IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ディスコの特許一覧

<>
  • 特許-ウエーハの分割方法 図1
  • 特許-ウエーハの分割方法 図2
  • 特許-ウエーハの分割方法 図3
  • 特許-ウエーハの分割方法 図4
  • 特許-ウエーハの分割方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-09-28
(45)【発行日】2022-10-06
(54)【発明の名称】ウエーハの分割方法
(51)【国際特許分類】
   H01L 21/301 20060101AFI20220929BHJP
   B23K 26/53 20140101ALI20220929BHJP
【FI】
H01L21/78 B
H01L21/78 L
H01L21/78 Q
B23K26/53
【請求項の数】 1
(21)【出願番号】P 2018028364
(22)【出願日】2018-02-21
(65)【公開番号】P2019145665
(43)【公開日】2019-08-29
【審査請求日】2020-12-09
(73)【特許権者】
【識別番号】000134051
【氏名又は名称】株式会社ディスコ
(74)【代理人】
【識別番号】100121083
【弁理士】
【氏名又は名称】青木 宏義
(74)【代理人】
【識別番号】100138391
【弁理士】
【氏名又は名称】天田 昌行
(72)【発明者】
【氏名】陳 之文
【審査官】杢 哲次
(56)【参考文献】
【文献】特開2011-192934(JP,A)
【文献】特開2012-124527(JP,A)
【文献】特開2016-035976(JP,A)
【文献】特開2015-115573(JP,A)
【文献】特開2012-084618(JP,A)
【文献】特開2013-095844(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/301
B23K 26/53
(57)【特許請求の範囲】
【請求項1】
分割予定ラインにより区画され複数のデバイスが形成されたウエーハに対して透過性波長のレーザ光線を照射させてウエーハを該分割予定ラインに沿って分割するウエーハの分割方法であって、
空気より大きくウエーハより小さい屈折率の樹脂でウエーハにレーザ光線が入射する面に樹脂層を形成する樹脂層形成工程と、
該樹脂層形成工程で形成した該樹脂層側からレーザ光線を照射させ該樹脂層を通過させ、該空気と該樹脂との界面での第1反射率と該樹脂と該ウエーハとの界面での第2反射率との和が該空気と該ウエーハとの界面での反射率よりも小さくしたレーザ光線を該ウエーハの内部に集光させた集光点を該分割予定ラインに沿って移動させ該ウエーハの内部に改質層を形成する改質層形成工程と、
該改質層形成工程で形成した該改質層を起点に分割予定ラインに沿って分割する分割工程とを備え
該改質層形成工程では、該樹脂層の内部に生じた多重反射したレーザ光線を該ウエーハの内部で集光させるウエーハの分割方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ウエーハを個々のデバイスチップに分割するウエーハの分割方法に関する。
【背景技術】
【0002】
近年、ウエーハ等の分割方法として、分割予定ラインに沿ってウエーハの内部に改質層を形成して、改質層を起点にウエーハを分割するステルスダイシングが知られている(例えば、特許文献1参照)。ステルスダイシングでは、ウエーハに対して透過性波長のレーザ光線がウエーハの裏面側から照射され、ウエーハの内部で集光させた集光点が面方向で分割予定ラインに沿って移動されることで改質層が形成される。そして、ブレーキングやエキスパンドによってウエーハに外力が加わることで、強度が低下した改質層が分割起点になってウエーハが個々のデバイスチップに分割される。
【先行技術文献】
【特許文献】
【0003】
