(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-06-24
(45)【発行日】2022-07-04
(54)【発明の名称】発電設備
(51)【国際特許分類】
F01K 9/00 20060101AFI20220627BHJP
F28B 11/00 20060101ALI20220627BHJP
【FI】
F01K9/00 A
F01K9/00 Z
F28B11/00
(21)【出願番号】P 2021515924
(86)(22)【出願日】2020-03-31
(86)【国際出願番号】 JP2020014879
(87)【国際公開番号】W WO2020217885
(87)【国際公開日】2020-10-29
【審査請求日】2021-05-28
(31)【優先権主張番号】201910342594.7
(32)【優先日】2019-04-26
(33)【優先権主張国・地域又は機関】CN
(73)【特許権者】
【識別番号】000000974
【氏名又は名称】川崎重工業株式会社
(74)【代理人】
【識別番号】110000556
【氏名又は名称】特許業務法人 有古特許事務所
(72)【発明者】
【氏名】山本 修示
(72)【発明者】
【氏名】竹中 幸弘
(72)【発明者】
【氏名】宮内 寛太
(72)【発明者】
【氏名】槇 健良
(72)【発明者】
【氏名】野副 拓朗
(72)【発明者】
【氏名】田中 寿典
(72)【発明者】
【氏名】雪岡 敦史
(72)【発明者】
【氏名】李 大明
(72)【発明者】
【氏名】張 皓
(72)【発明者】
【氏名】汪 寧
(72)【発明者】
【氏名】肖 杰玉
(72)【発明者】
【氏名】方 偉
(72)【発明者】
【氏名】周 健
【審査官】北村 一
(56)【参考文献】
【文献】特開平02-017386(JP,A)
【文献】特開2007-006683(JP,A)
【文献】特開平08-261665(JP,A)
【文献】特開昭58-164990(JP,A)
【文献】特開2005-273655(JP,A)
【文献】特開平10-047013(JP,A)
【文献】特開平02-305302(JP,A)
【文献】特開平05-222904(JP,A)
【文献】特開2013-181466(JP,A)
【文献】特開昭62-116894(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F01K 9/00
F28B 11/00
(57)【特許請求の範囲】
【請求項1】
蒸気を発生するボイラー、この蒸気により動作される蒸気タービン、この蒸気タービンの排気を復水する復水器、この復水器に冷却液を送り込む冷却器、この復水器内の圧力を測定する圧力計、この復水器への排気の流量を計測するための流量計
、この排気の流量に応じて前記復水器の圧力が所定の範囲となるように前記冷却器の冷却能力を制御するための制御器
、及び前記復水器の入り口及び出口での前記冷却液の温度を測定する冷却液温度計を備え、
前記冷却器が、前記冷却液を冷却する少なくとも一つのファン及び前記冷却液を循環させる少なくとも一つのポンプを備え、
前記制御器が、この冷却液の温度、前記復水器の圧力、前記復水器への排気の流量、前記ポンプの稼働状況より得られる冷却液の流量から、前記復水器の故障の有無を判定しうる発電設備。
【請求項2】
蒸気を発生するボイラー、この蒸気により動作される蒸気タービン、この蒸気タービンの排気を復水する復水器、この復水器に冷却液を送り込む冷却器、この復水器内の圧力を測定する圧力計、この復水器への排気の流量を計測するための流量計
、この排気の流量に応じて前記復水器の圧力が所定の範囲となるように前記冷却器の冷却能力を制御するための制御器
、前記復水器の入り口及び出口での前記冷却液の温度を測定する冷却液温度計、及び前記復水器の入り口での冷却液の圧力を計測する水圧計を備え、
前記冷却器が、前記冷却液を冷却する少なくとも一つのファン及び前記冷却液を循環させる少なくとも一つのポンプを備え、
前記制御器が、これらの冷却液の温度、前記冷却液の圧力、前記復水器の圧力、前記ポンプの稼働状況より得られる冷却液の流量から、前記冷却器の故障の有無を判定しうる、発電設備。
【請求項3】
前記制御器が、稼働させる前記ファンの数又は前記ファンの回転数を制御することで前記冷却能力を制御する、請求項
1又は2に記載の発電設備。
【請求項4】
前記制御器が、稼働させる前記ポンプの数又は前記ポンプの回転数を制御することで前記冷却能力を制御する、請求項
1から3のいずれかに記載の発電設備。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発電設備に関する。詳細には、本発明は、排熱を利用した発電設備に関する。
【背景技術】
【0002】
セメントプラントでは、原料となる石灰石を高熱で処理する際に、大量の熱が排出される。エネルギーの有効利用のため、この排熱のエネルギーを電力として回収するための発電設備を設置しているセメントプラントが増えている。
【0003】
この発電設備では、排熱は、ボイラーに供給される。ボイラー内で液状の熱媒体がこの熱により高圧の蒸気となり、蒸気タービンに送られる。この蒸気により蒸気タービンの羽根が回転し、発電機が駆動される。蒸気は蒸気タービンを通過し、復水器に送られる。復水器内には、冷却器から送られた冷却液が循環されている。蒸気は復水器内で冷却されて液状となる。液状となった熱媒体は、ボイラーに戻される。
