(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-05-30
(45)【発行日】2022-06-07
(54)【発明の名称】共沸または共沸様組成物、熱サイクル用作動媒体および熱サイクルシステム
(51)【国際特許分類】
C09K 5/04 20060101AFI20220531BHJP
F25B 1/00 20060101ALI20220531BHJP
【FI】
C09K5/04 C
F25B1/00 396Z
(21)【出願番号】P 2019532837
(86)(22)【出願日】2018-07-25
(86)【国際出願番号】 JP2018027907
(87)【国際公開番号】W WO2019022141
(87)【国際公開日】2019-01-31
【審査請求日】2021-02-09
(31)【優先権主張番号】P 2017144773
(32)【優先日】2017-07-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000044
【氏名又は名称】AGC株式会社
(74)【代理人】
【識別番号】110001519
【氏名又は名称】特許業務法人太陽国際特許事務所
(72)【発明者】
【氏名】福島 正人
【審査官】中野 孝一
(56)【参考文献】
【文献】国際公開第2016/171264(WO,A1)
【文献】国際公開第2016/171256(WO,A1)
【文献】国際公開第2012/157763(WO,A1)
【文献】特表2014-504675(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C09K5/04
(57)【特許請求の範囲】
【請求項1】
1-クロロ-2,3,3,3-テトラフルオロプロペンおよび(E)-1-クロロ-3,3,3-トリフルオロプロペンからなり、
前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(E)-1-クロロ-3,3,3-トリフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン/(E)-1-クロロ-3,3,3-トリフルオロプロペンで表わされる質量比で、70/30超、90/10未満である共沸または共沸様組成物。
【請求項2】
前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(E)-1-クロロ-3,3,3-トリフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン/(E)-1-クロロ-3,3,3-トリフルオロプロペンで表わされる質量比で、80/20以上、90/10未満である、請求項1に記載の共沸または共沸様組成物。
【請求項3】
前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(E)-1-クロロ-3,3,3-トリフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン/(E)-1-クロロ-3,3,3-トリフルオロプロペンで表わされる質量比で、80/20以上、85/15以下である、請求項1または2に記載の共沸または共沸様組成物。
【請求項4】
前記1-クロロ-2,3,3,3-テトラフルオロプロペンと前記(E)-1-クロロ-3,3,3-トリフルオロプロペンの含有比は、1-クロロ-2,3,3,3-テトラフルオロプロペン:(E)-1-クロロ-3,3,3-トリフルオロプロペンで表わされる質量比で85:15である請求項1~3のいずれか1項に記載の共沸または共沸様組成物。
【請求項5】
前記共沸または共沸様組成物における前記1-クロロ-2,3,3,3-テトラフルオロプロペンの含有割合は、前記共沸または共沸様組成物の全量に対して40質量%以上である請求項1~4のいずれか1項に記載の共沸または共沸様組成物。
【請求項6】
請求項1~5のいずれか1項に記載の共沸または共沸様組成物を含む熱サイクル用作動媒体。
【請求項7】
前記熱サイクル用作動媒体の全量に対する前記共沸または共沸様組成物の割合が80質量%以上である請求項6に記載の熱サイクル用作動媒体。
【請求項8】
前記熱サイクル用作動媒体の全量に対する前記1-クロロ-2,3,3,3-テトラフルオロプロペンの含有割合が40質量%以上である請求項6または7に記載の熱サイクル用作動媒体。
【請求項9】
請求項6~8のいずれか1項に記載の熱サイクル用作動媒体を用いた、熱サイクルシステム。
【請求項10】
前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である請求項9記載の熱サイクルシステム。
【請求項11】
前記熱サイクルシステムが遠心式冷凍機である請求項9または10に記載の熱サイクルシステム。
【請求項12】
前記熱サイクルシステムが低圧型遠心式冷凍機である請求項9または10に記載の熱サイクルシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd)および(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E))からなる共沸または共沸様組成物、これを用いた熱サイクル用作動媒体および熱サイクルシステムに関する。
【背景技術】
【0002】
従来、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動媒体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の熱サイクルシステム用の作動媒体としては、クロロトリフルオロメタン、ジクロロジフルオロメタン等のクロロフルオロカーボン(CFC)、クロロジフルオロメタン等のヒドロクロロフルオロカーボン(HCFC)が用いられてきた。しかし、CFCおよびHCFCは、成層圏のオゾン層への影響が指摘され、現在、規制の対象となっている。
【0003】
このような経緯から、熱サイクル用作動媒体としては、CFCやHCFCに代えて、オゾン層への影響が少ない、ヒドロフルオロカーボン(HFC)が用いられるようになった。しかし、HFCは、地球温暖化の原因となる可能性が指摘されている。
【0004】
そこで、近年、炭素-炭素二重結合を有しその結合が大気中のOHラジカルによって分解されやすいことから、オゾン層への影響が少なく、かつ地球温暖化への影響が少ない、具体的には、地球温暖化係数(GWP)が小さい作動媒体である、ヒドロフルオロオレフィン(HFO)、ヒドロクロロフルオロオレフィン(HCFO)およびクロロフルオロオレフィン(CFO)に期待が集まっている。本明細書においては、特に断りのない限り飽和のHFCをHFCといい、HFOとは区別して用いる。また、HFCを飽和のヒドロフルオロカーボンのように明記する場合もある。
【0005】
例えば、ビルの冷暖房用、工業用の冷水製造プラントなどに用いられる遠心式冷凍機においては、用いる作動媒体がトリクロロフルオロメタン(CFC-11)から1,1,1,2-テトラフルオロエタン(HFC-134a)、1,1,1,3,3-ペンタフルオロプロパン(HFC-245fa)等のHCFに転換され、さらに、HCFO-1233zd(E)等に転換されてきている(例えば、特許文献1を参照。)。