【文献】特許第3408805号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、空気の屈折率とウエーハの屈折率の違いによって、ウエーハの裏面で一部のレーザ光線が反射されて、ウエーハの内部で集光されるレーザ光線が減少する。ウエーハの内部で改質層の形成に寄与するレーザ光線が少なくなるため、レーザ光線の出力を大きくしなければならず、加工コストが高くなるという問題があった。また、レーザ光線の出力が大きいと、レーザ光線の集光点で拡散された漏れ光によってデバイスが破損されてしまうという不具合が生じていた。
【0005】
本発明はかかる点に鑑みてなされたものであり、レーザ光線の反射を減らして加工効率を高めることができるウエーハの分割方法を提供することを目的の1つとする。
【課題を解決するための手段】
【0006】
本発明の一態様のウエーハの分割方法は、分割予定ラインにより区画され複数のデバイスが形成されたウエーハに対して透過性波長のレーザ光線を照射させてウエーハを該分割予定ラインに沿って分割するウエーハの分割方法であって、空気より大きくウエーハより小さい屈折率の樹脂でウエーハにレーザ光線が入射する面に樹脂層を形成する樹脂層形成工程と、該樹脂層形成工程で形成した該樹脂層側からレーザ光線を照射させ該樹脂層を通過させ、該空気と該樹脂との界面での第1反射率と該樹脂と該ウエーハとの界面での第2反射率との和が該空気と該ウエーハとの界面での反射率よりも小さくしたレーザ光線を該ウエーハの内部に集光させた集光点を該分割予定ラインに沿って移動させウエーハの内部に改質層を形成する改質層形成工程と、該改質層形成工程で形成した該改質層を起点に分割予定ラインに沿って分割する分割工程とを備え、該改質層形成工程では、該樹脂層の内部に生じた多重反射したレーザ光線を該ウエーハの内部で集光させる
【0007】
この構成によれば、空気よりも大きくウエーハよりも小さな屈折率の樹脂層を介してウエーハにレーザ光線が照射されるため、樹脂層を介さずにレーザ光線が照射される構成と比較して、ウエーハの内部にレーザ光線が入射し易くなる。ウエーハの外部に反射されるレーザ光線が減って、ウエーハの内部に集光するレーザ光線が増えるため加工効率が向上される。よって、レーザ光線の出力を小さくして加工コストを低減できると共に、レーザ光線の集光点で拡散した漏れ光によるデバイスの破損を防止することができる。
【発明の効果】
【0008】
本発明によれば、空気よりも大きくウエーハよりも小さな屈折率の樹脂層を介してウエーハにレーザ光線が照射されるため、ウエーハの内部で集光するレーザ光線を増やして加工効率を向上することができる。
【図面の簡単な説明】
【0009】
図1】本実施の形態のレーザ加工装置の斜視図である。
図2】比較例のウエーハに対するレーザ加工の説明図である。
図3】本実施の形態のウエーハに対するレーザ加工の説明図である。
図4】本実施の形態の樹脂層の厚みと反射率との関係を示す図である。
図5】本実施の形態のウエーハの分割方法の説明図である。
【発明を実施するための形態】
【0010】
以下、添付図面を参照して、本実施の形態のレーザ加工装置について説明する。図1は、本実施の形態のレーザ加工装置の斜視図である。図2は、比較例のウエーハに対するレーザ加工の説明図である。なお、レーザ加工装置は、レーザ加工によってウエーハの内部に改質層を形成可能な構成であればよく、図1に示す構成に限定されない。
【0011】
図1に示すように、レーザ加工装置1は、レーザ光線を照射するレーザ加工手段31とウエーハWを保持した保持テーブル21とを相対移動させて、ウエーハWをレーザ加工するように構成されている。ウエーハWの表面には、複数の分割予定ラインLが格子状に配列され、分割予定ラインLによって区画された各領域に複数のデバイスが形成されている。ウエーハWはダイシングテープTを介してリングフレームFに支持されている。なお、ウエーハWは特に限定されないが、半導体ウエーハや光デバイスウエーハ等のように、レーザ加工の加工対象になればよい。
【0012】
