(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-03
(45)【発行日】2022-10-12
(54)【発明の名称】3次元曲面状の積層基板及びその製造方法
(51)【国際特許分類】
B32B 1/00 20060101AFI20221004BHJP
G02F 1/15 20190101ALI20221004BHJP
G09F 9/30 20060101ALI20221004BHJP
B32B 27/36 20060101ALI20221004BHJP
B32B 27/00 20060101ALI20221004BHJP
【FI】
B32B1/00 Z
G02F1/15 505
G09F9/30 310
G09F9/30 308A
G09F9/30 330
B32B27/36
B32B27/36 102
B32B27/00 Z
(21)【出願番号】P 2018228499
(22)【出願日】2018-12-05
【審査請求日】2021-09-15
(31)【優先権主張番号】P 2017242182
(32)【優先日】2017-12-18
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006747
【氏名又は名称】株式会社リコー
(74)【代理人】
【識別番号】100107766
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【氏名又は名称】伊東 忠彦
(72)【発明者】
【氏名】八代 徹
(72)【発明者】
【氏名】竹内 弘司
(72)【発明者】
【氏名】高橋 泰裕
(72)【発明者】
【氏名】金 碩燦
【審査官】長谷川 大輔
(56)【参考文献】
【文献】特開2017-026750(JP,A)
【文献】国際公開第2017/150701(WO,A1)
【文献】特開2002-264131(JP,A)
【文献】特開2010-224110(JP,A)
【文献】特開2008-251529(JP,A)
【文献】特開2012-185464(JP,A)
【文献】米国特許出願公開第2012/0224246(US,A1)
【文献】韓国特許第10-2012-0100665(KR,B1)
【文献】特開2016-110643(JP,A)
【文献】特開2016-206463(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
B29C39/00-39/24
39/38-39/44
43/00-43/34
43/44-43/48
43/52-43/58
B32B1/00-43/00
G09F9/30-9/46
(57)【特許請求の範囲】
【請求項1】
熱可塑性樹脂の樹脂基板を含む支持基板と、
前記支持基板上の導電層と、
を有し、
前記支持基板の表面の硬さが180MPa以上であ
り、
前記支持基板は、前記樹脂基板上に表面の硬さが180MPa以上の下地層を有し、該下地層が前記樹脂基板よりも硬いことを特徴とする3次元曲面状の積層基板。
【請求項2】
前記熱可塑性樹脂がポリカーボネイト又はポリエチレンテレフタレートであることを特徴とする請求項
1に記載の3次元曲面状の積層基板。
【請求項3】
前記導電層上に有機電子材料層を有することを特徴とする請求項1
又は2に記載の3次元曲面状の積層基板。
【請求項4】
前記有機電子材料層がエレクトロクロミック層であることを特徴とする請求項
3に記載の3次元曲面状の積層基板。
【請求項5】
前記導電層は、(222)面の結晶ピークが0.16~5.7のH/W値を有する酸化インジウムを含有することを特徴とする請求項1乃至
4のいずれか1項に記載の3次元曲面状の積層基板。
【請求項6】
請求項1乃至
5のいずれか1項に記載の3次元曲面状の積層基板の製造方法であって、
熱可塑性樹脂の樹脂基板を含む支持基板上に導電層を形成して積層基板を得る工程と、
前記積層基板を弾性シートに密着させながら前記弾性シートを変形させ、温調した金型に前記積層基板を密着させることにより、前記樹脂基板を軟化させる工程と、
を有することを特徴とする3次元曲面状の積層基板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、3次元曲面状の積層基板及びその製造方法に関する。
【背景技術】
【0002】
タッチパネルやディスプレイなどの電子デバイスのアプリケーションでは、利用シーンに適した、軽量で割れにくく3次元(3D)曲面状の電子デバイスが要望されている。特に、車載用途、ウェアラブル用途では、デザイン性やフィット感に優れた3D曲面状の電子デバイスが求められる。このような電子デバイスには、透明な樹脂基板及び導電層が含まれる。
【0003】
3D曲面状の電子デバイスの製造方法は、3D曲面状の基板を予め準備し、その表面に導電層や有機電子材料層を製膜する方法と、平板状の基板に導電層や有機電子材料層を製膜した後に3D曲面状に加工する方法とに大別できる。
【0004】
しかし、前者の方法においては、3D曲面状の基板上への均一な製膜が困難であったり、3D曲面状の基板同士の貼り合わせが困難であったりする。また、平板状の基板に適した一般的な製膜装置等をそのまま使用することができないため、3D曲面状の基板のための製膜装置等を準備することになり、著しいコストアップにつながる。このため、近年、後者の方法が有望視されている。
【0005】
また、導電層の材料としては、インジウム酸化物等の透明無機酸化物、カーボン(CNT,グラフェン)、メタルナノワーヤー、メタルグリッド、導電性高分子等が挙げられる。特許文献1及び2には、無機酸化物の導電層に関する技術が記載され、特許文献3には、金属ナノ材料及びカーボンナノチューブ等を含む導電層に関する技術が記載されている。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、特許文献1及び2に記載された導電層を用いて、製膜後に3D曲面状に加工する方法で3D曲面状の積層基板を得ようとすると、無機酸化物のヤング率が大きく、無機酸化物は脆く、破壊されやすいため、3D曲面状に加工することが困難である。すなわち、無機酸化物の導電層は屈曲性が低く割れやすいため、導電層が2軸曲げ加工に耐えられず、クラックが発生してしまう。また、無機酸化物の曲面に沿った方向での歪みが大きくなりやすい。その上、無機酸化物の導電層上に有機電子材料層等の機能層を含む基板を凸状に加工する場合には、導電層に生じた歪みが機能層に伝播し、機能層に大きな歪みが生じやすい。更に、導電層に複数の薄膜トランジスタ(Thin Film Transistor:TFT)がマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合は、機能層の歪みのばらつきが大きく、性能のばらつきが大きくなりやすい。特許文献3に記載された導電層は、透明性(透過率及びヘイズ)、導電性及び耐久性を総合的に判断すると、無機酸化物の導電層に及ばない。従って、従来の技術では、優れた透明性、導電性及び耐久性を得ながら、導電層のクラックを抑制することが困難である。
【0007】
本発明は、透明性、導電性及び耐久性に優れ、クラックの発生を抑制することができる3次元曲面状の積層基板及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
