(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-23
(45)【発行日】2022-07-01
(54)【発明の名称】陽子アークビーム照射システム
(51)【国際特許分類】
A61N 5/10 20060101AFI20220624BHJP
【FI】
A61N5/10 D
A61N5/10 H
A61N5/10 Q
(21)【出願番号】P 2020542735
(86)(22)【出願日】2019-01-17
(86)【国際出願番号】 EP2019051163
(87)【国際公開番号】W WO2019154605
(87)【国際公開日】2019-08-15
【審査請求日】2020-09-07
(32)【優先日】2018-02-09
(33)【優先権主張国・地域又は機関】EP
【前置審査】
(73)【特許権者】
【識別番号】501494414
【氏名又は名称】パウル・シェラー・インスティトゥート
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(72)【発明者】
【氏名】ヤコビュス マールテン スヒパース
【審査官】鈴木 貴雄
(56)【参考文献】
【文献】特表2019-507658(JP,A)
【文献】特許第4920845(JP,B2)
【文献】特開2014-20800(JP,A)
【文献】特開2018-57858(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
A61N 5/10
(57)【特許請求の範囲】
【請求項1】
粒子ビーム治療システム(2)であって、様々な異なる治療角度(26)から患者の標的容積へ粒子放射線治療のための粒子ビーム(12)を照射することを可能にするための磁場の構成を備え、
a)前記粒子ビーム治療システム(2)には、アクティブな静磁場領域(40)に向かって方向付けられた粒子ビーム(12)が照射され、入射する前記粒子ビーム(12)の方向は、アクティブな静磁場領域(40)における磁場(H)の方向に対して実質的に垂直であり、
b)前記粒子ビーム治療システム(2)は、複数の磁石(4,4a~4c)および
複数のコイル(6,8,10)を含む円筒状に成形された磁場システムとして設計されており、前記円筒状に成形された磁場システムは、前記円筒状に成形された磁場システムの実質的に軸方向に向けられた前記アクティブな静磁場領域(40)を発生させ、前記アクティブな静磁場領域(40)は、半径方向内側曲げ場領域(18)、および前記半径方向内側曲げ場領域(18)を包囲している半径方向外側案内場領域(16)を含み、
c)前記複数の磁石(4,4a~4c)および前記
複数のコイル(6,8,10)は
以下のように構成されており、すなわち、
c1)
前記複数の磁石(4,4a~4c)は、前記円筒状に成形された磁場システムの外縁に配置されたアーク走査磁石システム(4,4a~4c)であって、前記アーク走査磁石システム(4,4a~4c)は、前記粒子ビーム(12)に対する半径方向変位および角度に影響を与え、前記粒子ビーム(12)が前記半径方向外側案内場領域(16)に進入する位置を決定する、アーク走査磁石システム(4,4a~4c)
として構成されており、
c2)
前記複数のコイル(6,8,10)は、前記アーク走査磁石システム(4,4a~4c)によって最初に偏向させられた入射する前記粒子ビーム(12)のための静磁案内場を発生させる第1の数のコイル(6)であって、前記静磁案内場は、前記円筒状に成形された磁場システムの前記半径方向外側案内場領域(16)において主に有効である、第1の数のコイル(6)
を含み、
c3)
前記複数のコイル(6,8,10)は、前記半径方向外側案内場領域(16)から出た前記粒子ビーム(12)のための静磁曲げ場を発生させる第2の数のコイル(8,10)であって、前記静磁曲げ場は、前記円筒状に成形された磁場システムの前記半径方向内側曲げ場領域(18)において主に有効である、第2の数のコイル(8,10)
を含み、
d)前記粒子ビーム治療システム(2)は、患者用の寝台(22)を包囲する中央領域(20)を有し、前記中央領域(20)は、前記円筒状に成形された磁場システムの前記半径方向内側曲げ場領域(18)によって包囲されており、
e)前記粒子ビーム治療システム(2)は、粒子ビーム線量測定および/または粒子ビームモニタリングおよび/または飛程補償(34)
のための構成部品を有し、前記構成部品は、前記中央領域(20)に配置されており、