レーザ加工装置1の基台10上には、レーザ加工手段31に対して保持テーブル21をX軸方向及びY軸方向に移動するテーブル移動手段11が設けられている。テーブル移動手段11は、基台10上に配置されたX軸方向に平行な一対のガイドレール12と、一対のガイドレール12にスライド可能に設置されたモータ駆動のX軸テーブル14とを有している。また、テーブル移動手段11は、X軸テーブル14の上面に配置されY軸方向に平行な一対のガイドレール13と、一対のガイドレール13にスライド可能に設置されたモータ駆動のY軸テーブル15とを有している。
【0013】
X軸テーブル14及びY軸テーブル15の背面側には、それぞれ図示しないナット部が形成されており、これらのナット部にボールネジ16、17が螺合されている。そして、ボールネジ16、17の一端部に連結された駆動モータ18、19が回転駆動されることで、保持テーブル21がガイドレール12、13に沿ってX軸方向及びY軸方向に移動される。また、Y軸テーブル15上には、ウエーハWを保持する保持テーブル21が設けられている。保持テーブル21の上面には保持面22が形成され、保持テーブル21の周囲にはウエーハWの周囲のリングフレームFを挟持固定するクランプ部23が設けられている。
【0014】
保持テーブル21の後方の立壁部25にはアーム部26が突設されており、アーム部26の先端にはウエーハWにレーザ光線を照射するレーザ加工手段31とウエーハWを撮像するアライメント用の撮像手段32とが設けられている。レーザ加工手段31は、ウエーハWに対して透過性波長(例えば、1064nm)のレーザ光線をウエーハWに照射し、ウエーハWの内部でレーザ光線を集光させて分割起点となる改質層を形成する。撮像手段32は、ウエーハWを上方から撮像して、ウエーハWに対するレーザ加工手段31のアライメント用に撮像画像を生成する。
【0015】
このように構成されたレーザ加工装置1では、ウエーハWに対して透過性波長のレーザ光線が照射され、ウエーハWの内部の集光点に形成された改質層を起点として分割予定ラインLに沿ってウエーハWが個々のデバイスチップC(図5D参照)に分割される。なお、改質層は、レーザ光線の照射によってウエーハWの内部の密度、屈折率、機械的強度やその他の物理的特性が周囲と異なる状態となり、周囲よりも強度が低下する領域のことをいう。改質層は、例えば、溶融処理領域、クラック領域、絶縁破壊領域、屈折率変化領域であり、これらが混在した領域でもよい。
【0016】
ところで、図2に示すように、一般的なレーザ加工では、ウエーハWの裏面からレーザ光線が照射されるが、空気の屈折率とウエーハWの屈折率の違いによって一部のレーザ光線が反射されて、ウエーハWの内部に透過するレーザ光線が減少する。例えば、シリコンウエーハの加工時には、空気の屈折率が1.0、シリコンの屈折率が3.8であるため、レーザ光線の30%近くがウエーハWの裏面で反射して無駄になっていた。ウエーハWの内部にレーザ光線の約70%しか集光しないため、レーザ光線の出力を大きくする必要があった。
【0017】
そこで、本実施の形態では、空気の屈折率より大きくウエーハWの屈折率より小さな屈折率を有する樹脂層40(図3参照)を介してウエーハWにレーザ光線を照射するようにしている。ウエーハWで反射されて無駄になるレーザ光線を減らすことができるため、少ない出力のレーザ光線でウエーハWの内部に改質層M(図3B参照)を効率的に形成することができ、加工コストを低減することができる。また、レーザ光線の出力を大きくする必要がないため、ウエーハWの集光点で拡散する漏れ光を少なくすることができ、漏れ光によるデバイスの破損を防止することができる。
【0018】
以下、図3を参照して、本実施の形態のレーザ加工の原理について説明する。図3は、本実施の形態のウエーハに対するレーザ加工の説明図である。図4は、本実施の形態の樹脂層の厚みと反射率との関係を示す図である。なお、図3では、説明の便宜上、樹脂層の厚みによる反射率の影響については考慮していない。また、ここでは、ウエーハとしてシリコンウエーハを例示して説明する。
【0019】
図3Aに示すように、本実施の形態のウエーハWには、空気より大きくウエーハWより小さな屈折率の樹脂層40が形成されている。樹脂層40によって空気と樹脂層40の間に界面41が形成され、樹脂層40とウエーハWの間に界面42が形成される。樹脂層40としては、例えば、株式会社ディスコ製のHOGOMAX(登録商標)が使用されているが、ウエーハWの屈折率の大きさに応じて適宜変更が可能である。HOGOMAXは水溶性樹脂であるため、レーザ加工後に洗浄水による洗浄によってウエーハWから容易に除去することが可能である。ここで、空気の屈折率は1.0、樹脂層40の屈折率は1.4、ウエーハWの屈折率は3.8である。