3次元曲面状の積層基板の一態様は、熱可塑性樹脂の樹脂基板を含む支持基板と、前記支持基板上の導電層と、を有し、前記支持基板の表面の硬さが180MPa以上であり、前記支持基板は、前記樹脂基板上に表面の硬さが180MPa以上の下地層を有し、該下地層が前記樹脂基板よりも硬いことを特徴とする。
【発明の効果】
【0009】
本発明によれば、透明性、導電性及び耐久性に優れ、クラックの発生を抑制することができる。
【図面の簡単な説明】
【0010】
【
図1】第1の実施形態に係る積層基板を示す断面図である。
【
図2】第2の実施形態に係る積層基板を示す断面図である。
【
図3】第3の実施形態に係る積層基板を示す断面図である。
【
図4】第4の実施形態に係る積層基板を示す断面図である。
【
図6】第5の実施形態に係る積層基板を示す断面図である。
【
図7】第5の実施形態に係る積層基板内の層の位置関係を示す図である。
【
図8】積層基板の曲面形成方法の第1の例に好適な曲面形成装置を示す図である。
【
図9】積層基板の曲面形成方法の第1の例を工程順に示す図である。
【
図11】積層基板の曲面形成方法の第2の例に好適な曲面形成装置を示す図である。
【
図12】積層基板の曲面形成方法の第2の例を工程順に示す図である。
【
図15】スパッタパワーを変更したサンプルについてのX線回折法による測定結果を示す図(その1)である。
【
図16】実施例1についてのナノインデンターによる測定結果を示す図である。
【
図17】スパッタパワーを変更したサンプルについてのX線回折法による測定結果を示す図(その2)である。
【
図18】実施例6についてのナノインデンターによる測定結果を示す図である。
【
図19】実施例7についてのナノインデンターによる測定結果を示す図である。
【
図20】実施例8についてのナノインデンターによる測定結果を示す図である。
【発明を実施するための形態】
【0011】
以下、図面を参照しながら、本発明の実施形態について説明する。
【0012】
(第1の実施形態)
まず、第1の実施形態に係る3次元(3D)曲面状の積層基板について説明する。第1の実施形態に係る積層基板は透明導電基板に関する。
図1は、第1の実施形態に係る透明導電基板を示す断面図である。
図1(a)は曲面を形成する前の状態を示し、
図1(b)は凸加工が行われた3D曲面状の透明導電基板を示し、
図1(c)は凹加工が行われた3D曲面状の透明導電基板を示す。
【0013】
第1の実施形態に係る3D曲面状の透明導電基板10は、
図1(b)又は
図1(c)に示すように、熱可塑性樹脂の樹脂基板11及びこの樹脂基板11上の導電層12を有する。樹脂基板11は支持基板の一例であり、樹脂基板11の表面の硬さは180MPa以上である。また、導電層12は、好ましくは、(222)面の結晶ピークが0.16~5.7のH/W値を有する酸化インジウム(In
2O
3)を含有する。H/W値は、X線回折(XRD)でのピークの高さH(cps)を半値幅W(°)で除して得られる値である。
【0014】
支持基板の表面の硬さはナノインデンターで測定される。本発明者らにより、表面の硬さが180MPa以上で、長軸の寸法が85mm、短軸の寸法が54.5mmの平面楕円基板上に、無機酸化物としてインジウム酸化物を用いた厚さが110nmの透明導電層を形成し、この積層基板を曲率半径が86mmの球面形状に加工したところ、クラックが生じないことが確認された。表面が硬い支持基板を用いることで、加工時の透明導電層の歪みを低減できる。
【0015】
樹脂基板11の材料としては、公知の熱可塑性樹脂をそのまま用いることができる。例えば、ポリカーボネイト、ポリエチレンテレフタレート、ポリエチレンナフタレートアクリル(ポリメチルメタクリレート)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルアルコール、ポリスチレン、スチレンアクリロニトリル共重合体、スチレンブタジエンアクリロ二トリル共重合体、ポリエチレン、エチレン酢酸ビニル共重合体、ポリプロピレン、ポリアセタール、酢酸セルロース、ポリアミド(ナイロン)、ポリウレタン、フッ素系(テフロン(登録商標))等を樹脂基板11の材料に用いることができる。特に、成形性、透明性及びコストの点で、ポリカーボネイトおよびポリエチレンテレフタレートが好ましい。180MPa以上の硬さの点では、ポリエチレンテレフタレートおよびポリエチレンナフタレート系材料が好ましい。樹脂基板11の厚さは、例えば0.03mm~2.0mmの曲面の形成が容易な範囲とする。
【0016】
導電層12は、好ましくは、(222)面の結晶ピークが0.16~5.7のH/W値を有する酸化インジウムを含有する。XRDにおいて、酸化インジウムの(222)面の結晶ピークは2θ≒32(deg.)付近に検出される。(222)面の結晶ピークが0.16未満のH/W値を有しているか、または(222)面の結晶ピークが存在しない場合、導電層12の結晶性が低すぎるため、クラックが生じやすい。結晶ピークが5.7超のH/W値を有している場合、結晶性が高すぎるため、導電層12内の結晶粒界を起点とするクラックが生じやすい。酸化インジウムにスズ(Sn)、タングステン(W)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、アルミニウム(Al)、アンチモン(Sb)、ガリウム(Ga)及びフッ素(F)等の酸化物が単一で又は混合して導電層12に含まれていてもよい。これら酸化物は酸化インジウムのキャリア密度及び移動度の向上に寄与する。これら酸化物の導電層12中の割合は、例えば80質量%以下である。酸化インジウムに加えて導電層12に含まれる酸化物としては、特に導電性の点から酸化スズ及び酸化ジルコニウムが好ましく、これらの導電層12中の割合は、例えば総量で15質量%以下であることが特に好ましい。
【0017】
導電層12は真空成膜方法で形成することができ、結晶ピークのH/W値は、真空成膜時の基板温度、成膜速度、ガス圧等で調整することができる。また、成膜後の加熱処理もH/W値の調整に有効である。真空成膜方法としては、真空蒸着法、スパッタ法、イオンプレーティング法、化学気相成長(Chemical Vapor Deposition:CVD)法等が挙げられる。これらのうちでは、高速成膜が可能なスパッタ法が好ましい。スパッタ法の場合はスパッタパワーを調整することで結晶ピークのH/W値を制御しやすい。
【0018】
導電層12の厚さは電子デバイスに求められる電流量に合わせて調整され、例えば、50nm~500nmであり、200nm以下が好ましい。導電層12が厚いほど、曲面形成加工時にクラックなどのダメージが生じやすくなるためである。例えば、導電層12のシート抵抗は300Ω/□以下である。導電層12の可視光の透過率は厚さおよび酸化インジウム等の無機酸化物の酸素比率により調整することができ、例えば70%以上である。導電層12に、伸縮性に優れたカーボン(カーボンナノチューブ(CNT)、グラフェン)、メタルナノワーヤー、メタルグリッド、導電性高分子等の透明導電材料が含まれていてもよく、また、これら透明導電材料の層と無機酸化物層との複合層が用いられてもよい。
【0019】
図1(b)又は
図1(c)に示す3D曲面状の透明導電基板10は、