f)前記粒子ビーム治療システム(2)は、前記患者の標的容積において前記粒子ビーム(12)によって沈着させられる線量情報を決定する治療計画に従って前記粒子ビーム(12)を所望の治療角度(26)へもたらすために、前記複数の磁石(4,4a~4c)および前記
複数のコイル(6,8,10)を制御するための治療制御システムを有する、
粒子ビーム治療システム。
【請求項2】
前記中央領域(20)を包囲するように、コリメータリング(10)のセットが配置されている、請求項1記載のシステム(2)。
【請求項3】
前記中央領域(20)を包囲するように、レンジシフタリング(10a,10b)のセットが配置されている、請求項1または2記載のシステム(2)。
【請求項4】
別々に調節可能な磁気ペンシルビームスキャニング場を発生させるために、複数のペンシルビームスキャニング磁石(28,30)が、前記半径方向外側案内場領域(16)と前記半径方向内側曲げ場領域(18)との間に設けられているかまたは前記半径方向内側曲げ場領域(18)と部分的に重なり合っている、請求項1から3までのいずれか1項記載のシステム(2)。
【請求項5】
前記粒子ビーム(12)は、陽子ビームまたは、炭素イオンビームまたはヘリウムイオンビームなどのイオンビームである、請求項1から4までのいずれか1項記載のシステム(2)。
【請求項6】
前記治療制御システムは、前記アーク走査磁石システム(4,4a~4c)によって生じる磁気強度の適切な変化によって、決定された様々な治療角度(26)を実現する、請求項1から5までのいずれか1項記載のシステム(2)。
【請求項7】
前記第1の数のコイル(6)は、鉄製エンクロージャ(36)に埋め込まれている、請求項1から6までのいずれか1項記載のシステム(2)。
【請求項8】
前記第2の数のコイル(8,10)は、鉄製エンクロージャ(36)に埋め込まれている、請求項1から7までのいずれか1項記載のシステム(2)。
【請求項9】
前記構成部品は、前記寝台(22)に対して可動なノズルシステム(32)に配置されている、請求項1から8までのいずれか1項記載のシステム(2)。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、様々な異なる治療角度からの患者の標的容積への粒子放射線治療のための粒子ビームの照射を可能にするための磁場の構成を備える粒子ビーム治療システムに関する。
【0002】
全ての外部照射治療において、患者内の標的容積(例えば、腫瘍)に放射線量を照射するために、電子、光子(X線)、陽子またはその他のイオンのビームが用いられる。しかしながら、このような治療において、一部の放射線量が標的容積の外側にある(健康な)組織にも蓄積されることが不可避である。ただし、この問題は、光子または電子ビームの代わりに陽子ビームまたはイオンビームを用いる場合には、深刻度が低減する。したがって、健康な組織への線量をさらに減少させるために様々な技術が用いられている。
【0003】
最もよく用いられる「十字火」技術において、標的容積における高い線量および周囲の組織における低い線量を得るために、ビームは複数の方向から標的容積へ向けられる。多くの角度方向が用いられる場合、この技術は、標的容積の外側の線量を大きな容積にわたって希釈し、これにより、標的容積の外側にある健康な組織における局所的線量の著しい減少を生じるが、それと同時に、標的容積における高線量を達成する。
【0004】
この技術において、治療角度(ビームが患者に到達する方向)は、ビーム照射装置(ガントリ)を患者の周りにおいて順次に適切な角度配向へ回転させることによって設定される。回転の中心、いわゆるアイソセンタを、用いられる全ての方向からのビームが通過する。より多くの異なる治療角度が用いられるほど、より大きな容積が照射され、その容積にわたって非標的線量が希釈させられる。これにより、標的容積の周囲の組織における線量は、かなり有効に最小化される。非標的組織におけるこの線量希釈は、治療角度の連続的な(かつかなり大きな)範囲を適用することによって最適化することができる。この角度の連続的な範囲は、アークと呼ばれる。現在、このいわゆるアーク治療は、光子ビームのための照射治療における最も一般的な方法の1つである。例えば、Varian社のラピッドアーク(RapidArc)/トゥルービーム(TrueBeam)システム、Elekta社のVMATアプローチまたはAccuray社のいわゆるトモセラピーまたはトモヘリカルスパイラルセラピーシステムは全て、光子型放射線治療のためのアーク照射の形式を用いる。
【0005】
