IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 東京大学の特許一覧 ▶ 株式会社フジタの特許一覧

<>
  • 特許-俯瞰映像提示システム 図1
  • 特許-俯瞰映像提示システム 図2
  • 特許-俯瞰映像提示システム 図3
  • 特許-俯瞰映像提示システム 図4
  • 特許-俯瞰映像提示システム 図5
  • 特許-俯瞰映像提示システム 図6
  • 特許-俯瞰映像提示システム 図7
  • 特許-俯瞰映像提示システム 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-10-20
(45)【発行日】2022-10-28
(54)【発明の名称】俯瞰映像提示システム
(51)【国際特許分類】
   H04N 5/232 20060101AFI20221021BHJP
   H04N 7/18 20060101ALI20221021BHJP
   G06T 7/70 20170101ALI20221021BHJP
   G06T 7/593 20170101ALI20221021BHJP
【FI】
H04N5/232 290
H04N5/232 930
H04N7/18 V
G06T7/70 A
G06T7/593
【請求項の数】 2
(21)【出願番号】P 2019057052
(22)【出願日】2019-03-25
(65)【公開番号】P2020161895
(43)【公開日】2020-10-01
【審査請求日】2021-12-03
(73)【特許権者】
【識別番号】504137912
【氏名又は名称】国立大学法人 東京大学
(73)【特許権者】
【識別番号】302060926
【氏名又は名称】株式会社フジタ
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】小松 廉
(72)【発明者】
【氏名】藤井 浩光
(72)【発明者】
【氏名】筑紫 彰太
(72)【発明者】
【氏名】田村 雄介
(72)【発明者】
【氏名】永谷 圭司
(72)【発明者】
【氏名】山下 淳
(72)【発明者】
【氏名】淺間 一
(72)【発明者】
【氏名】岡本 浩幸
(72)【発明者】
【氏名】モロ アレサンドロ
(72)【発明者】
【氏名】山本 新吾
(72)【発明者】
【氏名】千葉 拓史
(72)【発明者】
【氏名】坂井 郁也
【審査官】大濱 宏之
(56)【参考文献】
【文献】特開2009-129001(JP,A)
【文献】特開2009-049943(JP,A)
【文献】特開2014-194729(JP,A)
【文献】佐藤貴亮ほか,複数の魚眼カメラとLRFを用いた重畳型全方位俯瞰画像提示手法の構築,第13回計測自動制御学会システムインテグレーション部門講演会(S12012),2012年12月18日,pp. 2433-2436
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/232
H04N 7/18
G06T 7/70
G06T 7/593
(57)【特許請求の範囲】
【請求項1】
遠隔操作可能であって、周囲を広角に撮影する複数台の第1カメラと、進行方向を撮影し、かつ奥行方向の深度情報を取得する第2カメラと、を含む移動装置と、
前記第1カメラ及び前記第2カメラによって撮影される領域に設置され、かつ寸法情報が既知であるマーカと、
前記移動装置とデータ通信可能である情報処理装置と、
を備え、
前記情報処理装置は、
前記第1カメラにより取得される映像を、前記移動装置を俯瞰する仮想的な俯瞰視点から視た映像に視点変換することにより第1俯瞰映像を生成する第1俯瞰映像生成部と、
前記第2カメラにより取得された奥行方向の深度情報を含む映像を、前記俯瞰視点から視た映像に視点変換することにより第2俯瞰映像を生成する第2俯瞰映像生成部と、
前記第1俯瞰映像に含まれるマーカと前記第2俯瞰映像に含まれるマーカとの相対的な位置関係に基づいて前記第2俯瞰映像を補正し、前記第1俯瞰映像に補正された前記第2俯瞰映像を投影することにより3次元情報を含む第3俯瞰映像を生成する第3俯瞰映像生成部と、
を備える俯瞰映像提示システム。
【請求項2】
前記第3俯瞰映像生成部は、前記3次元情報に基づいて、前記第3俯瞰映像における地面から所定の閾値以上の高さ及び所定の閾値以下の深さの障害物を強調表示する
請求項1に記載の俯瞰映像提示システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、俯瞰映像提示システムに関する。
【背景技術】
【0002】
近年、災害現場の復旧作業における遠隔操作可能な移動装置(以下、適宜「遠隔移動装置」と記載する)の利用に伴って、復旧作業の作業効率の向上を目的とした遠隔移動装置の映像提示技術の開発が盛んに行なわれている。例えば、災害現場の映像提示技術の1つとして例示される俯瞰映像提示システムは、遠隔移動装置に広角レンズを備えた複数台のカメラを搭載し、複数台のカメラから取得した映像を処理することによって、遠隔移動装置を上空の第三者視点から俯瞰したような映像を疑似的に提示することができる。
