IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックホールディングス株式会社の特許一覧
<>
  • 特許-太陽電池 図1
  • 特許-太陽電池 図2
  • 特許-太陽電池 図3A
  • 特許-太陽電池 図3B
  • 特許-太陽電池 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-09
(45)【発行日】2022-05-17
(54)【発明の名称】太陽電池
(51)【国際特許分類】
   H01L 51/44 20060101AFI20220510BHJP
   H01L 51/46 20060101ALI20220510BHJP
【FI】
H01L31/04 112Z
H01L31/04 168
【請求項の数】 9
(21)【出願番号】P 2018107923
(22)【出願日】2018-06-05
(65)【公開番号】P2019012819
(43)【公開日】2019-01-24
【審査請求日】2020-12-25
(31)【優先権主張番号】P 2017128545
(32)【優先日】2017-06-30
(33)【優先権主張国・地域又は機関】JP
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成27年度国立研究開発法人新エネルギー・産業技術総合開発機構「高性能・高信頼性太陽光発電の発電コスト低減技術/革新的新構造太陽電池の研究開発」委託研究産業技術力強化法第19条の適用を受ける特許出願
(73)【特許権者】
【識別番号】000005821
【氏名又は名称】パナソニックホールディングス株式会社
(74)【代理人】
【識別番号】100101683
【弁理士】
【氏名又は名称】奥田 誠司
(74)【代理人】
【識別番号】100155000
【弁理士】
【氏名又は名称】喜多 修市
(74)【代理人】
【識別番号】100180529
【弁理士】
【氏名又は名称】梶谷 美道
(74)【代理人】
【識別番号】100125922
【弁理士】
【氏名又は名称】三宅 章子
(74)【代理人】
【識別番号】100135703
【弁理士】
【氏名又は名称】岡部 英隆
(74)【代理人】
【識別番号】100188813
【弁理士】
【氏名又は名称】川喜田 徹
(74)【代理人】
【識別番号】100184985
【弁理士】
【氏名又は名称】田中 悠
(74)【代理人】
【識別番号】100202197
【弁理士】
【氏名又は名称】村瀬 成康
(72)【発明者】
【氏名】西原 孝史
(72)【発明者】
【氏名】藤村 慎也
(72)【発明者】
【氏名】根上 卓之
【審査官】佐竹 政彦
(56)【参考文献】
【文献】国際公開第2016/136729(WO,A1)
【文献】国際公開第2017/073472(WO,A1)
【文献】中国特許出願公開第105070834(CN,A)
【文献】国際公開第2016/072092(WO,A1)
【文献】米国特許出願公開第2017/0149004(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 51/42-51/48
JSTPlus/JSTChina/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
第1電極と、
前記第1電極上に位置し、ニッケル、リチウムおよび酸素を含む正孔輸送層と、
前記正孔輸送層上に位置し、光を電荷に変換する光吸収層と、
前記光吸収層上に位置する第2電極と、
を備え、
前記光吸収層は、Aを1価のカチオンとし、Mを2価のカチオンとし、Xを1価のアニオンとしたとき、組成式AMXで示されるペロブスカイト型化合物を含み、
前記正孔輸送層内において、前記光吸収層に面する部分のリチウムの濃度は、前記第1電極に面する部分のリチウムの濃度よりも小さく、
前記正孔輸送層は、前記第1電極側に位置する第1正孔輸送層と、前記光吸収層側に位置する第2正孔輸送層とを含み、
前記第1正孔輸送層および前記第2正孔輸送層のそれぞれは、酸化ニッケルにおけるニッケルの一部をリチウムで置換した材料、または、酸化ニッケルにおけるニッケルの一部をリチウムで置換し、他の一部をマグネシウムで置換した材料を含み、
前記第2正孔輸送層の前記材料におけるリチウムの置換量は、前記第1正孔輸送層の前記材料におけるリチウムの置換量よりも小さい、太陽電池。
【請求項2】
第1電極と、
前記第1電極上に位置し、ニッケル、リチウムおよび酸素を含む正孔輸送層と、
前記正孔輸送層上に位置し、光を電荷に変換する光吸収層と、
前記光吸収層上に位置する第2電極と、
を備え、
前記光吸収層は、Aを1価のカチオンとし、Mを2価のカチオンとし、Xを1価のアニオンとしたとき、組成式AMX で示されるペロブスカイト型化合物を含み、
前記正孔輸送層内において、前記光吸収層に面する部分のリチウムの濃度は、前記第1電極に面する部分のリチウムの濃度よりも小さく、
前記正孔輸送層は、前記第1電極側に位置する第1正孔輸送層と、前記光吸収層側に位置する第2正孔輸送層とを含み、
前記第1正孔輸送層は、酸化ニッケルにおけるニッケルの一部をリチウムで置換した材料、または、酸化ニッケルにおけるニッケルの一部をリチウムで置換し、他の一部をマグネシウムで置換した材料を含み、
前記第2正孔輸送層は、酸化ニッケル、または、酸化ニッケルにおけるニッケルの一部をマグネシウムで置換した材料を含み、
前記第2正孔輸送層はリチウムを実質的に含まない、太陽電池。
【請求項3】
前記第1正孔輸送層および前記第2正孔輸送層の少なくとも一方は、マグネシウムを含む、請求項1または請求項2に記載の太陽電池。
【請求項4】
前記第2正孔輸送層の厚さは、前記第1正孔輸送層の厚さよりも小さい、請求項から請求項のいずれか一項に記載の太陽電池。
【請求項5】
前記第2正孔輸送層の厚さは、1nm以上10nm以下である、請求項から請求項のいずれか一項に記載の太陽電池。
【請求項6】
前記第2正孔輸送層の厚さは、2nm以上5nm以下である、請求項に記載の太陽電池。
【請求項7】
前記第1正孔輸送層における全金属元素に対するリチウムの原子数比は、1%以上30%以下である、請求項から請求項のいずれか一項に記載の太陽電池。
【請求項8】
前記第1正孔輸送層における全金属元素に対するリチウムの原子数比は、5%以上20%以下である、請求項に記載の太陽電池。
【請求項9】
