光の受光強度を検出する受光強度モニタをさらに具備し、
前記制御部は、前記受光強度モニタの出力に基づいて、前記第1レーザ光の拡がり角及びパワーを制御する制御信号を生成する
空間光通信装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、例えば、宇宙空間を周回する人工衛星などの宇宙機と光通信を行う空間光通信装置に関する。
【背景技術】
【0002】
近年、宇宙空間において地球周回軌道を周回する人工衛星等の宇宙機により、地球上の地上局と光衛星通信を行う研究が進められている。この光衛星通信は、大容量データ伝送が可能であり、かつ、軽量で小型なシステム構成で実現でき、電波と比較して干渉が少ない等の利点があることから、今後の宇宙通信を担う技術として注目されている。
【0003】
宇宙-地上間光空間伝送は、その伝送区間を雲にブロッキングされないようにするため、雲が存在しない空間(地球大気下)で行われる。一方、宇宙機から地上局へ向けて送信されるダウンリンクが大気擾乱の影響を受け、受信側で受光可能な電力が減少して通信品質が低下し、最悪の場合、バースト的に情報が失われることがある。このため、大気の影響を抑制することが可能な何らかの補償技術が必要となる。
【0004】
このような問題を解消するため、例えば特許文献1には、人工衛星から出射された受信光波を集光すると共に人工衛星へ向けて出射される送信光波の伝播経路を含む空間を伝播した経路伝播光を望遠鏡により集光し、集光された受信光波及び経路伝播光の波面歪に基づいて、大気の揺らぎやフェージングの影響を加味した送信光波の伝播経路の角度を算出し、当該角度で送信光波が人工衛星へ到達するように望遠鏡の可変形鏡を制御する空間光通信装置が開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2018-121281号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
一方、光空間伝送には高出力レーザが使用されるため、航空機等の飛翔体が伝送区間を通過する際は、地上からのレーザの送信を停止させて航空・宇宙相互の安全を確保する調和的運用が必要とされる。しかし現状では、監視員が目視にて上空を監視し、伝送区間への飛翔体の接近を確認した時点でレーザの送信を停止させる運用が主流であるため、飛翔体の監視及び送信の停止を連携して自動的に行うことができるシステムの構築が求められている。
【0007】
以上のような事情に鑑み、本発明の目的は、飛翔体の監視及びレーザ送信の停止を自動的に行うことができる空間光通信装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的を達成するため、本発明の一形態に係る空間光通信装置は、送信部と、受信部と、監視ユニットと、ビームモニタと、制御部とを具備する。
前記送信部は、宇宙機へ向けて第1レーザ光を送信する。
前記受信部は、前記宇宙機から送信される第2レーザ光を受信する。
前記監視ユニットは、前記第1レーザ光の出射方向上空を飛行する飛翔体を監視する。
前記ビームモニタは、前記第1レーザ光の前記送信部からの出射方向を検出する。
前記制御部は、前記ビームモニタの出力に基づいて前記第1レーザ光の周囲を区画する第1監視領域を設定し、前記監視ユニットの出力に基づいて前記飛翔体の前記第1監視領域への進入を判定したときに前記第1レーザ光の送信を停止させる制御信号を生成する。
【0009】
上記空間光通信装置によれば、第1レーザ光と飛翔体との相対位置を監視し、第1レーザ光に飛翔体が所定以上接近したときは第1レーザ光の出射を停止させる一連の制御を自動的に行うことができる。
【0010】
前記制御部は、前記飛翔体が前記送信部から遠ざかるほど前記第1監視領域を広く設定するように構成されてもよい。
【0011】
前記空間光通信装置は、警報器をさらに具備してもよい。前記制御部は、前記第1監視領域の周囲を区画する第2監視領域をさらに設定し、前記飛翔体の前記第2監視領域への進入を判定したときに前記警報器を発動させる制御信号を生成してもよい。
【0012】
前記ビームモニタは、前記第1レーザ光の大気での散乱光を撮影するカメラユニットを有し、前記カメラユニットは、所定の角度で相互に交差する2つの方向から観察した前記散乱光の画像を取得するように構成されてもよい。
【0013】
前記監視ユニットは、監視距離がそれぞれ異なる複数の監視装置を含んでもよい。
【0014】
前記監視ユニットは、熱赤外線カメラ、レーダー装置、あるいは、前記飛翔体から送信される識別情報を受信する受信装置を含んでもよい。
【0015】
前記空間光通信装置は、前記第1レーザ光、前記飛翔体及び前記第1監視領域の相対位置関係を表示することが可能な表示部をさらに具備してもよい。
【0016】
前記空間光通信装置は、前記第2レーザ光を受光する受光面を有し、前記第2レーザ光の伝播経路上における大気に揺らぎを検出するシーイングモニタをさらに具備し、前記制御部は、前記シーイングモニタの出力に基づいて、前記第1監視領域の広さを設定するように構成されてもよい。
【0017】
前記空間光通信装置は、前記第2レーザ光の受光強度を検出する受光強度モニタをさらに具備し、前記制御部は、前記受光強度モニタの出力に基づいて、前記第1レーザ光の拡がり角及びパワーを制御する制御信号を生成するように構成されてもよい。
【発明の効果】
【0018】
本発明によれば、空間光通信装置は、飛翔体の監視及びレーザ送信の停止を自動的に行うことができる。
【図面の簡単な説明】
【0019】
図1】本発明の一実施形態に係る空間光通信装置を含む空間光通信システムを示す概略構成図である。
図2】上記空間光通信装置における送信部の一構成例を示す概略図である。
図3】宇宙機から空間光通信装置へ送信されるダウンリンク(第2レーザ光)の大気の揺らぎによる影響を説明する模式図である。
図4】上記空間光通信装置におけるシーイングモニタの一構成例を示す概略斜視図である。
図5】上記シーイングモニタの受光面における第2レーザ光の結像画像を示す模式図である。
図6】上記空間光通信装置における受光強度モニタの一構成例を示す模式図である。
図7】宇宙機へ向けて送信されるアップリンク(第1レーザ光)のビームワンダリング現象を説明する模式図である。
図8】上記空間光通信装置におけるビームモニタの一構成例を示す図である。
図9】上記ビームモニタの構成の説明図である。
図10】上記ビームモニタの作用を説明する図である。