図1(a)に示す平板状の透明導電基板10´に凸加工又は凹加工を施すことで得られる。凸加工及び凹加工の方法については後述する。
【0020】
導電層12は樹脂基板11の全面または一部に形成される。また、
図1(b)及び
図1(c)では、透明導電基板10の全体が3D曲面状に加工されているが、透明導電基板10の一部のみが3D曲面状に加工されていてもよい。
【0021】
支持基板の熱膨張率、第1の実施形態では樹脂基板11の熱膨張率、は0.7%以下であることが好ましい。ここでいう熱膨張率は、室温から樹脂基板の軟化温度(Tg)までの温度範囲での熱膨張率である。この熱膨張率が0.7%超であると、後述の曲面形成の際に歪みが過度に生じることがある。熱膨張率は、熱機械分析(ThermoMechanical Analysis:TMA)の引張り荷重法で測定される。
【0022】
第1の実施形態によれば、支持基板の一例である樹脂基板11の表面の硬さが適切であり、かつ、導電層12が適切な酸化インジウムを含有するため、導電層12の形成後に3D曲面状に加工されていても、透明性、導電性及び耐久性に優れ、クラックの発生を抑制することができる。
【0023】
(第2の実施形態)
次に、第2の実施形態に係る3D曲面状の積層基板について説明する。第2の実施形態に係る積層基板は透明導電基板に関する。
図2は、第2の実施形態に係る透明導電基板を示す断面図である。
図2(a)は曲面を形成する前の状態を示し、
図2(b)は凸加工が行われた3D曲面状の透明導電基板を示し、
図2(c)は凹加工が行われた3D曲面状の透明導電基板を示す。
【0024】
第2の実施形態に係る3D曲面状の透明導電基板20は、樹脂基板11上に下地層13を有し、導電層12が下地層13上に形成されている。樹脂基板11及び下地層13が支持基板に含まれる。下地層13の表面の硬さは180MPa以上であり、支持基板の表面の硬さも180MPa以上である。他の構成は透明導電基板10と同様である。
【0025】
下地層13は、例えば樹脂基板11の機械的特性を補うために用いられる。例えば、導電層12の下地として樹脂基板11が十分な硬さを有していない場合でも、樹脂基板11よりも硬い下地層13を形成することで、表面の硬さが180MPa以上の支持基板を得ることができる。下地層13が熱膨張率の調整のために用いられてもよい。このように、下地層13を含むことにより、樹脂基板11の材料選択範囲を広げることができ、加工性に優れた熱可塑性樹脂を樹脂基板11に使用することができる。下地層13の材料としては、例えば紫外線(UltraViolet:UV)硬化樹脂材料及び熱硬化樹脂材料が挙げられる。より具体的には、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等が挙げられる。下地層13の表面の硬さは180MPa以上であることが好ましい。表面の硬さが180MPa以上の下地層13を用いることで、導電層12の曲面形成時の歪みをより一層低減できる。UV硬化樹脂、熱硬化樹脂で形成される下地層13の硬さ及び熱膨張率は、モノマー材料、架橋密度及び反応開始剤量等で調整することができる。下地層13は、少なくとも反応基を有する有機モノマー材料及び開始剤を混合した材料を樹脂基板11上に塗工し、UV照射又は熱処理等の硬化処理により形成することができる。下地層13の厚さは、例えば0.1μm~10μmである。塗工方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法を用いることができる。
【0026】
図2(b)又は
図2(c)に示す3D曲面状の透明導電基板20は、
図2(a)に示す平板状の透明導電基板20´に凸加工又は凹加工を施すことで得られる。凸加工及び凹加工の方法については後述する。
【0027】
支持基板、ここでは樹脂基板11及び下地層13の積層構造、の熱膨張率は0.7%以下であることが好ましい。ここでいう熱膨張率は、室温から樹脂基板の軟化温度(Tg)までの温度範囲での熱膨張率である。この熱膨張率が0.7%超であると、後述の曲面形成の際に歪みが過度に生じることがある。熱膨張率は、TMAの引張り荷重法で測定される。
【0028】
第2の実施形態によれば、支持基板の一例である樹脂基板11及び下地層13の表面の硬さが適切であり、かつ、導電層12が適切な酸化インジウムを含有するため、導電層12の形成後に3D曲面状に加工されていても、透明性、導電性及び耐久性に優れ、クラックの発生を抑制することができる。
【0029】
(第3の実施形態)
次に、第3の実施形態に係る3D曲面状の積層基板について説明する。第3の実施形態に係る積層基板は有機電子デバイス基板に関する。
図3は、第3の実施形態に係る有機電子デバイス基板を示す断面図である。
図3(a)は曲面を形成する前の状態を示し、
図2(b)は凸加工が行われた3D曲面状の有機電子デバイス基板を示し、
図2(c)は凹加工が行われた3D曲面状の有機電子デバイス基板を示す。
【0030】
第3の実施形態に係る3D曲面状の有機電子デバイス基板30は、導電層12上に有機電子材料層14を有する。他の構成は透明導電基板20と同様である。
【0031】
有機電子材料層14は、単層又は積層で構成され、例えば、電気印加により発色、発光、偏光、変形等の機能を発現する。エレクトロクロミック、エレクトロルミネッセンス、ケミカルルミネッセンス、エレクトロフォレティック、エレクトロウエッティング、液晶、圧電等の従来の有機電子材料層をそのまま有機電子材料層14に用いることができる。有機電子材料層14に無機ナノ粒子等の無機材料が混合されていてもよい。有機電子材料層14の合計の厚さは一般に50μm以下である。塗工方法としては、例えば、スピンコート法、キャスティング法、マイクログラビアコート法、グラビアコート法、バーコート法、ロールコート法、ワイアーバーコート法、ディップコート法、スリットコート法、キャピラリーコート法、スプレーコート法、ノズルコート法、グラビア印刷法、スクリーン印刷法、フレキソ印刷法、オフセット印刷法、反転印刷法、インクジェットプリント法等の各種印刷法を用いることができる。
【0032】
図3(b)又は
図3(c)に示す3D曲面状の有機電子デバイス基板30は、
図3(a)に示す平板状の有機電子デバイス基板30´に凸加工又は凹加工を施すことで得られる。凸加工及び凹加工の方法については後述する。
【0033】
第3の実施形態によれば、支持基板の表面の硬さが適切であり、かつ、導電層12が適切な酸化インジウムを含有するため、導電層12及び有機電子材料層14の形成後に3D曲面状に加工されていても、透明性、導電性及び耐久性に優れ、クラックの発生を抑制することができる。
【0034】
(第4の実施形態)
次に、第4の実施形態に係る3D曲面状の積層基板について説明する。第4の実施形態に係る積層基板は透明導電基板に関する。
図4は、第4の実施形態に係る透明導電基板を示す断面図である。
図4(a)は曲面を形成する前の状態を示し、
図4(b)は曲面加工が行われた3D曲面状の透明導電基板を示す。
【0035】