アークは、連続的に続く1つの角度範囲から成ることができるが、互いに小さな間隔を置いた多数の別個の角度方向の合計から成ることもできる。アークの適用の間、ビーム強度を加速器またはビーム輸送系において変化させることができるかつ/または治療角度を変化させることによって速度を変化させることができる。アーク内でのこの強度変調は、線量分布のさらなる改善のために適用することができる。
【0006】
粒子ビーム治療(陽子ビーム治療を含む)においてはまた、線量分布を最適化するために異なるビーム方向が適用される。粒子治療において、いわゆる「ガントリ」は、患者の周囲を回転することができる一般的に使用されるビーム照射装置である。これは、陽子治療設備におけるビーム輸送系の最終セクションの構成要素(例えば、磁石など)を支持する機械的構造物である。陽子治療において一般的に使用されるガントリは、大きく(直径8~10m)かつ重い(100~200トン)装置である。寝台の正確な位置決めと共に、ガントリの回転は、例えば、米国特許第6814694号明細書および米国特許第7348579号明細書に開示されているように、異なる方向からの標的の照射を可能にする。
【0007】
しかしながら、その重量、サイズおよび様々な安全態様により、ガントリの回転速度は、一般的に、毎分360度に制限されている。したがって、陽子またはイオン治療は、通常、数個の別個の治療角度のみを適用することによって行われる。この機械的制限により、粒子治療ガントリを用いたアーク治療は、行うのが困難であり、数分という比較的長い時間を要する。しかしながら、最近行われた、線量分布の複数の計算は、陽子アーク治療によって得られる陽子線量分布の改善が可能であることを示している。
【0008】
したがって、本発明の目的は、陽子治療などの粒子治療の技術的可能性を、光子のために知られたアーク治療の方向へ拡張する、粒子治療のためのシステムを提供することである。
【0009】
この目的は、本発明によれば、磁場の構成を有する、すなわち、コイルの複数のグループと、選択肢として、磁場の正確な成形のために、鉄製ヨークによって包囲された鉄磁極のシステムから成る鉄製エンクロージャとによって形成された粒子ビーム治療システムによって達成される。これは、様々な異なる治療角度から患者の標的容積へ粒子放射線治療のための粒子ビームを照射することを可能にするためであり、前記システムは、
a)アクティブな静磁場領域に向かって方向付けられた粒子ビームを有し、入射粒子ビームの方向は、アクティブな磁場領域における静磁場の方向に対して実質的に垂直であり、
b)前記アクティブな静磁場領域は、円筒状に成形された磁場システムの実質的に軸方向に向けられた磁場によって満たされた円筒状に成形された磁場システムを発生させるように配置された複数の磁石またはコイルを含み、前記磁場システムは、外側案内場領域および内側曲げ場領域を含み、
c)複数の磁石またはコイルは、
c1)円筒状に成形された磁場システムの外縁に配置されたアーク走査磁石システムであって、前記アーク走査磁石システムは、好ましくは、極めて短い時間で、例えば、ミリ秒のオーダにおいて、粒子ビームの小さな半径方向変位および/または偏向に影響を与える、アーク走査磁石システムと、
c2)アーク走査磁石システムによって最初に偏向させられた入射粒子ビームのための静磁案内場を発生させる第1の数のコイルであって、前記静磁案内場は、円筒状に成形された磁場システムの半径方向外側案内場領域において主に有効でありかつ半径方向内側曲げ場領域を包囲しており、好ましくは、この静磁場は、適切なコイルジオメトリおよび電流と、選択的に、ヨークによって包囲された磁極から成る鉄製エンクロージャとによって成形される、第1の数のコイルと、
c3)磁気案内場から出た粒子ビームのための静磁曲げ場を発生させる第2の数のコイルであって、前記静磁曲げ場は、円筒状に成形された磁場システムの半径方向内側曲げ場領域において主に有効であり、好ましくは、この静磁場は、適切なコイルジオメトリおよび電流と、選択的に、ヨークによって包囲された磁極から成る鉄製エンクロージャとによって成形される、第2の数のコイルと、
に区別され、
d)患者用の寝台を包囲する中央領域を有し、前記中央領域は、円筒状に成形された磁場システムの半径方向内側曲げ場領域によって包囲されており、
e)粒子ビーム線量測定および/または粒子ビームモニタリングおよび/または飛程補償および/またはペンシルビームスキャニングのための構成要素を有し、前記構成要素は、中央領域においてまたは中央領域の近くにおいて、好ましくは、寝台に対して可動なノズルシステムに配置されており、