【0006】
ここで、作動媒体として複数の化合物を組み合わせて用いて、より性能等を高める試みがなされている。HCFO-1233zd(E)においても、GWPを低いレベルに保ちながら、他の化合物と組み合わせることで、より性能を高めることが求められていた。
【0007】
一方で、複数の化合物を含有する組成物が非共沸組成物である場合、これを作動媒体とした際には、作動媒体が、保管や移送のために収容された圧力容器から、熱サイクルシステム機器である冷凍空調機器等へ充てん(移充てん)される際や、冷凍空調機器から漏えいした際に、組成変化を生じることがある。さらに、作動媒体の組成が変化した場合には、作動媒体を初期の組成に復元することが困難である。そのため、非共沸組成物を作動媒体として使用した際には、作動媒体の管理性に劣るという課題があった。また、非共沸組成物を作動媒体として使用した際には、温度勾配が大きくなるという課題もあった。
【先行技術文献】
【特許文献】
【0008】
【発明の概要】
【発明が解決しようとする課題】
【0009】
本発明は、共沸または共沸様であることで、組成変化が小さく、温度勾配を小さくできるとともに、環境負荷が小さく、かつサイクル性能に優れる熱サイクル用作動媒体を与える共沸または共沸様組成物、および該組成物を用いた熱サイクル用作動媒体、熱サイクルシステムを提供することを目的とする。
【課題を解決するための手段】
【0010】
本明細書において、ハロゲン化炭化水素については、化合物名の後の括弧内にその化合物の略称を記すが、必要に応じて化合物名に代えてその略称を用いる。また、略称として、ハイフン(-)より後ろの数字およびアルファベット小文字部分だけを用いることがある。
【0011】
本発明は、以下の構成を有する共沸または共沸様組成物、熱サイクル用作動媒体および熱サイクルシステムを提供する。
[1] 1-クロロ-2,3,3,3-テトラフルオロプロペン(HCFO-1224yd。1224ydともいう。)および(E)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(E)、1233zd(E)ともいう。)からなる共沸または共沸様組成物。
[2] 前記1224ydと前記1233zd(E)の含有比は、1224yd:1233zd(E)で表わされる質量比で1:99~99:1である[1]に記載の共沸または共沸様組成物。
[3] 前記1224ydと前記1233zd(E)の含有比は、1224yd:1233zd(E)で表わされる質量比で85:15である[1]または[2]に記載の共沸組成物。
[4] 前記共沸または共沸様組成物における前記1224ydの含有割合は、前記共沸または共沸様組成物の全量に対して40質量%以上である[1]~[3]のいずれかに記載の共沸または共沸様組成物。
[5] 前記[1]~[4]のいずれかに記載の共沸または共沸様組成物を含む熱サイクル用作動媒体。
[6] 前記熱サイクル用作動媒体の全量に対する前記共沸または共沸様組成物の割合が80質量%以上である[5]に記載の熱サイクル用作動媒体。
[7] 前記熱サイクル用作動媒体の全量に対する前記1224ydの含有割合が40質量%以上である[5]または[6]に記載の熱サイクル用作動媒体。
[8] 前記[5]~[7]のいずれかに記載の熱サイクル用作動媒体を用いた、熱サイクルシステム。
[9] 前記熱サイクルシステムが冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置または二次冷却機である[8]に記載の熱サイクルシステム。
[10] 前記熱サイクルシステムが遠心式冷凍機である[8]または[9]に記載の熱サイクルシステム。
[11] 前記熱サイクルシステムが低圧型遠心式冷凍機である[8]または[9]に記載の熱サイクルシステム。
【発明の効果】
【0012】
本発明によれば、共沸または共沸様であることで、組成変化が小さく、温度勾配を小さくできるとともに、環境負荷が小さく、かつサイクル性能に優れる熱サイクル用作動媒体を与える共沸または共沸様組成物、および該組成物を用いた熱サイクル用作動媒体を提供することができる。また、本発明によれば、環境負荷が小さく、かつサイクル性能に優れる熱サイクルシステムを提供することができる。
【図面の簡単な説明】
【0013】
【
図1】1224ydおよび1233zd(E)からなる組成物の気液平衡グラフである。
【
図2】冷凍サイクルシステムの一例を示す概略構成図である。
【
図3】
図2の冷凍サイクルシステムにおける熱サイクル用作動媒体の状態変化を圧力-エンタルピ線図上に記載したサイクル図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施の形態について説明する。
[1224ydおよび1233zd(E)からなる共沸または共沸様組成物]
本発明の共沸または共沸様組成物は、1224ydおよび1233zd(E)からなる。
【0015】
1224ydには、E体(1224yd(E))とZ体(1224yd(Z))の2つの幾何異性体が存在する。本明細書においては、1224ydの(E)、(Z)の表記がないものは、1224yd(E)若しくは1224yd(Z)、または1224yd(E)および1224yd(Z)の任意の割合の混合物を示す。以下、分子内に二重結合を有し、E体とZ体が存在する他の化合物についても同様である。
【0016】
すなわち、本発明の共沸または共沸様組成物における1224ydは、1224yd(E)単体、1224yd(Z)単体、または1224yd(E)および1224yd(Z)の任意の割合の混合物のいずれの場合であっても、1233zd(E)と以下に説明する組成の共沸または共沸様組成物を形成する。
【0017】
なお、1224ydおよび1233zd(E)の沸点は、圧力が1.013×105Paで測定される値で、それぞれ、1224yd(Z)の沸点が15.0℃、1224yd(E)の沸点が19.0℃、1233zd(E)の沸点が19.0℃である。
【0018】
共沸組成物とは、2成分以上の混合液の気液平衡状態において、気相と液相の組成が同一である組成物をいい、共沸様組成物は共沸組成物における気液平衡時の前記挙動と略同様の挙動を示す組成物をいう。なお、共沸様組成物は、共沸組成物と同等に取り扱えるため、以下、共沸様組成物は共沸組成物を含むものとして説明する。
【0019】
(共沸組成物)
1224ydおよび1233zd(E)からなる共沸組成物は、1224yd:1233zd(E)で表わされる質量比が85:15の組成物であり、以下の式で示される比揮発度(1224yd/1233zd(E))が1.00である。
【0020】
(比揮発度を求める式)
比揮発度(1224yd/1233zd(E))=(気相部における1224ydの質量%/気相部における1233zd(E)の質量%)/(液相部における1224ydの質量%/液相部における1233zd(E)の質量%)
【0021】
なお、上記比揮発度は、気液平衡状態の1224ydと1233zd(E)の混合物の気相および液相の組成を測定することで求められる。
【0022】
(共沸組成を求める試験)