前記正孔輸送層の深さ方向におけるニッケルおよびリチウムの濃度プロファイルにおいて、ニッケルのピークは、リチウムのピークよりも前記光吸収層側に位置する、請求項1から請求項のいずれか一項に記載の太陽電池。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、太陽電池に関する。本開示は、特に、光吸収材料としてペロブスカイト型結晶を用いる太陽電池に関する。
【背景技術】
【0002】
近年、AMXで示されるペロブスカイト型結晶構造およびその類似の結晶構造を有する化合物(以下、「ペロブスカイト型化合物」と呼ぶ)を光吸収材料として用いた太陽電池の研究開発が進められている。本明細書では、ペロブスカイト型化合物を用いた太陽電池を「ペロブスカイト太陽電池」と呼ぶ。
【0003】
非特許文献1は、ペロブスカイト材料としてCHNHPbI、正孔輸送材料としてリチウムおよびマグネシウムをドープした酸化ニッケル、電子輸送材料としてPCBM([6,6]-phenyl-C61-butyric acid methyl ester)を用いた、逆積構造を有するペロブスカイト太陽電池を開示している。
【先行技術文献】
【非特許文献】
【0004】
【文献】Wei Chen、他10名、“SCIENCE”(米国)、2015年11月、第350巻、第6263号、p.944-948
【発明の概要】
【発明が解決しようとする課題】
【0005】
高い光電変換効率を有し得る太陽電池が求められている。
【課題を解決するための手段】
【0006】
本開示の限定的ではないある例示的な実施形態によれば、以下が提供される。
【0007】
第1電極と、前記第1電極上に位置し、ニッケル、リチウムおよび酸素を含む正孔輸送層と、前記正孔輸送層上に位置し、光を電荷に変換する光吸収層と、前記光吸収層上に位置する第2電極と、
を備え、前記光吸収層は、Aを1価のカチオンとし、Mを2価のカチオンとし、Xを1価のアニオンとしたとき、組成式AMXで示されるペロブスカイト型化合物を含み、前記正孔輸送層内において、前記光吸収層に面する部分のリチウムの濃度は、前記第1電極に面する部分のリチウムの濃度よりも小さい、太陽電池。
【0008】
包括的または具体的な態様は、素子、デバイス、モジュール、システム、集積回路または方法で実現されてもよい。また、包括的または具体的な態様は、素子、デバイス、モジュール、システム、集積回路および方法の任意の組み合わせによって実現されてもよい。
【0009】
開示された実施形態の追加的な効果および利点は、明細書および図面から明らかになる。効果および/または利点は、明細書および図面に開示の様々な実施形態または特徴によって個々に提供され、これらの1つ以上を得るために全てを必要とはしない。
【発明の効果】
【0010】
本開示の一態様によると、高い光電変換効率を有し得る太陽電池が提供される。
【図面の簡単な説明】
【0011】
図1】第1実施形態の太陽電池を模式的に示す断面図。
図2】第2実施形態の太陽電池を模式的に示す断面図。
図3A】実施例1の太陽電池の深さ方向の元素分析結果を示す図。
図3B】比較例1の太陽電池の深さ方向の元素分析結果を示す図。
図4】実施例1および比較例1の太陽電池の電流-電圧特性を示す図。
【発明を実施するための形態】
【0012】
本発明の基礎となった知見は以下のとおりである。
【0013】
ペロブスカイト太陽電池(以下、「太陽電池」と略す。)は、順積構造および逆積構造に分類される。順積構造では、ペロブスカイト型化合物を含む光吸収層(以下、「ペロブスカイト層」と呼ぶ。)の光入射側に電子輸送層が配置される。例えば、透明電極上に、電子輸送層、ペロブスカイト層、正孔輸送層、および上部電極(例えば金属電極)がこの順で配置される。逆積構造では、ペロブスカイト層の光入射側に正孔輸送層が配置される。例えば、透明電極上に、正孔輸送層、ペロブスカイト層、電子輸送層および上部電極がこの順で配置される。
【0014】
順積構造では、正孔輸送層はペロブスカイト層の形成後に形成されるため、正孔輸送層の材料(正孔輸送材料)として、通常、低温プロセスで形成可能な有機材料が用いられる。これに対し、逆積構造では、ペロブスカイト層を形成する前に正孔輸送層を形成するため、正孔輸送層を比較的高い温度で形成することが可能であり、正孔輸送材料として無機材料を用いることができる。
【0015】
例えば、非特許文献1は、正孔輸送材料として、リチウムをドープした酸化ニッケルを用いることを開示している。酸化ニッケル(NiO)のニッケルサイト(2価のサイト)の一部を1価のリチウムに置き換えることで、NiO層よりもキャリア密度を高めることが可能である。
【0016】
しかしながら、本発明者が検討したところ、LiをドープしたNiO層では、Liを含まないNiO層よりも結晶性が低く、かつ、欠陥密度が高くなることが分かった。このため、ペロブスカイト層に接する正孔輸送層として、LiをドープしたNiO層を用いると、正孔輸送層とペロブスカイト層との界面でキャリアの再結合が増加し、高い光電変換効率が得られない可能性がある。
【0017】
本発明者は、上記の知見に基づいて検討を重ねた結果、正孔輸送層とペロブスカイト層との界面におけるキャリアの再結合を抑制し得る新規な構造を見出した。
【0018】
本開示は、以下の項目に記載の太陽電池を含む。
[項目1]
第1電極と、
前記第1電極上に位置し、ニッケル、リチウムおよび酸素を含む正孔輸送層と、
前記正孔輸送層上に位置し、光を電荷に変換する光吸収層と、
前記光吸収層上に位置する第2電極と、
を備え、
前記光吸収層は、Aを1価のカチオンとし、Mを2価のカチオンとし、Xを1価のアニオンとしたとき、組成式AMXで示されるペロブスカイト型化合物を含み、
前記正孔輸送層内において、前記光吸収層に面する部分のリチウムの濃度は、前記第1電極に面する部分のリチウムの濃度よりも小さい、太陽電池。
[項目2]
前記正孔輸送層は、前記第1電極側に位置する第1正孔輸送層と、前記光吸収層側の第2正孔輸送層とを含み、
前記第2正孔輸送層における全金属元素に対するリチウムの原子数比は、前記第1正孔輸送層における全金属元素に対するリチウムの原子数比よりも小さい、項目1に記載の太陽電池。
[項目3]
前記正孔輸送層は、前記第1電極側に位置する第1正孔輸送層と、前記光吸収層側に位置する第2正孔輸送層とを含み、
前記第1正孔輸送層は、リチウムを含み、
前記第2正孔輸送層は、リチウムを実質的に含まない、項目1に記載の太陽電池。
[項目4]
前記第1正孔輸送層および前記第2正孔輸送層の少なくとも一方は、マグネシウムをさらに含む、項目2または3に記載の太陽電池。
[項目5]
前記第2正孔輸送層の厚さは、前記第1正孔輸送層の厚さよりも小さい、項目2から4のいずれか1項に記載の太陽電池。
[項目6]