f)患者の標的容積において粒子ビームによって沈着させられる線量情報を決定する治療計画に従って粒子ビームを所望の治療角度へもたらすために、複数の磁石および/またはコイルを制御するための治療制御システムを有する。
【0010】
この概念は、光子治療において用いられるアーク治療法に類似の、導入部において説明したようないわゆるアーク治療を行うために、治療角度の連続的なまたは不連続の範囲から標的容積を照射する可能性を提供する。ビーム照射システムが移動させられる必要がないということはこのシステムの顕著な利点である。なぜならば、これは、最近の粒子ビームガントリシステムにとって固有であるからである。このシステムにより、アークの提供(異なる治療角度における照射の提供)を約数秒という比較的短い時間で行うことができる。
【0011】
本発明の好ましい実施形態において、中央領域を包囲するように、コリメータリングを配置することができる。コリメータまたはレンジシフタリングにより、治療制御システムは、標的容積へのより良い集束を得るために粒子ビームをシャープにすることができる。
【0012】
本発明の好ましい実施形態において、中央領域を包囲するように、レンジシフタリングを配置することができる。レンジシフタリングにより、治療制御システムは、標的容積までの粒子ビームの侵入深さにより良く焦点を合わせることができる。
【0013】
ペンシルビームスキャニング治療プランを実現するためには、別々に調節可能なペンシルビームスキャニング磁場を発生させるために、複数の別個のペンシルビームスキャニング磁石が、半径方向外側領域と半径方向内側領域との間に設けられているかまたは半径方向内側領域と部分的に重なり合っている。
【0014】
本発明の別の好ましい実施形態において、パルス粒子ビーム、例えば、シンクロサイクロトロンからのビームを提供することができる。パルスビームが提供される場合、パルスの間の時間に治療角度を変化させることができる。したがって、案内場および曲げ場の場の強度を調節することができるが、この調節は、粒子ビームの次のパルスが提供されるときに完了させられる必要があるということに言及しなければならない。
【0015】
一般的に、粒子ビーム治療の場合、粒子ビームは、陽子ビームまたは、炭素イオンビームまたはヘリウムイオンビームなどのイオンビームであることができる。
【0016】
様々な治療角度において標的容積における正確な線量沈着を照射することを可能にするために、治療制御システムは、アーク走査磁石によって生じる磁気強度の適切な変化によって、決定された様々な治療角度を実現することができる。したがって、アーク走査磁石システムの強度のみが変化させられればよく、これにより、粒子ビームは、僅かに異なる位置において、円筒状の磁気案内場を通過させられ、その結果、標的容積において治療角度の小さな変化を生じる。
【0017】
以下に、本発明の好ましい実施の形態を、添付の図面を参照しながらより詳細に説明する。
【図面の簡単な説明】
【0018】
【
図1】粒子ビーム治療システムのレイアウトの正面図を概略的に示している。
【
図2】
図1に記載の粒子ビーム治療システムのレイアウトの側面図を概略的に示している。
【
図3】粒子ビーム治療システムの可能なレイアウトの複数の正面図を概略的に示している。
【
図4】部分的に、a)2つの別個のアーク走査磁石システムを用いることによって約360度にわたる走査が行われる状況を示す、本発明の可能なレイアウトの正面図を概略的に示しておりかつ部分的に、b)案内場における粒子ビームの位置を変化させることを可能にする、2つの小さな磁石から成る1つのアーク走査磁石システムを用いることによって約360度にわたる走査が行われる状況を示す、本発明の可能なレイアウトの正面図を概略的に示している。
【
図5】粒子ビーム治療システムの中央領域において患者にまたは患者の周囲に取り付けられたコリメーションおよび/またはレンジシフタシステムを概略的に示している。
【
図6】粒子ビーム治療システムにおいてペンシルビームスキャニングを行うための2つの方法を概略的に示している。
【
図7】ノズルシステムの態様を概略的に示している。
【
図8】側方から患者にアクセスするための開口を備える、円筒の部分的な範囲という選択肢を有する、粒子ビーム治療システムのレイアウトの正面図を概略的に示している。
【
図9】患者をカバーしかつ治療角度に関して入射ビームの飛程をシフトさせる飛程補償体を有する、粒子ビーム治療システムのレイアウトの正面図を概略的に示している。
【