【0004】
復水器で蒸気が冷却されて液化したとき、蒸気の体積は急激に小さくなり、復水器内は真空に近い状態となる。冷却器の冷却能力を上げると液化が促進されることで復水器の圧力が低下し、蒸気タービン入り口と出口とで蒸気のエネルギー落差が大きくなる。蒸気の羽根を回転させる力が大きくなり、発電量を増やすことができる。一方で、過度な冷却により発電量が過大になると、発電機が損傷することがある。また、過度な冷却により蒸気タービン内で蒸気の液化が始まると、蒸気タービンの損傷を引き起こしうる。
【0005】
特開2007-6683公報で報告された発電設備では、発電機を保護しつつ有効な電気エネルギーを増大させるために、発電量が所定の値を超えないように、冷却液導入手段に送る電力量を調整している。
【0006】
特開2003-343211公報で報告された復水器の冷却システムでは、復水器の真空度が所定の値となるように、冷却液を循環させるポンプの回転数を調整している。これにより、発電設備を安定して運転させながら、ポンプでの消費電力を低減している。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2007-6683公報
【文献】特開2003-343211公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
発電設備の損傷を抑えつつ発電効率を上げるには、復水器の圧力を調整することが重要となる。この適切な圧力の範囲は、タービンから復水器へ送られる蒸気の流量(タービン排気流量)により異なる。排熱を利用した発電設備では、プラントの稼働状況により、利用できる排熱の量は変動し、このためタービン排気流量も変動する。タービン排気流量が変動しても、損傷を抑えつつ良好な発電効率が達成された発電設備が求められている。
【0009】
本発明の目的は、タービン排気流量が変動しても、損傷を抑えつつ良好な発電効率が達成された発電設備の提供にある。
【課題を解決するための手段】
【0010】
本発明に係る発電設備は、蒸気を発生するボイラー、この蒸気により動作される蒸気タービン、蒸気タービンの排気を復水する復水器、この復水器に冷却液を送り込む冷却器、この復水器の圧力を測定する圧力計、この復水器への排気の流量を計測するための流量計、及びこの排気の流量に応じて前記復水器の圧力が所定の範囲となるように前記冷却器の冷却能力を制御するための制御器を備える。
【0011】
好ましくは、前記冷却器は、前記冷却液を冷却する少なくとも一つのファン及び前記冷却液を循環させる少なくとも一つのポンプを備える。
【0012】
好ましくは、前記制御器は、稼働させる前記ファンの数又は前記ファンの回転数を制御することで前記冷却能力を制御する。
【0013】
好ましくは、前記制御器は、稼働させる前記ポンプの数又は前記ポンプの回転数を制御することで前記冷却能力を制御する。
【0014】
好ましくは、発電設備は前記復水器の入り口及び出口での冷却液の温度を測定する冷却液温度計をさらに備え、前記制御器は、この冷却液の温度、前記復水器の圧力、前記復水器への排気の流量、前記ポンプ稼働状況より得られる冷却液の流量から、前記復水器の故障の有無を判定しうる。
【0015】
好ましくは、発電設備は前記復水器の入り口及び出口での冷却液の温度を測定する冷却液温度計、並びに前記復水器の入り口での冷却液の圧力を計測する水圧計をさらに備え、前記制御器が、これらの冷却液の温度、前記冷却液の圧力、前記復水器の圧力、前記ポンプ稼働状況より得られる冷却液の流量から、前記冷却器の故障の有無を判定しうる。
【発明の効果】
【0016】
本発明に係る発電設備は、流量計での計測結果から得られたタービン排気流量に応じて、復水器の圧力が所定の範囲となるように冷却器の冷却能力を制御するための制御器を備える。これにより、タービン排気流量が変動しても、復水器の圧力は適切な範囲に制御されうる。この発電設備では、発電設備の損傷を抑えつつ良好な発電効率が達成できる。
【図面の簡単な説明】
【0017】
【
図1】
図1は、本発明の一実施形態に係る発電設備が示されたブロック図である。
【
図3】
図3は、タービン排気流量に応じた適切な復水器の圧力の範囲が示されたグラフの一例である。
【
図4】
図4は、復水器の圧力制御の全体の流れが示されたフローチャートである。
【
図5】
図5は、
図4のフローチャートの、ポンプ能力向上処理が示されたフローチャートである。
【
図6】
図6は、
図4のフローチャートの、ファン能力向上処理が示されたフローチャートである。
【
図7】
図7は、
図4のフローチャートの、ファン能力低減処理が示されたフローチャートである。
【
図8】
図8は、
図4のフローチャートの、ポンプ能力低減処理が示されたフローチャートである。
【発明を実施するための形態】
【0018】
以下、適宜図面が参照されつつ、好ましい実施形態に基づいて本発明が詳細に説明される。
【0019】
図1は、本発明の一実施形態に係る発電設備2が、セメント焼成設備4とともに示されたブロック図である。これらは、セメントプラントの一部である。この発電設備2は、セメント焼成設備4からの排熱を利用して発電を行う。
【0020】