図11】上記ビームモニタの他の構成例を示す図である。
図12】上記空間光通信装置における制御部の構成を示す機能ブロック図である。
図13】上記制御部において実行されるビーム制御モードの処理手順の一例を示すフローチャートである。
図14】上記空間光通信装置における監視ユニットの取得画像の一例を示す図である。
図15】上記空間光通信装置における監視ユニットからの出力信号に基づいて設定される第1監視領域及び第2監視領域A2の概念図である。
図16】上記第1監視領域及び第2監視領域の説明図である。
図17】監視モードの実行時における空間光通信装置の各部の動作を時系列的に示すシーケンス図である。
図18】上記制御部の処理手順の一例を示すフローチャートである。
図19】上記制御部の処理手順の一例を示すフローチャートである。
図20】上記制御部の処理手順の一例を示すフローチャートである。
図21】上記制御部の処理手順の一例を示すフローチャートである。
【発明を実施するための形態】
【0020】
以下、図面を参照しながら、本発明の実施形態を説明する。
【0021】
図1は、本発明の一実施形態に係る空間光通信システム100を示す概略構成図である。空間光通信システム100は、空間光通信装置Gと、宇宙機Sとを含み、空間光通信装置Gと宇宙機Sとの間で光通信(衛星通信)を行う。
【0022】
宇宙機Sは、典型的には、人工衛星、宇宙ステーションなどの宇宙空間を移動可能な通信機能を有する構造体を意味する。人工衛星は、静止軌道(GEO:Geostationary Earth Orbit)を周回する静止衛星のほか、地球の自転周期とは無関係に地球低軌道(LEO:Low Earth Orbit)や中軌道(MEO:Medium Earth Orbit)、さらには深宇宙等を飛翔する人工衛星などを含む。すなわち宇宙機Sの地表からの高度は特に制限されない。人工衛星は、典型的には気象衛星や通信衛星などであるが、いかなる目的に基づいて打ち上げられたものであってもよい。
【0023】
[空間光通信装置]
空間光通信装置Gは、宇宙機Sとの間で光空間伝送を行う地上局として構成される。空間光通信装置Gは、宇宙機Sから送信される光信号(ダウンリンク)を受信する、あるいは、宇宙機Sとの間で光信号を送受信するための望遠鏡10を備える。本実施形態において望遠鏡10は、主として、宇宙機Sから送信されるダウンリンク(第2レーザ光L2)を受信する受信部として構成される。
【0024】
第2レーザ光L2は、連続レーザであってもよいし、パルスレーザであってもよい。第2レーザ光L2は、典型的には赤外光であり、その波長は、例えば、1550nm、あるいは1064nmである。
【0025】
望遠鏡10は、地上に設置された基台11に設置される。基台11は、望遠鏡10の姿勢を調整する調整機構11aを有し、望遠鏡10は、宇宙機Sを追尾可能に基台11に支持される。基台11は、予報値に従って宇宙機Sを追尾するように望遠鏡10の光軸の方位及び/または仰角を制御する。予報値とは、宇宙機Sの軌道から計算される宇宙機Sの空間座標であり、基台11の設置場所から宇宙機Sまでの空間伝送路の第1レーザ光L1または第2レーザ光L2の波長における屈折率を考慮したものであってもよい。
【0026】
望遠鏡10の口径は特に限定されず、例えば、30cm~10mである。望遠鏡10の開口は単数に限られず、複数であってもよい。望遠鏡10は、集光した第2レーザ光L2を電気信号に変換し、受信情報の解析等の所定の信号処理を施す信号処理部(図示せず)を有する。
【0027】
なお空間光通信装置Gは、地上局として構成される例に限られず、車両や船舶、航空機等の移動体に搭載されてもよい。また、空間光通信装置Gは、ゲートウェイや地上に設置された地上通信ネットワーク、車両、船舶、航空機等をはじめとした通信体と接続されてもよい。この場合、上記ゲートウェイや地上通信ネットワーク、通信体等は、空間光通信装置Gを介して、宇宙機Sとの間で光信号の送受信を行う。
【0028】
空間光通信装置Gは、送信部20と、シーイングモニタ31と、受光強度モニタ32と、ビームモニタ33と、制御部40と、監視ユニット60とを備える。
送信部20は、宇宙機Sへ向けて送信される第1レーザ光L1を出射する。シーイングモニタ31は、宇宙機Sから送信される第2レーザ光L2に基づいて、第2レーザ光L2の伝播経路上における大気の状態(あるいは当該大気の状態を反映したビーム位置情報)を検出する。受光強度モニタ32は、第2レーザ光L2の受光強度を検出する。ビームモニタ33は、第1レーザ光L1の出射方向を検出する(本実施形態では後述するように、ビームワンダの影響を受けたビーム出射角度(方位、仰角)を検出するために、第1レーザ光L1の散乱光L1sをモニタする)。監視ユニット60は、第1レーザ光L1の出射方向上空を飛行する飛翔体を監視する。制御部40は、予報値に従って宇宙機Sを追尾可能に望遠鏡10の光軸の方位、仰角を制御する。制御部40は、シーイングモニタ31、受光強度モニタ32、ビームモニタ33及び監視ユニット60の出力に基づいて送信部20を制御する。
【0029】
(送信部)
送信部20は、アップリンク用の第1レーザ光L1を生成するレーザ光源を有する。第1レーザ光L1は、主として、宇宙機Sのダウンリンクを空間光通信装置Gへ向けて出射させるための誘導光として機能する。第1レーザ光L1は、連続レーザであってもよいし、パルスレーザであってもよい。第1レーザ光L1は、典型的には赤外光であり、その波長は、例えば、1550nmあるいは1064nmである。第1レーザ光L1の拡がり角、パワーも特に限定されず、例えば、拡がり角が50μrad~1mrad、パワーが1W~数10kW(例えば、50kW)である。
【0030】
送信部20は、望遠鏡10の外周部に取り付けられることで、望遠鏡10と一体的に基台11に対して相対移動可能に構成される。送信部20における第1レーザ光L1の出射光軸は、望遠鏡10の光軸と平行に設置される。本実施形態では、多連のレーザ出射ユニットを有し、各々のレーザ出射ユニットが宇宙機Sへ向けて第1レーザ光L1を出射するように構成される。なお勿論、レーザ出射ユニットは複数である場合に限られず、単数であってもよい。また、送信部20は、望遠鏡10の外周部に取り付けられる例に限られず、望遠鏡10の内部に配置されてもよい。
【0031】
図2は、送信部20の一構成例を示す概略図である。送信部20は、ケーシング21と、複数(本例では2つ)のレーザ出射ユニット22とを有する。レーザ出射ユニット22は、ケーシング21の内部に配置され、レーザ光源221、レンズユニット222、出射ミラー223、シャッタ224等をそれぞれ有する。