図10】(a)静的な案内場および曲げ場の発生のための、鉄磁極を包囲する鉄製ヨークおよび同心的なコイルを有する、鉄製エンクロージャの可能な磁石配列の横から見た断面図および(b)この磁石配列の正面図を概略的に示している。
【0019】
本明細書に示された発明は、患者の周囲におけるビーム照射システムの機械的移動のない、多くの異なる角度からの放射線治療のために、陽子ビームを標的容積、すなわち、患者の腫瘍容積へ照射するための、空間における向きおよび位置が固定された同心的な静磁場の構成の概念を取り扱う。この概念は、光子治療においてしばしば用いられるアーク治療と呼ばれる方法に類似して、患者位置において、角度方向の連続的な範囲から照射することを可能にする。陽子ビームに関して本明細書に示された概念は、炭素またはヘリウムのイオンビームなどのあらゆるその他のイオンビームを用いたあらゆる形式の粒子治療にも適用可能である。
【0020】
本発明(
図1および
図2参照)は、粒子ビーム治療のためのシステム、本明細書においては陽子ビーム治療システム2を含む。この陽子ビーム治療システム2は、複数の磁石4およびコイル6,8,10と、選択的に、鉄製エンクロージャとを有し、これらは、空間的に固定されており、異なる方向(治療角度26、
図3参照)からシステム2のアイソセンタ14に陽子ビーム12を照射するために使用される。この治療システム2にとって独特なことは、近年のガントリシステム(すなわち、スイスのフィリゲンにあるPaul Scherrer Instituteにある陽子ビーム設備ガントリ1およびガントリ2)において行われなければならないようにこのような大きな磁石を一切移動させることなく、アイソセンタ14における治療角度26を変化させることができるということである。
【0021】
陽子ビーム治療システム2は、磁石4およびコイル6,8,10のシステムを含む円筒状システムとして設計されており、このシステムは、少なくとも、外側案内場領域16(静的0.8T)および内側曲げ場領域18(静的2.1T)を発生させ、両方とも同心的な磁場を有する。コイル6,8,10は、超電導コイルとして実現可能である。選択的に、コイル6,8,10を、
図10に示したように、ヨークおよび磁極を含む鉄製エンクロージャに埋め込むことができる。概して、コイル6,8,10および鉄の配列は、サイクロトロンにおける磁石構成との類似性を有する。これにより、コイル6,8,10および選択的な鉄製エンクロージャのシステムは、例えば、サイクロトロン原理の利点を有することができ、このサイクロトロン原理において、磁場ベクトルは、2つの磁極片の間において実質的に平行であり、磁極片は、閉鎖された磁気ヨーク内に保持されている。これらの同心的な磁場は、治療システム2の軸線xの周囲の自由な円筒状空間である中央領域20を包囲している。コイル6,8,10は、この軸線xに対して垂直に向けられておりかつy-z平面に対して実質的に平行に配置されている。中央領域20において、患者を寝台22に配置することができる。治療計画の計算後、患者は、照射治療のアイソセンタ14である円筒状システムの軸線に標的容積(例えば、患者の腫瘍)を配置するために、この計画に従って位置決めされなければならない。
【0022】
両方の同心的な領域16,18における同心的な磁場は、同じ方向にかつ、円筒軸線(軸線x)に対してほぼ平行に向けられている。外側環状案内場領域16における磁場は、ここでは「案内場」と呼ばれ、ここでは円筒状の「曲げ場」領域と呼ばれる内側環状曲げ場領域18を包囲している。中央領域20は、この曲げ場領域18において中心合わせされており、コイル10に加えて、中央領域20における磁場強度を最小化するために陽子ビーム治療システム2に別のコイルまたは鉄ブロックを加えることができる。
【0023】
加速器(例えば、サイクロトロン)からの粒子ビーム12は、案内場領域16の外縁に配置されたアーク走査磁石システム4を通って接線方向に案内場領域16に進入する。アーク走査磁石システム4は、環状の案内場領域16内のほぼ円形の軌道へ陽子ビーム12を方向付ける2つの双極磁石を有することができる。ビーム軌道は、環において正確に中心合わせされているのでなく、案内場領域16の内縁へ次第に接近していく。この配置は、陽子ビーム12がアーク走査磁石システム4を出発したときに陽子ビーム12が最初に有していた方向によって制御される。この方向は、アーク走査磁石システム4の磁場の強度によって制御される。
【0024】
これにより、案内場領域16においてある方位角にわたって陽子ビーム12が通過した後、陽子ビーム12は、案内環状部の内縁に到達し、曲げ場領域18に進入する。この曲げ場は案内場よりも強く、これにより、陽子ビーム12を陽子ビーム治療システム2の軸線(アイソセンタ14)に向かって曲げることができる。