前記第2正孔輸送層の厚さは、1nm以上10nm以下である、項目2から5のいずれか1項に記載の太陽電池。
[項目7]
前記第2正孔輸送層の厚さは、2nm以上5nm以下である、項目6に記載の太陽電池。
[項目8]
前記第1正孔輸送層における全金属元素に対するリチウムの原子数比は、1%以上30%以下である、項目2から7のいずれか1項に記載の太陽電池。
[項目9]
前記第1正孔輸送層における全金属元素に対するリチウムの原子数比は、5%以上20%以下である、項目8に記載の太陽電池。
[項目10]
前記正孔輸送層の深さ方向におけるニッケルおよびリチウムの濃度プロファイルにおいて、ニッケルのピークは、リチウムのピークよりも前記光吸収層側に位置する、項目1から9のいずれか1項に記載の太陽電池。
[項目11]
第1電極と、
前記第1電極上に位置し、ニッケル、リチウムおよび酸素を含む正孔輸送層と、
前記正孔輸送層上に位置し、光を電荷に変換する光吸収層と、
前記光吸収層上に位置する第2電極と、
を備え、
前記光吸収層は、Aを1価のカチオンとし、Mを2価のカチオンとし、Xを1価のアニオンとしたとき、組成式AMXで示されるペロブスカイト型化合物を含み、
前記正孔輸送層の深さ方向におけるニッケルおよびリチウムの濃度プロファイルにおいて、ニッケルのピークは、リチウムのピークよりも前記光吸収層側に位置する、太陽電池。
【0019】
以下、図面を参照して、本開示の実施形態を説明する。
【0020】
(第1実施形態)
図1は、第1実施形態の太陽電池100を模式的に示す断面図である。
【0021】
図1に示すように、太陽電池100は、基板1と、第1電極2と、正孔輸送層3と、光吸収層5と、第2電極6とを有している。
【0022】
第1電極2は透光性を有しており、光は基板1側から太陽電池100に入射する。正孔輸送層3は光吸収層5の光入射側に配置されている。従って、太陽電池100は逆積構造を有する。
【0023】
正孔輸送層3は、第1正孔輸送層31と、第1正孔輸送層31と光吸収層5との間に配置された第2正孔輸送層32とを含む積層構造を有する。第1正孔輸送層31は、ニッケル、リチウムおよび酸素を含む。第2正孔輸送層32は、ニッケルおよび酸素を含む。第2正孔輸送層32は、リチウムをさらに含んでもよいし、リチウムを実質的に含まなくてもよい。「実質的にリチウムを含まない」とは、第2正孔輸送層32が積極的にリチウムを添加せずに形成されていることを意味する。「実質的にリチウムを含まない」とは、例えばリチウムの含有量が重量比で0.05%未満であることを指す。第2正孔輸送層32がリチウムを含む場合、第2正孔輸送層32における全金属元素に対するリチウムの原子数比(以下、「リチウム比率」と略す場合がある。)は、第1正孔輸送層31におけるリチウム比率よりも小さい。
【0024】
光吸収層5は、光を電荷に変換する。光吸収層5は、組成式AMXで示されるペロブスカイト型化合物を含み、Aは1価のカチオンであり、Mは2価のカチオンであり、Xは1価のアニオンである。
【0025】
次に、本実施形態の太陽電池100の基本的な作用効果を説明する。
【0026】
太陽電池100へ光が照射されると、光吸収層5が光を吸収し、励起された電子と、正孔が発生する。この励起された電子は第2電極6に移動する。一方、光吸収層5で生じた正孔は第2正孔輸送層32を経由して第1正孔輸送層31に移動する。第1正孔輸送層31は第1電極2に接続されているので、太陽電池100において、第1電極2を正極、第2電極6を負極として、電流を取り出すことができる。
【0027】
本実施形態では、第1正孔輸送層31の光吸収層5側に、第2正孔輸送層32が配置されている。第2正孔輸送層32は、第1正孔輸送層31よりも低いリチウム比率を有するので、第2正孔輸送層32の結晶性を第1正孔輸送層31よりも高くでき、第2正孔輸送層32の欠陥密度を第1正孔輸送層31よりも低減できる。このため、正孔輸送層3と光吸収層5との界面において、キャリアの再結合を抑制できるため、太陽電池100の光電変換効率を向上できる。
【0028】
第1正孔輸送層31および第2正孔輸送層32の材料として、酸化ニッケルまたは酸化ニッケルにおけるニッケルの一部をリチウムに置換した材料を用い、第2正孔輸送層32におけるリチウムの置換量を第1正孔輸送層31におけるリチウムの置換量よりも少なくしてもよい。これにより、第2正孔輸送層32内に存在するキャリア再結合中心を、第1正孔輸送層31内よりも少なくすることができる。このような第2正孔輸送層32を第1正孔輸送層31の光吸収層5側に配置することにより、正孔輸送層3と光吸収層5との界面において、光吸収層5で発生した正孔が再結合によって消失する可能性を低減することが可能になる。
【0029】
第2正孔輸送層32におけるリチウムのドープ量は、第1正孔輸送層31よりも少なくてもよい。このことにより、例えば、第2正孔輸送層32の価電子帯の準位を、第1正孔輸送層31の価電子帯の準位と光吸収層5の価電子帯の準位との間に位置するように設定することができる。したがって、正孔を光吸収層5から第1電極2により容易に移動させることができる。
【0030】
以下、太陽電池100における各構成要素を説明する。
【0031】
[基板1]
基板1は、太陽電池100の補助的な構成要素である。基板1は、太陽電池100を構成する際に、太陽電池100の積層される各層を物理的に膜として保持する。基板1は、透光性を有する。基板1としては、例えば、ガラス基板またはプラスチック基板(プラスチックフィルムを含む)などを用いることができる。後述する第1電極2が各層を膜として保持できる場合には、基板1を省略してもよい。
【0032】
[第1電極2]
第1電極2は、導電性を有する。また、第1電極2は、透光性を有する。第1電極2は、例えば、可視光および近赤外光を透過する。第1電極2は、透明であり導電性を有する金属酸化物などの材料で形成することができる。透明であり導電性を有する金属酸化物は、例えば、インジウム-錫複合酸化物、アンチモンをドープした酸化錫、フッ素をドープした酸化錫、ホウ素、アルミニウム、ガリウム、またはインジウムをドープした酸化亜鉛あるいはこれらの複合物である。また、第1電極2は、透明でない材料を用いて、光が透過するパターンを設けて形成することができる。
【0033】
光が透過するパターンとしては、例えば、線状(ストライプ状)、波線状、格子状(メッシュ状)、多数の微細な貫通孔が規則的または不規則に配列されたパンチングメタル状のパターンまたは、これらとはネガ・ポジが反転したパターンが挙げられる。第1電極2がこれらのパターンを有すると、電極材料が存在しない部分を光が透過することができる。透明でない電極材料として、例えば、白金、金、銀、銅、アルミニウム、ロジウム、インジウム、チタン、鉄、ニッケル、スズ、亜鉛、またはこれらのいずれかを含む合金を挙げることができる。また、導電性を有する炭素材料を用いることもできる。