第4の実施形態に係る3D曲面状の透明導電基板40は、透明導電基板20と同様の構成の透明導電基板20a及び透明導電基板20bを有する。透明導電基板20aは、樹脂基板11a、下地層13a及び導電層12aを有し、透明導電基板20bは、樹脂基板11b、下地層13b及び導電層12bを有する。透明導電基板40は、導電層12a及び導電層12bを互いに接着する両面接着層41を有する。つまり、透明導電基板40は、透明導電基板20a及び透明導電基板20bが両面接着層41により互いに貼り合わされた構造を備える。樹脂基板11a及び11b、導電層12a及び12b、下地層13a及び13bは、それぞれ樹脂基板11、導電層12及び下地層13と同様の構成を備える。両面接着層41は、例えばOCA(Optical Clear Adhesive)テープである。
【0036】
図5は、曲面を形成する前の樹脂基板11aを示す平面図である。
図5に示すように、曲面の形成前では、樹脂基板11aの輪郭は、互いに平行な2本の直線部及びこれら直線部の両端を繋ぐ2本の円弧状の曲線部を含む。下地層13a、導電層12a、両面接着層41、導電層12b、下地層13b及び樹脂基板11bも同様の輪郭を有する。
【0037】
図4(a)に示す平板状の透明導電基板40´は、例えば、両面接着層41を用いて透明導電基板20aと透明導電基板20bとを貼り合わせることで得られる。この貼り合わせには従来の貼り合わせ装置を用いることができる。そして、平板状の透明導電基板40´を3D曲面状に加工することで、
図4(b)に示す3D曲面状の透明導電基板40が得られる。3D曲面状に加工する方法については後述する。
【0038】
一般に、2つの曲面基板を貼り合せるためには、高精度に曲率を制御した曲面基板を用意し、その上で、高精度の専用貼り合せ装置が必要とされる。これに対し、第4の実施形態によれば、製膜及び貼り合わせ後に3D曲面状に加工してもクラックの発生を抑制できるため、平板状の基板に用いられる従来の貼り合せ装置を使用して、3次元曲面を有する貼り合せ構成の透明導電基板40を得ることができる。つまり、低コストかつ優れた生産性で、透明導電基板40を得ることができる。
【0039】
両面接着層41には光学特性及び膜厚の均一性の点からOCAテープを用いることが好ましい。一般的な接着剤(光硬化型、熱硬化型)を用いることもできる。両面接着層41の厚さは、例えば20μm~200μmとする。
【0040】
(第5の実施形態)
次に、第5の実施形態に係る3D曲面状の積層基板について説明する。第5の実施形態に係る積層基板は有機電子デバイス基板に関する。
図6は、第5の実施形態に係る有機電子デバイス基板を示す断面図である。
図6(a)は曲面を形成する前の状態を示し、
図6(b)は曲面加工が行われた3D曲面状の有機電子デバイス基板を示す。
【0041】
第5の実施形態に係る3D曲面状の有機電子デバイス基板50は、有機電子デバイス基板30と同様の構成の有機電子デバイス基板30a及び有機電子デバイス基板30bを有する。有機電子デバイス基板30aは、樹脂基板11a、下地層13a、導電層12a及び有機電子材料層14aを有し、有機電子デバイス基板30bは、樹脂基板11b、下地層13b、導電層12b及び有機電子材料層14bを有する。有機電子デバイス基板50は、有機電子材料層14a及び有機電子材料層14bに挟まれる有機電子材料層14cを有する。つまり、有機電子デバイス基板50は、有機電子デバイス基板30a及び有機電子デバイス基板30bが有機電子材料層14cを挟み込んだ構造を備える。樹脂基板11a及び11b、導電層12a及び12b、下地層13a及び13bは、それぞれ樹脂基板11、導電層12及び下地層13と同様の構成を備える。また、例えば、有機電子材料層14aは酸化エレクトロクロミック(EC)層であり、有機電子材料層14bは還元EC層であり、有機電子材料層14cは固体電解質層である。有機電子デバイス基板50は、導電層12a、有機電子材料層14a、有機電子材料層14c、有機電子材料層14b及び導電層12bを側方から覆って保護する保護層51を有する。導電層12aの一部及び導電層12bの一部が引き出し部として保護層51から露出している。
図7に、保護層とこの保護層に覆われる各層との平面視での位置関係を示す。
図7(a)は、保護層51と導電層12bとの位置関係を示し、
図7(b)は、保護層51と導電層12aとの位置関係を示し、
図7(c)は、保護層51と有機電子材料層14b、14c及び14aとの位置関係を示す。
【0042】
保護層51は有機電子デバイス基板50の側面部を物理的および化学的に保護するように形成されている。保護層51は、例えば、UV硬化性や熱硬化性の絶縁性樹脂等を、側面及び/又は上面を覆うように塗布し、その後硬化させることにより形成できる。保護層51の厚みは、特に制限はなく、目的に応じて適宜選択することができ、0.5μm~10μmであることが好ましい。
【0043】
図6(a)に示す平板状の有機電子デバイス基板50´は、例えば、有機電子デバイス基板30aと有機電子デバイス基板30bとを、これらの間に有機電子材料層14cを挟んで貼り合わせ、次いで保護層51を形成することで得られる。この貼り合わせには従来の貼り合わせ装置を用いることができる。そして、平板状の有機電子デバイス基板50´を3D曲面状に加工することで、
図6(b)に示す3D曲面状の有機電子デバイス基板50が得られる。3D曲面状に加工する方法については後述する。
【0044】
なお、有機電子材料層14a及び14cの発色が樹脂基板11a又は11bの一方のみから視認される用途では、視認される側の樹脂基板は透明であるが、他方の樹脂基板は透明でなくてもよい。
【0045】
ここで、3D曲面の形成に好適な曲面形成装置について説明する。
【0046】
[第1の曲面形成装置]
図8は、第1の曲面形成装置を示す図であり、
図9は、第1の曲面形成装置を用いた3D曲面形成方法(第1の加工方法)を工程順に示す図である。
【0047】
この曲面形成装置100は、凹金型111及びこの凹金型111の温度を調整する温調部116を含む。凹金型111には、3次元(3D)曲面状の、例えば球面状の凹面112の底と裏面とを結ぶ孔115が形成されており、孔115にポンプ117が繋げられる。曲面形成装置100は、凹金型111の凹面112の周囲の平面113上に凹面112を塞ぐように配置される弾性ゴムシート131を含む。弾性ゴムシート131には、その表裏を貫通する孔132が形成されている。
【0048】
曲面形成装置100を用いて積層基板を3D曲面状に加工する場合、まず、
図9(a)に示すように、熱可塑性樹脂の樹脂基板を含む支持基板及びこの支持基板上の導電層を備えた積層基板151を準備する。また、温調部116により樹脂基板の軟化温度(Tg)付近に凹金型111を加熱温調する。そして、孔132を塞ぐようにして積層基板151を弾性ゴムシート131上に載置する。例えば、温調の温度は軟化温度(Tg)より低くする。積層基板151が導電層上に有機電子材料層等の機能層を有していてもよい。
【0049】
次いで、ポンプ117を稼働させて、凹面112と弾性ゴムシート131との間の空間の排気を行う。この結果、弾性ゴムシート131が伸展しながら凹面112に密着する。また、積層基板151が弾性ゴムシート131に密着し、弾性ゴムシート131の変形に伴って凹金型111に近づくため、凹金型111から積層基板151に熱が伝達され、積層基板151に含まれる樹脂基板が軟化する。そして、
図9(b)に示すように、凹金型111に積層基板151が密着し、積層基板151が凹面112に倣うように塑性変形する。