【0025】
図3に概略的に示したように、小さなアーク走査磁石システム4の設定は、より強い曲げ場を備える内側環状曲げ場領域18に陽子ビーム12がどの方位角24において進入するかを決定する。
図3に示したように、陽子ビーム12は、治療角度26を決定する半径方向に沿ってアイソセンタ14に到達する。これにより、治療制御システム(詳細には示されていない)から生じるこれらの陽子ビーム制御に従って、アーク走査磁石システム4の設定が、ビームがどの治療角度26において患者に到達するかを決定する。案内場および曲げ場と、これらの場のエネルギ依存絶対量との一定比を用いることによって、行われるべき唯一の設定は、患者における治療角度26を設定するためにアーク走査磁石システム4の強度を所望の場強度に設定することである。強い磁気的な案内場および曲げ場の変化は、著しくより大きな労力、電力および時間を必要とするので、アーク走査磁石システム4は、患者における治療角度26の極めて迅速な変化を提供することができるように設計されている。その結果、
図3dに示したように、かなりの寸法の円弧(異なる治療角度26における様々な陽子ビーム照射)(治療関連アーク)を、僅か数秒でカバーすることができる。
【0026】
図3dおよび(2つのアーク走査磁石4aおよび4bを備えるアーク走査磁石システムを含む)
図4aに示したように、方位円弧を、連続的なスイープ、多くの小さな別個のステップまたはこれらの方法の組合せにおいてカバーすることができる。ビームパルスと、ビーム特性と、治療角度26との間の適切な等時性を達成することができれば、このシステムは、パルス粒子ビーム12、例えば、シンクロサイクロトロンから生じるビームと共に適用することもできる。したがって、各ステップまたはパルス(シーケンス)において、アーク走査磁石システム4は、それぞれの別個の方位角24に属する適切な場強度に一定に維持されなければならない。
図4bは、本発明の可能なレイアウトの正面図を概略的に示しており、案内場領域16における粒子ビーム12の位置を変化させることを可能にする、2つの小さな磁石4,4cを含むアーク走査磁石システム4を用いることによって約360度にわたる走査が行われる状況を示している。
【0027】
ペンシルビームスキャニング技術がこのシステムにおいて適用される場合、曲げ場の小さな局所的または全体的な調節コイル30によってまたは患者の周囲を矢印28aに沿って陽子ビームと共に移動する別個のペンシルビームスキャニング磁石(PBS-磁石28)によって、横方向スキャニングが行われる。両方の可能性が、
図6に概略的に示されている(
図6aにおける別個の可動なPBS磁石28および
図6bにおける付加的な調節コイル30)。
【0028】
本発明は、磁気システムのいかなる機械的動作も必要とせずかつ現在使用されているガントリより著しく迅速に治療角度26を変化させることができる、磁場構成が患者において広範囲の入射ビーム方向(治療角度26)を提供することができる、陽子またはその他のイオンビームによって癌を治療するための治療システム2、という目的を達成する。
【0029】
この目的は、本発明によれば、空間的に固定されておりかつ陽子またはイオンビームをアイソセンタ14へ案内する磁石のシステムによって達成される。治療システム2は、典型的には、治療される患者を寝台22に配置することができる自由空間(中央領域20)を包囲した、同心状の磁場の少なくとも2つの領域16,18を形成する円筒状のシステムを含む。
【0030】
選択的に、飛程補償材料34が、患者付近に取り付けられているまたは中央領域において2つの機械的リングに取り付けられており、これにより、全ての治療角度26において患者における粒子ビーム12の正確な飛程が得られ、これにより、治療ごとの所要のビームエネルギの数の減少を可能にする(
図9参照)。
【0031】
本発明は、システムの異なる実施形態の以下の選択肢のうちの1つ以上も含む。
【0032】
a)案内場における軌道の長さを減じるために、治療システム2には少なくとも2つのアーク走査磁石4a,4bが設けられている。外部ビーム輸送系は、順にビーム12をアーク走査磁石4a,4bへ送信することができる。この選択肢の可能なレイアウトの概略図が、
図4に示されている。
【0033】
b)曲げ場および/または案内場の付加的な小さな変化と共に、アーク走査磁石システム4によって治療角度26を設定することができる。
【0034】
c)鉄磁極のシステムを包囲するヨークから成る鉄製エンクロージャ(