【0032】
ケーシング21は、望遠鏡10の外周部に固定される。ケーシング21の光出射面には、各レーザ出射ユニット22から出射する第1レーザ光L1を透過させる窓部21W(図1参照)が設けられる。レーザ光源221は、第1レーザ光L1を出射するレーザダイオードであり、レンズユニット222は、レーザ光源221からの出射光の拡がり角を任意に調整可能な複数のレンズを含む。レンズユニット222には、典型的にはビームエクスパンダと呼ばれるレンズユニットを用いることができる。出射ミラー223は、レンズユニット222からの出射光を窓部21Wへ導く複数のミラー素子を含む。当該複数のミラーは、典型的には、窓部21Wからの第1レーザ光L1の出射角をその光軸に関して相互に直交する2軸方向について個々に調整可能な複数の可変ミラーを含む。シャッタ224は、レーザ光の出射経路の任意の位置に配置され、レーザ光源221からの出射光を遮蔽可能に構成される。
【0033】
送信部20は、各レーザ光源221へ電力を供給する駆動回路23と、各レーザ光源221へ供給される電流値を調整する増幅器24とをさらに有する。レーザ出射ユニット22、駆動回路23及び増幅器24は、後述する制御部40からの指令に基づいて個々に制御されることが可能に構成される。
【0034】
(シーイングモニタ)
シーイングモニタ31は、宇宙機Sから空間光通信装置Gへ向けて送信される第2レーザ光L2の伝播経路上における大気の状態を検出する。本実施形態では、大気の状態を反映した第2レーザ光L2のビームポジションを位置情報として検出するため、シーイングモニタ31として、DIMM(Differential Image Motion Monitor)が採用される。
【0035】
ここで、大気の状態とは、典型的には、大気の揺らぎ(seeing)を意味する。大気の揺らぎは、気象条件、大気汚染、周囲の地形、時間、季節等により変動する。宇宙機Sと空間光通信装置Gとの間における空間光伝送は、地上の大気の影響(例えば、地上から宇宙空間に至る連続的な大気濃度変化に伴う連続的な屈折率変化、エアロゾル等の大気中微粒子による光散乱など)を強く受ける。このため、この大気影響を踏まえて、誘導光としてのアップリンク(第1レーザ光L1)が宇宙機Sへ到達するようにその拡がり角、送信強度、送信方向があらかじめ設定される。
【0036】
図3は、宇宙機Sから空間光通信装置Gへ送信されるダウンリンク(第2レーザ光L2)の大気の揺らぎによる影響を説明する模式図である。図3に示すように、宇宙機Sから送信される第2レーザ光L2の波面L2wは、宇宙空間では平面であるのに対し、大気中では歪み面となる。この歪みの程度は、大気状態によって変化し、大気揺らぎの強度が大きいほど大きくなる結果、焦点位置がシフトする。このように、シーイングモニタ31において第2レーザ光L2の焦点位置のシフト量を検出することで、第2レーザ光L2の伝播経路における大気の揺らぎの強度を検出することが可能となる。
【0037】
図4は、シーイングモニタ31の一構成例を示す概略斜視図である。シーイングモニタ31は、例えば直径10cm以下の反射望遠鏡構造を有する。シーイングモニタ31は、望遠鏡10の外周部に固定された筒部311と、筒部311の先端に相互に離間して配置された2つのプリズム(あるいはウェッジ)312と、プリズム312を介して筒部311へ進行した第2レーザ光L2を反射する第1ミラー313及び第2ミラー314と、第2ミラー314の反射光を受光する受光面315aを有する赤外線カメラ315とを有する。
【0038】
図5は、受光面315aにおける第2レーザ光L2の結像画像を示す模式図である。図においてX軸及びY軸はそれぞれ受光面315aの横軸及び縦軸を示し、Z軸はシーイングモニタ31の光軸(軸心)に相当する。図中、P0は、基準値(受光開始時の初期値)における2つのプリズム312を透過した各レーザ光の焦点位置(以下、基準点ともいう)をそれぞれ示している。シーイングモニタ31は、受光面315a上におけるレーザ光の2つの結像点Pの基準点P0からのX軸及びY軸方向のシフト量(X/Y)を検出する。具体的には、シーイングモニタ31を構成する光学系の焦点距離から求められる入射角と、基準点P0からのX軸及びY軸方向のシフト量とから、公知の方法により、シーイング[arcsec]を算出する。
【0039】
シーイングモニタ31において検出信号は、演算器50(図1参照)へ出力される。演算器50は、赤外線カメラ315で検出された2つの結像点Pの相対位置から、大気の揺らぎに関するフリードパラメータ(Fried parameter)Ro[mm]を算出する。フリードパラメータRoは、シーイングを定量的に評価するための指標であり、所定の演算式によって算出されて制御部40へ出力される。制御部40は、算出されたフリードパラメータRo及び後述する受光強度モニタ32の出力等に基づいて、第1レーザ光L1を制御する制御信号を生成し、送信部20へ出力する。
【0040】
なお、演算器50は、シーイングモニタ31の一部として構成されてもよいし、制御部40の一部として構成されてもよい。また、シーイング及びフリードパラメータの算出処理は、制御部40において実行されてもよい。
【0041】
フリードパラメータRoの算出に際しては、シーイングモニタ31の口径に応じた補正係数が乗じられてもよい。DIMMは一般的に、25cm以上の口径を有し、その大きさよりも小さい口径では計測誤差が大きくなることが知られている。しかし、衛星追尾中に同時にダウンリンク光を計測してアップリング制御をするためには、宇宙通信で想定される望遠鏡口径(0.3m~10m程度)に同架可能な大きさにDIMMを小型化する必要がある。
【0042】
そこで本実施形態では、シーイングモニタ31に適用される口径10cm以下のDIMMに関して、口径が25cm程度の基準望遠鏡と比較した統計的分析に基づく補正係数を予め算出し、当該補正係数をシーイングモニタ31の出力に乗じて得られる値からフリードパラメータR0を算出するようにしている。これにより、小型化に起因するDIMMの測定誤差による弊害を抑え、大気状態を高精度に計測することが可能となる。
【0043】
(受光強度モニタ)
受光強度モニタ32は、宇宙機Sから空間光通信装置Gへ向けて送信される第2レーザ光L2の受光強度を検出する。本実施形態において受光強度モニタ32は、望遠鏡10の外周部にシーイングモニタ31と隣接して配置されるが、取付け位置はこれに限られない。受光強度モニタ32は、単位面積当たりの第2レーザ光L2の受光強度を検出可能な光電変換素子で構成される。