比揮発度は、具体的には、以下の方法で求められる。所定の組成の1224ydおよび1233zd(E)を、25℃で耐圧容器内に充填し、撹拌した後、気液平衡状態となるまで静置した。その後、耐圧容器内の気相および液相を採取し、それぞれガスクロマトグラフによって組成の分析を行った。また、両者の組成比から、上に説明した比揮発度を求める式により比揮発度を求めた。結果を表1に示す。
【0023】
【0024】
さらに、表1の結果に基いて、1224ydおよび1233zd(E)からなる組成物の気液平衡グラフを作成した。これを、
図1に示す。
図1は、上記各種組成を変えて準備された1224ydおよび1233zd(E)からなる混合物の気液平衡状態における、1224ydの液相濃度(質量%)と気相濃度(質量%)の関係を示すグラフである。
図1において、実線が上記で測定された1224ydの液相濃度(質量%)と気相濃度(質量%)の関係を示し、破線は気相と液相における組成が一致する比揮発度1.00となる直線を示す。
図1において実線で示す曲線と破線で示す直線の交点が共沸組成であり、1224yd:1233zd(E)=85.0質量%:15.0質量%である。
【0025】
(共沸様組成物)
また、
図1より、1224ydおよび1233zd(E)からなる混合物においては、1224ydが1~99質量%の範囲で気液平衡状態における液相濃度(質量%)と気相濃度(質量%)の関係が、上記破線で示す比揮発度1.00の直線に近似していることがわかる。本明細書において、共沸様組成物とは、上記式で求められる比揮発度が1.00±0.45の範囲にある組成物をいう。
【0026】
上記測定結果によれば、1224ydおよび1233zd(E)からなる共沸様組成物は、1224ydと1233zd(E)の質量比(1224yd[質量%]:1233zd(E)[質量%])が1:99~99:1の範囲で、比揮発度が1.00±0.45の範囲である。
【0027】
また、以下に説明するように、温度勾配は、共沸様組成を反映する指標であり、混合物の温度勾配が0.8℃以下であれば、当該混合物が共沸様組成であるといえる。
【0028】
上記の結果から、本発明における1224ydおよび1233zd(E)からなる共沸または共沸様組成物は、1224ydと1233zd(E)の質量比(1224yd[質量%]:1233zd(E)[質量%])が1:99~99:1の混合物である。
【0029】
なお、1224yd(Z)と1224yd(E)は、上記のとおり共沸様組成物を構成する場合に区別なく使用できる。ただし、化学安定性の点からは1224yd(E)に比べて1224yd(Z)が好ましい。したがって、本発明の共沸様組成物において、1224yd全量に対する1224yd(Z)の含有割合が30~100質量%であるのが好ましく、50~100質量%であるのがより好ましい。本発明の共沸様組成物における1224ydは、1224yd(Z)のみからなるのが特に好ましい。しかしながら、HCFO-1224ydのZ体とE体の蒸留分離等による製造コストの増大を抑制する観点からは、HCFO-1224yd(Z)とHCFO-1224yd(E)の合計100質量%に対して5質量%以下のHCFO-1224yd(E)を含有してもよい。
【0030】
1224ydおよび1233zd(E)からなる共沸様組成物は、1224ydと1233zd(E)の含有割合が上記した範囲であれば、気液両相の組成比の差が極めて小さく、組成の安定性に優れる。
【0031】
1224ydおよび1233zd(E)はともにGWPが1である。混合物の場合、そのGWPは組成質量による加重平均で示されるため、本発明の共沸様組成物のGWPは1である。GWPが1であるというのは、例えば、従来、遠心式冷凍機に作動媒体として用いられていたHFC-245faの1030に比べて格段に低い。GWPは、気候変動に関する政府間パネル(IPCC)第5次評価報告書(2014年)に示される、または該方法に準じて測定された100年の値である。本明細書において、GWPは特に断りのない限りこの値をいう。
【0032】
表2に、1224yd(Z)と1233zd(E)の熱安定性を示す。熱安定性は、各温度で、14日間の加熱後に、中和滴定法により測定された酸分発生量(加熱前の検体量に対する発生した酸分の量;質量ppm)で示す。なお、1224yd(Z)の熱安定性は1224ydの熱安定性を示すと考えてよい。一方、1233zd(E)は、後述のとおり作動媒体としてのサイクル性能において、1224ydに比べて成績係数が上回る点で有利である。
【0033】
【0034】
本発明の共沸様組成物においては、用途に応じて、上記、1224ydと1233zd(E)の特徴を勘案し、上記共沸様組成の範囲内で組成を適宜調整できる。例えば、本発明の共沸様組成物において、比揮発度がより1.00に近い組成が求められる場合には、1224ydの含有量を共沸様組成物全量に対して40質量%以上とするのが好ましい。すなわち、1224ydと1233zd(E)の質量比が、40:60~99:1の範囲の組成物が好ましい。比揮発度がさらに1.00に近く気液両相の組成比の差が殆どない特性が求められる場合には、1224ydと1233zd(E)の共沸様組成物のうちでも、例えば、1224ydと1233zd(E)の質量比が、60:40~99:1の範囲の組成物がより好ましく、70:30~95:5の範囲の組成物がさらに好ましい。
【0035】
本発明の共沸様組成物は、気液両相の組成比の差が極めて小さく、熱サイクル用作動媒体に好適である。すなわち、本発明の共沸様組成物を用いれば、組成の安定性に優れた熱サイクル用作動媒体(以下、単に「作動媒体」ともいう。)を得ることができる。
【0036】
[熱サイクル用作動媒体]
本発明の熱サイクル用作動媒体は、上記した1224ydおよび1233zd(E)からなる共沸様組成物を含む。また、本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲で、上記共沸様組成物以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
【0037】
本発明の作動媒体は、上記した本発明の共沸様組成物を含むため、熱サイクルシステムに適用する場合に、移充てん、あるいは機器からの漏えい時の組成変化が極めて小さい。そのため、熱サイクルシステムにおいて極めて安定したサイクル性能が得られる。また、このため、熱サイクル用作動媒体の管理が容易であるという利点を有し、一定の能力を維持しながら効率をより高めることで良好なサイクル性能を得ることができる。
【0038】
本発明の作動媒体は、1224ydおよび1233zd(E)からなる共沸様組成物を含むため、温度勾配が0に近い。したがって、以下に説明するように、エネルギー効率のよい熱サイクルシステムを得ることができる。
【0039】
ここで、「温度勾配」は、混合物を作動媒体として使用した場合における性質をはかる指標の一つである。温度勾配は、熱交換器、例えば、蒸発器における蒸発の、または凝縮器における凝縮の、開始温度と終了温度が異なる性質、と定義される。
【0040】
共沸様組成物を作動媒体として用いる場合の熱サイクルシステムにおける温度勾配の影響について、
図2に示す熱サイクルシステムに用いた場合を例に以下に説明する。
【0041】