図10参照)と選択的に組み合わされた、少なくとも2つの同心状のコイル6,8,10の2つの平行なセット(
図1および
図2参照)に基づく磁石システムによって、静的な案内場および静的な曲げ場を発生させる磁石を構成することができる。
【0035】
d)同心状に取り付けられた「レース・トラック・タイプ」コイルシステムの複数のセットに基づく磁石によって、案内場および曲げ場を発生させる磁石を構成することができる。
【0036】
e)中央領域20において患者の周囲に取り付けられた2つの平行なリング10a,10bは、軸方向におけるビーム拡散を制限するビームコリメータ10として機能する(
図5参照)。
【0037】
f)中央領域20において患者の周囲に取り付けられた2つの平行なリング10c,10dは、ビーム方向におけるビーム飛程を調節するレンジシフタとして機能する(
図5参照);f)治療システム2には、治療角度26に関して入射ビームの飛程を調節するために、中央領域20において患者と入射ビーム12との間に飛程補償体34が具備されている(
図9参照)。
【0038】
g)治療システム2には、患者におけるビームサイズを制限するために、コリメーションシステム10が具備されている。
【0039】
h)適切な寝台22およびそれぞれの治療制御システムを使用することによって、治療システム2は、スパイラル治療の適用に適したものとなる;この適用において、患者は、アーク線量の適用中に治療システム2の軸線xに沿って移動する(
図9におけるビーム照射の円弧としての線量照射の例)。
【0040】
i)ペンシルビームスキャニング(PBS)において、小さくかつ迅速なPBS磁石28を、曲げ場の内側環状領域18において、好ましくは、曲げ場の外側において取り付けることができる。このPBS磁石28は、陽子ビーム12のそれぞれの方位位置に従って、その方位位置を設定するように可動である(
図6a参照)。
【0041】
j)ペンシルビームスキャニングのための別の選択肢の実現において、曲げ領域における場、または曲げ場領域18の半径方向外縁における内側環状曲げ場領域18におけるコイル30によって
図6bに示されたように別々に制御される場を、PBSを行うために使用することができる(
図6b参照)。
【0042】
k)治療システム2には、曲げ場領域に配置されたノズルシステム32が具備されており、このノズルシステム32において、粒子ビーム12が、走査または散乱、監視およびコリメートされる;ノズルシステム32は、矢印32aに沿って可動であり、その方位位置は、粒子ビームの方位位置に従わなければならない(
図7参照)。
【0043】
l)治療システムは、円筒形の360度全周を包囲しているのではなく、円筒形システムのセグメント部分のみを包囲している。このセグメントは、円筒形全体の少なくとも180度をカバーしている。この選択肢は、中央領域20へのアクセス可能性を高め、より多くの寝台配向を可能にする。
図8は、このような開放式治療システムの可能なレイアウトを示している。
【0044】
m)中央領域20における磁場を最小化するための別の選択肢もあり得る。
【0045】
n)特別に成形された磁場およびMRI向け機器を中央領域に付加することができる。この領域と、包囲する磁場との間に適切な磁気シールディングまたは補償体を付加的に付加することによって、この選択肢は、粒子ビームによる照射の間、直前または直後のMRI画像の取得も可能にする。
【0046】
詳細について、
図1は、陽子ビーム治療システム2の概略的な正面図を示しており、この図には、主要な構成要素が示されている。
【0047】
図2は、
図1に記載のレイアウトの概略的な側面図を示しており、やはり陽子ビーム治療システム2の主要な構成要素を示している。
【0048】
図3は、治療システム2の可能なレイアウトの複数の正面図を概略的に示している。特に、アーク走査磁石4によって設定される複数の異なる方位角24および治療角度26が患者において示されている。右下の
図3d)は、1つのアーク走査磁石が、上側の180度の治療角度26にわたってスイープする状況を示している。案内場の外縁に沿ったアーク走査磁石4の最適な位置は、治療システム2の上流における加速器およびビーム運搬系からの入射粒子ビームの方向および位置に依存する。これらの図におけるアーク走査磁石4,4a,4bの位置は、可能な例を表しているにすぎない。
【0049】
図4a)は、治療システム2の2つの可能なレイアウトの正面図を概略的に示している。