【0020】
このような空気と樹脂層40の屈折率の違いによって、ウエーハWに対して照射されたレーザ光線のうち、約97.2%が空気と樹脂層40の界面41からウエーハW内に入射し、約2.8%が空気と樹脂層40の界面41で反射する。また、樹脂層40とウエーハWの屈折率の違いによって、樹脂層40に入射したレーザ光線のうち、約76.5%が樹脂層40とウエーハWの界面42からウエーハW内に入射し、約20.7%が樹脂層40とウエーハWの界面42で反射する。このように、ウエーハWに樹脂層40が形成されることで、約80%近くのレーザ光線がウエーハWの内部で集光される。
【0021】
さらに、樹脂層40の内部で生じた多重反射によってレーザ光線がウエーハW内に入射する。具体的には、樹脂層40とウエーハWの界面42で反射したレーザ光線のうち、約5.8%が空気と樹脂層40の界面41から外部に出射し、約15%が空気と樹脂層40の界面41で反射する。さらに、空気と樹脂層40の界面41で反射したレーザ光線のうち、約11.8%が樹脂層40とウエーハWの界面42からウエーハW内に入射し、約3.2%が樹脂層40とウエーハWの界面42で反射する。このように、樹脂層40での多重反射によって、さらに約10%近くのレーザ光線がウエーハWの内部で集光される。
【0022】
なお、レーザ光線の反射率Rは、上層の屈折率をnとし、下層の屈折率をnとしたときに、以下の式(1)によって求められる。
【数1】
【0023】
また、樹脂層40としてのHOGOMAXは、アブレーション加工時にウエーハWの表面に保護層を形成する際に使用されるものである。アブレーション加工では、ウエーハWに対して吸収性波長のレーザ光線を照射して、ウエーハWを部分的に昇華させながら除去するため、加工時に生じるデブリが付着しないようにウエーハWの表面がHOGOMAXで覆われる。本実施の形態のように改質層Mの形成時にはデブリは生じないが、アブレーション加工時にウエーハWをデブリから保護する樹脂層40を使用して、ウエーハWの内部の改質層Mの形成に寄与するレーザ光線を増やしている。
【0024】
図3Bに示すように、ウエーハWにレーザ光線が照射されると、ウエーハWの内部にレーザ光線が集光されて改質層Mが形成される。この場合、ウエーハWに照射されたレーザ光線の約80%近くが反射されずにウエーハWの内部に集光され、ウエーハWに照射されたレーザ光線の約10%近くが多重反射によってウエーハWの内部に集光される。反射されずにウエーハWに入射したレーザ光線は目標位置Pで集光されるが、多重反射でウエーハWに入射したレーザ光線は目標位置Pよりも上側で集光される。このように、ウエーハWの内部には縦並びにレーザ光線が集光される。
【0025】
目標位置Pにはパワーの大きなレーザ光線によって改質層Mが形成されるが、改質層Mはレーザ光線の集光点だけにピンポイントで形成されるのではなく、集光点から縦に所定高さだけ形成されている。このため、樹脂層40での多重反射によって目標位置Pよりも上側に集光された比較的パワーの小さなレーザ光線も改質層Mの形成に寄与している。このように、樹脂層40の屈折率によって反射率が低減されると共に、樹脂層40の内部での多重反射によってウエーハWの内部にレーザ光線が入射するため、改質層Mの加工効率が向上されている。
【0026】
ところで、ウエーハWに樹脂層40が積層されても、レーザ光線の波長と樹脂層40の厚みの関係によっては十分にウエーハWでの反射率を下げることができない場合がある。すなわち、樹脂層40の屈折率が空気よりも大きくウエーハWよりも小さくても、レーザ光線の波長に対して樹脂層40の厚みが適切でなければ、樹脂層40を積層していないウエーハWと反射率が変わらないおそれがある。このため、本実施の形態では、レーザ光線の波長に適した厚みでウエーハWに樹脂層40を積層して、ウエーハWの内部で集光されるレーザ光線を増やしている。