【0050】
その後、ポンプ117の稼働を停止し、孔115を大気開放することで、弾性ゴムシート131が元の形状に戻ると共に、積層基板151を凹金型111から離型できるようになる。樹脂基板が塑性変形しているため、積層基板151は凹金型111から離型しても凹面112に倣った形状を恒久的に維持する。
【0051】
このようにして積層基板151を3D曲面状に加工することができる。
【0052】
第1の加工方法では、加工中に弾性ゴムシート131が等方的に伸縮するため、積層基板151が凹金型111に均一に加圧されて密着する。また、積層基板151に含まれる樹脂基板は、予め加熱軟化されることなく、温調した凹金型111に密着して徐々に熱を受けて軟化する。従って、第1の加工方法によれば、曲面に沿った方向の歪み及びクラックを抑制しながら、積層基板151に含まれる導電層を変形させることができ、導電層上の機能層が含まれる場合には機能層の歪みおよびクラックも抑制することができる。導電層に複数のTFTがマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合でも、機能層の歪みのばらつきを抑制し、均一な性能を得ることができる。
【0053】
曲面形成装置100が、
図10に示すように、凹金型111に嵌まる凸金型121及びこの凸金型121の温度を調整する温調部126を含んでもよい。この曲面形成装置100を用いる場合、積層基板151が凹金型111に密着した後に、温調部126で加熱温調した凸金型121で積層基板151をプレスすることにより、曲面精度を更に向上することが可能である。
【0054】
[第2の曲面形成装置]
図11は、第2の曲面形成装置を示す図であり、
図12は、第2の曲面形成装置を用いた3D曲面形成方法(第2の加工方法)を工程順に示す図である。
【0055】
この曲面形成装置200は、密閉容器(チャンバ)241、この密閉容器241内の凹金型211及びこの凹金型211の温度を調整する温調部216を含む。曲面形成装置200は、密閉容器241内で凹金型211上方の空間を二分する弾性ゴムシート231を含む。曲面形成装置200は、凹金型211の3D曲面状の、例えば球面状の凹面212の周囲の平面213上に隙間をあけながら凹面212を覆うように配置される基板保持ゴムシート233を含む。基板保持ゴムシート233には、加工対象の積層基板よりも狭く、かつこの積層基板により覆われる孔234が形成されている。基板保持ゴムシート233は、凹面212の一部を露出するように設けられており、積層基板が載置された状態でも、基板保持ゴムシート233の上下の空間の圧力は等しくなる。例えば、基板保持ゴムシート233に孔234から離間して積層基板には覆われない孔が形成されていてもよく、基板保持ゴムシート233の端部が凹面212と平面213との境界から凹面212側に位置していてもよい。曲面形成装置200には、弾性ゴムシート231上の空間と弾性ゴムシート231下の空間とを繋ぐ配管が設けられており、この配管にバイパスバルブ218が設けられている。弾性ゴムシート231上の空間にはガス供給部219が繋がれ、弾性ゴムシート231下の空間にはポンプ217が繋げられる。
【0056】
曲面形成装置200を用いて積層基板を3D曲面状に加工する場合、まず、
図12(a)に示すように、熱可塑性樹脂の樹脂基板を含む支持基板及びこの支持基板上の導電層を備えた積層基板251を準備する。また、温調部216により樹脂基板の軟化温度(Tg)付近に凹金型211を加熱温調する。そして、密閉容器241を開き、孔234を塞ぐようにして積層基板251を基板保持ゴムシート233上に載置し、密閉容器241を閉じる。積層基板251が導電層上に有機電子材料層等の機能層を有していてもよい。
【0057】
次いで、バイパスバルブ218を開き、ポンプ217を稼働させる。この結果、密閉容器241の内部全体が減圧状態となる。その後、バイパスバルブ218を閉じ、ガス供給部219から弾性ゴムシート231上の空間にガスを供給する。ガスとしては、例えば空気又は窒素ガスを供給する。この結果、弾性ゴムシート231が伸展して積層基板251に密着し、積層基板251及び基板保持ゴムシート233が凹面212に押し当てられて密着する。このとき、凹金型211から積層基板251に熱が伝達されるため、積層基板251に含まれる樹脂基板が軟化する。そして、
図12(b)に示すように、積層基板251が凹面212に倣うように塑性変形する。
【0058】
その後、ポンプ217の稼働及びガス供給部219からのガスの供給を停止し、密閉容器241を大気開放することで、弾性ゴムシート231が元の形状に戻ると共に、積層基板251を凹金型211から離型できるようになる。樹脂基板が塑性変形しているため、積層基板251は凹金型211から離型しても凹面212に倣った形状を恒久的に維持する。
【0059】
このようにして積層基板251を3D曲面状に加工することができる。
【0060】
第2の加工方法では、加工中に弾性ゴムシート231が等方的に伸縮するため、積層基板251が凹金型211に均一に加圧されて密着する。また、積層基板251に含まれる樹脂基板は、予め加熱軟化されることなく、温調した凹金型211に押し当てられて密着し、徐々に熱を受けて軟化する。従って、第2の加工方法によれば、曲面に沿った方向の歪み及びクラックを抑制しながら、積層基板251に含まれる導電層を変形させることができ、導電層上の機能層が含まれる場合には機能層の歪みおよびクラックも抑制することができる。導電層に複数のTFTがマトリクス状に配置されている場合等、導電層内で機械的特性が不均一になっている場合でも、機能層の歪みのばらつきを抑制し、均一な性能を得ることができる。機能層を含む積層基板は、プラスチック電子デバイスの作製に好適である。
【0061】
曲面形成装置200が、
図13に示すように、凹金型211に嵌まる凸金型221及びこの凸金型221の温度を調整する温調部226を含んでもよい。この曲面形成装置200を用いる場合、積層基板251が凹金型211に密着した後に、温調部226で加熱温調した凸金型221で積層基板251をプレスすることにより、曲面精度を更に向上することが可能である。
【0062】
なお、バイパスバルブ218を開き、ポンプ217を稼働させる工程において、密閉容器241内の圧力は80000Pa以下とすることが好ましく、ガス供給部219からのガスを供給する工程において、弾性ゴムシート231上の空間の圧力は0.05MPa~1MPaとすることが好ましい。これらの条件の範囲外では、良好な曲面精度を得にくいことがある。
【0063】
第1及び第2の加工方法において、凹金型の凹面の範囲は、平面視で加工対象の積層基板よりも広いことが好ましい。この場合、拘束することなく積層基板の全体を凹面に密着することが可能となり、歪みをより一層抑制しながら3D曲面状に加工することができる。これに対し、積層基板の端部を可動できない状態で固定しながら加工したり、積層基板の端部を金型の加工面以外に接する状態で加工したりすると、積層基板の固定された部分や加工面以外に接する部分から歪みが生じやすい。凸金型を使用する場合は、積層基板と凸金型とが点で接することがあるため、そこに応力が集中して歪みが生じやすいことがある。曲面に沿った方向における歪の好ましい大きさ(伸縮量)は1%以下である。