【0034】
第1電極2の光の透過率は、例えば50%以上であり、80%以上であってもよい。透過すべき光の波長は、光吸収層5の吸収波長に依存する。第1電極2の厚さは、例えば、1nm以上1000nm以下の範囲内にある。
【0035】
[光吸収層5]
光吸収層5は、組成式AMXで示されるペロブスカイト構造を有する化合物を光吸収材料として含む。Aは一価のカチオンである。Aの例としては、アルカリ金属カチオンまたは有機カチオンのような一価のカチオンが挙げられる。さらに具体的には、Aの例として、メチルアンモニウムカチオン(CHNH )、ホルムアミジニウムカチオン(NHCHNH )、セシウムカチオン(Cs)、ルビジウムカチオン(Rb)が挙げられる。
【0036】
Mは2価のカチオンである。Mは、例えば、遷移金属または第13族元素~第15族元素の2価のカチオンである。さらに具体的には、Mの例として、Pb2+、Ge2+、Sn2+が挙げられる。Xはハロゲンアニオンなどの1価のアニオンである。
【0037】
A、M、Xのそれぞれのサイトは、複数種類のイオンによって占有されていてもよい。ペロブスカイト構造を有する化合物の具体例としては、CHNHPbI、CHCHNHPbI、NHCHNHPbI、CHNHPbBr、CHNHPbCl、CsPbI、CsPbBr、RbPbI、RbPbBr等が挙げられる。
【0038】
光吸収層5の厚さは、その光吸収の大きさにもよるが、例としては、100nm~1000nmである。光吸収層5は、溶液による塗布法、または共蒸着法などを用いて形成することができる。また、光吸収層5は、電子輸送層と一部で混在するような形態であってもよい。
【0039】
[正孔輸送層3]
正孔輸送層3は、第1正孔輸送層31および第2正孔輸送層32を含む。第1正孔輸送層31および第2正孔輸送層32は、半導体を含む。第1正孔輸送層31および第2正孔輸送層32は、無機のp型半導体であってもよい。無機のp型半導体の例として、酸化ニッケル、および、酸化ニッケルにおけるニッケルの一部を他の元素で置換した材料が挙げられる。置換元素としては、例えばリチウム、マグネシウムが挙げられる。
【0040】
第1正孔輸送層31は、リチウムをさらに含んでもよい。第1正孔輸送層31における全金属元素に対するリチウムの原子数比は、1%以上30%以下であってもよく、5%以上20%以下であってもよい。第1正孔輸送層31は、酸化ニッケルにおけるニッケルの一部をリチウムで置換した材料から構成されていてもよい。酸化ニッケルにおけるニッケルの一部をリチウムで置換すると、キャリア密度をより高めることができるため、導電性を向上させることができる。ニッケルを置換するリチウムの量(すなわち、リチウムの置換量)は、例えば、第1正孔輸送層31における全金属元素に対するリチウムの原子数比で表され、1%以上30%以下であってもよく、5%以上20%以下であってもよい。リチウムの置換量を上記範囲内に設定することにより、正孔輸送層3の導電性の向上と、光透過性の確保とを両立することができる。
【0041】
第1正孔輸送層31は、マグネシウムをさらに含んでもよい。第1正孔輸送層31における全金属元素に対するマグネシウムの原子数比は、1%以上30%以下であってもよく、5%以上20%以下であってもよい。第1正孔輸送層31は、酸化ニッケルにおけるニッケルの一部をマグネシウムで置換した材料から構成されていてもよい。酸化ニッケルにおけるニッケルの一部をマグネシウムで置換すると、第1正孔輸送層31の光透過性を向上させることができる。また、価電子帯の準位をより深くすることができるため、正孔輸送性を向上できる。ニッケルを置換するマグネシウムの量(すなわち、マグネシウムの置換量)は、例えば、第1正孔輸送層31における全金属元素に対するマグネシウムの原子数比で表され、1%以上30%以下であってもよく、5%以上20%以下であってもよい。マグネシウムの置換量を上記範囲内に設定することにより、第1正孔輸送層31の高い結晶性を確保しつつ、第1正孔輸送層31の光透過性および正孔輸送性を向上することができる。
【0042】
第1正孔輸送層31は、リチウムおよびマグネシウムの両方を含んでいてもよい。第1正孔輸送層31における全金属元素に対するリチウムおよびマグネシウムの合計原子数比は、1%以上30%以下であってもよく、5%以上20%以下であってもよい。酸化ニッケルにおけるニッケルの一部をリチウムで置換し、他の一部をマグネシウムで置換してもよい。この場合、リチウムおよびマグネシウムの置換量の合計は、例えば、1%以上30%以下であってもよく、5%以上20%以下であってもよい。
【0043】
第2正孔輸送層32は、リチウムを実質的に含まない酸化ニッケル層であってもよいし、酸化ニッケルにおけるニッケルの一部をリチウム、マグネシウムまたはその両方で置換した材料から構成されていてもよい。第2正孔輸送層32がリチウムを含む場合、そのリチウム比率(全金属元素に対するリチウムおよびマグネシウムの合計原子数比)は、第1正孔輸送層31よりも低い。これにより、第1正孔輸送層31よりもリチウムの添加による結晶性の低下を抑制できる。第2正孔輸送層32における全金属元素に対するリチウムおよびマグネシウムの合計原子数比は、例えば、0%以上15%以下であってもよく、0%以上10%以下であってもよい。これにより、第2正孔輸送層32の導電性を確保しつつ、結晶性を高めることができる。
【0044】
第2正孔輸送層32は、第1正孔輸送層31と同様に、マグネシウムを含んでもよい。これにより、光透過性を向上させ、かつ、価電子帯の準位をより深くすることができる。第2正孔輸送層32における全金属元素に対するマグネシウムの原子数比の範囲は、第1正孔輸送層31と同様であってもよい。
【0045】
なお、前述したように、順積構造では、正孔輸送層に、通常、低温プロセスで形成可能な有機材料が用いられる。順積構造において、正孔輸送層を構成する有機材料にLi、Mgなどの金属元素を添加すると、温度上昇によってLi等が光吸収層に拡散し、太陽電池の信頼性を低下させるおそれがある。これに対し、逆積構造では、光吸収層5を形成する前に正孔輸送層3を形成するため、正孔輸送層3を比較的高い温度で形成することが可能であり、正孔輸送層3に無機材料を用いることができる。正孔輸送層3を構成する無機材料に、置換元素としてLi、Mgなどの金属元素を添加しても、Li等は光吸収層5に拡散し難い。これは、逆積構造では正孔輸送層3を比較的高い温度で形成するため、添加元素のLi、Mgなどが元の金属元素の格子位置に置換して配置されるからである。従って、太陽電池の信頼性を確保しつつ、正孔輸送性を改善できる。