【0044】
図6は、受光強度モニタ32の一構成例を示す模式図である。受光強度モニタ32は、筒部321に集光レンズ322と、集光レンズ322で集光した第2レーザ光L2を受光する受光センサ323とを有する。受光センサ323は、第2レーザ光L2の強度に応じた電流値を出力する光電変換素子であり、その出力[dBm]が制御部40へ供給される。
【0045】
(ビームモニタ)
送信部20から出射されるアップリンク(第1レーザ光L1)もまた、上空の大気の揺らぎ、高度により段階的に変化する屈折率等の影響を受けて強度が減衰し、あるいは伝播方向が蛇行する。この現象をビームワンダリングといい、その様子を図7に模式的に示す。
【0046】
アップリンク用の第1レーザ光L1のビームワンダリングに伴うビーム蛇行が所定以上に大きい場合、第1レーザ光L1が宇宙機Sへ到達しにくくなるため、宇宙機Sにとっては、第1レーザ光L1の検出精度が低下する。その結果、ダウンリンク用の第2レーザ光L2の出射方向の精度が低下するため、空間光通信装置Gにおける第2レーザ光L2の受光強度も低下する。そこで本実施形態では、ビームモニタ33によってアップリンク用の第1レーザ光L1のビームワンダリングの影響を受けたビーム蛇行を観測し、その観測値の結果に応じて第1レーザ光L1の出射方向を制御するように構成される。
【0047】
具体的には、観測値からビームの出射方向(方位、仰角)を算出し、宇宙機Sの空間位置に関する予報値(方位、仰角)との差分値を計算する。制御部40は、その差分値を打ち消すように第1レーザ光L1の出射方向を補正するための制御信号を生成する。
【0048】
図8及び図9は、ビームモニタ33の一構成例を示す原理図である。ビームモニタ33は、送信部20から上空に出射された第1レーザ光L1の大気中粒子等による散乱光L1sを撮影することが可能に構成されたカメラユニットで構成される。ビームモニタ33は、筐体331と、筐体331の内部にそれぞれ配置された第1ミラー332、第2ミラー333、第3ミラー334、ビームスプリッタ335、カメラ336及び画像処理部337を有する。
【0049】
第1ミラー332及び第2ミラー333は、送信部20から出射される第1レーザ光L1の大気による散乱光L1s(L1sx,L1sy)を反射する。第1ミラー332で反射した散乱光L1sxは、ビームスプリッタ335を介してカメラ336へ入射する。一方、第2ミラー333で反射した散乱光L1syは、第3ミラー334及びビームスプリッタ335を介してカメラ336へ入射する。
【0050】
カメラ336は、所定の角度で相互に交差する2つの方向から観察した散乱光L1sx,L1syの画像を取得する。つまり、ビームスプリッタ335に入射する2つの反射光は所定の角度をなすように、ビームスプリッタ335及び第1ミラー332、第2ミラー333が配置される。なお図8及び図9では、ビームスプリッタ335に入射する2つの反射光が互いに直交するようにビームスプリッタ335及び第1ミラー332、第2ミラー333が配置されている。また、後述するが、カメラ336の撮影画像336vは、画像処理部337へ出力される。
【0051】
図9においてZ軸は、送信部20における第1レーザ光L1の出射中心を示し、X軸及びY軸方向は、Z軸に直交する2軸方向を示している。第1ミラー332は、XZ平面に平行なX面(第1の平面)から見た第1レーザ光L1の散乱光L1sxを反射し、第2ミラー333は、X面と所定の角度で交差(本実施形態では直交)する、XY平面に平行なY面(第2の平面)から見た第1レーザ光L1の散乱光L1syを反射する。カメラ336は、赤外線カメラであり、X面内において屈折あるいは発散しながら進行する第1レーザ光L1のX面上への散乱光L1sxの投影像と、Y面内において屈折あるいは発散しながら進行する第1レーザ光L1のY面上への散乱光L1syの投影像とを同時に取得する。
【0052】
図10は、カメラ336で取得された散乱光L1sx,L1syの画像336vを示す図である。カメラ336は、赤外線カメラである。同図において、+X方向と-X方向とのなす角が散乱光L1xの散乱角を、そして、+Y方向と-Y方向とのなす角が散乱光L1yの散乱角にそれぞれ相当する。画像処理部337は、散乱光L1x,L1yの画像を分析することで第1レーザ光L1のビームワンダリングの影響を受けた出射ビームの形状を解析し、制御部40へ出力する。典型的には、制御部40は散乱光L1sxと散乱光L1syの画像を重ね合わせて、第1レーザ光L1の伝播方向を割り出す。なお、伝播方向の算出は、制御部40において実行される場合に限らず、画像処理部337において実行されてもよい。
【0053】
なお、ビームモニタ33は、1台のカメラ336で構成される例に限られず、2台のカメラで構成されてもよい。その構成例を図11に模式的に示す。図11において、第1ミラー332及び第2ミラー333で反射した散乱光L1sx,L1syは、それぞれビームスプリッタ338を介して第1カメラ336a及び第2カメラ336bへ入射する。この場合、画像処理部337は、第1カメラ336a及び第2カメラ336bにより取得された散乱光L1sx,L1syの画像から第1レーザ光L1のビームワンダリングの影響を受けた出射ビームの伝播方向を計測する。
【0054】
(監視ユニット)
監視ユニット60は、第1レーザ光L1の出射方向上空を飛行する飛翔体(飛翔体の有無、飛翔体の移動方向など)を監視する。監視ユニット60は、第1レーザ光L1の出射方向上空を飛行する飛翔体を監視することが可能な監視装置が用いられる。この種の監視装置は単一の数または種類の監視装置を用いることができるが、典型的には、監視距離が異なる複数種の監視装置が用いられる。好適には、監視装置として、近距離用(例えば、2km以下)の監視装置、中距離用(例えば、2km超~50km)の監視装置、遠距離用(例えば、50km超)の監視装置が用いられる。
【0055】
図1に示すように、本実施形態では、監視ユニット60として、近距離監視用の熱赤外線カメラ61、中距離監視用のレーダー装置62、遠距離監視用のデータ取得装置63とを備える。勿論、監視ユニット60としてこれらの監視装置(61~63)をすべて備える必要はなく、例えば、熱赤外線カメラ61及びレーダー装置62のみで監視ユニット60が構成されてもよい。
【0056】