【0064】
温調では、例えば、凹金型及び凸金型の温度は樹脂基板の軟化温度(Tg)よりも低く設定され、凹金型に密着させる前の平板状の積層基板の温度は室温または軟化温度よりも20℃以上低い温度に設定される。
【0065】
第1または第2の方法で積層基板を3D曲面状に加工した後に、3D曲面の精度を向上するために、追加加工してもよい。具体的には、金型に保持して再加熱、加圧する方式を採用することができ、例えば、インジェクション成型などのモールディング方式、オートクレーブなどのフォーミング方式を採用できる。
【0066】
平板状の有機電子デバイス基板を貼り合わせた素子構造を得た後に3D曲面状に加工することで、従来の貼り合せ装置をそのまま活用することができるため、生産性に優れた、貼り合せ構成のエレクトロクロミック基板等の有機電子デバイス基板を得ることができる。同様に、生産性に優れた、貼り合わせ構成の透明導電基板を得ることもできる。
【0067】
ここで、曲面形成装置100又は200に含まれる構成要素について説明する。
【0068】
[弾性ゴムシート131、231]
弾性ゴムシート131、231は減圧又は加圧されることにより伸縮し、積層基板を金型に密着させる機能を有する。また、弾性ゴムシート131は金型の熱を積層基板に伝達する機能も有する。弾性ゴムシートの材料としては、公知の弾性ゴム材料をそのまま用いることができる。例えば、天然ゴム、スチレン・ブタジエンゴム(SBR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、クロロプレンゴム(CR)、アクリロニトリル・ブタジエンゴム(NBR)、ブチルゴム(イソブチエン・イソプレンゴム(IIR))、エチレン・プロピレンゴム(EPM)、エチレン・プロピレン・ジエンゴム(EPDM)、ウレタンゴム(U)、シリコーンゴム(シリコーンゴム(Si,Q))、フッ素ゴム(FKM)等を弾性ゴムシートの材料に用いることができる。スチレン系、オレフィン系、エステル系、ウレタン系、アミド系、ポリ塩化ビニル(PVC)系、フッ素系等の熱可塑性エラストマーを弾性ゴムシートの材料に用いることもできる。弾性ゴムシートの材料は、積層基板に曲面を形成する際の温度や圧力等の条件に応じて選択することが好ましい。例えば条件に応じて、耐熱性、弾性等を考慮して材料を選択することが好ましい。弾性ゴムシートの厚さは、例えば0.01mm~2.0mmの曲面の形成が容易な範囲とする。
【0069】
積層基板の変形の均一性の観点から、弾性ゴムシートは積層基板及び金型に固着しにくく、弾性ゴムシートの積層基板又は金型と接する面が滑りやすくなっていることが好ましい。また、曲面形成後には、弾性ゴムシートを金型から剥離し、積層基板を弾性ゴムシートから外すため、弾性ゴムシートの表面には摩擦を低減する表面加工等が施されていることが好ましい。弾性ゴムシートの材料としては、特に、シリコーンゴム及びフッ素ゴムが好ましい。
【0070】
弾性ゴムシート131の孔132は積層基板151を弾性ゴムシート131に吸着保持するために設けられており、孔132の数は1でも2以上でもよい。孔132の位置は積層基板151の形状に合わせて任意に設定することができる。
【0071】
[金型111、121、211、221]
凹金型及び凸金型は、積層基板に形成する3D曲面形状、例えば球面形状に合わせた曲面及び加工に好適な熱容量を有するものであれば、一般的な金型をそのまま用いることができる。具体的には、金型の材料としては、例えばアルミニウム(Al)及びニッケル(Ni)等のメタル材料、ガラス、セラミックス等を用いることができる。温調部は金型の内部又は金型の外面に付された温度調節ヒーターを有する。金型の表面に一般的な耐熱処理若しくは離型処理又はこれらの両方が施されていてもよい。
【0072】
凹金型111の孔115の位置は積層基板151の形状に合わせて任意に設定することができる。
【0073】
[基板保持ゴムシート]
基板保持ゴムシートは積層基板を保持すると共に、積層基板と凹金型との間の空間を維持する機能を有する。基板保持ゴムシートの材料としては、弾性ゴムシートの材料と同様のものを用いることできる。基板保持ゴムシートの厚さ及び形状は、積層基板の保持及び空間の維持という上記機能に合わせて設定することができる。なお、積層基板251を凹金型211上に直接載置した場合でも積層基板251の上下の空間が連通し、これらの間で圧力が等しくなるのであれば、基板保持ゴムシート233を用いなくてもよい。
【実施例】
【0074】
以下に、本発明の実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
【0075】
【0076】
【0077】
(実施例1~4)
実施例1~4では、第2の積層基板20(透明導電基板20)と同様の形態の透明導電基板を用いた。樹脂基板として、厚さが0.3mm、156mm角の平面延伸ポリカーボネイトシート基板を準備し、その上に下地層を形成した。下地層の材料としては、名阪真空社製の架橋密度を調整した4種類のUV硬化型のアクリル樹脂を用いた。実施例1では、UC1-088(アクリル1)を用い、実施例2では、UC1-095(アクリル2)を用い、実施例3では、UC1-077(アクリル3)を用い、実施例4では、UC1-090(アクリル4)を用いた。実施例1及び4の下地層の厚さは9μm、実施例2及び3の下地層の厚さは5μmであった。そして、下地層の硬さ(HIT)及び弾性変形仕事率(ηIT)をナノインデンター(FISCHERSCOPE社製,PICODENTOR HM500)で測定した。また、TMA装置(リガク社製,Thermo plus EVO II)を用いて、下地層の25℃(室温)から146℃までの温度範囲における熱膨張率を測定した。次いで、下地層上に、In2O3:90質量%、SnO2:10質量%のITOターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。製膜時のスパッタパワーは6.5kWに設定し、酸素/アルゴン(Ar)流量比(O2流量比)は3.6%に設定し、製膜時間で導電層の厚さを調整した。スパッタ装置にはOerlikon社のソラリスを用いた。導電層の厚さはKLA-Tenchore社製のαステップD-500で測定した。これらの結果を表1及び表2に示す。
【0078】
次いで、レーザ光を用いて透明導電基板を
図5に示す平面形状に加工した。この透明導電基板の輪郭は、互いに平行な2本の直線部及びこれら直線部の両端を繋ぐ2本の円弧状の曲線部を含む。直線部の間の距離は54.5mmであり、曲線部の間の距離(円弧の直径に相当)は75.5mmである。そして、平板状の透明導電基板の透過率を測定した。この測定では、分光光度計として日立ハイテクサイエンス株式会社製のUH4150を用いて550nmの透過率を測定した。導電層の硬さ(H
IT)及び弾性変形仕事率(η
IT)をナノインデンター(エリオニクス社製,ENT-3100)で測定した。導電層の結晶性をXRD装置(BURKER社製,D8 DISCOVER)で測定し、酸化インジウムの(222)面の結晶ピークのH/W値を算出した。なお、結晶性の測定条件は、線源:Cu管球、50kV、1000μm、入射角:3°、スリット幅:1mm、コリメータ径:1mmとした。4端子抵抗測定機として株式会社三菱化学アナリテック製のロレスタ-GPを用いて導電層のシート抵抗を測定した。これらの結果を表2に示す。