【先行技術文献】
【特許文献】
【0003】
【文献】特表2017-538208号公報
【文献】特開2017-173298号公報
【文献】特開2018-50119号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
従来の俯瞰映像提示システムは、遠隔移動装置の周囲にある物体が俯瞰映像上に正確に描画されない結果、遠隔移動装置を取り巻く周囲の状況を、遠隔移動装置のオペレータに正確に伝えられない場合がある。
【0005】
本開示は、上記の課題に鑑みてなされたものであって、遠隔操作により移動可能な移動装置を取り巻く周囲の状況をより正確に提示することができる俯瞰映像提示システムを提供することを目的とする。
【課題を解決するための手段】
【0006】
上記の目的を達成するため、本開示の一態様の俯瞰映像提示システムは、遠隔操作可能であって、周囲を広角に撮影する複数台の第1カメラと、進行方向を撮影し、かつ奥行方向の深度情報を取得する第2カメラと、を含む移動装置と、前記第1カメラ及び前記第2カメラによって撮影される領域に設置され、かつ寸法情報が既知であるマーカと、前記移動装置とデータ通信可能である情報処理装置と、を備え、前記情報処理装置は、前記第1カメラにより取得される映像を、前記移動装置を俯瞰する仮想的な俯瞰視点から視た映像に視点変換することにより第1俯瞰映像を生成する第1俯瞰映像生成部と、前記第2カメラにより取得された奥行方向の深度情報を含む映像を、前記俯瞰視点から視た映像に視点変換することにより第2俯瞰映像を生成する第2俯瞰映像生成部と、前記第1俯瞰映像に含まれるマーカと前記第2俯瞰映像に含まれるマーカとの相対的な位置関係に基づいて前記第2俯瞰映像を補正し、前記第1俯瞰映像に補正された前記第2俯瞰映像を投影することにより3次元情報を含む第3俯瞰映像を生成する第3俯瞰映像生成部と、を備える。
【0007】
俯瞰映像提示システムの望ましい態様として、前記第3俯瞰映像生成部は、前記3次元情報に基づいて、前記第3俯瞰映像における地面から所定の閾値以上の高さ及び所定の閾値以下の深さの障害物を強調表示する。
【発明の効果】
【0008】
本開示によれば、遠隔操作により移動可能な移動装置を取り巻く周囲の状況をできるだけ正確に提示することができる。
【図面の簡単な説明】
【0009】
図1図1は、実施形態に係る俯瞰映像提示システムの構成例を示す図である。
図2図2は、実施形態に係る俯瞰映像提示システムの機能構成を模式的に示すブロック図である。
図3図3は、実施形態に係る各座標系の概念を示す図である。
図4図4は、実施形態に係る第1俯瞰映像の一例の一部を示す図である。
図5図5は、実施形態に係る第2俯瞰映像の一例を示す図である。
図6図6は、実施形態に係る第3俯瞰映像の一例を示す図である。
図7図7は、実施形態に係る変換関数における変数の最適化処理の一例を示すフローチャートである。
図8図8は、実施形態に係る情報処理装置により実行される俯瞰映像生成処理の一例を示すフローチャートである。
【発明を実施するための形態】
【0010】
以下に、本発明に係る俯瞰映像提示システムについて実施形態を図面に基づいて詳細に説明する。なお、本発明は、以下の実施形態の記載に限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能、且つ、容易なもの、或いは実質的に同一のものが含まれる。さらに、以下に記載した実施形態における構成要素は、本発明の要旨を逸脱しない範囲で構成の種々の省略、置換又は変更を行うことができる。以下の実施形態では、本発明に係る俯瞰映像提示システムの実施形態の1つを例示する上で、必要となる構成要素を説明し、その他の構成要素を省略する。
【0011】
[システムの構成]
図1は、実施形態に係る俯瞰映像提示システムの構成例を示す図である。図2は、実施形態に係る俯瞰映像提示システムの機能構成を模式的に示すブロック図である。
【0012】
図1に示すように、実施形態に係る俯瞰映像提示システム1は、遠隔操作可能な移動装置10と、移動装置10とデータ通信可能な情報処理装置100とを含んで構成される。移動装置10及び情報処理装置100は、相互にデータ通信可能な状態で通信ネットワーク5に接続される。通信ネットワーク5は、公衆通信回線及び専用通信回線等を含んで構築されてよい。
【0013】
移動装置10は、物体3などが存在する災害現場などを走行する。移動装置10は、魚眼レンズを備える複数の第1カメラ11a~11dと、第2カメラ12と、通信部13と、アクチュエータ14と、記憶部15と、制御部16とを有する。移動装置10は、情報処理装置100から受信する動作コマンドに従って走行してもよいし、情報処理装置100とは別の遠隔装置から受信する動作コマンドに従って走行してもよい。移動装置10として、参考文献1(新エネルギー・産業技術総合開発機構:災害対応無人化システム研究開発プロジェクト 計測・作業要素技術の開発 水陸両用モニタリングデバイスの開発,平成23年度~平成24年度成果報告書(2013))における災害対応プロジェクトで開発された装置が例示される。