図2は、本発明の作動媒体が適用される後述の冷凍サイクルシステムの一例を示す概略構成図である。冷凍サイクルシステム10は、作動媒体蒸気Aを圧縮して高温高圧の作動媒体蒸気Bとする圧縮機11と、圧縮機11から排出された作動媒体蒸気Bを冷却し、液化して低温高圧の作動媒体Cとする凝縮器12と、凝縮器12から排出された作動媒体Cを膨張させて低温低圧の作動媒体Dとする膨張弁13と、膨張弁13から排出された作動媒体Dを加熱して高温低圧の作動媒体蒸気Aとする蒸発器14と、蒸発器14に負荷流体Eを供給するポンプ15と、凝縮器12に流体Fを供給するポンプ16とを具備して概略構成されるシステムである。
【0042】
冷凍サイクルシステム10において、作動媒体は、蒸発時、蒸発器14の入口から出口に向かい温度が上昇し、反対に凝縮時、凝縮器12の入口から出口に向かい温度が低下する。冷凍サイクルシステム10においては、蒸発器14および凝縮器12において、作動媒体と対向して流れる水や空気等の熱源流体との間で熱交換を行うことにより構成されている。熱源流体は、冷凍サイクルシステム10において、蒸発器14では「E→E’」で示され、凝縮器12では「F→F’」で示される。
【0043】
ここで、単一組成の作動媒体を用いた場合には温度勾配がないため、蒸発器14の出口温度と入口温度との温度差がほぼ一定である。
【0044】
また、共沸組成物は、該組成物を繰り返し蒸発、凝縮させた場合、組成変化がないため、作動媒体として用いる場合に、単一組成の作動媒体とほぼ等しく取り扱える。また、共沸様組成物は、蒸発、凝縮を繰り返した場合の組成の変動が小さく、共沸組成物と同等に取り扱える。したがって、共沸組成物または共沸様組成物を作動媒体として用いた場合にも、蒸発器14の出口温度と入口温度との温度差がほぼ一定となる。
【0045】
一方、非共沸組成物を用いた場合は、温度差が一定とならない。例えば、蒸発器14で、0℃で蒸発させようとした場合、入口温度が0℃よりも低い温度となり、蒸発器14において着霜する問題が生じる。特に、温度勾配が大きいほど、入口温度が低くなり、着霜の可能性が大きくなる。
【0046】
また、例えば、上記冷凍サイクルシステム10に示されるとおり、通常、熱サイクルシステムにおいては、蒸発器14および凝縮器12等の熱交換器を流れる作動媒体と水や空気等の熱源流体とは常に対向流にすることにより熱交換効率の向上をはかる工夫がされている。ここで、起動時を別とし、一般に長期稼働する安定運転状態においては熱源流体の温度差が小さいことから、気液両相の組成が大きく異なる非共沸組成物の場合、温度勾配が大きいため、エネルギー効率のよい熱サイクルシステムを得ることが困難である。これに対し、共沸組成物を作動媒体として用いた場合には、エネルギー効率のよい熱サイクルシステムを得ることができる。
【0047】
また、冷凍サイクルシステム10に気液両相の組成が大きく異なる非共沸組成物を用いた場合、システム10内を循環する非共沸組成物が漏えいした場合に、その前後でシステム10内を循環する非共沸組成物の組成が大きく変化する原因になる。
【0048】
本発明の作動媒体は、1224ydおよび1233zd(E)からなる共沸様組成物を含むため、温度勾配が0に近く、非共沸組成物における上記問題を回避することができる。
【0049】
また、1224ydおよび1233zd(E)は共に不燃性であるため、本発明の共沸様組成物は燃焼性を持たない。そのため、当該共沸様組成物を含む熱サイクル用作動媒体は、熱サイクルシステム外に漏洩した場合にも極めて安全性が高い。
【0050】
なお、本発明の共沸様組成物を、作動媒体として用いる場合は、1224ydと1233zd(E)の特徴を勘案し、上記共沸様組成の範囲内で組成を適宜調整できる。表3に1224yd(Z)および1233zd(E)の作動媒体としてのサイクル性能として、成績係数と冷凍能力を示す。成績係数と冷凍能力は、後述する方法で求められる(ただし、蒸発温度;5℃、凝縮完了温度;40℃、過冷却度(SC);5℃、過熱度(SH);0℃、圧縮機効率:0.8)。各化合物における成績係数と冷凍能力は、1233zd(E)を基準(1.00)とした相対値(以下、それぞれ「相対成績係数」または「相対冷凍能力」という。)で示す。
【0051】
【0052】
表3から、相対冷凍能力は1224yd(Z)が1233zd(E)に比べて優れており、相対成績係数は1233zd(E)が1224yd(Z)に比べてやや優れていることがわかる。なお、1224yd(Z)のサイクル性能は1224ydのサイクル性能を示すと考えてよい。本発明の共沸様組成物を、作動媒体として用いる場合は、このような1224ydと1233zd(E)の特徴を勘案し、上記共沸様組成の範囲内で組成を適宜調整する。例えば、本発明の共沸様組成物を作動媒体として用いる場合、1224ydと1233zd(E)の質量比は、40:60~99:1が好ましく、60:40~99:1がより好ましく、70:30~95:5がさらに好ましい。
【0053】
本発明の作動媒体における、本発明の共沸様組成物の含有量は、作動媒体(100質量%)中、80質量%以上が好ましく、100質量%が特に好ましい。該共沸様組成物の含有量が80質量%未満では、本発明の共沸様組成物による効果、特には、低いGWPと、0に近い温度勾配を達成できない場合がある。上記のとおり温度勾配が大きいと、作動媒体の用途において、熱サイクル機器からの漏えいが生じた場合、作動媒体の組成変化が大きくなるおそれがある等、作動媒体の管理性が低下することがある。
【0054】
本発明の作動媒体における、1224ydの含有量は、作動媒体(100質量%)中、40質量%以上が好ましく、温度勾配を小さくできる点から60質量%以上がより好ましく、70~95質量%がさらに好ましい。1224ydの含有量を上記範囲とすることで、本発明の共沸様組成物の利点を活かしながら、冷凍能力を向上させることが可能である。
【0055】
(任意成分)
本発明の熱サイクル用作動媒体は、本発明の効果を損なわない範囲で上記共沸様組成物以外に、通常作動媒体として用いられる化合物を任意に含有してもよい。
【0056】
このような任意の化合物(任意成分)としては、例えば、HFC、HFO、1224ydおよび1233zd(E)以外のHCFO、炭化水素、二酸化炭素、これら以外の、1224ydおよび1233zd(E)とともに気化、液化する他の成分等が挙げられる。任意成分としては、HFC、HFO、1224ydおよび1233zd(E)以外のHCFOが好ましい。
【0057】
任意成分としては、1224ydおよび1233zd(E)と組み合わせて熱サイクルに用いた際に、サイクル性能を向上させるとともに、GWPを低く抑えながら、温度勾配を許容の範囲にとどめられる化合物が好ましい。熱サイクル用作動媒体が1224ydおよび1233zd(E)との組合せにおいてこのような化合物を含むと、GWPを低く抑えながら、より良好なサイクル性能が得られるとともに、温度勾配による影響も少ない。
【0058】
本発明の作動媒体において、任意成分の含有量は合量で、作動媒体全量から上記共沸様組成物の含有量を除いた量である。
【0059】
(HFC)