【0079】
その後、
図10に示す凸金型を備えた曲面形成装置100を用いて透明導電基板を3D曲面状に加工した。この加工では、曲率半径が131mmで直径が200mmの球面凹金型及びこれと対になる凸金型を準備し、弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型及び凸金型は、JIS A7075のアルミニウム合金製である。凹金型を146℃に温調した後、弾性ゴムシートの上に導電層形成基板を載せ、ポンプ吸引により、凹金型に弾性ゴムシートと導電層形成基板を60秒密着させて塑性変形させた。続いて、146℃に温調した凸金型を下降させ、90秒のプレスを行った。その後、ポンプ吸引孔の排気を大気圧に戻すことで、弾性ゴムシートと透明導電基板が金型から離型して、球面状の3D曲面を形成した透明導電基板を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。
【0080】
そして、加工後の導電層について、散乱回折光による観察、及びSEMを用いた観察により、破壊(クラック)の有無の確認を行った。この結果、表2に示すように、実施例1及び2では凸加工及び凹加工のいずれにおいてもクラックは発生せず、実施例3及び4では、凹加工でクラックが発生せず、凸加工でのみクラックが発生した。
図14に、実施例3の凸加工で観察されたクラックを示す。
図14(a)は、散乱回折光による回折結果を示し、
図14(b)は、SEMによる観察結果を示す。
図14(a)に示すように、クラックは円状又は楕円状に形成されていた。実施例4の凸加工でも、同様のクラックが観察された。
【0081】
(実施例5)
実施例5では、実施例2において、導電層の製膜条件を実施例1とは異ならせ、実施例1とは性質の異なる導電層を形成した。他の条件は実施例1と同様である。導電層の製膜条件及び導電層の性質を表1及び表2に示す。
【0082】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例5では凸加工及び凹加工のいずれにおいてもクラックが発生していなかった。
【0083】
図15に、実施例2、実施例5などスパッタパワーを変更したサンプルについてのXRD法による測定結果を示す。
図16に、実施例1についてのナノインデンターによる測定結果を示す。
図15に示すように、スパッタパワーが高いほどH/W値が大きくなる傾向がある。なお、ナノインテンダーでは、導電層の膜厚110nmに対して、プローブを10nm押し込んだときの荷重の変化を評価している。
【0084】
(実施例6~8)
実施例6~8では、導電層として、In2O3:99質量%、ZrO2:1質量%のターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。また、導電層の製膜条件を実施例6~8の間で異ならせた。他の条件は実施例1と同様である。導電層の製膜条件及び導電層の性質を表1及び表2に示す。
【0085】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例6~8のいずれにおいてもクラックは発生しなかった。
【0086】
図17に、実施例6~8などスパッタパワーを変更したサンプルについてのXRD法による測定結果を示す。
図18に、実施例6についてのナノインデンターによる測定結果を示し、
図19に、実施例7についてのナノインデンターによる測定結果を示し、
図20に、実施例8についてのナノインデンターによる測定結果を示す。
図17に示すように、スパッタパワーが高いほどH/W値が大きくなる傾向がある。また、
図18~
図20に示すように、スパッタパワーが高いほど弾性が高くなる傾向がある。特に、実施例6(
図18)では、ほぼ100%の弾性変形仕事率が得られた。
【0087】
(実施例9)
実施例9では、実施例7をベースに、実施例2と同様の条件で厚さが5μmのアクリル2の下地層を形成し、曲率半径が86mmの凹金型を用いた。他の条件は実施例7と同様である。
【0088】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例9においてもクラックは発生しなかった。
【0089】
(実施例10)
実施例10では、実施例6をベースに、実施例2と同様の条件で厚さが5μmのアクリル2の下地層を形成し、導電層の形成条件を変えて、厚さが220nmの導電層を形成した。他の条件は実施例6と同様である。
【0090】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例10においてもクラックは発生しなかった。
【0091】
(実施例11)
実施例11では、
図11に示す曲面形成装置200を用いて透明導電基板を3D曲面状に加工した。この加工では、曲率半径が131mmで直径が200mmの球面凹金型を準備し、基板保持ゴムシート及び弾性ゴムシートとして厚さが0.3mmのシリコーンゴムシートを用いた。用いた球面凹金型は、JIS A7075のアルミニウム合金製である。弾性ゴムシートの上に透明導電基板を載せ、凹金型を141℃に温調した後、バイパスバルブを開き、ポンプ吸引によりチャンバ内の圧力を300Paまで減圧した。次いで、バイパスバルブを閉めて、ガス注入出孔からガス(空気)を弾性ゴムシートの上方の空間に注入した。空気圧は0.1MPaとし、凹金型に弾性ゴムシートと導電層形成基板を90秒密着させて塑性変形させた。その後、チャンバ内の圧力を大気圧に戻すことで、弾性ゴムシートと透明導電基板が金型から離型して、球面状の3D曲面を形成した透明導電基板を得た。曲げ加工としては、凸加工及び凹加工の両方を行った。他の条件は実施例1と同様である。
【0092】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例11においてもクラックは発生しなかった。
【0093】
(実施例12)
実施例11では、第3の積層基板30(有機電子デバイス基板30)と同様の形態の有機電子デバイス基板を用いた。有機電子材料層として、(a)下記構造式Aで示されるトリアリールアミンを有するラジカル重合性化合物、(b)ポリエチレングリコールジアクリレート、(c)光重合開始剤、及び(d)テトラヒドロフランを、a:b:c:d=10:5:0.15:85(質量比)となるように混合した溶液を塗布し、窒素雰囲気下でUV硬化させることで、1.5μm膜厚の酸化反応性のエレクトロクロミック層を形成した。ポリエチレングリコールジアクリレートとしては、日本化薬株式会社製のKAYARAD PEG400DAを用いた。光重合開始剤としては、BASF社製のIRGACURE 184を用いた。なお、第3の積層基板30では、導電層12及び有機電子材料層14が樹脂基板11及び下地層13より狭く形成されているが、実施例12では、樹脂基板の上面上の全体に下地層、導電層及び有機電子材料層を形成した。他の条件は実施例2と同様である。
[構造式A]
【0094】
【0095】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例12においてもクラックは発生しなかった。