【0014】
第1カメラ11a~11dは、移動装置10の周囲(周辺環境)を所定の撮影範囲よりも広角に撮影する。第1カメラ11a~11dは、例えば、180度前後の広い画角を持った魚眼レンズを備える。第1カメラ11a~11dは、本実施形態において、移動装置10の進行方向に対して、左右の斜め前側及び斜め後側に設けられるが、前後左右にそれぞれ設けられてもよい。以下の説明において、第1カメラ11a~11dにより取得される映像データに基づく映像を、「第1カメラ映像11G」と表記する場合がある。移動装置10に第1カメラ11a~11dを設置する場合、例えば、参考文献2(小松 廉,藤井 浩光,山下 淳,淺間一:カメラ配置設計による故障時に備えたロボット遠隔操作のための俯瞰映像提示システムの開発,精密工学学会誌,81,12(2015)1206)に提案される配置に基づいて設置することができる。
【0015】
第2カメラ12は、移動装置10の進行方向に設けられる。第2カメラ12は、移動装置10の進行方向を撮影し、かつ奥行方向の深度情報を取得する。第2カメラ12は、対象物を複数の異なる方向から同時に撮影することにより、奥行方向の情報も記録するステレオカメラである。第2カメラ12は、少なくとも奥行方向の情報を含む深度画像を撮影できればよい。第2カメラ12は、例えば、RGB-Dセンサでもよい。RGB-Dセンサは、深度画像に加えてRGB画像を取得するセンサである。RGB-Dセンサは、深度画像を撮影する二眼の赤外線カメラと、RGB画像を撮影する一眼のRGBカメラと、を含む。第2カメラ12の水平方向の視野角は、例えば、88.2度以上94.2度以下である。垂直方向の視野角は、例えば、62.5度以上68.5度以下である。第2カメラ12は、物体の表面の位置を示す3次元点の集合体である3次元点群の情報を3次元情報として取得できる。第2カメラ12により取得される3次元点群を構成する各3次元点は、物体の表面の位置を示す3次元座標値で表される。3次元座標値は、任意の原点における、X軸方向、Y軸方向、Z軸方向の各軸に対応する座標値で構成される。
【0016】
通信部13は、通信ネットワーク5を介して、情報処理装置100との間で各種データをやり取りするためのデータ通信を実行する。通信部13は、走行に関する動作コマンドを受信できる。通信部13は、動作コマンドを制御部16に送出できる。通信部13は、情報処理装置100に対して、第1カメラ11a~11dにより取得された映像データ、及び第2カメラ12により取得された映像データ及び深度情報を送信できる。通信部13は、情報処理装置100との間の通信を可能とする各種通信方式をサポートできる。通信部13の通信方式は、無線通信及び有線通信のいずれの通信方式を適用してもよい。
【0017】
アクチュエータ14は、制御部16の制御信号を、移動装置10が災害現場などの走行面2の走行させるための動力に変換する。アクチュエータ14は、例えば、電気モータなどを含む。
【0018】
記憶部15は、制御部16により実行される各種処理を実現するためのプログラム及びデータを記憶する。記憶部15が記憶するプログラムにより提供される機能は、移動装置10の走行を制御する機能、並びに第1カメラ11a~11dにより取得された映像データ及び第2カメラ12により取得された映像データ及び深度情報を情報処理装置100に送信する機能を含む。記憶部15は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVDにより実装されてよい。
【0019】
制御部16は、記憶部15に記憶されているプログラム及びデータに基づいて、移動装置10に関する各種処理を実行する。特に、本実施形態において、制御部16は、通信部13を介して、第1カメラ11a~11dにより取得された映像データ、及び第2カメラ12により検出された3次元情報を情報処理装置100に送信する。制御部16は、CPU(Central Processing Unit)マイクロプロセッサ、マイクロコンピュータ、DSP、システムLSI(Large Scale Integration)などのプロセッサにより実装されてよい。
【0020】
移動装置10は、段差などがある不整地な災害現場の走行面に追従できるクローラ、クローラを下部に備える台車、及び台車上に配置された胴体部などを備えてよい。上述した第1カメラ11a~11d及び第2カメラ12は、胴体部に設置されてよい。
【0021】
情報処理装置100は、移動装置10から受信する映像データ及び3次元情報を用いて、移動装置10の周囲にある物体の位置を提示する俯瞰映像を生成する。情報処理装置100は、通信部111と、表示部113と、記憶部115と、制御部117とを備える。
【0022】
通信部111は、通信ネットワーク5を介して、移動装置10との間で各種データをやり取りするためのデータ通信を実行する。通信部111は、移動装置10から送信された映像データ、及び3次元情報を受信できる。通信部111は、移動装置10との間の通信を可能とする各種通信方式をサポートできる。通信部111の通信方式は、無線通信及び有線通信のいずれの通信方式を適用してもよい。