任意成分のHFCとしては、上記観点から選択されることが好ましい。ここで、HFCは、1224ydおよび1233zd(E)に比べてGWPが高いことが知られている。したがって、本発明の共沸様組成物(GWP=1)と組合せるHFCとしては、上記作動媒体としてのサイクル性能を向上させ、GWPを許容の範囲、例えば、150未満にとどめる観点から、適宜選択されることが好ましい。
【0060】
オゾン層への影響が少なく、かつ地球温暖化への影響が小さいHFCとして具体的には炭素数1~5のHFCが好ましい。HFCは、直鎖状であっても、分岐状であってもよく、環状であってもよい。
【0061】
HFCとしては、ジフルオロメタン、ジフルオロエタン、トリフルオロエタン、テトラフルオロエタン、ペンタフルオロエタン、ペンタフルオロプロパン、ヘキサフルオロプロパン、ヘプタフルオロプロパン、ペンタフルオロブタン、ヘプタフルオロシクロペンタン等が挙げられる。
【0062】
なかでも、HFCとしては、オゾン層への影響が少なく、かつ冷凍サイクル特性が優れる点から、1,1,2,2-テトラフルオロエタン(HFC-134)、HFC-134a、HFC-245fa、1,1,1,3,3-ペンタフルオロブタン(HFC-365mfc)がより好ましく、HFC-134a、HFC-245fa、HFC-365mfcがさらに好ましい。HFCは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0063】
本発明に用いられる作動媒体(100質量%)中のHFCの含有割合は、例えば、HFC-245faの場合、1~20質量%の範囲とすることで、作動媒体の成績係数の大きな低下、ならびにGWPの大幅な上昇を生じることなく、冷凍能力を向上できる。ここで、HFC-245faのGWPは1030と高いので、上記含有割合の範囲内で作動媒体としてのGWPを考慮しながらその含有割合を適宜調整する。HFC-245fa以外のHFCを用いる場合においても、GWPと作動媒体に要求されるサイクル性能に応じて適宜その含有量の制御を行うことができる。
【0064】
(HFO)
HFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、HFOであれば、GWPはHFCに比べて桁違いに低い。したがって、本発明の共沸様組成物と組み合わせるHFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させることに留意して、適宜選択されることが好ましい。
【0065】
HFOとしては、2,3,3,3-テトラフルオロプロペン(HFO-1234yf)、1,2-ジフルオロエチレン(HFO-1132)、2-フルオロプロペン(HFO-1261yf)、1,1,2-トリフルオロプロペン(HFO-1243yc)、(E)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(E))、(Z)-1,2,3,3,3-ペンタフルオロプロペン(HFO-1225ye(Z))、(E)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(E))、(Z)-1,3,3,3-テトラフルオロプロペン(HFO-1234ze(Z))、3,3,3-トリフルオロプロペン(HFO-1243zf)、(E)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(E))、(Z)-1,1,1,4,4,4-ヘキサフルオロ-2-ブテン(HFO-1336mzz(Z))が挙げられる。
【0066】
HFOとしては、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1336mzz(Z)、HFO-1243zfが好ましく、HFO-1234yf、HFO-1234ze(E)、HFO-1234ze(Z)、HFO-1336mzz(Z)がより好ましい。HFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0067】
(1224ydおよび1233zd(E)以外のHCFO)
1224ydおよび1233zd(E)以外の任意成分としてのHCFOについても、上記HFCと同様の観点から選択されることが好ましい。なお、1224ydおよび1233zd(E)以外であってもHCFOであれば、GWPはHFCに比べて桁違いに低い。したがって、本発明の共沸様組成物と組合せる1224ydおよび1233zd(E)以外のHCFOとしては、GWPを考慮するよりも、上記作動媒体としてのサイクル性能を向上させることに留意して、適宜選択されることが好ましい。
【0068】
1224ydおよび1233zd(E)以外のHCFOとしては、1-クロロ-2,2-ジフルオロエチレン(HCFO-1122)、1,2-ジクロロフルオロエチレン(HCFO-1121)、1-クロロ-2-フルオロエチレン(HCFO-1131)、1-クロロ-2,3,3-トリフルオロ-1-プロペン(HCFO-1233yd)、2-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233xf)および(Z)-1-クロロ-3,3,3-トリフルオロプロペン(HCFO-1233zd(Z))が挙げられる。1224ydおよび1233zd(E)以外のHCFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0069】
作動媒体が1224ydおよび1233zd(E)以外のHCFOを含有する場合、その含有割合は作動媒体の100質量%に対して10質量%未満が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。
【0070】
(その他の任意成分)
本発明の熱サイクルシステムに用いる作動媒体は、上記任意成分以外に、二酸化炭素、炭化水素、クロロフルオロオレフィン(CFO)等を含有してもよい。その他の任意成分としてはオゾン層への影響が少なく、かつ地球温暖化への影響が小さい成分が好ましい。
【0071】
炭化水素としては、プロパン、プロピレン、シクロプロパン、ブタン、イソブタン、ペンタン、イソペンタン等が挙げられる。炭化水素は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0072】
上記作動媒体が炭化水素を含有する場合、その含有割合は作動媒体の100質量%に対して10質量%未満が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。炭化水素を含有する場合、作動媒体への鉱物系潤滑油の溶解性がより良好になる。
【0073】
CFOとしては、クロロフルオロプロペン、クロロフルオロエチレン等が挙げられる。作動媒体のサイクル性能を大きく低下させることなく作動媒体の燃焼性を抑えやすい点から、CFOとしては、1,1-ジクロロ-2,3,3,3-テトラフルオロプロペン(CFO-1214ya)、1,3-ジクロロ-1,2,3,3-テトラフルオロプロペン(CFO-1214yb)、1,2-ジクロロ-1,2-ジフルオロエチレン(CFO-1112)が好ましい。CFOは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0074】