熱赤外線カメラ61は、図1に示すように、望遠鏡10の外周部に取り付けられる。本実施形態では、ビームモニタ33の近傍に配置され、ビームモニタ33よりも広い視野角で上空を撮影する。熱赤外線カメラ61の撮影対象には、飛翔体F、雲Cなどが含まれる。飛翔体Fは、典型的には、航空機、ヘリコプター等の飛行体のほか、熱気球などを含む。飛翔体は、有人飛行体に限られず、無人飛行体(ドローン)であってもよい。
【0057】
レーダー装置62は、例えば、Xバンドレーダー探知機である。レーダー装置62は、望遠鏡10とは離間した場所に設置されたレーダー基地に配備される。レーダー装置62は、送信波Rの送信時刻とその反射波である受信波の受信時刻との時間差に基づき、レーダー装置62から飛翔体Fまでの距離を計測し、飛翔体Fの位置(緯度、経度、高度)を算出する。
【0058】
データ取得装置63は、例えば、飛翔体Fの機種や位置に関する情報を送信するデータ送信源から当該情報を無線または有線で取得可能な受信装置である。データ送信源は、国内または国外のデータサーバであってもよいし、飛翔体Fに搭載された送信端末であってもよい。
【0059】
熱赤外線カメラ61、レーダー装置62及びデータ取得装置63の出力は、制御部40へ供給される。本実施形態では、レーダー装置62及びデータ取得装置63の出力は、通信装置64を介して制御部40へ供給されるが、これに限られず、制御部40へ個々に直接供給されるように構成されてもよい。
【0060】
空間光通信装置Gは、さらに、監視ユニット60による飛翔体Fや雲Cの監視結果を表示する表示部70と、第1レーザ光L1への飛翔体Fの接近時に警報を発動する警報器80等を備える。警報器80としては、例えば、ブザー、サイレン等の電気音響変換装置、ランプ等の発光装置、警報を、コマンド、テキスト、画像(アイコン等のデザインを含む)等により電子送信する電子送信装置などが挙げられる。
【0061】
(制御部)
制御部40は、空間光通信装置Gの各部の動作を統括的に制御する(図12参照)。制御部40は、典型的には、CPU(Central Processing Unit)やメモリを有するコンピュータで構成される。制御部40は、シーイングモニタ31(あるいは演算器50)、受光強度モニタ32、ビームモニタ33及び監視ユニット60の各出力を取得する取得部41と、取得部41において取得された各モニタの出力に基づいて、第1レーザ光L1のビーム拡がり角(ビーム幅)及びパワーの補正の有無等を判定する判定部42と、判定部42の出力に基づいて送信部20を制御する制御信号を生成する信号生成部43と、監視ユニット60の出力に基づいて、飛翔体Fや雲Cの監視結果を、人が視認しうる画像形式の表示信号を生成する、及び/または送信部20からの第1レーザ光L1の送信を停止させる制御信号を生成する監視部44を有する。
【0062】
本実施形態において制御部40は、送信部20の制御として、送信部20から出射される第1レーザ光L1のビーム特性を制御するビーム制御モードと、飛翔体Fの接近時に航空・宇宙相互の安全を確保する観点から第1レーザ光L1の送信を停止させる監視モードの2つの制御モードを実行することが可能に構成される。
【0063】
[空間光通信装置の動作]
以下、制御部40の構成の詳細について、空間光通信装置Gの動作と併せて説明する。
【0064】
(ビーム制御モード)
図13は、制御部40において実行されるビーム制御モードの処理手順の一例を示すフローチャートである。
【0065】
空間光通信装置Gは、図1に示すように、送信部20から宇宙機Sへ向けてアップリンク用の第1レーザ光L1を送信し、宇宙機Sは、第1レーザ光L1の到来方向に向けてダウンリンク用の第2レーザ光L2を送信する。望遠鏡10は、第2レーザ光L2を集光し、所定の信号処理を施す。制御部40は、第2レーザ光L2の受光強度Rx等に基づき、後述する第1及び第2のループ処理を実行することで、第1レーザ光L1を出射する送信部20を制御する。
【0066】
(第1のループ処理)
制御部40は、シーイングモニタ31及び演算器50の出力に基づいて大気の揺らぎ(シーイング)及びフリードパラメータRoを取得あるいは算出する(ステップ101,102)。また、制御部40は、受光強度モニタ32の出力に基づいて第2レーザ光L2の受光強度Rxを取得あるいは算出する(ステップ103)。
【0067】
続いて、制御部40は、第2レーザ光L2の受光強度Rxが、所定の強度範囲に達しているか否かを判定する(ステップ104)。所定の強度範囲とは、典型的には、望遠鏡10による受信信号の信号処理を適切に行うのに必要な第2レーザ光L2の強度範囲をいい、任意の一点(ターゲット値)であってもよいが、制御の安定性を高めるため、本例では上記ターゲット値を中心とする所定範囲に設定される。
【0068】
第2レーザ光L2の受光強度Rxが所定の強度範囲内であるときは、大気の揺らぎに変動がないものとみなすことができる。したがって、この場合、制御部40は、第1レーザ光L1の現在の出射条件(ビーム拡がり角、送信パワー(Tx))をそのまま維持し(ステップ105,106)、上述のステップ101~106の処理(以下、第1のループ処理ともいう)を繰り返す。
【0069】
なお上述の例では、第2レーザ光L2の受光強度Rxのみを監視対象として第1のループ処理を実行したが、これに限られず、第2レーザ光L2のビームワンダw及び第2レーザ光L2の受光強度Rxの双方を監視対象として第1のループ処理を実行してもよい(後述する第2のループ処理についても同様)。この場合、例えば、ステップ102とステップ103との間に第2のレーザ光L2のビームワンダwを算出する処理が追加される。第2のレーザ光L2のビームワンダwは、ステップ102で取得されたフリードパラメータ、第2レーザ光L2のレーザ波長とビーム径、伝播距離等に基づいて算出することができる。
【0070】
(第2のループ処理)
第2レーザ光L2の受光強度が所定強度範囲に収まらない要因として、大気揺らぎが経時的に変動し、これにより宇宙機Sへ到達する第1レーザ光L1の強度が減衰し、宇宙機Sで捕捉される第1レーザ光L1の到来方向を精度よく検出することができなくなったことが挙げられる。そこで、第2のループ処理においては、宇宙機Sが第1レーザ光L1の到来方向を精度よく検出することができるように、送信部20から出射される第1レーザ光L1の拡がり角及び送信パワーTxが補正される。
【0071】
制御部40は、第2レーザ光L2の受光強度が所定の強度範囲内ではないと判定したとき、第2のループ処理(ステップ107~111)を実行する。
【0072】