【0023】
表示部113は各種情報を表示する。表示部113は、後述する制御部117により生成された俯瞰映像を表示できる。表示部113は、液晶ディスプレイ(LCD:Liquid Crystal Display)、有機ELディスプレイ(OELD:Organic Electro-Luminescence Display)、又は無機ELディスプレイ(IELD:Inorganic Electro-Luminescence Display)等の表示デバイスを含んでよい。表示部113は、タッチスクリーンなどの入力デバイスを含んでよい。
【0024】
記憶部115は、制御部117により実行される各種処理を実現するためのプログラム及びデータを記憶する。記憶部115が記憶するプログラムにより提供される機能は、移動装置10の周囲にある物体の位置を提示する俯瞰映像を生成する機能を含む。記憶部115が記憶するデータは、移動装置10から受信する映像データ及び3次元情報を含む。記憶部15は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVDにより実装されてよい。
【0025】
制御部117は、記憶部115に記憶されているプログラム及びデータに基づいて、移動装置10に関する各種処理を実行する。特に、本実施形態において、制御部117は、移動装置10の周囲にある物体の位置を提示する俯瞰映像を生成する処理を実行する。制御部117は、CPU(Central Processing Unit)マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)、システムLSI(Large Scale Integration)などのプロセッサを含んで実装されてよい。制御部117は、記憶部115に記憶されているプログラムを読み出してRAMなどのワーキングメモリに展開し、ワーキングメモリに展開されたプログラムに含まれる命令をCPUなどのプロセッサに実行させる。これにより、制御部117は、以下に説明する第1俯瞰映像生成部117a、第2俯瞰映像生成部117b、並びに第3俯瞰映像生成部117cにより提供される各機能に基づいた各処理を実行できる。
【0026】
制御部117は、第1俯瞰映像生成部117aと、第2俯瞰映像生成部117bと、第3俯瞰映像生成部117cと、を有する。
【0027】
第1俯瞰映像生成部117aは、移動装置10から受信する映像データ、すなわち第1カメラ11a~11dにより取得される映像(第1カメラ映像)を、移動装置10を俯瞰する仮想的な俯瞰視点から視た映像に視点変換することにより第1俯瞰映像を生成する。第1俯瞰映像生成部117aは、移動装置10の第1カメラ11a~11dにより撮影された全ての物体がロボット座標系21におけるある平面上に存在するという仮定の下、第1カメラ映像11Gをその平面上に透視投影した後、視点変換処理を行うことにより、第1俯瞰映像を生成する。第1俯瞰映像生成部117aは、参考文献3(佐藤高亮,藤井浩光,Alessandro Moro,山下淳,淺間一:複数の魚眼カメラとLRFを用いた重畳型全方位俯瞰映像提示手法の構築,第13回計測自動制御学会システムインテグレーション部門講演会講演論文集(2012))に提案される従来手法を用いることによって、第1俯瞰映像を生成できる。
【0028】
[座標系の定義]
図3は、実施形態に係る各座標系の概念を示す図である。図3に示す座標系21は、移動装置10の座標系である。図3において、ロボット座標系21のx平面は、床面(移動装置10の走行面2)と同一であり、z軸の正方向は、床面に対して鉛直上向きとする。以下、図3に示す座標系21を、適宜「ロボット座標系21」と表記する。図3に示す座標系23は、例えば、第1カメラ11aの位置及び姿勢を規定する座標系である。以下、図3に示す座標系23を、適宜「第1カメラ座標系23」と表記する。なお、図示は省略するが、第1カメラ座標系23と同様に、第1カメラ11b~11dの位置及び姿勢を規定する座標系が設定される。図3に示す座標系25は、第2カメラ12により取得される検出点を規定する座標系である。以下、図3に示す座標系25を、適宜「第2カメラ座標系25」と表記する。図3に示す座標系27は、例えば、第1カメラ11aにより撮影される第1カメラ映像11G上の点を規定する座標系である。以下、図3に示す座標系27を、適宜「第1カメラ画像座標系27」と表記する。なお、図示は省略するが、第1カメラ画像座標系27と同様に、第1カメラ11b~11dにより撮影される第1カメラ映像11G上の点を規定する座標系が設定される。図3に示す座標系29は、第2カメラ12により撮影される第2カメラ映像12G上の点を規定する座標系である。以下、図3に示す座標系29を、適宜「第2カメラ画像座標系29」と表記する。図3に示す座標系31は、移動装置10を上空から俯瞰する位置にあると仮定した仮想的な仮想カメラ33による仮想カメラ映像33G上の点の位置を規定する座標系である。以下、図3に示す座標系31を、適宜「仮想カメラ画像座標系31」と表記する。ロボット座標系21における点P=[x,y,zの第1カメラ座標系23における表現を点P=[x,y,zとする。ロボット座標系21における点P=[x,y,zの第2カメラ座標系25における表現を点P=[x,y,zとする。ロボット座標系21における点P=[x,y,zの第1カメラ画像座標系27における表現を点m=[u,vとする。ロボット座標系21における点P=[x,y,zの第2カメラ画像座標系29における表現を点m=[u,vとする。第1俯瞰映像生成部117aは、各座標系における各点を、仮想カメラ画像座標系31における点m=[u,vに変換する。以下の説明において、任意の座標系における点Nの同次座標系による座標表現をNとする。