【0046】
第1正孔輸送層31の厚さは、1nm以上50nm以下であってもよく、5nm以上20nm以下であってもよい。このような範囲内に第1正孔輸送層31の厚さを設定することにより、第1正孔輸送層31の抵抗を抑制しつつ、第1正孔輸送層31の正孔輸送性を十分に発現させることができる。
【0047】
第2正孔輸送層32の厚さは、第1正孔輸送層31よりも小さくてもよい。これにより、第2正孔輸送層32を設けることによる電気抵抗の増加を抑制できる。また、第2正孔輸送層32の厚さの下限値は特に限定しないが、例えば1nm以上であれば、正孔輸送層3と光吸収層5との界面で生じるキャリアの再結合をより効果的に抑制できる。
【0048】
第2正孔輸送層32の厚さは、1nm以上10nm以下であってもよく、2nm以上5nm以下であってもよい。このような範囲内に第2正孔輸送層32の厚さを設定することにより、第2正孔輸送層32の抵抗を小さく抑えつつ、正孔輸送性を十分に発現させることができる。
【0049】
正孔輸送層3(第1正孔輸送層31および第2正孔輸送層32)の形成方法としては、塗布法または印刷法を採用することができる。塗布法としては、例えば、ドクターブレード法、バーコート法、スプレー法、ディップコーティング法、スピンコート法が挙げられる。印刷法としては、例えば、スクリーン印刷法が挙げられる。また、必要に応じて、複数の材料を混合して正孔輸送層3を作製し、加圧、または焼成するなどしてもよい。正孔輸送層3の材料が有機の低分子体または無機半導体である場合には、例えば真空蒸着法またはスパッタ法によって作製することも可能である。
【0050】
本実施形態における正孔輸送層3は、第1正孔輸送層31および第2正孔輸送層32を含む2層構造に限定されない。正孔輸送層3は、光吸収層5側で第1電極2側よりもリチウム比率が低くなるように形成されていればよい。このような正孔輸送層3は、例えば、深さ方向におけるニッケルおよびリチウムの濃度プロファイルにおいて、ニッケルのピークは、リチウムのピークよりも光吸収層5側に位置することで確認され得る。正孔輸送層3は、例えば、第1正孔輸送層31および第2正孔輸送層32を含む3層以上の積層構造を有していてもよい。あるいは、正孔輸送層3は、積層構造を有していなくてもよい。例えば、正孔輸送層3は、基板1側から光吸収層5側に向かって、リチウム比率(全金属元素に対するリチウムの原子数比)が段階的または連続的に減少する層であってもよい。このような正孔輸送層3は、例えばスプレー法、スピンコート法、およびスパッタ法などの公知の方法で形成され得る。
【0051】
[第2電極6]
第2電極6は、導電性を有する。第2電極6は、透光性を有していなくてもよい。第2電極6は、光吸収層5を挟んで、第1電極2と対向するように配置される。つまり、第2電極6は、光吸収層5に対して、第1電極2と反対側に配置される。
【0052】
第2電極6は、光吸収層5とオーミック接触を形成しない。さらに、第2電極6は、光吸収層5からの正孔に対するブロック性を有する。光吸収層5からの正孔に対するブロック性とは、光吸収層5で発生した電子のみを通過させ、正孔を通過させない性質のことである。このような性質を有する材料とは、光吸収層5の価電子帯下端のエネルギー準位よりも、フェルミ準位が低い材料である。具体的な材料としては、アルミニウムが挙げられる。
【0053】
(第2実施形態)
本実施形態に係る太陽電池200は、電子輸送層7をさらに備える点で、第1実施形態に係る太陽電池100と異なる。
【0054】
以下、太陽電池200について説明する。太陽電池100について説明したものと同一の機能および構成を有する構成要素には共通する符号を付して、その説明を省略する。
【0055】
本実施形態に係る太陽電池200は、図2に示すように、基板1と、第1電極2と、正孔輸送層3と、光吸収層5と、電子輸送層7と、第2電極26とを有している。電子輸送層7は、光吸収層5と第2電極26との間に位置する。
【0056】
次に、本実施形態の太陽電池200の基本的な作用効果を説明する。
【0057】
太陽電池200へ光が照射されると、光吸収層5が光を吸収し、励起された電子と、正孔とが発生する。この励起された電子は、電子輸送層7を介して第2電極26に移動する。一方、光吸収層5で生じた正孔は、第2正孔輸送層32を介して第1正孔輸送層31に移動する。第1正孔輸送層31は第1電極2に接続されているので、太陽電池200において、第1電極2を正極、第2電極26を負極として、電流を取り出すことができる。
【0058】
[第2電極26]
第2電極26は、導電性を有する。第2電極26は、第2電極6と同様の構成とすることもできる。本実施形態では、電子輸送層7を用いるため、第2電極26は、ペロブスカイト型化合物からの正孔に対するブロック性を有さなくてもよい。すなわち、第2電極26の材料は、ペロブスカイト型化合物とオーミック接触する材料であってもよい。
【0059】
[電子輸送層7]
電子輸送層7は、半導体を含む。電子輸送層7は、バンドギャップが3.0eV以上の半導体であってもよい。バンドギャップが3.0eV以上の物質で電子輸送層7を形成することにより、可視光および赤外光を光吸収層5まで透過させることができる。半導体の例としては、有機または無機のn型半導体が挙げられる。有機のn型半導体としては、イミド化合物、キノン化合物、ならびにフラーレンおよびその誘導体などが挙げられる。また無機半導体としては、例えば金属元素の酸化物、ペロブスカイト酸化物を用いることができる。金属元素の酸化物としては、例えばCd、Zn、In、Pb、Mo、W、Sb、Bi、Cu、Hg、Ti、Ag、Mn、Fe、V、Sn、Zr、Sr、Ga、Crの酸化物を用いることができる。より具体的な例としては、TiOが挙げられる。ペロブスカイト酸化物としては、例えばSrTiO、CaTiOを用いることができる。また、電子輸送層7は、バンドギャップが6eVよりも大きな物質によって形成されてもよい。バンドギャップが6eVよりも大きな物質としては、フッ化リチウムまたはフッ化カルシウムなどのアルカリ金属もしくはアルカリ土類金属のハロゲン化物、酸化マグネシウムなどのアルカリ金属酸化物、二酸化ケイ素などが挙げられる。この場合、電子輸送層7の電子輸送性を確保するために、電子輸送層7はおおむね10nm以下に構成される。電子輸送層7は、材料の異なる複数の層を含む積層構造を有していてもよい。
【0060】