図4a)は、2つのアーク走査磁石4a,4bを使用することによって約360度の範囲にわたって走査を行うことができる状況を示している。粒子ビーム12を、案内場のそれぞれの範囲を用いて第1のアーク走査磁石4aから第2のアーク走査磁石4bへ送ることができる。治療システム2のこの例において、第1のアーク走査磁石4aによって行われるスイープは、治療角度26の上側の180度をカバーし、第2のアーク走査磁石4bによって行われるスイープは、治療角度26の下側の180度をカバーする。この例は、特に、第2のまたは複数のアーク走査磁石システムを使用することによって存在する選択肢を示している。
図4bは、案内場における粒子ビームの位置を変化させることを可能にする、2つの小さな双極磁石4,4cを含むアーク走査磁石システムを用いることによって約360度にわたる走査が行われる状況を示す、本発明の可能なレイアウトの正面図を概略的に示している。
【0050】
図5は、コリメーションまたはレンジシフタシステム10を有する粒子治療システム2の1つの実施形態を概略的に示している。このコリメーションまたはレンジシフタシステム10は、中央領域20において寝台22の周囲に取り付けられている。コリメーションおよびレンジシフタシステムはそれぞれ、2つの平行なリング10a,10bを有する。レンジシフタの各リングの形状は、くさび形である。軸方向におけるコリメータの開口または2つのレンジシフタリングの重なり合いは、リングの間の軸方向距離がこの角度における正確な軸方向開口または重なり合いに設定されるように、2つのリング10a,10bの傾きを調節することによって設定される。
図5の右側において、開口の3つの可能な方位位置(左、右および上)が示されている。
【0051】
図6は、粒子ビームシステムにおいてペンシルビームスキャニングを行うための2つの可能な方法を概略的に示している。左側の
図6(a)において、PBS-磁石28が、曲げ場領域の外縁に取り付けられている。PBS磁石28を適切に制御することによって、PBS磁石28は、横方向に粒子ビーム12を走査する。PBS-磁石28は、それぞれの方位ビーム位置と一致させられるようにシステム軸線xを中心とする円弧にわたって回転するように可動である。3つの異なる走査されたビームが、概略的に示されている。右側の
図6(b)において、PBSは、曲げ場領域18内のPBSリングコイル30によって、内側リングにおける場を調節することによって行われる。図は、PBSリングコイル30が曲げ場の外縁に取り付けられている、PBS場構成の一例を示している。3つの異なる走査されたビームも、概略的に示されている。
【0052】
図7は、ノズルシステム32を有する粒子治療システムの1つの実施形態を概略的に示している。このノズルシステム32は、ビームモニタリング、ビームコリメーションおよび散乱またはペンシルビームスキャニングを行う機器を有することができる。ノズルシステム32は、それぞれの方位ビーム位置と一致させられるようにシステム軸線xを中心とする円弧に沿って回転するように可動である。
【0053】
図8は、寝台22へアクセスする特定の必要性を考慮した粒子ビームシステムの可能なレイアウトの正面図を概略的に示している。同心状の磁場によって円筒体の一部のみがカバーされているという選択肢により、開口は、一方の側からの患者へのアクセスを可能にする。右側に磁気システムを備えた選択肢が示されている。これは、左側または上側であることもできる。
【0054】
図9は、粒子ビームの飛程を補償するための付加的な手段を提供するという選択肢を概略的に示している。この飛程補償体34は、ここでは正面図で示されたクッションとして設計することができる。飛程補償体34は、少なくとも治療の領域において患者をカバーし、治療角度26および飛程補償体34の深さに関して入射ビーム12の飛程をシフトさせる。
【0055】
図10は、複数の磁石4,6,8の設計の一例を概略的に示している。
図10a)は、外側環状領域16における案内場および内側環状領域18における曲げ場を発生させるコイル6,8の配向を示している。磁場Hを発生させるコイル6,8は、システムにおいて静磁場の正確な形状を規定する、ヨーク36および磁極のシステムから成る鉄製エンクロージャに埋め込まれている。
図10b)は、この配置の平面図を示している。この例における配置は、強い円筒状磁場によって、帯電させられた粒子ビームが環状軌道に沿って移動する、サイクロトロンの磁石と同じ構成を有する。ここではHF電場が存在しないので、H場に対して垂直な方向でH場に進入するビーム12における粒子は、HF場からエネルギを得ず、したがって、アイソセンタ14に向かって曲げられる。