【0029】
[マーカの設置]
移動装置10の第1カメラ11a~11d及び第2カメラ12が撮影する所定領域には、マーカ35が設置される。マーカ35は、少なくとも既知の寸法情報を有する。マーカ35は、本実施形態において、各辺の長さが既知である矩形状の薄板である。マーカ35の形状は、特に限定されない。マーカ35は、所定領域に複数設置されてもよい。マーカ35は、例えば、各々のマーカ35を区別するための識別子を含んでもよい。マーカ35の寸法情報及び識別子は、記憶部115に予め記憶される。
【0030】
[第1俯瞰映像の作成]
第1俯瞰映像生成部117aは、以下に示す式(1)で示される第1カメラ座標系23における点P=[x,y,zと、第1カメラ画像座標系27における点m=[u,vとの関係に基づいて、魚眼レンズにより撮影された映像特有の歪みを除去した透視投影映像を生成する。以下に示す式(1)は、参考文献4(Davide Schramuzza, Agostion Martinelli, and Roland Siegwart: A flexible technique for accurate omnidirectional camera calibration and structure from motion, Proceeding of IEEE International Conference of Computer Vision Systems (2006) 45)及び参考文献5(Davide Schramuzza, Agostion Martinelli, and Roland Siegwart: A toolbox for easily calibrating omnidirectional cameras, Proceedings of IEEE/RSJ International Conference of Intelligent Robots and Systems (2006) 5695)に提案される手法によって求められる。
【0031】
【数1】
【0032】
式(1)における「f(u,u)」は、第1カメラ画像座標系27における原点からの距離√{u +u }に関する関数であり、式(1)における「a」は、第1カメラ座標系23における各点と第1カメラ画像座標系27における各方向ベクトルの関係を等式で表現するために設定する定数である。
【0033】
続いて、第1俯瞰映像生成部117aは、上述した式(1)に基づいて生成した透視投影映像を、特定の平面に対して透視投影する。ロボット座標系21と第1カメラ画像座標系27は、3×4行列の透視投影行列Hw→fにより関係付けることができ、ロボット座標系21と第1カメラ画像座標系27との間には、以下の式(2)の関係が成立する。
【0034】
【数2】
【0035】
移動装置10の第1カメラ11a~11dにより撮影された全ての物体がロボット座標系21におけるある平面上に存在すると仮定する。例えば、第1カメラ映像11Gをz=0の平面(床面)に透視投影する場合、以下の式(3)に示すように、透視投影行列Hw→fの3列目成分を省略できる。
【0036】
【数3】
【0037】
ここで、式(3)におけるH´w→fおよびP´は、それぞれ、H´w→fの3列目と、P´の3行目の成分を省略した行列とする。式(3)により、ロボット座標系21と、第1カメラ画像座標系27との関係が決定される。
【0038】
続いて、第1俯瞰映像生成部117aは、上述した式(3)に示す関係に基づいて、特定の平面に対して透視投影された透視投影映像の視点変換処理を行い、第1俯瞰映像を生成する。ここでは、z軸方向視の第1俯瞰映像に生成する手法について説明する。まず、第1俯瞰映像生成部117aは、ロボット座標系21と仮想カメラ画像座標系31との関係を求める。ロボット座標系21と仮想カメラ画像座標系31との間には、以下の式(4)の関係が成立する。
【0039】
【数4】
【0040】
式(4)におけるH´w→vは、ロボット座標系21と仮想カメラ画像座標系31とを関係付ける透視投影行列Hw→vの3列目の成分を省略した行列である。上述した式(3)および式(4)を用いると、第1カメラ画像座標系27と仮想カメラ画像座標系31との間には、式(5)に示す関係が成立する。
【0041】
【数5】
【0042】
ただし、式(5)において、H´f→w=(H´w→f-1である。第1俯瞰映像生成部117aは、式(5)より、移動装置10から受信した第1カメラ映像11G(映像データ)から、移動装置10を上空から俯瞰したような第1俯瞰映像を生成できる。第1俯瞰映像は、仮想カメラ映像33Gである。