(太陽電池の分析方法)
上述した実施形態で説明したような構成を有する太陽電池について、各層の構成元素および各層の厚さを同定する方法として、以下の方法が挙げられる。
【0061】
各層の深さ方向における元素分析を行うことが可能である。深さ方向の元素分析法として、例えば、飛行時間型二次イオン質量分析法(Time-of-Flight Secondary Ion Mass Spectrometry;TOF-SIMS)が挙げられる。
【0062】
また、例えば集束イオンビーム(Focused Ion Beam;FIB)等を用いた微細加工により断面形状を測定可能としたサンプルを、電子顕微鏡(Scanning Electron Microscope;SEM、或いはTransmission Electron Microscope;TEM)で観察することで、各層の厚さを同定することが可能である。このような形状観察と同時に行うエネルギー分散型X線分析(Energy Dispersive X-ray Spectrometry;EDS)による元素分析で、各層の構成元素を同定することが可能である。
【0063】
さらに、光吸収層5のペロブスカイト型化合物はジメチルスルホキシド等の有機溶剤により容易に溶解するため、有機溶剤を用いて、太陽電池のうち光吸収層5および光吸収層5よりも上に形成された電子輸送層7、バッファー層、第2電極6を基板1から簡単に除去することができる。従って、基板1から光吸収層5およびその上層を除去して、第2正孔輸送層32の表面を露出させた後、例えばX線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)等により、第2正孔輸送層32の構成元素の同定が可能である。この後、イオンビーム等で第2正孔輸送層32をエッチングして除去することにより、第2正孔輸送層32よりも下(すなわち、基板1側)に形成された第1正孔輸送層31の構成元素を同定することが可能である。
【0064】
(実施例)
以下、本開示を実施例によって具体的に説明する。実施例1~8および比較例1~3の太陽電池を作製し、特性を評価した。なお、各実施例および各比較例の太陽電池における各層の構成元素および厚さは、断面TEM観察、EDS分析、XPS分析、およびTOF-SIMSによる深さ方向元素分析により確認した。
【0065】
まず、各実施例および比較例の太陽電池の構成および作製方法を説明する。
【0066】
[実施例1]
実施例1の太陽電池は、図2に示した太陽電池200と実質的に同じ構造を有する。ただし、電子輸送層7と第2電極26との間にバッファー層を有している。実施例1の太陽電池における各構成要素の材料および厚さを以下に示す。
基板1:ガラス基板、厚さ:0.7mm
第1電極2:フッ素ドープSnO層(表面抵抗:10Ω/sq.)
第1正孔輸送層31:Ni0.9Li0.1O、厚さ:10nm
第2正孔輸送層32:NiO、厚さ:5nm
光吸収層5:CHNHPbI、厚さ:300nm
電子輸送層7:PCBM、厚さ:40nm
バッファー層:Ti0.9Nb0.1、厚さ:10nm
第2電極26:Al、厚さ:100nm
【0067】
実施例1の太陽電池の作製方法は以下の通りである。
【0068】
まず、第1電極2として機能する透明導電層を表面に有する導電性基板を用意した。導電性基板は、基板1と第1電極2とを一体化した基板である。本実施例では、導電性基板として、フッ素ドープSnO層を表面に有する厚さ0.7mmの導電性ガラス基板(日本板硝子製)を用いた。
【0069】
次に、第1電極2であるフッ素ドープSnO層上に、第1正孔輸送層31として、厚さが約10nmのNi0.9Li0.1O層を形成した。Ni0.9Li0.1O層は、0.1mol/Lの硝酸ニッケル・六水和物の水溶液および0.1mol/Lの硝酸リチウムの水溶液を所望の膜組成となるように混合した水溶液を用いて、スプレー法により形成した。スプレー中の基板温度は500℃であった。
【0070】
続いて、第1正孔輸送層31であるNi0.9Li0.1O層上に、第2正孔輸送層32として、厚さが約5nmのNiO層を形成した。本実施例では、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液を、スピンコート法でNi0.9Li0.1O層上に塗布した後、塗布した溶液を大気中で550℃の温度で焼成を行うことにより、NiO層を形成した。
【0071】
なお、塗布法を用いて第1正孔輸送層31と第2正孔輸送層32とを形成する場合、これらの2層の塗布液の溶媒を異ならせることが望ましい。例えば、一方は水、他方は有機溶媒であってもよい。第1正孔輸送層31および第2正孔輸送層32の塗布液の溶媒を、それぞれ、「第1溶媒」および「第2溶媒」とする。第1正孔輸送層31および第2正孔輸送層32の塗布液の溶質を、それぞれ、「第1溶質」、「第2溶質」とする。第1溶媒と第2溶媒とを異ならせることで、第1溶媒および第2溶媒に対する第1溶質の溶解度を異ならせることができる。同様に、第1溶媒および第2溶媒に対する第2溶質の溶解度を異ならせることができる。第1溶質は、第1溶媒に溶けやすく、かつ、第2溶媒に溶け難くてもよい(すなわち、第1溶媒に対する溶解度>第2溶媒に対する溶解度)。同様に、第2溶質は、第2溶媒に溶けやすく、かつ、第1溶媒に溶け難くてもよい。各塗布液の溶媒をこのように選択することで、第1正孔輸送層31上に、塗布法によって第2正孔輸送層32を形成する際に、第1正孔輸送層31の材料(すなわち、第1溶質)が第2正孔輸送層32の塗布液に溶け出すことを抑制できる。従って、第1溶質が第2正孔輸送層32の塗布液に溶け出すことに起因して、第1正孔輸送層31の表面に凹凸が生じたり、第1正孔輸送層31および第2正孔輸送層32の内部にそれらを構成する元素の偏析が生じたりすることを抑制できる。
【0072】
次に、第2正孔輸送層32であるNiO層上に、光吸収層5として、CHNHPbI層を形成した。具体的には、まず、PbIを1mol/L、およびヨウ化メチルアンモニウム(CHNHI)を1mol/Lの濃度で含むジメチルスルホキシド(DMSO)溶液を作製した。次いで、スピンコート法により、NiO層が形成された基板1上にDMSO溶液を塗布した。この後、100℃のホットプレート上で熱処理を行うことによって、光吸収層5を得た。なお、光吸収層5の厚さが約300nmとなるように、スピンコートの回転数を設定した。また、熱処理時の光吸収層5の結晶化を促進するため、スピンコート開始から約25秒後に、回転中の基板1上にトルエンを滴下した。
【0073】