【0027】
ここで、図4に示すように、シリコンウエーハの表面のHOGOMAXの厚みを変えて、1064nmの波長のレーザ光線を照射して各シリコンウエーハの表面反射率を測定したところ、HOGOMAXの厚みで表面反射率が大幅に変化することが確認された。シリコンウエーハの表面が剥き出し場合には表面反射率が約30%であり、HOGOMAXの厚みが500nmの場合には表面反射率が約15%に半減された。また、HOGOMAXの厚みが600nmの場合には表面反射率が約23%に増加し、さらにHOGOMAXの厚みが700nmの場合には表面反射率が約30%に増加した。
【0028】
このように、HOGOMAXの厚みが700nmの場合には、シリコンウエーハにHOGOMAXを積層したにも関わらず、シリコンウエーハにHOGOMAXを積層していない場合と同様に約30%のレーザ光線が無駄になっていた。一方で、HOGOMAXの厚みが500nmの場合には、シリコンウエーハにHOGOMAXを積層していない場合と比較してレーザ光線の無駄が半減された。このように、HOGOMAXを適切な厚みで形成することで、レーザ光線の出力を変えることなく、シリコンウエーハの内部で改質層の形成に寄与するレーザ光線のパワーが増加される。
【0029】
続いて、図5を参照して、ウエーハの分割方法について説明する。図5は、本実施の形態のウエーハの分割方法の説明図である。なお、図5は、ウエーハの分割方法の一例を示すものであり、適宜変更が可能である。
【0030】
図5Aに示すように、先ずウエーハ貼着工程が実施される。ウエーハ貼着工程では、リングフレームFにダイシングテープTが貼着され、リングフレームFの開口内側から露出したダイシングテープTの粘着面にウエーハWのデバイスD側が貼着される。このように、ウエーハWの裏面側が上方に向けられた状態で、ウエーハWがダイシングテープTを介してリングフレームFに搬送可能に支持されている。なお、ウエーハ貼着工程は、オペレータによる手作業で実施されてもよいし、テープマウント装置(不図示)等で実施されてもよい。
【0031】
図5Bに示すように、ウエーハ貼着工程の後には樹脂層形成工程が実施される。樹脂層形成工程では、成膜装置(不図示)のスピンナテーブル51上にダイシングテープTを介してウエーハWが吸着保持され、スピンナテーブル51が回転される共に、液状樹脂の供給ノズル52がウエーハWの真上に位置付けられる。供給ノズル52からウエーハWの裏面に液状樹脂が垂らされることで、遠心力によってウエーハWの裏面中心から裏面全体に液状樹脂が均一に広げられる。このようにして、空気より大きくウエーハWより小さい屈折率の樹脂で、ウエーハWにレーザ光線が入射する面に樹脂層40(図5C参照)が形成される。
【0032】
図5Cに示すように、樹脂層形成工程の後には改質層形成工程が実施される。改質層形成工程では、レーザ加工装置(図1参照)の保持テーブル21にダイシングテープTを介してウエーハWが保持され、ウエーハWの周囲のリングフレームFがクランプ部23に保持される。また、レーザ加工手段31の射出口がウエーハWの真上に位置付けられ、レーザ加工手段31によって樹脂層40側からウエーハWにレーザ光線が照射される。レーザ光線は、ウエーハWに対して透過性を有する波長であり、樹脂層40を通過してウエーハWの内部で集光するように調整されている。
【0033】
そして、ウエーハWに対してレーザ加工手段31が相対移動されることで、樹脂層40を通過してウエーハWの内部に集光した集光点が分割予定ラインL(図1参照)に沿って移動されて、ウエーハWの内部に改質層Mが形成される。このとき、樹脂層40によってレーザ光線の反射が抑えられ、ウエーハWの内部に集光するレーザ光線が増えるため、ウエーハWの内部には低出力のレーザ光線でも良好な改質層Mが形成される。このウエーハWに対するレーザ加工手段31の加工送りが繰り返されることで、ウエーハWの全ての分割予定ラインLに沿って改質層Mが形成される。
【0034】