【0043】
ここで、式(5)から確認できるように、H´w→vおよびH´f→wを求める必要がある。本実施形態では、参考文献6(佐藤 高亮,藤井 浩光,Alessandro Moro,杉元 和也,野末 晃,三村 洋一,小幡 克実,山下 淳,淺間一:無人化施工用俯瞰映像システムの開発,日本機械学会論文集,81,823(2015)1)、及び参考文献7(淺利 圭介,石井洋平,本郷 仁志,蚊野 浩:鳥瞰画像生成における校正環境の簡易化,第13回画像センシングシンポジウム予稿集(2017)IN1-13)などに提案される手法を参考として、H´w→vおよびH´f→wを非線形の最適化手法により推定する。推定したH´w→vおよびH´f→wの行列をもとに、第1カメラ11a~11dにより取得される第1カメラ映像11Gと、仮想カメラ33により取得される仮想カメラ映像33Gの各画素の1対1の対応関係をあらかじめ取得することができる。なお、第1カメラ映像11Gと仮想カメラ映像33Gの各画素の1対1の対応関係をルックアップテーブルとしてあらかじめ保存しておいて、第1俯瞰映像の生成時に利用できるようにしてもよい。上述した第1俯瞰映像の生成方法の例では、第1俯瞰映像をz軸方向視の映像に限定したが、俯瞰視点の方向はこれに限定されない。
【0044】
[第2俯瞰映像の作成]
第2俯瞰映像生成部117bは、第2カメラ座標系25における点P=[x,y,zと、第2カメラ画像座標系29における点m=[u,vとの関係に基づいて、第2カメラ映像12Gの視点変換処理を行い、第2俯瞰映像を生成する。この際、第2俯瞰映像の座標系は、仮想カメラ画像座標系31に合わせる。第2カメラ映像12Gから第2俯瞰映像への視点変換処理は、平行移動及び回転のみで行われる。第1俯瞰映像の俯瞰視点を、第2カメラ12の視点に合わせることも可能である。この場合、第1俯瞰映像生成部117aは、第1カメラ映像11Gから生成された透視投影映像を、第2カメラ座標系25に視点変換処理を行い、第1俯瞰映像を生成する。第2俯瞰映像生成部117bは、第2カメラ映像12Gから第2俯瞰映像への視点変換処理を省略する。
【0045】
[第3俯瞰映像の作成]
図4は、実施形態に係る第1俯瞰映像の一例の一部を示す図である。図5は、実施形態に係る第2俯瞰映像の一例を示す図である。図6は、実施形態に係る第3俯瞰映像の一例を示す図である。図4に示す第1俯瞰映像G1は、上述した第1俯瞰映像(仮想カメラ映像33G(図3参照))と同様に作成される。図5に示す第2俯瞰映像G2は、上述した第2俯瞰映像と同様に作成される。第1俯瞰映像G1及び第2俯瞰映像G2には、マーカ35が含まれる。
【0046】
第1カメラ11a~11dにより取得された第1カメラ映像11Gに基づいて作成される第1俯瞰映像G1上の点M(M、M、・・・、M)の座標は、第2カメラ映像12Gに基づいて作成される第2俯瞰映像G2上の点S(S、S、・・・、S)の座標と、ロボット座標系21において同一座標の点である。点Mの座標は、仮想カメラ画像座標系31において、対応する点Sの座標に対して、差異を有する。第3俯瞰映像生成部117cは、記憶部115に記憶されたマーカ35の情報、第1俯瞰映像G1及び第2俯瞰映像G2に基づいて、点M及び点Sを設定する。点Mは、本実施形態において、第1俯瞰映像G1のマーカ35の角である。点Sは、本実施形態において、第2俯瞰映像G2のマーカ35の角である。点Mは、図4において、点M、点M、点M、点Mのみが図示されているが、全てのマーカ35の4角に設定されてもよい。点Sは、図5において、点S、点S、点S、点Sのみが図示されているが、全てのマーカ35の4角に設定されてもよい。点M及び点Sは、オペレータが第1俯瞰映像G1及び第2俯瞰映像G2を見ながら設定してもよい。点M及び点Sは、第1俯瞰映像G1及び第2俯瞰映像G2による識別が可能であれば、マーカ35の角に設定されなくてもよい。例えば、マーカ35に寸法が既知である図形を描画し、図形の所定の位置を点M及び点Sと設定してもよい。第3俯瞰映像生成部117cは、点M及び点Sの点集合{M,S}において、点群Sとの差が最小になるように点群Mを変換する。変換関数Tは、以下の式(6)によって定義される。
【0047】
【数6】
【0048】
式(6)における「θ」は、6自由度の位置、方向、及び倍率を定義する変数である。距離関数は、以下の式(7)によって計算される。
【0049】
【数7】
【0050】
式(7)における「m」は、m∈T(M,θ)である。式(7)における「s」は、s∈Sである。「θ」は、最適化プロセスによって、ランダムに修正される。図7は、実施形態に係る変換関数における変数の最適化処理の一例を示すフローチャートである。図7における「θbest」は、「θ」の最大値である。図7における「err」は、エラーの許容範囲の閾値である。「θ」の初期値である「initialθ」、「θbest」及び「err」の値は、図7に示す最適化処理が実行される前に、予め任意で設定されるものとする。第3俯瞰映像生成部117cは、移動装置10が移動開始するとステップS51に移行して、処理を開始する。第3俯瞰映像生成部117cは、図7に示すフローチャートの処理を終了すると、移動装置10が停止するまでステップS51から処理を開始する。「θ」は、位置及び方向に乱数[-0.5,0.5]を追加し、倍率に乱数[-0.05,0.05]を追加することによって更新される。乱数は「θrand」によって表される。