続いて、光吸収層5であるCHNHPbI層上に、電子輸送層7として、厚さが約40nmのPCBM([6,6]-phenyl-C61-butyric acid methyl ester)層を形成した。PCBM層は、50mmol/LのPCBMのクロロベンゼン溶液を用いて、スピンコート法により形成した。
【0074】
次に、電子輸送層7であるPCBM層上に、バッファー層として厚さが約10nmのTi0.9Nb0.1層を形成した。5μmol/Lのチタンイソプロポキシドのメタノール溶液および5μmol/Lのニオブエトキシドのメタノール溶液を所望の膜組成となるように混合した溶液を、スピンコート法でPCBM層上に塗布した後、塗布した溶液の加水分解を行うことによって、Ti0.9Nb0.1層を得た。
【0075】
なお、光吸収層5、電子輸送層7、およびバッファー層の形成に用いる溶液の作製、スピンコート、熱処理等のプロセスは全て、グローブボックス内において、窒素雰囲気中で行った。
【0076】
最後に、バッファー層であるTi0.9Nb0.1層上に、第2電極26として厚さが約100nmのAl層を抵抗加熱蒸着によって形成した。このようにして、実施例1の太陽電池を得た。
【0077】
[実施例2]
第2正孔輸送層32として厚さが約5nmのNi0.95Li0.05O層を形成した点以外は、実施例1と同様の方法で実施例2の太陽電池を作製した。Ni0.95Li0.05O層は、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液、および0.3mol/Lの酢酸リチウム・二水和物の2-メトキシエタノール溶液を所望の膜組成となるように混合した溶液を、スピンコート法で第1正孔輸送層31であるNi0.9Li0.1O層上に塗布した後、大気中で550℃の焼成を行うことにより形成した。第2正孔輸送層32以外の構成要素は、実施例1と同様とした。
【0078】
[実施例3]
第1正孔輸送層31として厚さ約10nmのNi0.8Li0.2O層、第2正孔輸送層32として厚さ約5nmのNi0.9Li0.1O層を形成した点以外は、実施例1の太陽電池と同様の方法で実施例3の太陽電池を作製した。第1正孔輸送層31のNi0.8Li0.2O層は、0.1mol/Lの硝酸ニッケル・六水和物の水溶液および0.1mol/Lの硝酸リチウムの水溶液を、所望の膜組成となるように混合した水溶液を用いて、スプレー法によって形成した。また、第2正孔輸送層32のNi0.9Li0.1O層は、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液、および0.3mol/Lの酢酸リチウム・二水和物の2-メトキシエタノール溶液を、所望の膜組成となるように混合した溶液をスピンコート法で塗布した後、大気中で550℃の焼成を行うことにより形成した。なお、第1正孔輸送層31および第2正孔輸送層32以外の構成要素は、実施例2と同様とした。
【0079】
[実施例4]
第2正孔輸送層32として厚さが約5nmのNi0.8Mg0.2O層を形成した点以外は、実施例1と同様の方法で実施例4の太陽電池を作製した。Ni0.8Mg0.2O層は、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液および0.3mol/Lの酢酸マグネシウム・四水和物の2-メトキシエタノール溶液を、所望の膜組成となるように混合した溶液をスピンコート法で塗布した後、大気中で550℃の焼成を行うことにより形成した。第2正孔輸送層32以外の構成要素は、実施例1と同様とした。
【0080】
[実施例5]
第1正孔輸送層31として厚さ約10nmのNi0.8Li0.1Mg0.1O層、第2正孔輸送層32として厚さ約5nmのNi0.9Mg0.1O層を形成した点以外は、実施例1の太陽電池と同様の方法で実施例5の太陽電池を作製した。Ni0.8Li0.1Mg0.1O層は、0.1mol/Lの硝酸ニッケル・六水和物の水溶液、0.1mol/Lの硝酸リチウムの水溶液、および0.1mol/Lの硝酸マグネシウム・六水和物の水溶液を、所望の膜組成となるように混合した水溶液を用いて、スプレー法によって形成した。また、Ni0.9Mg0.1O層は、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液および0.3mol/Lの酢酸マグネシウム・四水和物の2-メトキシエタノール溶液を所望の膜組成となるように混合した溶液をスピンコート法で塗布した後、大気中で550℃の焼成を行うことにより形成した。第1正孔輸送層31および第2正孔輸送層32以外の構成要素は、実施例1と同様とした。
【0081】
[実施例6]
第1正孔輸送層31として厚さ約10nmのNi0.7Li0.2Mg0.1O層、第2正孔輸送層32として厚さ約5nmのNi0.75Li0.15Mg0.1O層を形成した点以外は、実施例1と同様の方法で実施例6の太陽電池を作製した。Ni0.7Li0.2Mg0.1O層は、0.1mol/Lの硝酸ニッケル・六水和物の水溶液、0.1mol/Lの硝酸リチウムの水溶液、および0.1mol/Lの硝酸マグネシウム・六水和物の水溶液を、所望の膜組成となるように混合した水溶液を用いて、スプレー法によって形成した。また、Ni0.75Li0.15Mg0.1O層は、0.3mol/Lの酢酸ニッケル・四水和物の2-メトキシエタノール溶液、0.3mol/Lの酢酸リチウム・二水和物の2-メトキシエタノール溶液、および0.3mol/Lの酢酸マグネシウム・四水和物の2-メトキシエタノール溶液を所望の膜組成となるように混合した溶液を、スピンコート法で塗布した後、大気中で550℃の焼成を行うことにより形成した。第1正孔輸送層31および第2正孔輸送層32以外の構成要素は、実施例1と同様とした。
【0082】
[実施例7]
第1正孔輸送層31の厚さを約5nm、第2正孔輸送層32の厚さを約3nmとした点以外は、実施例1と同様の方法で実施例7の太陽電池を作製した。第1正孔輸送層31および第2正孔輸送層32の厚さ以外の構成は、実施例1と同様とした。
【0083】
[実施例8]
第1正孔輸送層31の厚さを約15nm、第2正孔輸送層32の厚さを約10nmとした点以外は、実施例1と同様の方法で実施例8の太陽電池を作製した。第1正孔輸送層31および第2正孔輸送層32の厚さ以外の構成は、実施例1と同様とした。
【0084】
[比較例1]
比較例1の太陽電池は、第2正孔輸送層32を有していない点以外は、実施例1の太陽電池と同様の構成を有する。比較例1の太陽電池における各構成要素の材料および厚さを以下に示す。
基板1:ガラス基板、厚さ:0.7mm
第1電極2:フッ素ドープSnO層(表面抵抗:10Ω/sq.)