制御部40は、第2レーザ光L2の受光強度が所定の強度範囲未満であるか否かを判定する(ステップ107)。そして、ステップ107における判定結果が「Yes」の場合、制御部40は、第1レーザ光L1のビーム拡がり角を現在値のn(nは1より大きい正数)倍大きく、送信パワー(Tx)が現在値のn倍大きくするための制御信号を生成し、これを送信部20へ出力する(ステップ108,109)。
【0073】
これにより、第1レーザ光L1のビーム幅が広げられるため、宇宙機Sへ到達する第1レーザ光L1の光量を高めることができる。その結果、宇宙機Sで捕捉される第1レーザ光L1の到来方向を精度よく検出することができるため、宇宙機Sから空間光通信装置Gへ向けて送信される第2レーザ光L2の方向精度が高まり、その受光強度Rxを高めることができる。また、ビーム拡がり角の拡大に合わせて送信パワーTxも同時に増大させるため、ビーム拡がり角の拡大に伴う単位面積当たりの光エネルギの低下が抑えられる。
【0074】
第1レーザ光L1の拡がり角は、送信部20のレンズユニット222における各レンズ間距離を調整することで任意の大きさに変更でき、送信パワーTxは、送信部20の増幅器24を調整することで任意の大きさに変更できる。
【0075】
nの値は固定値でもよいし、第2レーザ光L2の受光強度Rx(あるいは、ビームワンダw)の所定範囲からのシフト量に対応して予め定められた可変値であってもよい。nの値は、ビーム拡がり角及び送信パワーの制御量として同一の値であってもよいし、異なる値であってもよい。また、nの値は、ステップ101において取得した大気の揺らぎに関する情報やステップ102において取得したフリードパラメータ等から、所定のテーブルあるいはアルゴリズムに基づいて動的に変化させてもよい。
【0076】
nの値は特に限定されず、典型的には、1.5以上10以下の数値であり、望ましくは、2以上5以下である。大気の状態にもよるが、nの値が1.5未満の場合には、宇宙機Sが第1レーザ光L1を捕捉する効果が十分とはいえない場合がある。また、nの値が10を超える場合には、第1レーザ光L1の送信パワーが過大となり、空間光通信装置Gにおける電力の効率的な運用に支障をきたす可能性がある。
【0077】
なお、ステップ107における判定結果が「No」の場合、制御部40は、第1レーザ光L1のビーム拡がり角を現在値のn(nは1より大きい正数)倍小さく、送信パワー(Tx)が現在値のn倍小さくするための制御信号を生成し、これを送信部20へ出力する(ステップ110,111)。これにより、第1レーザ光L1のビーム幅が狭められるとともに送信パワーも低減されるため、第1レーザ光L1の過剰出力を抑えることができる。
【0078】
制御部40は、上述の第2のループ処理の実行後、第1のループ処理を再度実行する。制御部40は、第2レーザ光L2の受光強度Rxがそれぞれ所定範囲に収まるまで、第2のループ処理を繰り返し実行する。
【0079】
以上のように、時々刻々と変化する大気状態に応じてアップリンク用の第1レーザ光L1の出射条件をリアルタイムで補正することで、宇宙機Sから送信される第2レーザ光L2の安定した受信を維持することができる。したがって本実施形態によれば、時々刻々と変化する大気状態に追従可能な適応性の高い空間光通信を実現することができる。
【0080】
(監視モード)
続いて、制御部40の監視モードについて説明する。
【0081】
制御部40は、熱赤外線カメラ61等の出力に基づいて、第1レーザ光L1の出射方向上空に雲Cの存在を確認し、これが第1レーザ光L1に所定以上接近したときは、第1レーザ光L1の送信を停止させる制御を実行するように構成される。これにより、雲Cでの第1レーザ光L1の散乱による宇宙機Sとの通信の断絶を防止することができる。
【0082】
制御部40は、監視モードの実行に際して、ビームモニタ33から出力される第1レーザ光L1の出射方向に関する情報と監視ユニット60からの出力信号とに基づいて、第1レーザ光L1と飛翔体Fとの相対位置を算出し、飛翔体Fが第1レーザ光L1に所定以上接近したときは第1レーザ光L1の送信を停止させる制御を実行する。これにより、飛翔体Fに対する第1レーザ光L1の照射を防止することができる。
【0083】
以下、飛翔体Fと第1レーザ光L1との相対位置の監視を中心に、制御部40による監視モードの詳細について説明する。
【0084】
制御部40は、ビームモニタ33の出力に基づいて第1レーザ光L1の周囲を区画する第1監視領域を設定し、監視ユニット60の出力に基づいて飛翔体Fの第1監視領域への進入を判定したときに第1レーザ光L1の送信を停止させる制御信号を生成する。
制御部40はさらに、第1監視領域の周囲を区画する第2監視領域をさらに設定し、飛翔体の第2監視領域への進入を判定したときに警報器80を発動させる制御信号を生成する。
【0085】
例えば図14に、熱赤外線カメラ61から送信される画像61Vの一例を示す。画像61Vは、送信部20における第1レーザ光L1の出射光軸に直交する平面の画像であり、熱赤外線カメラ61の焦点距離における第1レーザ光L1の光軸(逆三角形(2個)として図示)と、飛翔体Fとの相対位置を示している。制御部40は、画像61Vから第1レーザ光L1の周囲を区画する第1監視領域A1と、第1監視領域A1の周囲を区画する第2監視領域A2とをそれぞれ設定する。
【0086】
第1監視領域A1は、飛翔体Fに第1レーザ光L1が照射される可能性のある任意の広さの領域であり、その形状は、図示する円形に限られず、楕円や多角形等であってもよい。第1レーザ光L1は、その伝播経路における大気の影響を受けて屈折あるいは散乱し、伝播方向が高度に応じて変動するおそれがある。このため、第1監視領域A1は、第1レーザ光L1の伝播方向の変動を考慮して設定され、典型的には、第1レーザ光L1を内包する任意の閉曲線で形成される。第1監視領域A1の形状、大きさは、例えば、シーイングモニタ31から取得される大気揺らぎ情報、ビームモニタ33から取得される第1レーザ光L1の出射方向に関する情報、上述のビーム制御モードの実行によって補正されたビーム拡がり角などに基づいて動的に変更されてもよい。
【0087】
第2監視領域A2は、第1監視領域A1への飛翔体Fの接近を外部へ警告するために設定される領域であり、必要に応じて省略されてもよい。第2監視領域A2は、第1監視領域A1を内包する任意の形状の閉曲線で形成され、その形状や大きさ(広さ)は任意に設定可能である。
【0088】