【0051】
ステップS51において、第3俯瞰映像生成部117cは、式(6)を適用する。ステップS52において、第3俯瞰映像生成部117cは、式(7)を計算する。ステップS53において、第3俯瞰映像生成部117cは、ステップS52において変換した値が、閾値errより小さいか否かを判断する。ステップS53において、distが閾値errより小さいと判断された場合、第3俯瞰映像生成部117cは、ステップS54に移行する。ステップS53において、distが閾値err以上であると判断された場合、第3俯瞰映像生成部117cは、ステップS55に移行する。ステップS54において、第3俯瞰映像生成部117cは、「θbest」の値を「θ」に更新する。第3俯瞰映像生成部117cは、ステップS54を実行すると一連の処理を終了し、ステップS51から処理を再開する。ステップS55において、第3俯瞰映像生成部117cは、「θ」の値を「θbest+θrand」に更新する。第3俯瞰映像生成部117cは、ステップS55を実行すると一連の処理を終了し、ステップS51から処理を再開する。
【0052】
点群Mは、本実施形態において、第1俯瞰映像G1に含まれるマーカ35の角に設定される。点群Sは、本実施形態において、第2俯瞰映像G2に含まれるマーカ35の角に設定される。すなわち、第3俯瞰映像生成部117cは、第1俯瞰映像G1に含まれるマーカ35と第2俯瞰映像G2に含まれるマーカ35との相対的な位置関係に基づいて、第2俯瞰映像G2を補正する。例えば、第3俯瞰映像生成部117cは、第2俯瞰映像G2に含まれるマーカ35の角に対応する4点の座標が、第1俯瞰映像G1に含まれるマーカ35の角に対応する4点の座標に一致するように、第2俯瞰映像G2を補正する。第3俯瞰映像生成部117cは、第1俯瞰映像G1に補正された第2俯瞰映像G2を投影する。第3俯瞰映像生成部117cは、第1俯瞰映像G1に補正された第2俯瞰映像G2を投影することにより、図6に示す第3俯瞰映像G3を生成する。第3俯瞰映像G3は、3次元情報を含むので、地面と障害物とを判別可能である。第1俯瞰映像G1に含まれるマーカ35の位置の3次元座標の情報が、仮想カメラ画像座標系31における点群の情報にない場合、最も近い点の間で線形補間が行われる。
【0053】
第3俯瞰映像生成部117cは、第3俯瞰映像G3における障害物を所定の方法によって強調表示する。障害物は、地面より上方に存在する物体40又は地面より下方に凹んだ穴等である。第3俯瞰映像生成部117cは、地面から所定の閾値以上の高さの点群を地上側の障害物41として強調表示する。所定の閾値は、例えば、地上20cm以上である。第3俯瞰映像生成部117cは、地面から所定の閾値以下の深さの点群を地下側の障害物として強調表示する。所定の閾値は、例えば、地下20cm以下である。所定の閾値は、記憶部115に予め設定される。地上側の障害物41を示す強調表示は、例えば、赤色塗り潰しによる表示である。地下側の障害物を示す強調表示は、例えば、青色塗り潰しによる表示である。強調表示は、例えば障害物を囲う線でもよい。強調表示する方法は、記憶部115に予め設定される。
【0054】
図8は、実施形態に係る情報処理装置により実行される俯瞰映像生成処理の一例を示すフローチャートである。図8に示す処理は、制御部117が、記憶部115に記憶されているプログラム及びデータに基づいて実行する。
【0055】
図8に示すように、ステップS101において、移動装置10の制御部16は、記憶部15に記憶された所定のプログラムに基づいて、第1カメラ11a~11d及び第2カメラ12によって所定の領域を撮影させる。制御部16は、通信部13に、第1カメラ11a~11dによって撮影された第1カメラ映像11G、及び第2カメラ12によって撮影された第2カメラ映像12Gを、通信ネットワーク5を介して、情報処理装置100の通信部111に送信させる。情報処理装置100の制御部117は、取得した第1カメラ映像11G及び第2カメラ映像12Gを記憶部115に記憶させる。
【0056】
ステップS102において、制御部117の第1俯瞰映像生成部117aは、記憶部115に記憶された第1カメラ映像11Gを俯瞰視点に視点変換し、第1俯瞰映像G1を生成する。俯瞰視点は、移動装置10を任意の方向から俯瞰する仮想的な俯瞰視点に対応する。制御部117は、第1俯瞰映像G1を表示部113に提示させる。
【0057】
ステップS103において、制御部117の第2俯瞰映像生成部117bは、記憶部115に記憶された第2カメラ映像12Gを俯瞰視点に視点変換し、第2俯瞰映像G2を生成する。制御部117は、第2俯瞰映像G2を表示部113に提示させる。
【0058】