セメント焼成設備4は、セメントの原料から中間製品であるクリンカを製造する。
図1で示されるように、このセメント焼成設備4は、プレヒータ6、仮焼炉8、ロータリキルン10、エアクエンチングクーラ12(AQC12)を備えている。
【0021】
セメントの原料は、プレヒータ6に投入され、予熱される。この工程において、プレヒータ6から高温のガスが排出される。
図1において、符号GO1で示されるのが、プレヒータ6のガス排出口である。プレヒータ6からの排ガスの温度は、例えば320℃程度である。予熱された原料は、仮焼炉8で仮焼され、ロータリキルン10で焼成される。この焼成物はAQC12で急冷され、クリンカが得られる。この工程において、AQC12から高温のガスが排出される。
図1において、符号GO2及びGO3で示されるのが、AQC12のガス排出口である。AQC12からの排ガスの温度は、例えば360℃程度である。
【0022】
発電設備2では、上記の高温の排ガスにより熱媒体を蒸気とし、この蒸気により蒸気タービンを駆動して発電が行われる。典型的な熱媒体は、水である。この発電設備2は、プレヒータボイラー14(PHボイラー14)、エアクエンチングクーラボイラー(AQCボイラー16)、第一フラッシャ18、第二フラッシャ20、蒸気タービン22、発電機24、流量計21、復水器26、冷却器28及び制御器30を備える。
図1において、矢印Aは排ガスの流れを表す。符号のない矢印は、熱媒体の流れを表す。
【0023】
PHボイラー14は、プレヒータ6からの排熱を利用して、過熱蒸気を発生させる。PHボイラー14は、本体32及び蒸気ドラム34を備える。
図1で示されるように、プレヒータ6の排気口GO1からの排ガスは、本体32の入口32aから本体32に投入され、本体32の出口32bから排出される。本体32内部には、プレヒータ6からの高温の排ガスが流されている。蒸気ドラム34には、液状の熱媒体36が格納されている。蒸気ドラム34から液状の熱媒体36が本体32内部に送られ、排ガスと熱交換をして高圧の過熱蒸気となる。この過熱蒸気は、PHボイラー14の蒸気出力口38から、蒸気タービン22に送られる。
【0024】
AQCボイラー16は、AQC12からの排熱を利用して、過熱蒸気を発生させる。AQCボイラー16は、本体40及び蒸気ドラム42を備える。
図1で示されるように、AQC12の排気口GO2からの排ガスは、本体40の入口40aから本体40に投入され、本体40の出口40bから排出される。本体40内部には、AQC12からの高温の排ガスが流されている。AQC12の蒸気ドラム42には、液状の熱媒体36が格納されている。蒸気ドラム42から液状の熱媒体36が本体40内部に送られ、排ガスと熱交換をして高圧の過熱蒸気となる。過熱蒸気は、AQCボイラー16の蒸気出力口44から、蒸気タービン22に送られる。
【0025】
AQCボイラー16は、復水器26から戻された液状の熱媒体36を予熱する機能も有する。復水器26からAQCボイラー16の本体40内部に送られた熱媒体36は排ガスと熱交換をして予熱され、AQCボイラー16の蒸気ドラム42、PHボイラー14の蒸気ドラム34及び第一フラッシャ18に送られている。
【0026】
第一フラッシャ18には、AQCボイラー16で予熱された熱媒体36の一部が送られる。第一フラッシャ18は、この熱媒体36を汽水分離する。第一フラッシャ18で生成された蒸気は、蒸気タービン22に供給され、残った熱媒体36は、第二フラッシャ20に送られる。第二フラッシャ20は、この熱媒体36を汽水分離する。第二フラッシャ20で生成された蒸気は、蒸気タービン22に供給され、残った熱媒体36は、AQCボイラー16に戻される。
【0027】
蒸気タービン22には、蒸気が送り込まれる。この蒸気タービン22は、多段式である。この蒸気タービン22の高圧段には、PHボイラー14及びAQCボイラー16からの高圧の蒸気が供給される。この蒸気タービン22の低圧段には、第一フラッシャ18及び第二フラッシャ20からの比較的低圧な蒸気が供給される。図示されないが、蒸気タービン22は、羽根を備える。この羽根が蒸気により回転される。
【0028】
流量計21は、蒸気タービン22に送り込まれる蒸気の流量を測定する。この実施形態では、PHボイラー14からの蒸気の流量の測定、AQCボイラー16からの蒸気の流量の測定、第一フラッシャ18からの蒸気の流量の測定、及び第二フラッシャ20からの蒸気の流量の測定用に、4つの流量計21が存在する。これらの流量計21で測定された値の合計が、蒸気タービン22に供給される蒸気の流量である。この蒸気タービン22では、この合計が、蒸気タービン22から復水器26に流れ込む蒸気の流量(タービン排気流量と称される)となる。換言すれば、これらの流量計21は、タービン排気流量を測定するための流量計である。
【0029】
図示されないが、抽気口を有する蒸気タービンが使用されることがある。この場合は、タービン排気流量は、蒸気タービンに送り込まれる蒸気の流量から、この抽気口から排出される蒸気の流量を減じた値となる。
【0030】
発電機24には、蒸気タービン22の羽根の回転軸が接続されている。羽根が回転することで、発電機24が発電する。発電機24は、蒸気タービン22の羽根の回転エネルギーを電力に変換している。
【0031】