作動媒体がCFOを含有する場合、その含有割合は作動媒体の100質量%に対して10質量%未満が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。CFOを含有することで、作動媒体の燃焼性を抑制しやすい。CFOの含有割合が上限値以下であれば、良好なサイクル性能が得られやすい。
【0075】
作動媒体が上記のようなその他の任意成分を含有する場合、作動媒体におけるその他の任意成分の合計の含有割合は、作動媒体100質量%に対して10質量%未満が好ましく、8質量%以下がより好ましく、5質量%以下がさらに好ましい。
【0076】
<作動媒体組成物>
作動媒体は、熱サイクルシステムへの適用に際して、通常、潤滑油と混合して作動媒体組成物として使用することができる。作動媒体組成物は、これら以外にさらに、安定剤、漏れ検出物質等の公知の添加剤を含有してもよい。
【0077】
(潤滑油)
潤滑油としては、従来からハロゲン化炭化水素からなる作動媒体とともに、作動媒体組成物に用いられる公知の潤滑油が特に制限なく採用できる。潤滑油として具体的には、含酸素系合成油(エステル系潤滑油、エーテル系潤滑油等)、フッ素系潤滑油、鉱物系潤滑油、炭化水素系合成油等が挙げられる。
【0078】
エステル系潤滑油としては、二塩基酸エステル油、ポリオールエステル油、コンプレックスエステル油、ポリオール炭酸エステル油等が挙げられる。
【0079】
エーテル系潤滑油としては、ポリビニルエーテル油や、ポリグリコール油等のポリオキシアルキレン油が挙げられる。
【0080】
フッ素系潤滑油としては、合成油(後述する鉱物油、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等。)の水素原子をフッ素原子に置換した化合物、ペルフルオロポリエーテル油、フッ素化シリコーン油等が挙げられる。
【0081】
鉱物系潤滑油としては、原油を常圧蒸留または減圧蒸留して得られた潤滑油留分を、精製処理(溶剤脱れき、溶剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化精製、白土処理等)を適宜組み合わせて精製したパラフィン系鉱物油、ナフテン系鉱物油等が挙げられる。
【0082】
炭化水素系合成油としては、ポリα-オレフィン、アルキルベンゼン、アルキルナフタレン等が挙げられる。
【0083】
潤滑油は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
潤滑油としては、作動媒体との相溶性の点から、ポリオールエステル油、ポリビニルエーテル油およびポリグリコール油から選ばれる1種以上が好ましい。
【0084】
潤滑油の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、10~100質量部が好ましく、20~50質量部がより好ましい。
【0085】
(安定剤)
安定剤は、熱および酸化に対する作動媒体の安定性を向上させる成分である。安定剤としては、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の安定剤、例えば、耐酸化性向上剤、耐熱性向上剤、金属不活性剤等が特に制限なく採用できる。
【0086】
耐酸化性向上剤および耐熱性向上剤としては、N,N’-ジフェニルフェニレンジアミン、p-オクチルジフェニルアミン、p,p’-ジオクチルジフェニルアミン、N-フェニル-1-ナフチルアミン、N-フェニル-2-ナフチルアミン、N-(p-ドデシル)フェニル-2-ナフチルアミン、ジ-1-ナフチルアミン、ジ-2-ナフチルアミン、N-アルキルフェノチアジン、6-(t-ブチル)フェノール、2,6-ジ-(t-ブチル)フェノール、4-メチル-2,6-ジ-(t-ブチル)フェノール、4,4’-メチレンビス(2,6-ジ-t-ブチルフェノール)等が挙げられる。耐酸化性向上剤および耐熱性向上剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0087】
金属不活性剤としては、イミダゾール、ベンズイミダゾール、2-メルカプトベンズチアゾール、2,5-ジメチルカプトチアジアゾール、サリシリジン-プロピレンジアミン、ピラゾール、ベンゾトリアゾール、トルトリアゾール、2-メチルベンズアミダゾール、3,5-ジメチルピラゾール、メチレンビス-ベンゾトリアゾール、有機酸またはそれらのエステル、第1級、第2級または第3級の脂肪族アミン、有機酸または無機酸のアミン塩、複素環式窒素含有化合物、アルキル酸ホスフェートのアミン塩またはそれらの誘導体等が挙げられる。
【0088】
安定剤の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、5質量部以下が好ましく、1質量部以下がより好ましい。
【0089】
(漏れ検出物質)
漏れ検出物質としては、紫外線蛍光染料、臭気ガスや臭いマスキング剤等が挙げられる。
紫外線蛍光染料としては、米国特許第4249412号明細書、特表平10-502737号公報、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来、ハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の紫外線蛍光染料が挙げられる。
【0090】
臭いマスキング剤としては、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等、従来からハロゲン化炭化水素からなる作動媒体とともに、熱サイクルシステムに用いられる公知の香料が挙げられる。
【0091】
漏れ検出物質を用いる場合には、作動媒体への漏れ検出物質の溶解性を向上させる可溶化剤を用いてもよい。
【0092】
可溶化剤としては、特表2007-511645号公報、特表2008-500437号公報、特表2008-531836号公報に記載されたもの等が挙げられる。
【0093】
漏れ検出物質の添加量は、本発明の効果を著しく低下させない範囲であればよく、作動媒体100質量部に対して、2質量部以下が好ましく、0.5質量部以下がより好ましい。
【0094】
[熱サイクルシステム]
本発明の熱サイクルシステムは、熱サイクル用の機器や装置に本発明の作動媒体を適用して得られる。なお、作動媒体は、上記作動媒体組成物として熱サイクルシステムに適用されてもよい。本発明の作動媒体は、HFC-245faや1233zdが適用可能に設計された熱サイクル用の機器や装置にHFC-245faや1233zdに代えてそのまま用いることが可能であり、経済的に有利である。
【0095】
熱サイクルシステムとしては、圧縮機、凝縮器や蒸発器等の熱交換器を含む熱サイクルシステムが挙げられる。熱サイクルシステム、例えば、冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。
【0096】
本発明の熱サイクルシステムは、凝縮器で得られる温熱を利用するヒートポンプシステムであってもよく、蒸発器で得られる冷熱を利用する冷凍サイクルシステムであってもよい。本発明の熱サイクルシステムは、フラデッドエバポレーター式であってもよく、直接膨張式であってもよい。本発明の熱サイクルシステムにおいて、作動媒体との間で熱交換される作動媒体以外の他の物質は水または空気が好ましい。