第1レーザ光L1の位置は、第1レーザ光L1の出射方向を検出するビームモニタ33からの出力信号に基づいて補正されることが好ましい。これにより、画像61Vの視野内における第1レーザ光L1の位置精度が高まり、第1監視領域A1及び第2監視領域A2を不要に拡大することなく適切な広さで設定することができる。
【0089】
図15は、レーダー装置62あるいはデータ取得装置63からの出力信号に基づいて設定される第1監視領域A1及び第2監視領域A2の概念図である。レーダー装置62及びデータ取得装置63は、飛翔体Fの緯度、経度、高度を取得することができるため、望遠鏡10の宇宙機Sに向かう光軸D1と、望遠鏡10から見た飛翔体Fの方向D2との関係を把握できる。送信部20は、第1レーザ光L1を望遠鏡10の光軸と平行に出射するように構成されるため、望遠鏡10の光軸D1は、第1レーザ光L1とみなすことができる。このため、第1監視領域A1及び第2監視領域A2は、望遠鏡10の光軸D1と同心的な円などの形状に設定することができる。
【0090】
一方、上述のように第1レーザ光L1は大気揺らぎの影響を受けるため、出射方向とは異なる方向に伝播するおそれがある。このため、制御部40は、ビームモニタ33の出力に基づいて第1レーザ光L1の出射方向を補正し、補正後の第1レーザ光L1の位置に基づいて第1監視領域A1及び第2監視領域A2を設定する。
【0091】
図16は、送信部20からの高度と第1監視領域A1及び第2監視領域A2の広さとの関係を示す模式図である。制御部40は、飛翔体Fが送信部20から遠ざかるほど(高度が高くなるほど)第1監視領域A1及び第2監視領域A2を広く設定する。図示の例では、第1監視領域A1及び第2監視領域A2が送信部20のビーム出射軸を軸心とする円錐体の底面に対応する領域とされる。これにより、第1レーザ光L1の大気揺らぎによる伝播方向の変動が生じた場合でも、第1監視領域A1及び第2監視領域A2を適切に設定することができる。
【0092】
また、本例の場合においても、第1監視領域A1及び第2監視領域A2の形状や大きさは、例えば、シーイングモニタ31から取得される大気揺らぎ情報、ビームモニタ33から取得される第1レーザ光L1の出射方向に関する情報、上述のビーム制御モードの実行によって補正されたビーム拡がり角などに基づいて動的に変更されてもよい。
【0093】
なお、レーダー装置62が第1レーザ光L1の出射方向にレーダーを送信するように構成する場合、当該レーダーの照射範囲を第1監視領域としてもよい。この場合、レーダー装置62で飛翔体Fの存在が確認された時点で、制御部40は、警報器80を発動させるための制御信号と第1レーザ光L1の送信を停止させる制御信号をそれぞれ生成するように構成されてもよい。
【0094】
図17は、監視モードの実行時における空間光通信装置Gの各部の動作を時系列的に示すシーケンス図である。
【0095】
図17に示すように、制御部40は、取得部41(図12参照)を介してビームモニタ33、監視ユニット60の出力を所定周期で取得し、第1監視領域A1及び第2監視領域A2を設定する。監視ユニット60としての熱赤外線カメラ61、レーダー装置62及びデータ取得装置63はそれぞれ、第1レーザ光L1の出射方向上空における飛翔体Fの有無を監視し、飛翔体Fの存在を確認したときは当該飛翔体Fの位置に関する情報を制御部40へ出力する。制御部40は、飛翔体Fの第2監視領域A2への接近を検出するまで、送信部20からの第1レーザ光L1の送信を継続する。制御部40は、熱赤外線カメラ61、レーダー装置62及びデータ取得装置63のうち少なくとも1つから飛翔体Fに関する情報を取得したときは、飛翔体Fと第1レーザ光L1の相対位置を基に、警報器80を発動し、あるいは、第1レーザ光L1の出射を停止させる。
【0096】
すなわち、制御部40は、飛翔体Fの第2監視領域A2の通過(第2監視領域A2の境界線への接触)を判定したとき、警報器80を発動させる制御信号(以下、警報信号ともいう)を生成し、これを警報器80へ出力する。これにより警報器80が発動する。警報の発令に伴って、オペレータによるマニュアル操作で第1レーザ光L1の送信が停止されてもよい。
【0097】
一方、制御部40は、飛翔体Fの第1監視領域A1の通過(第1監視領域A1の境界線への接触)を判定したとき、第1レーザ光L1の送信を停止させる制御信号(以下、レーザ停止信号ともいう)をさらに生成し、これを送信部20へ出力する。送信部20は、制御部40からの当該制御信号に基づいてシャッタ224を閉じ、第1レーザ光L1の出射を停止させる。この間、制御部40は、警報信号を継続して生成する。
【0098】
そして、制御部40は、飛翔体Fが第2監視領域A2の外側へ移動したと判定したとき、警報信号及びレーザ停止信号の生成を停止する。これにより、警報器80の発動が解除されるとともに、シャッタ224が開放されることで第1レーザ光L1の出射が再開される。なお、第1レーザ光L1の出射再開制御は、飛翔体Fが第1監視領域A1の外側に移動したときに実行されてもよい。また、第1レーザ光L1の出射再開制御は、飛翔体Fが第2監視領域A2の外側に移動した後、所定時間経過後に実行されてもよい。
【0099】
本実施形態によれば、第1レーザ光L1と飛翔体Fとの相対位置を監視し、第1レーザ光L1に飛翔体が所定以上接近したときは第1レーザ光L1の出射を停止させる一連の制御を自動的に行うことができる。これにより、作業員の操作に頼ることなく、第1レーザ光L1の出射停止およびその解除が実行可能となる。
また、本実施形態によれば、ビームモニタ33の出力に基づいて第1レーザ光L1の出射方向を検出することができるため、第1レーザ光L1の出射方向の検出精度が高まり、大気揺らぎによる第1レーザ光の伝播方向の変動も把握することができる。
【0100】
図18は、熱赤外線カメラ61の出力に基づく制御部40の処理手順の一例を示すフローチャートである。
【0101】
制御部40は、まず、ビームモニタ33及び熱赤外線カメラ61からそれぞれ検出信号を取得する(ステップ201)。続いて、制御部40は、熱赤外線カメラ61(IRカメラ1)の出力及びビームモニタ33(IRカメラ2)の出力に基づいて、熱赤外線カメラ61の視野を含むXY平面における第1レーザ光L1の位置(出射方向)を算出する(ステップ202)。ビームモニタ33は、熱赤外線カメラ61(IRカメラ1)と離間して設置されていることから、両者の空間座標上の離間距離をもとに、XY平面における第1レーザ光L1の位置(出射方向)を補正する(ステップ203)。その後、制御部40は、補正された第1レーザ光L1の位置情報に基づいて、第1監視領域A1及び第2監視領域A2をそれぞれ設定する(ステップ204)。