復水器26には、蒸気タービン22を通過した蒸気が送られる。復水器26内には、冷却器28から送られた冷却液が循環されている。この蒸気は冷却液で冷却され、液化される。復水器26は、蒸気タービン22の排気を復水する。この蒸気は、液状の熱媒体36となる。蒸気が液化すると体積が急激に小さくなり、復水器26内は、真空に近い状態となる。液化した熱媒体36は、復水ポンプ45により外部に汲み出され、さらにポンプ46を介してAQCボイラー16に戻される。
【0032】
図2には、
図1の冷却器28及び制御器30の詳細が、復水器26及び蒸気タービン22と共に示されている。
図1では描かれていなかったが、
図2で示されるとおり、この発電設備2は、圧力計48をさらに備えている。
【0033】
冷却器28は、復水器26内の蒸気を冷却する。冷却器28は、復水器26の内部と外部との間で冷却液52を循環させる。
図2において、矢印Bは冷却液52の流れを示している。典型的な冷却液52は、水である。
図2で示されるように、冷却器28は、熱交換部54、外壁部56、散水パイプ58、ファン60、モーター62、水槽64、ポンプ66、外気湿球温度計68、冷却液温度計70及び水圧計71を備える。この冷却器28は、冷却塔である。
【0034】
熱交換部54は、復水器26の内部に位置する。熱交換部54の内部に冷却液52が流されている。蒸気は、この冷却液52と熱交換をして、冷却される。これにより、蒸気は液化される。この熱交換で、冷却液52の温度は上昇する。
【0035】
散水パイプ58は、熱交換部54の出力部72と接続している。散水パイプ58は、外壁部56の内側に位置する。
図2で示されるように、この実施形態では、3つの散水パイプ58が存在する。それぞれの散水パイプ58は、冷却液52を水槽64に向けて散水させることができる。それぞれの散水パイプ58の間には、バルブ74が設けられており、どの散水パイプ58から散水させるかが制御できるようになっている。
【0036】
ファン60は、散水パイプ58の上方に位置する。
図2に示されるように、この実施形態では、第一ファン60a、第二ファン60b及び第三ファン60cの、三つのファン60が設けられている。ファン60が回転することで、外壁部56と水槽64との間から空気が外壁部56内に流れ込む。この空気は、冷却液52が散水されている場所で上昇し、ファン60を通して外部に放出される。ファン60が回転することで、冷却液52が散水されている場所において、空気の流れが起こる。これにより、冷却液52は空冷される。これにより、熱交換部54で上昇した冷却液52の温度は、低下する。
【0037】
モーター62は、ファン60を回転させる。この実施形態では、それぞれのファン60に対応して、3つのモーター62が設けられている。それぞれのモーター62では、制御信号によって起動及び停止が制御できる。換言すれば、この制御信号により、ファン60の起動及び停止が制御できる。それぞれのモーター62では、制御信号によって回転数を変動させることができる。換言すれば、この制御信号により、ファン60の回転数を変動させることができる。モーター62は、通常外壁部56の外側に配置されている。
【0038】
水槽64には、冷却液52が貯められている。水槽64は、散水パイプ58の下に位置している。それぞれの散水パイプ58から散水された冷却液52は、この水槽64に入るようになっている。
【0039】
ポンプ66の入口は水槽64と接続し、出口は熱交換部54と接続している。ポンプ66は、水槽64内の冷却液52を、熱交換部54に送る。ポンプ66は、冷却液52を循環させている。
図2で示されるように、この実施形態では、第一ポンプ66a及び第二ポンプ66bの、二つのポンプ66が設けられている。それぞれのポンプ66では、制御信号によって起動及び停止が制御できる。それぞれのポンプ66では、制御信号によって回転数を変動させることができる。
【0040】
冷却液温度計70は、冷却液52の温度を測定する。この実施形態では、復水器26の入り口での冷却液52の温度を計測する第一温度計70a及び復水器26の出口での冷却液52の温度を計測する第二温度計70bが存在する。水圧計71は、復水器26の入り口での冷却液52の水圧を計測する。外気湿球温度計68は冷却器28の外部の湿球温度を計測する。これらの計測結果は、制御器30に送られる。
【0041】
圧力計48は、復水器26内の圧力を測定する。換言すれば、圧力計48は、復水器26の真空度を測定する。この測定結果は、制御器30に送られる。
【0042】
図2の符号Iは、制御器30への入力信号である。
図2で示されるように、制御器30には、圧力計48、冷却液温度計70、水圧計71及び外気湿球温度計68での測定結果が入力される。符号Cは、制御器30からの制御信号である。制御器30からの制御信号は、それぞれのモーター62及びポンプ66に送られている。制御器30は、この制御信号により、稼働するファン60の数及びファン60の回転数を制御できる。制御器30は、この制御信号により、稼働するポンプ66の数及びポンプ66の回転数を制御できる。
【0043】
制御器30は、冷却器28の冷却能力を制御できる。制御器30は、冷却器28の冷却能力を上げるとき、稼働するファン60の数を増やすこと、もしくはファン60の回転数を上げることを行う。ファン60が冷却液52を空冷する能力が上がり、冷却液52の温度は下がる。これにより、冷却器28の冷却能力は上がる。制御器30は、冷却器28による冷却能力を下げるとき、稼働するファン60の数を減らすこと、もしくはファン60の回転数を下げることを行う。ファン60による冷却液52の空冷能力が下がり、冷却液52の温度は上昇する。これにより、冷却器28の冷却能力は下がる。