【0097】
本発明の熱サイクルシステムとして、具体的には、冷凍・冷蔵機器、空調機器、発電システム、熱輸送装置および二次冷却機等が挙げられる。なかでも、本発明の熱サイクルシステムは、より高温の作動環境でも安定してサイクル性能を発揮できるため、屋外等に設置されることが多い空調機器として用いられることが好ましい。また、本発明の熱サイクルシステムは、冷凍・冷蔵機器として用いられることも好ましい。
【0098】
発電システムとしては、ランキンサイクルシステムによる発電システムが好ましい。発電システムとして、具体的には、蒸発器において地熱エネルギー、太陽熱、50~200℃程度の中~高温度域廃熱等により作動媒体を加熱し、高温高圧状態の蒸気となった作動媒体を膨張機にて断熱膨張させ、該断熱膨張によって発生する仕事によって発電機を駆動させ、発電を行うシステムが例示される。
【0099】
また、本発明の熱サイクルシステムは、熱輸送装置であってもよい。熱輸送装置としては、潜熱輸送装置が好ましい。潜熱輸送装置としては、装置内に封入された作動媒体の蒸発、沸騰、凝縮等の現象を利用して潜熱輸送を行うヒートパイプおよび二相密閉型熱サイフォン装置が挙げられる。ヒートパイプは、半導体素子や電子機器の発熱部の冷却装置等、比較的小型の冷却装置に適用される。二相密閉型熱サイフォンは、ウィッグを必要とせず構造が簡単であることから、ガス-ガス型熱交換器、道路の融雪促進および凍結防止等に広く利用される。
【0100】
冷凍・冷蔵機器として、具体的には、ショーケース(内蔵型ショーケース、別置型ショーケース等)、業務用冷凍・冷蔵庫、自動販売機、製氷機等が挙げられる。
【0101】
空調機器として、具体的には、ルームエアコン、パッケージエアコン(店舗用パッケージエアコン、ビル用パッケージエアコン、設備用パッケージエアコン等)、熱源機器チリングユニット、ガスエンジンヒートポンプ、列車用空調装置、自動車用空調装置等が挙げられる。
【0102】
熱源機器チリングユニットとしては、例えば、容積圧縮式冷凍機、遠心式冷凍機が挙げられる。なかでも、次に説明する遠心式冷凍機は作動媒体の充填量が多いので、本発明の効果をより顕著に得ることができるため好ましい。
【0103】
ここで、遠心式冷凍機は、遠心圧縮機を用いた冷凍機である。遠心式冷凍機は、蒸気圧縮式の冷凍機の一種であり、通常、ターボ冷凍機とも言われる。遠心圧縮機は、羽根車を備えており、回転する羽根車で作動媒体を外周部へ吐き出すことで圧縮を行う。遠心式冷凍機は、オフィスビル、地域冷暖房、病院での冷暖房の他、半導体工場、石油化学工業での冷水製造プラント等に用いられている。
【0104】
遠心式冷凍機としては、低圧型、高圧型のいずれであってもよいが、低圧型の遠心式冷凍機であることが好ましい。なお、低圧型とは、例えば、CFC-11、2,2-ジクロロ-1,1,1-トリフルオロエタン(HCFC-123)、HFC-245faのような高圧ガス保安法の適用を受けない作動媒体、すなわち、「常用の温度において、圧力0.2MPa以上となる液化ガスで現にその圧力が0.2MPa以上であるもの、または圧力が0.2MPa以上となる場合の温度が35℃以下である液化ガス」に該当しない作動媒体を用いた遠心式冷凍機をいう。
【0105】
熱サイクルシステムの一例である冷凍サイクルシステムについて
図2を参照して説明する。冷凍サイクルにおいては、気体の作動媒体を圧縮機で圧縮し、凝縮器で冷却して圧力が高い液体をつくり、膨張弁で圧力を下げ、蒸発器で低温気化させて気化熱で熱を奪う機構を有する。
【0106】
冷凍サイクルシステム10においては、以下のサイクルが繰り返される。
(i)蒸発器14から排出された作動媒体蒸気Aを圧縮機11にて圧縮して高温高圧の作動媒体蒸気Bとする。
(ii)圧縮機11から排出された作動媒体蒸気Bを凝縮器12にて流体Fによって冷却し、液化して低温高圧の作動媒体Cとする。この際、流体Fは加熱されて流体F’となり、凝縮器12から排出される。
(iii)凝縮器12から排出された作動媒体Cを膨張弁13にて膨張させて低温低圧の作動媒体Dとする。
(iv)膨張弁13から排出された作動媒体Dを蒸発器14にて負荷流体Eによって加熱して高温低圧の作動媒体蒸気Aとする。この際、負荷流体Eは冷却されて負荷流体E’となり、蒸発器14から排出される。
【0107】
冷凍サイクルシステム10における作動媒体の状態変化を圧力-エンタルピ線図上に記載すると
図3のように、A、B、C、Dを頂点とする台形として表すことができる。
【0108】
AB過程は、圧縮機11で断熱圧縮を行い、高温低圧の作動媒体蒸気Aを高温高圧の作動媒体蒸気Bとする過程であり、
図3においてAB線で示される。後述のとおり、作動媒体蒸気Aは過熱状態で圧縮機11に導入され、得られる作動媒体蒸気Bも過熱状態の蒸気である。
【0109】
BC過程は、凝縮器12で等圧冷却を行い、高温高圧の作動媒体蒸気Bを低温高圧の作動媒体Cとする過程であり、
図3においてBC線で示される。この際の圧力が凝縮圧である。圧力-エンタルピ線とBC線の交点のうち高エンタルピ側の交点T
1が凝縮温度であり、低エンタルピ側の交点T
2が凝縮沸点温度である。ここで、作動媒体が複数化合物からなる組成物である場合の温度勾配は、T
1とT
2の差として示される。
【0110】
CD過程は、膨張弁13で等エンタルピ膨張を行い、低温高圧の作動媒体Cを低温低圧の作動媒体Dとする過程であり、
図3においてCD線で示される。なお、低温高圧の作動媒体Cにおける温度をT
3で示せば、T
2-T
3が(i)~(iv)のサイクルにおける作動媒体の過冷却度(SC)となる。
【0111】
DA過程は、蒸発器14で等圧加熱を行い、低温低圧の作動媒体Dを高温低圧の作動媒体蒸気Aに戻す過程であり、
図3においてDA線で示される。この際の圧力が蒸発圧である。圧力-エンタルピ線とDA線の交点のうち高エンタルピ側の交点T
6は蒸発温度である。作動媒体蒸気Aの温度をT
7で示せば、T
7-T
6が(i)~(iv)のサイクルにおける作動媒体の過熱度(SH)となる。なお、T
4は作動媒体Dの温度を示す。
【0112】
ここで、熱サイクル用作動媒体のサイクル性能は、例えば、熱サイクル用作動媒体の冷凍能力(以下、必要に応じて「Q」で示す。)と成績係数(以下、必要に応じて「COP」で示す。)で評価できる。熱サイクル用作動媒体のQとCOPは、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態における各エンタルピ、hA、hB、hC、hDを用いると、下式(1)、(2)からそれぞれ求められる。
【0113】
Q=hA-hD …(1)
COP=Q/圧縮仕事=(hA-hD)/(hB-hA) …(2)
【0114】
上記(hA-hD)で示されるQが冷凍サイクルの出力(kW)に相当し、(hB-hA)で示される圧縮仕事、例えば、圧縮機を運転するために必要とされる電力量が、消費された動力(kW)に相当する。また、Qは負荷流体を冷凍する能力を意味しており、Qが高いほど同一のシステムにおいて、多くの仕事ができることを意味している。言い換えると、大きなQを有する場合は、少量の作動媒体で目的とする性能が得られることを表しており、システムの小型化が可能となる。
【0115】