ステップS104において、制御部117の第3俯瞰映像生成部117cは、マーカ35の位置情報に基づいて、第1俯瞰映像G1に第2俯瞰映像G2を投影する。すなわち、第3俯瞰映像生成部117cは、第1俯瞰映像G1に含まれるマーカ35と第2俯瞰映像G2に含まれるマーカ35との相対的な位置関係に基づいて、第1俯瞰映像G1に第2俯瞰映像G2を投影する。第3俯瞰映像生成部117cは、第1俯瞰映像G1に第2俯瞰映像G2を投影することにより第3俯瞰映像G3を生成する。第3俯瞰映像G3は、3次元情報を含むので、地面と障害物とを判別可能である。
【0059】
ステップS105において、制御部117の第3俯瞰映像生成部117cは、第3俯瞰映像G3に含まれる点群の3次元座標情報に基づいて、地面から所定の閾値以上の高さ及び所定の閾値以下の深さの点を抽出する。所定の閾値は、予め記憶部115に設定される値である。第3俯瞰映像生成部117cは、抽出された点を、記憶部115に記憶された所定の方法によって強調表示する。制御部117は、第3俯瞰映像G3を表示部113に提示させる。ステップS105が実行されると、俯瞰映像提示システム1は、図8に示す一連の処理を終了する。
【0060】
以上で説明したように、俯瞰映像提示システム1は、移動装置10と、マーカ35と、情報処理装置100と、を備える。移動装置10は、遠隔操作可能である。移動装置10は、複数台の第1カメラ11a~11dと、第2カメラ12と、を含む。第1カメラ11a~11dは、周囲を広角に撮影する。第2カメラ12は、進行方向を撮影する。第2カメラ12は、奥行方向の深度情報を取得する。マーカ35は、第1カメラ11a~11d及び第2カメラ12によって撮影される領域に設置される。マーカ35は、寸法情報が既知である。情報処理装置100は、移動装置10とデータ通信可能である。情報処理装置100は、第1俯瞰映像生成部117aと、第2俯瞰映像生成部117bと、第3俯瞰映像生成部117cと、を備える。第1俯瞰映像生成部117aは、第1カメラ11a~11dにより取得される映像(第1カメラ映像11G)を、移動装置10を俯瞰する仮想的な俯瞰視点から視た映像に視点変換することにより第1俯瞰映像G1を生成する。第2俯瞰映像生成部117bは、第2カメラ12により取得された奥行方向の深度情報を含む映像を、俯瞰視点から視た映像に視点変換することにより第2俯瞰映像G2を生成する。第3俯瞰映像生成部117cは、第1俯瞰映像G1に含まれるマーカ35と第2俯瞰映像G2に含まれるマーカ35との相対的な位置関係に基づいて第2俯瞰映像G2を補正し、第1俯瞰映像G1に補正された第2俯瞰映像G2を投影することにより3次元情報を含む第3俯瞰映像G3を生成する。
【0061】
俯瞰映像提示システム1によれば、3次元情報を含む俯瞰映像を生成することができるので、俯瞰映像において、地面と障害物とを判別可能である。移動装置10の周囲にある物体の位置をより好適に描画した映像をオペレータに提供することができる。これにより、人の立ち入りが困難な屋内の災害現場などにおいて、移動装置10等のように、遠隔操作により移動可能な遠隔移動装置を操作して災害現場の復旧作業及び調査などを行う際、遠隔移動装置の周囲環境に対するオペレータの認識の誤り、遠隔移動装置の障害物への衝突を容易に回避することでき、災害現場の復旧作業及び調査の安全性を高めることができる。
【0062】
また、俯瞰映像提示システム1において、第3俯瞰映像生成部117cは、3次元情報に基づいて、第3俯瞰映像G3における地面から所定の閾値以上の高さ及び所定の閾値以下の深さの障害物を強調表示する。これにより、移動装置10の周囲にある障害物の位置をより好適にオペレータに提示することができる。
【0063】
以上、本発明の実施形態を説明したが、この実施形態の内容によって実施形態が限定されるものではない。例えば、第2カメラ12は、2つ以上設けられてもよい。また、本実施形態において、第1カメラ11a~11dは、魚眼レンズを備える魚眼カメラであるが、第2カメラ12と同様にステレオカメラを用いてもよい。この場合においても、上述した方法によって、第1カメラが撮影した映像に基づいて生成された第1俯瞰映像に、第2カメラが撮影した映像に基づいて生成された第2俯瞰映像を投影することができる。
【符号の説明】
【0064】
1 俯瞰映像提示システム
2 走行面
3 物体
5 通信ネットワーク
10 移動装置
11a~11d 第1カメラ
11G 第1カメラ映像
12 第2カメラ
12G 第2カメラ映像
13 通信部
14 アクチュエータ
15 記憶部
16 制御部
21 ロボット座標系
23 第1カメラ座標系
25 第2カメラ座標系
27 第1カメラ画像座標系
29 第2カメラ画像座標系
31 仮想カメラ画像座標系
33 仮想カメラ
33G 仮想カメラ映像
35 マーカ
40 物体
41 障害物
100 情報処理装置
111 通信部
113 表示部
115 記憶部
117 制御部
117a 第1俯瞰映像生成部
117b 第2俯瞰映像生成部
117c 第3俯瞰映像生成部
G1 第1俯瞰映像
G2 第2俯瞰映像
G3 第3俯瞰映像
図1
図2
図3
図4
図5
図6
図7
図8