【0044】
また、制御器30は、冷却器28の冷却能力を上げるとき、稼働するポンプ66の数を増やすこと、もしくはポンプ66の回転数を上げることを行う。熱交換部54に流れる冷却液52の流量が増加して、冷却器28の冷却能力が上がる。制御器30は、冷却器28の冷却能力を下げるとき、稼働するポンプ66の数を減らすこと、もしくはポンプ66の回転数を下げることを行う。熱交換部54に流れる冷却液52の流量が減少して、冷却器28の冷却能力が下がる。
【0045】
この発電設備2では、タービン排気流量に応じた、設定すべき復水器26の圧力の範囲が決められている。これは、発電設備2の損傷を防ぎつつ、効率的な発電をするための範囲である。
図3は、タービン排気流量に応じた、設定すべき復水器26の圧力の範囲が示されたグラフの一例である。この範囲の下限値は、蒸気タービン22から排気される蒸気の湿り度の限界値から決められる。この範囲の上限値は、蒸気タービン22の羽根の強度から決められる。このグラフにおいて、符号Xで示されるのが運転可能領域であり、符号Yで示されるのが条件付き運転可能領域である。
図3で示されるように、設定すべき復水器26の圧力は、タービン排気流量が小さくなるほど小さくなる傾向にある。設定すべき復水器26の圧力の範囲は、タービン排気流量が小さくなるほど狭くなる。
【0046】
この発電設備2では、制御器30は、タービン排気流量に応じて、復水器26の圧力が
図3で示された範囲となるように冷却器28の冷却能力を制御する。
図4-8は、この制御器30による冷却能力の制御の方法が示されたフローチャートである。以下、これらについて、詳細に説明される。
【0047】
図4には、制御器30による制御の全体の流れが示されている。制御器30は、工程S1において、タービン排気流量と復水器26の圧力との値から、復水器26の圧力が
図3の領域Xの範囲内か否かを判断する。範囲内であるときは、所定の時間間隔で、この工程S1を繰り返す。すなわち、制御器30は、常時復水器26の圧力を監視する。復水器26の圧力が領域Xで示された上限よりも大きい場合、工程S2のポンプ能力向上処理が実施される。これにより、冷却器28の冷却能力が向上される。この処理においてもなお圧力が領域Xで示された上限よりも大きい場合、工程S3のファン能力向上処理が実施される。これにより、さらに冷却器28の冷却能力が向上される。工程S2又は3の処理により、復水器26の圧力が領域Xで示された上限以下となったときは、工程S1に戻り、同様の処理が繰り返される。上限以下とならないときは、異常状態として、例えば設備管理者に警告が発せられ、管理者が必要な処理を行う。例えば管理者は、圧力が領域Yの範囲内であれば、所定の時間この状態が継続した段階で、設備2を停止する。管理者は、圧力が領域Yの範囲外であれば、ただちに設備2を停止する。
【0048】
上記工程S1の判断において、復水器26の圧力が領域Xで示された下限よりも小さい場合、工程S4の、ファン能力低減処理が実施される。これにより、冷却器28の冷却能力が低減される。この処理においてもなお圧力が領域Xよりも小さい場合、工程S5のポンプ能力低減処理が実施される。これにより、さらに冷却器28の冷却能力が低減される。工程S4又は5の処理により、復水器26の圧力が領域Xで示された下限以上となったときは、工程S1に戻り、同様の処理が繰り返される。下限以上とならないときは、異常状態として、例えば設備管理者に警告が発せられ、管理者が必要な処理を行う。
【0049】
図5には、工程S2の、ポンプ能力向上処理の詳細が示されている。この処理では、工程S2-1において、制御の対象となるポンプ66の回転数が、最大回転数の100%未満か否かが判断される。ここで制御の対象となるポンプ66とは、例えば最近にこの制御器30が制御したポンプ66である。
図2の実施形態において、第一ポンプ66aが制御部により最大回転数の50%の回転数で稼働させられ、第二ポンプ66bが未稼働で停止しているとき、第一ポンプ66aが制御の対象となる。ポンプ66の回転数が最大回転数の100%未満の場合には工程S2-2が実施され、100%の場合には工程S2-4が実施される。
【0050】
工程S2-2では、ポンプ66の回転数の上昇処理が実施される。ポンプ66の回転数が所定の値だけ、上昇される。例えば、制御器30は、第一ポンプ66aの回転数を最大回転数の50%から75%に上昇させる。
【0051】
工程S2-3では、復水器26の圧力が、工程S2-2の処理により、領域Xの上限値以下になったか否かが判断される。これは、工程S2-2の処理をした後、安定状態になるのを待つために、一定の時間(例えば1時間)をおいて判断される。領域Xの上限値以下になった場合は、工程S2の処理を終了し、工程S1に戻る。領域Xの上限値以下になっていない場合は、工程S2-1に戻る。
【0052】