図5Dに示すように、改質層形成工程の後には分割工程が実施される。分割工程では、エキスパンド装置(不図示)の環状テーブル55上にリングフレームFがクランプ部56で保持され、ウエーハWとリングフレームFの間に拡張ドラム57の上端が位置付けられている。そして、環状テーブル55と共にリングフレームFが下降することで、拡張ドラム57が環状テーブル55に対して相対的に突き上げられ、ダイシングテープTが放射方向に拡張される。この結果、ウエーハWの内部の改質層Mを起点として分割予定ラインL(図1参照)に沿ってウエーハWが個々のデバイスチップCに分割される。
【0035】
以上のように、本実施の形態のウエーハWの分割方法によれば、空気よりも大きくウエーハWよりも小さな屈折率の樹脂層40を介してウエーハWにレーザ光線が照射されるため、樹脂層40を介さずにレーザ光線が照射される構成と比較して、ウエーハWの内部にレーザ光線が入射し易くなる。ウエーハWの外部に反射されるレーザ光線が減って、ウエーハWの内部に集光するレーザ光線が増えるため加工効率が向上される。よって、レーザ光線の出力を小さくして加工コストを低減できると共に、レーザ光線の集光点で拡散した漏れ光によるデバイスDの破損を防止することができる。
【0036】
なお、本実施の形態では、ウエーハとしてシリコンウエーハを例示したが、この構成に限定されない。ウエーハは、シリコンカーバイド、窒化ガリウム、サファイア、ガラス等の各種基板の他、CSP基板等のパッケージ基板でもよい。
【0037】
また、本実施の形態では、樹脂層がHOGOMAXで形成される構成にしたが、この構成に限定されない。樹脂層は、空気よりも大きくウエーハよりも小さな屈折率の材料で形成されていればよく、例えば、PVA(Poly Vinyl Alcohol)、PEG(Poly Ethylene Glycol)、PEO(Poly Ethylene Oxide)等の水溶性樹脂が用いられてもよいし、水溶性樹脂以外の樹脂が使用されてもよい。
【0038】
また、本実施の形態では、樹脂層形成工程においてスピンコートでウエーハに樹脂層を形成する構成にしたが、この構成に限定されない。樹脂層形成工程は、ウエーハにレーザ光線が入射する面に樹脂層が形成できれば、どのような方法で樹脂層が形成されてもよい。
【0039】
また、本実施の形態では、改質層形成工程においてウエーハの内部の1つの集光点にレーザ光線を集光させる構成にしたが、この構成に限定されない。改質層形成工程は、ウエーハの内部に改質層を形成可能であればよく、ウエーハの内部に2つの集光点にレーザ光線を集光させる2焦点加工が実施されてもよい。
【0040】
また、本実施の形態では、分割工程においてテープエキスパンドでウエーハを分割する構成にしたが、この構成に限定されない。分割工程は、改質層を起点にウエーハを分割予定ラインに沿って分割可能であればよく、例えば、ブレーキングによってウエーハを分割してもよい。
【0041】
また、本実施の形態及び変形例を説明したが、本発明の他の実施の形態として、上記実施の形態及び変形例を全体的又は部分的に組み合わせたものでもよい。
【0042】
また、本発明の実施の形態及び変形例は上記の実施の形態に限定されるものではなく、本発明の技術的思想の趣旨を逸脱しない範囲において様々に変更、置換、変形されてもよい。さらには、技術の進歩又は派生する別技術によって、本発明の技術的思想を別の仕方で実現することができれば、その方法を用いて実施されてもよい。したがって、特許請求の範囲は、本発明の技術的思想の範囲内に含まれ得る全ての実施形態をカバーしている。
【0043】
また、本実施の形態では、本発明をウエーハの分割方法に適用したが、レーザ光線の反射を減らして加工効率を高めることが可能な他の加工方法に適用することが可能である。
【産業上の利用可能性】
【0044】
以上説明したように、本発明は、レーザ光線の反射を減らして加工効率を高めることができるという効果を有し、特に、レーザ加工によってシリコンウエーハを個々のデバイスに分割するウエーハの分割方法に有用である。
【符号の説明】
【0045】
1 レーザ加工装置
21 保持テーブル
31 レーザ加工手段
40 樹脂層
41 空気と樹脂層の界面
42 樹脂層とウエーハの界面
D デバイス
L 分割予定ライン
W ウエーハ
図1
図2
図3
図4
図5