第1正孔輸送層31:Ni0.9Li0.1O、厚さ:10nm
光吸収層5:CHNHPbI、厚さ:300nm
電子輸送層7:PCBM、厚さ:40nm
バッファー層:Ti0.9Nb0.1、厚さ:10nm
第2電極26:Al、厚さ:100nm
【0085】
比較例1の太陽電池の作製方法は以下の通りである。
【0086】
まず、実施例1の太陽電池と同様の方法で、第1電極2を表面に有する導電性基板上に、第1正孔輸送層31を形成した。
【0087】
次に、第1正孔輸送層31であるNi0.9Li0.1O層上に、実施例1と同様の方法で、光吸収層5として、厚さが約300nmのCHNHPbI層を形成した。その後、実施例1と同様の方法で、電子輸送層7、バッファー層、および第2電極26を形成し、比較例1の太陽電池を得た。
【0088】
[比較例2]
第1正孔輸送層31として厚さ約10nmのNi0.8Li0.2O層を形成した点以外は、比較例1と同様の方法で、比較例2の太陽電池を作製した。第1正孔輸送層31以外の構成要素は、比較例1と同様とした。
【0089】
[比較例3]
第1正孔輸送層31として厚さ約10nmのNi0.8Li0.1Mg0.1O層を形成した点以外は、比較例1と同様の方法で、比較例3の太陽電池を作製した。第1正孔輸送層31以外の構成要素は、比較例1と同様とした。
【0090】
[TOF-SIMSによる深さ方向元素分析]
図3Aおよび3Bは、それぞれ、実施例1および比較例1の太陽電池における、TOF-SIMSによる深さ方向の元素分析結果を示す図である。横軸は、第2電極表面からの深さ、縦軸は強度(イオンカウント数)である。
【0091】
図3Aに示すように、実施例1の太陽電池では、NiおよびLiの深さ方向の濃度プロファイルにおいて、NiのピークP1は、LiのピークP2よりも光吸収層5側に位置している。これに対し、図3Bに示すように、比較例1の太陽電池では、NiおよびLiの濃度プロファイルは、略同じ深さにピークP1、P2を有している。従って、この分析方法により、例えば正孔輸送層3がNiOまたはNiOにLiを添加した材料を用いた場合に、Liの添加量が光吸収層5側で第2電極26側よりも小さいことが分かる。なお、実施例1~8における正孔輸送層3は、いずれも、組成の異なる2層を含む積層構造を有するが、前述したように、正孔輸送層3として、基板1側から光吸収層5側に向かってLi比率が段階的または連続的に減少する層を形成した場合でも、この分析方法により、正孔輸送層3におけるLi比率の厚さ方向の変化を確認できる。ここでは、SIMSを用いたが、その他の方法で深さ方向における元素分析を行ってもよい。
【0092】
[太陽電池の評価]
実施例1~8および比較例1~3の太陽電池に対し、ソーラーシミュレータを用いて100mW/cmの照度の光を照射して、電流-電圧特性を測定した。また、安定化後の電流-電圧特性から、各太陽電池における開放電圧(V)、短絡電流密度(mA/cm)、曲線因子、変換効率(%)を求めた。
【0093】
評価結果を表1に示す。また、実施例1および比較例1の太陽電池の電流―電圧特性の測定結果を図4に示す。
【0094】
【表1】
【0095】
表1に示すように、第2正孔輸送層32を有する実施例1~8の太陽電池では、短絡電流密度が11mA/cmより大きく、変換効率も7%より高い良好な結果が得られた。一方、第2正孔輸送層32を有していない比較例1~3の太陽電池では、実施例1~8の太陽電池よりも短絡電流密度が低く、変換効率も低くなった。
【0096】
以上の結果、逆積構造の太陽電池において、第1正孔輸送層31の光吸収層5側に、第1正孔輸送層31よりもLi比率の小さい第2正孔輸送層32を設けることで、光電変換効率のさらなる向上が可能であることを確認した。なお、正孔輸送層3が上記積層構造を有していない場合でも、正孔輸送層3の深さ方向におけるLi比率が光吸収層5側で基板1側よりも小さければ、同様の効果が得られる。
【産業上の利用可能性】
【0097】
本開示の太陽電池は、例えば、屋根上に設置する太陽電池として有用である。また、フォトディテクターとしても有用である。イメージセンシングに用いることもできる。
【符号の説明】
【0098】
1 基板
2 第1電極
3 正孔輸送層
5 光吸収層
6、26 第2電極
7 電子輸送層
31 第1正孔輸送層
32 第2正孔輸送層
100、200 太陽電池
図1
図2
図3A
図3B
図4