なお、熱サイクルシステムの稼働に際しては、水分の混入や、酸素等の不凝縮性気体の混入による不具合の発生を避けるために、これらの混入を抑制する手段を設けることが好ましい。
【0116】
熱サイクルシステム内に水分が混入すると、特に低温で使用される際に問題が生じる場合がある。例えば、キャピラリーチューブ内での氷結、作動媒体や潤滑油の加水分解、これにより発生した酸成分による材料劣化、コンタミナンツの発生等の問題が発生する。特に、潤滑油がポリグリコール油、ポリオールエステル油等である場合は、吸湿性が極めて高く、また、加水分解反応を生じやすく、潤滑油としての特性が低下し、圧縮機の長期信頼性を損なう大きな原因となる。したがって、潤滑油の加水分解を抑えるためには、熱サイクルシステム内の水分濃度を制御する必要がある。
【0117】
熱サイクルシステム内の水分濃度を制御する方法としては、乾燥剤(シリカゲル、活性アルミナ、ゼオライト等)等の水分除去手段を用いる方法が挙げられる。乾燥剤は、液状の作動媒体またはこれを含む作動媒体組成物と接触させることが、脱水効率の点で好ましい。例えば、凝縮器の出口、または蒸発器の入口に乾燥剤を配置して、作動媒体またはこれを含む作動媒体組成物と接触させることが好ましい。
【0118】
乾燥剤としては、乾燥剤と作動媒体またはこれを含む作動媒体組成物との化学反応性、乾燥剤の吸湿能力の点から、ゼオライト系乾燥剤が好ましい。
【0119】
ゼオライト系乾燥剤としては、従来の鉱物系潤滑油に比べて吸湿量の高い潤滑油を用いる場合には、吸湿能力に優れる点から、下式(C)で表される化合物を主成分とするゼオライト系乾燥剤が好ましい。
M2/nO・Al2O3・xSiO2・yH2O …(C)
ただし、Mは、Na、K等の1族の元素またはCa等の2族の元素であり、nは、Mの原子価であり、x、yは、結晶構造にて定まる値である。Mを変化させることにより細孔径を調整できる。
【0120】
乾燥剤の選定においては、細孔径および破壊強度が重要である。作動媒体やこれを含む作動媒体組成物が含有する成分(以下、「作動媒体等」)の分子径よりも大きい細孔径を有する乾燥剤を用いた場合、作動媒体等が乾燥剤中に吸着され、その結果、作動媒体等と乾燥剤との化学反応が生じ、不凝縮性気体の生成、乾燥剤の強度の低下、吸着能力の低下等の好ましくない現象を生じることとなる。
【0121】
したがって、乾燥剤としては、細孔径の小さいゼオライト系乾燥剤を用いることが好ましい。特に、細孔径が3.5オングストローム以下である、ナトリウム・カリウムA型の合成ゼオライトが好ましい。作動媒体等の分子径よりも小さい細孔径を有するナトリウム・カリウムA型合成ゼオライトを適用することによって、作動媒体等を吸着することなく、熱サイクルシステム内の水分のみを選択的に吸着除去できる。言い換えると、作動媒体等の乾燥剤への吸着が起こりにくいことから、熱分解が起こりにくくなり、その結果、熱サイクルシステムを構成する材料の劣化やコンタミナンツの発生を抑制できる。
【0122】
ゼオライト系乾燥剤の大きさは、小さすぎると熱サイクルシステムの弁や配管細部の詰まりの原因となり、大きすぎると乾燥能力が低下するため、粒度の代表値として約0.5~5mmが好ましい。形状としては、粒状または円筒状が好ましい。
【0123】
ゼオライト系乾燥剤は、粉末状のゼオライトを結合剤(ベントナイト等。)で固めることにより任意の形状とすることができる。ゼオライト系乾燥剤を主体とするかぎり、他の乾燥剤(シリカゲル、活性アルミナ等。)を併用してもよい。
【0124】
さらに、熱サイクルシステム内に不凝縮性気体が混入すると、凝縮器や蒸発器における熱伝達の不良、作動圧力の上昇という悪影響をおよぼすため、極力混入を抑制する必要がある。特に、不凝縮性気体の一つである酸素は、作動媒体や潤滑油と反応し、分解を促進する。
【0125】
不凝縮性気体濃度は、作動媒体の気相部において、作動媒体に対する容積割合で1.5体積%以下が好ましく、0.5体積%以下が特に好ましい。
【0126】
以上説明した熱サイクルシステムにあっては、サイクル性能に優れ、組成変化および温度勾配の小さい本発明の熱サイクル用作動媒体を用いているため、システムを小型化できる。また、本発明の熱サイクル用作動媒体を用いているため、環境負荷が小さく、サイクル性能に優れる。
【実施例】
【0127】
以下、本発明の実施例について説明するが、本発明はこれらの実施例に限定されるものではない。
【0128】
[例1~11]
表4に示す割合で1224yd(Z)および1233zd(E)を含有する共沸様組成物を調製し、例1~11の熱サイクル用作動媒体とした。各例の熱サイクル用作動媒体について、サイクル性能、温度勾配の評価を次のように行った。
【0129】
(冷凍サイクル性能、温度勾配の評価)
図2の冷凍サイクルシステム10に、各例の熱サイクル用作動媒体をそれぞれ適用して、
図3に示す熱サイクル、すなわちAB過程で圧縮機11による断熱圧縮、BC過程で凝縮器12による等圧冷却、CD過程で膨張弁13による等エンタルピ膨張、DA過程で蒸発器14による等圧加熱を実施した場合のサイクル性能(能力および効率)として冷凍サイクル性能(冷凍能力および成績係数)および温度勾配を評価した。
【0130】
評価は、蒸発器14における熱サイクル用作動媒体の平均蒸発温度を5℃、凝縮器12における熱サイクル用作動媒体の平均凝縮温度を40℃、凝縮器12における熱サイクル用作動媒体の過冷却度を5℃、蒸発器14における熱サイクル用作動媒体の過熱度を0℃、圧縮機効率を0.8として実施した。また、機器効率および配管、熱交換器における圧力損失はないものとした。
【0131】
冷凍能力および成績係数は、熱サイクル用作動媒体のA(蒸発後、高温低圧)、B(圧縮後、高温高圧)、C(凝縮後、低温高圧)、D(膨張後、低温低圧)の各状態のエンタルピhを用いて、上記式(1)、(2)から求めた。温度勾配は、T1とT2の差として求めた。
【0132】
冷凍サイクル性能の算出に必要となる熱力学性質は、対応状態原理に基づく一般化状態方程式(Soave-Redlich-Kwong式)、および熱力学諸関係式に基づき算出した。特性値が入手できない場合は、原子団寄与法に基づく推算手法を用い算出を行った。
【0133】
同様にして測定された1233zd(E)からなる作動媒体の冷凍サイクル性能(冷凍能力および成績係数)を基準(1.00)とし、各例の作動媒体の冷凍サイクル性能(冷凍能力および成績係数)の相対性能(各例の作動媒体/1233zd(E))をそれぞれ求めた。結果を熱サイクル用作動媒体の組成とあわせて表4に示す。
【0134】
【0135】
上記表の結果から、1224ydおよび1233zd(E)からなる共沸様組成物から構成される熱サイクル用作動媒体は、温度勾配が小さいことがわかる。また、1233zd(E)からなる作動媒体に比べて、冷凍能力が向上することがわかる。
【0136】
本発明の熱サイクル用作動媒体は、冷凍機用冷媒、空調機器用冷媒、発電システム(廃熱回収発電等)用作動流体、潜熱輸送装置(ヒートパイプ等)用作動媒体、二次冷却媒体等の作動媒体として有用である。
【符号の説明】
【0137】
10…冷凍サイクルシステム、11…圧縮機、12…凝縮器、13…膨張弁、14…蒸発器、15,16…ポンプ、A,B…作動媒体蒸気、C,D…作動媒体、E,E‘…負荷流体,F…流体。