工程S2-4では、ポンプ66が全数稼働されているかが判断される。稼働されていないポンプ66があるときは、工程S2-5において、制御器30は、これらのうちの一つを稼働させる対象として追加し、これを制御する。例えば、先ほどの例では、停止している第二ポンプ66bが稼働させるポンプ66として追加される。この追加後に、工程S2-1に戻る。既にポンプ66が全数稼働されているときは、制御部は、ポンプ66の制御によって復水器26の圧力を領域Xの上限値以下とすることはできないと判断して、工程S2を終了する。工程S3のファン能力向上処理が実施される。
【0053】
図6には、工程S3の、ファン能力向上処理の詳細が示されている。この処理では、工程S3-1において、制御の対象となるファン60の回転数が最大回転数の100%未満かどうかが判断される。ここで制御の対象となるファン60とは、例えば最近に稼働させたファン60である。
図2の実施形態において、第一ファン60aが最大回転数の100%で稼働しており、第一ファン60aの後に稼働させた第二ファン60bが最大回転数の50%で稼働しており、第三ファン60cが未稼働で停止しているとき、第二ファン60bが制御の対象となる。ファン60の回転数が最大回転数の100%未満の場合には工程S3-2が実施され、100%の場合には工程S3-4が実施される。
【0054】
工程S3-2では、制御対象のファン60の回転数の上昇処理が実施される。ファン60の回転数が所定の値だけ、上昇される。例えば、制御器30は、第二ファン60bの回転数を最大回転数の50%から75%に上昇させる。
【0055】
工程S3-3では、復水器26の圧力が、工程S3-2の処理により、領域Xの上限値以下になったか否かが判断される。これは、工程S3-2の処理をした後、安定状態になるのを待つために、一定の時間(例えば1時間)をおいて判断される。領域Xの上限値以下になった場合は、工程S3の処理を終了し、工程S1に戻る。領域Xの上限値以下になっていない場合は、工程S3-1に戻る。
【0056】
工程S3-4では、ファン60が全数稼働されているかが判断される。稼働されていないファン60があるときは、工程S3-5の工程において、制御器30は、これらのうちの一つを稼働させる対象として追加し、これを制御する。例えば、先ほどの例では、稼働していない第三ファン60cが稼働対象として追加される。この追加後に、工程S3-1に戻る。既にファン60が全数稼働されているときは、制御部は、復水器26の圧力を領域Xの上限値以下とすることはできないと判断して、工程S3の処理を終了する。前述の異常状態として、例えば設備管理者に警告が発せられ、管理者が必要な処理を行う。
【0057】
図7には、工程S4の、ファン能力低減処理の詳細が示されている。この処理では、工程S4-1において、制御の対象となるファン60の回転数が最大回転数の0%より大きいか否か(停止していないか否か)が判断される。ここで制御の対象となるファン60とは、例えば最近に稼働させたファン60である。
図2の実施形態において、先に稼働された第一ファン60aが最大回転数の100%の回転数で稼働し、後に稼働された第二ファン60bが50%の回転数で稼働しているとき、第二ファン60bが制御の対象となる。ファン60の回転数が最大回転数の0%より大きい場合には工程S4-2が実施され、0%の場合には工程S4-4が実施される。
【0058】
工程S4-2では、ファン60の回転数の低減処理が実施される。ファン60の回転数が所定の値だけ、低減される。例えば、制御器30は、第二ファン60bの回転数を最大回転数の50%から25%に低減させる。
【0059】
工程S4-3では、復水器26の圧力が、工程S4-2の処理により、領域Xの下限値以上になったか否かが判断される。これは、工程S4-2の処理をした後、安定状態になるのを待つために、一定の時間(例えば1時間)をおいて判断される。領域Xの下限値以上になった場合は、工程S4の処理を終了し、工程S1に戻る。領域Xの下限値以上になっていない場合は、工程S4-1に戻る。
【0060】
工程S4-4では、ファン60が全数停止されているか否かが判断される。停止されていないファン60があるときは、工程S4-5の工程において、これらのうちの一つが回転数を低減する対象として追加される。例えば、先ほどの例では、最大回転数の100%の回転数で稼働していた第一ファン60aが制御対象として追加される。この追加後に、工程S4-1に戻る。既にファン60が全数停止されているときは、制御部は、ファン60の制御によって復水器26の圧力を領域Xの下限値以上とすることはできないと判断して、工程S4の処理を終了する。工程S5のポンプ能力低減処理が実施される。
【0061】
図8には、工程S5の、ポンプ能力低減処理の詳細が示されている。この処理では、工程S5-1において、制御の対象となるポンプ66の回転数が、最大回転数の0%より大きいか否か(停止していないか否か)が判断される。ここで制御の対象となるポンプ66とは、例えば最近に稼働させたポンプ66である。
図2の実施形態において、先に稼働された第一ポンプ66aが最大回転数の100%の回転数で稼働し、後に稼働された第二ポンプ66bが50%の回転数で稼働しているとき、第二ポンプ66bが制御の対象となる。ポンプ66の回転数が最大回転数の0%より大きい場合には工程S5-2が実施され、0%の場合には工程S5-4が実施される。
【0062】
工程S5-2では、ポンプ66の回転数の低減処理が実施される。ポンプ66の回転数が所定の値だけ、低減される。例えば、制御器30は、第二ポンプ66bの回転数を最大回転数の50%から25%に低減させる。