【0096】
(実施例13)
実施例13では、第4の積層基板40(透明導電基板40)と同様の形態の透明導電基板を用いた。第2の積層基板20と同様の形態の曲げ加工前の透明導電基板を2つ準備し、これらを厚さが50μmの両面接着層で貼り合せた。両面接着層としては、日東電工製のLA50(OCAテープ)を用いた。他の条件は実施例1と同様である。
【0097】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例13においてもクラックは発生しなかった。
【0098】
(実施例14)
実施例14では、第5の積層基板50(有機電子デバイス基板50)と同様の形態の有機電子デバイス基板を用いた。樹脂基板として、厚さが0.3mm、156mm角の平面延伸ポリカーボネイトシート基板を2つ準備し、それらの上に下地層を形成した。下地層の材料としては、名阪真空社製のUC1-088(アクリル1)を用いた。下地層の厚さは9μmであった。次いで、レーザ光を用いて透明導電基板を
図5に示す平面形状に加工した。
【0099】
次いで、下地層上に、In
2O
3:90質量%、SnO
2:10質量%のITOターゲットを用いて、スパッタ法により無機酸化物の導電層を形成した。製膜時のスパッタパワーは6.5kWに設定し、酸素/アルゴン流量比(O
2流量比)は3.6%に設定し、製膜時間で導電層の厚さを110nmに調整した。スパッタ装置にはOerlikon社のソラリスを用いた。導電層は、一方の樹脂基板については
図7(a)に示す領域に、他方の樹脂基板については
図7(b)に示す領域に、マスクを用いて形成した。導電層の厚さはKLA-Tenchore社製のαステップD-500で測定した。
【0100】
次いで、
図7(b)に示す領域に導電層を形成した樹脂基板において、
図7(c)に示す領域に、酸化反応性のエレクトロクロミック層を塗布法により形成した。エレクトロクロミック層は実施例12と同様の条件で形成した。
【0101】
また、
図7(a)に示す領域に導電層を形成した樹脂基板において、
図7(c)に示す領域に、還元反応性のエレクトロクロミック層を形成した。還元反応性のエレクトロクロミック層の形成では、酸化スズのメタノール分散液にポリビニルブチラールを1質量%添加した溶液を塗布し、120℃で5分間アニールすることにより、厚さ3μmのナノ粒子酸化スズ層を形成した。次いで、下記構造式Bで表される化合物を2,2,3,3-テトラフロロプロパノールに2質量%溶解した溶液を、ナノ粒子酸化スズ層の表面に塗布吸着処理した後、120℃で5分間アニールした。酸化スズのメタノール分散液としては、日産化学株式会社製のセルナックスを用いた。
[構造式B]
【0102】
【0103】
次いで、(a)1-エチル-3-メチルイミダゾリウムの(FSO2)2N-塩、(b)ポリエチレングリコールジアクリレート、及び(c)光重合開始剤を、a:b:c=2:1:0.01(質量比)となるように混合した電解質溶液を調製した。そして、この電解質溶液を、酸化反応性エレクトロクロミック層と還元反応性エレクトロクロミック層との間に充填した後、60℃のアニール処理を1分間行い、紫外線照射により硬化させて貼り合せて、貼り合わせ体を作製した。このとき、固体電解質層の平均厚みが30μmとなるように電解質溶液の充填量を調整した。ポリエチレングリコールジアクリレートとしては、日本化薬株式会社製のKAYARAD PEG400DAを用いた。光重合開始剤としては、BASF社製のIRGACURE 184を用いた。更に、有機電子材料層の周囲に、UV硬化性のアクリル材料を充填してUV硬化させて保護層を形成した。UV硬化性のアクリル材料としては、スリーボンド社製のTB3050を用いた。
【0104】
そして、実施例1と同様の評価を行った。この結果、表2に示すように、実施例14においてもクラックは発生しなかった。
【0105】
また、有機電子デバイス基板の発消色評価を行った。この評価では、保護層から露出した有機電子材料層の一方の引き出し部がプラス極、他方の引き出し部がマイナス極となるように2.0Vの電圧を印加して7mC/cm2の電荷を注入した。この結果、酸化反応性のエレクトロクロミック層が青緑色に、還元反応性のエレクトロクロミック層が青色に発色することが確認された。また、-0.6Vを印加することで透明に消色し、正常に発消色動作することも確認された。なお、光透過率は、光透過率を紫外可視近赤外分光光度計 UH4150(日立ハイテクサイエンス株式会社製)で測定した。
【0106】
(比較例1)
比較例1では、実施例1をベースに、下地層が無いポリカーボネイトシート基板を使用したこと以外は実施例1と同様である。
【0107】
ポリカーボネイトシート基板の下地層の硬さ(HIT)をナノインデンター(FISCHERSCOPE社製,PICODENTOR HM500)で測定した。また、TMA装置(リガク社製,Thermo plus EVO II)を用いて、下地層の25°C(室温)から146°Cまでの温度範囲における熱膨張率を測定した。これらの結果を表1及び表2に示す。
【0108】
また、実施例1と同様の評価を行った。この結果、比較例1では凸加工及び凹加工のいずれにおいてもクラックが発生した。
【0109】
(比較例2)
比較例2では、比較例1をベースに、導電層の製膜条件を実施例1とは異ならせ、実施例5と同様の導電層を形成した。他の条件は比較例1と同様である。導電層の製膜条件及び導電層の性質を表1及び表2に示す。
【0110】
また、実施例1と同様の評価を行った。この結果、比較例2では凸加工及び凹加工のいずれにおいてもクラックが発生した。
【0111】
(比較例3)
比較例3では、実施例1をベースに、透明導電基板を加工する際に凹金型及び凸金型を25℃に温調した。他の条件は実施例1と同様である。
【0112】
そして、実施例1と同様の評価を行った。この結果、樹脂基板が軟化しなかったため、透明導電基板は塑性変形せずに弾性変形し、3D曲面状に加工することができなかった。すなわち、表2に示すように、導電層にクラックは発生しなかったものの、3次元曲面状の透明導電基板が得られなかった。
【0113】
以上、好ましい実施の形態及び実施例について詳説したが、上述した実施の形態及び実施例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及び実施例に種々の変形及び置換を加えることができる。例えば、上記各実施の形態は適宜組み合わせることができる。
【符号の説明】
【0114】
10、20、40 透明導電基板
11 樹脂基板
12 導電層
13 下地層
14 有機電子材料層
30、50 有機電子デバイス基板
41 両面接着層
51 保護層
100、200 曲面形成装置
111、211 凹金型
112、212 凹面
113、213 平面
115 孔
116、126、216 温調部
117、217 ポンプ
121、221 凸金型
131、231 弾性ゴムシート
132 孔
151、251 積層基板
218 バイパスバルブ
219 ガス供給部
233 基板保持ゴムシート
234 孔
241 密閉容器
【先行技術文献】
【特許文献】
【0115】
【文献】特開昭63-906号公報
【文献】特開平2-276630号公報
【文献】特許第5409094号公報