【0102】
そして、制御部40は、飛翔体Fと第1レーザ光L1との相対位置関係を判定し(ステップ205)、飛翔体Fが第2監視領域A2内に移動したときは警報信号を生成し(ステップ206)、飛翔体Fがさらに第1監視領域A1内に移動したときは、レーザ停止信号を生成する(ステップ207)。制御部40は、飛翔体Fが第1監視領域A1及び第2監視領域A2の外側へ移動するまで、警報信号及びレーザ停止信号の生成を継続する(ステップ208)。
【0103】
図19は、ビームモニタ33の出力を用いた第1レーザ光L1の位置の検出手順の一例を示すフローチャートである。
【0104】
制御部40は、ビームモニタ33から第1レーザ光L1の大気での散乱光L1sx,L1syの撮像データを取得する(ステップ301)。制御部40は、ビームモニタ33のカメラ336による撮影画像から、X面及びY面(図9参照)における第1レーザ光L1の散乱光L1sのビームポジション(送信部20からの出射方向。以下同じ)を検出する(ステップ302)。
【0105】
制御部40は、上記X面及びY面のビームポジションから与えられた第1レーザ光散乱光L1sの2次元座標をそれぞれ計算し、決定する(ステップ303,304、図10)。これにより、X面及びY面の各面における第1レーザ光L1の伝播方向を把握でき、これらを重ね合わせることで上空のどの地点に第1レーザ光L1が位置するかを軌跡として3次元的に計算することができる。算出された散乱光L1sの3次元座標は、航空機保安システムを実現する第1監視領域A1及び第2監視領域A2の設定に利用される(ステップ305)。
【0106】
図20は、レーダー装置62の出力に基づく制御部40の処理手順の一例を示すフローチャートである。
【0107】
制御部40は、レーダー装置62から、方位(Az)、仰角(EL)、測距(RNG)に関する情報を取得し(ステップ401)、さらにビームモニタ33の出力に基づいて、レーダーのビーム幅におけるX面及びY面上における第1レーザ光L1(送信ビームTx)の位置を算出する(ステップ402)。次に、制御部40は、ビームモニタ33がレーダー装置62と離間して設置されていることから、両者の空間座標上の離間距離をもとに、XY平面における第1レーザ光L1の位置(出射方向)を補正する(ステップ403)。続いて、制御部40は、第1レーザ光L1と飛翔体Fとの相関、すなわち第1レーザ光L1と飛翔体Fの空間上の位置を表示部70に表示し(ステップ404)、続いて飛翔体Fが第1レーザ光L1を含む所定の空間内にあるかどうかを判定する(ステップ405)。
【0108】
この例では、所定の空間がレーダーの照射範囲であり、レーダーの照射範囲が第1監視領域A1とされ、制御部40は、当該レーダー照射範囲から飛翔体Fが探索されなくなるまで、警報信号及びレーザ停止信号をそれぞれ生成する(ステップ406,407)。なお、この例に限られず、レーダー照射範囲に第1監視領域A1及び第2監視領域A2が設定されてもよい。
【0109】
図21は、データ取得装置63の出力に基づく制御部40の処理手順の一例を示すフローチャートである。
【0110】
制御部40は、データ取得装置63から、飛翔体Fに関する情報(緯度、経度、高度など)を取得し、望遠鏡10の光軸方向に関する情報(方位、仰角など)を取得する(ステップ501)。続いて、制御部40は、これらの情報から第1レーザ光L1及び飛翔体Fの3次元位置をそれぞれ分析する(ステップ502)。制御部40は、ビームモニタ33が望遠鏡10と離間して設置されていることから、両者の空間座標上の離間距離をもとに、3次元空間上における第1レーザ光L1の位置(出射方向)を補正する(ステップ503)。その後、制御部40は、補正された第1レーザ光L1の位置情報に基づいて、第1監視領域A1及び第2監視領域A2をそれぞれ設定する(ステップ504)。
【0111】
そして、制御部40は、飛翔体Fと第1レーザ光L1との相対位置関係を判定し(ステップ505)、飛翔体Fが第2監視領域A2内に移動したときは警報信号を生成し(ステップ506)、飛翔体Fがさらに第1監視領域A1内に移動したときは、レーザ停止信号を生成する(ステップ507)。制御部40は、飛翔体Fが第1監視領域A1及び第2監視領域A2の外側へ移動するまで、警報信号及びレーザ停止信号の生成を継続する(ステップ508)。
【0112】
以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
【0113】
例えば以上の実施形態では、宇宙機との光通信を例に挙げて説明したが、これに限られない。例えば、地球大気を伝送路に挟んで宇宙機と地上局間においてレーザにより距離計測するシステム(光衛星測距、能動デブリ観測)、地球大気を伝送路に挟んで宇宙機と受電設備間においてレーザによりエネルギを伝送するシステム(光エネルギ伝送)等にも、本発明は適用可能である。また、空間光通信装置に用いるレーザについて、典型例である赤外線レーザとして説明してきたが、これに限るものではなく、可視光を用いてもよい。
【0114】
また、以上の実施形態では、シーイングモニタ31、受光強度モニタ32等が望遠鏡10の外周部に一体的に取り付けられた例を説明したが、これらの検出部を望遠鏡の内部に設置することも可能である。また、受光強度モニタは、望遠鏡において集光されたダウンリンクレーザ光の受光センサで構成されてもよい。
【0115】
さらに以上の実施形態では、第1レーザ光L1の出射方向(ビームポジション)の検出に図8図11に示したビームモニタ33を用いたが、これに限られず、第1レーザ光L1の出射方向を検出可能な他の構成のビームモニタが採用されてもよい。
【0116】
また、実施形態として、第1レーザ光L1のシャッタ224のステイタス(シャッタオープン/クローズ)は、画像表示及び/または音により報知すると共に、ログとして記録するように報知装置及び記録装置を備えてもよい。
【符号の説明】
【0117】
10……望遠鏡
20…送信部
31…シーイングモニタ
32…受光強度モニタ
33…ビームモニタ
40…制御部
60…監視ユニット
61…熱赤外線カメラ
62…レーダー装置
63…データ取得装置
G…空間光通信装置
A1…第1監視領域
A2…第2監視領域
L1…第1レーザ光(アップリンク)
L2…第2レーザ光(ダウンリンク)
S…宇宙機
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21