【0063】
工程S5-3では、復水器26の圧力が、工程S5-2の処理により、領域Xの下限値以上になったか否かが判断される。これは、工程S5-2の処理をした後、安定状態になるのを待つために、一定の時間(例えば1時間)をおいて判断される。領域Xの下限値以上になった場合は、工程S5の処理を終了し、工程S1に戻る。領域Xの下限値以上になっていない場合は、工程S5-1に戻る。
【0064】
工程S5-4では、ポンプ66が全数停止されているか否かが判断される。停止されていないポンプ66があるときは、工程S5-5の工程において、これらのうちの一つが回転数低減対象として追加される。例えば、先ほどの例では、最大回転数の100%の回転数で稼働していた第一ポンプ66aが回転数低減の制御対象として追加される。この追加後に、工程S5-1に戻る。既にポンプ66が全数停止されているときは、制御部は、復水器26の圧力を領域Xの下限値以上とすることはできないと判断して、工程S5の処理を終了する。前述の異常状態として、例えば設備管理者に警告が発せられ、管理者が必要な処理を行う。
【0065】
上記で説明された実施形態では、ポンプ66の回転数は可変であった。回転数が可変ではないポンプ66が使用されることがある。このポンプ66は、停止(回転数が最大回転数の0%)及び稼働(回転数が最大回転数の100%)のいずれかの状態となる。この場合、制御器30は、工程S2の工程S2-2(回転数の上昇の処理)では停止していたポンプ66を稼働させ、工程S5の工程S5-2(回転数の低減の処理)では稼働していたポンプ66を停止させる。
【0066】
上記で説明された実施形態では、ファン60を駆動させるモーター62の回転数は可変であった。回転数が可変ではないモーター62が使用されることがある。このとき、ファン60は、停止(回転数が最大回転数の0%)及び稼働(回転数が最大回転数の100%)のいずれかの状態となる。この場合は、制御器30は、工程S3の工程S3-2(回転数の上昇の処理)では停止していたファン60を稼働させ、工程S4の工程S4-2(回転数の低減の処理)では稼働していたファン60を停止させる。
【0067】
上記で説明された実施形態では、ポンプ66の回転数の変更及び稼働させるポンプ66の数の変更、並びにファン60の回転数の変更及び稼働させるファン60の数の変更は、制御器30が実施していた。制御器30が、復水器26の圧力が領域Xの範囲外であることを運転者に知らせ、これらの変更は運転者が実施してもよい。この場合、この制御器30は、タービン排気流量に応じて復水器26の圧力が所定の範囲となるように冷却器28の冷却能力を制御するための、運転支援の機能を果たす。
【0068】
この発電設備2では、制御器30は、前述の冷却能力の制御機能に加えて、発電設備2の運転状況を示すパラメータから、復水器26の故障の有無を判定する機能を有する。
この機能による故障診断は、
(C1)運転状況を示すパラメータと、復水器26の圧力範囲との関係を規定する工程
及び
(C2)制御器30が、実際の運転時に計測している上記のパラメータと復水器26の圧力とから、故障の有無を判断する工程
を実施することで行われる。
【0069】
上記C1の工程では、タービン排気流量、冷却液52の温度、及びポンプ66の稼働数と回転数(冷却液52の流量)を変えつつこの発電設備2を試運転し、これらのパラメータの値に対応した復水器26の圧力の範囲が計測される。これにより正常運転時の、これらのパラメータの値に応じた復水器26の圧力の範囲が設定される。試運転での値と、シミュレーションで求めた値を併せて、復水器26の圧力の範囲が設定されてもよい。
【0070】
上記C2の工程では、実際の発電設備2の運転において、制御器30は、前述のタービン排気流量、冷却液温度計70からの復水器26の入り口及び出口での冷却液52の温度、ポンプ66の稼働状況からの冷却液52の流量、圧力計48からの復水器26の圧力から、この圧力が上記C1の工程で求めた範囲内かをチェックする。この範囲から外れていれば、制御器30は、運転者に警告を発する。例えば、復水器26の圧力が上記C1の範囲より大きいとき、外部から復水器26内への空気の流入が疑われる。制御器30は、復水器26の密閉度が劣化している可能性があるとの警告を出す。
【0071】
なお、故障判定は、
図4で示された制御フローによっても実現されうる。例えば、前述のS3の工程を実施しても復水器26の圧力が
図3で示される上限値よりも大きい場合、外部から復水器26内への空気の流入が疑われる。この場合、制御器30は、復水器26の密閉度が劣化している可能性があるとの警告を出す。
【0072】
この発電設備2では、制御器30は、さらに冷却器28の故障の有無を判定する機能を有する。以下に示す実施形態では、冷却器28の熱交換部54の汚れの蓄積が診断される。この機能では、圧力計48で計測された復水器26の圧力Pc、冷却液温度計70で計測された復水器26の入り口での冷却液温度ti及び復水器26の出口での冷却液温度to、水圧計71で計測された復水器26の入り口での冷却液52の水圧pw、及びポンプ66の稼働状況から得られる冷却液52の流量vwが使用される。
【0073】
この機能では、復水器26の圧力Pcから、復水器26内の蒸気の飽和温度Tcが計算される。これと、冷却液温度ti及び冷却液温度toから、復水器26での対数平均温度差ΔTが、以下の式で計算される。
ΔT=(θ1-θ2)/In(θ1/θ2)
ここで、
θ1=Tc-to、 θ2=Tc-ti
である。
この対数平均温度差ΔTから、復水器26での熱交換量Q[W]は、以下の式となる。
Q=K×C×A×ΔT ・・・・(1)
ここで、
K:熱交換部の基準熱貫流率に、材質、厚み、冷却液温度による補正をした値
C:熱交換部の熱貫流率の、冷却器28の管の清浄度による補正係数
A:熱交換部の伝熱面積
である。上記のKの値は、事前の評価と冷却液温度から求められる。上記のAの値は、既知である。Cは、熱交換部に汚れの蓄積の問題がないときは、所定の値(例えば1)である。
【0074】
この機能では、さらに冷却液温度ti、冷却液温度to、冷却液52の水圧pwから、復水器26の入り口と出口との冷却液52のエンタルピー差ΔE[kJ/kg]が求められる。この値と冷却液52の流量vwから、復水器26での熱交換量Q[W]は、以下の式となる。
Q=vw×ΔE ・・・・(2)
【0075】
式(1)の熱交換量Qと、式(2)の熱交換量Qとは、熱交換部54に問題がない場合(例えばC=1の場合)、同じ値となる。上記式(2)の熱交換量Qが式(1)の熱交換量Qより小さいとき、上記Cの値が1より小さくなっているとして、冷却器28が正常でないと判断される。例えば、制御器30は、熱交換部54の管に汚れが蓄積しているとして、警告を出す。
【0076】
以下、本発明の作用効果が説明される。
【0077】
発電設備の損傷を抑えつつ発電効率を上げるには、復水器の真空度(圧力)を調整することが重要となる。この適切な真空度の範囲は、タービン排気流量により異なる。排熱を利用した発電設備では、プラントの稼働状況により、利用できる排熱の量は変動し、このためタービン排気流量も変動する。
【0078】
本発明に係る発電設備2は、流量計21の計測結果から得られたタービン排気流量に応じて、復水器26の圧力が所定の範囲となるように冷却器28の冷却能力を制御するための制御器30を備える。制御器30は、タービン排気流量に応じて、復水器26の圧力が
図3の領域Xに入るように、冷却能力を制御する。タービン排気流量が変動しても、復水器26の圧力を
図3の領域Xに入れることができる。この発電設備2では、損傷を抑えつつ良好な発電効率が達成できる。
【0079】
この実施形態では、制御器30は、冷却液52を循環させるポンプ66の数及び回転数を制御することで、冷却器28の冷却能力を制御することができる。さらに、冷却液52を冷却するファン60の数及び回転数を制御することでも、冷却器28の冷却能力を制御することができる。これらにより、簡易に広い範囲での冷却能力の制御が可能となっている。プラントの稼働状況の変動や、環境温度の変動等、発電設備2の周囲の状況が変動しても、容易に復水器26の圧力を
図3の領域Xに入れることができる。この発電設備2では、損傷を抑えつつ良好な発電効率が達成できる。
【0080】
この実施形態では、流量計21の計測結果から得られたタービン排気流量に応じて、復水器26の圧力が所定の範囲となるように、制御器30が自動で冷却器28の冷却能力を制御する。運転者が制御するのに比べて、運転者の熟練度によらず、効率的に復水器26の圧力を
図3の領域Xに入れることができる。この発電設備2では、損傷を抑えつつ良好な発電効率が達成できる。
【0081】
この実施形態では、制御器30は、発電設備2の運転状況を示すパラメータから、復水器26の故障の有無を判定する機能を有する。タービン排気流量、冷却液52の温度、ポンプ66の稼働数と回転数、及び復水器26の圧力から、復水器26の密閉度の劣化が、早期に発見されうる。この発電設備2では、メンテナンスが容易である。
【0082】
この実施形態では、制御器30は、発電設備2の運転状況を示すパラメータから、冷却器28の故障の有無を判定する機能を有する。圧力計48で計測された復水器26の圧力、冷却液温度計70で計測された復水器26の入り口及び出口での冷却液温度、水圧計71で計測された復水器26の入り口での冷却液52の水圧、及びポンプ66の稼働状況から得られる冷却液52の流量から、冷却液52を循環させるパイプの破損、汚れの蓄積等が、早期に発見されうる。この発電設備2では、メンテナンスが容易である。
【0083】
以上説明された実施形態では、この発電設備はセメントプラントの排熱を利用していた。この発電設備が適用できるのは、セメントプラントに限られない。この発電設備は、排熱が行われる種々のプラントで適用されうる。
【0084】
以上説明されたように、この発電設備では、タービン排気流量が変動しても、損傷を抑えつつ良好な発電効率が達成できる。このことから、本発明の優位性は明らかである。
【産業上の利用可能性】
【0085】
以上説明された発電設備は、種々のプラントの排熱利用に適用されうる。
【符号の説明】
【0086】
2・・・発電設備
4・・・セメント焼成設備
14・・・PHボイラー
16・・・AQCボイラー
21・・・流量計
22・・・蒸気タービン
24・・・発電機
26・・・復水器
28・・・冷却器
30・・・制御器
36・・・熱媒体
48・・・圧力計
52・・・冷却液
60・・・ファン
62・・・モーター
64・・・水槽
66・・・ポンプ
70・・・冷却液温度計
71・・・水圧計