IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ サ−コス コーポレイションの特許一覧

特許7185032迅速な展開及び標的航空機を無力化するための固定された空中対抗手段
<>
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図1
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図2
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図3
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図4
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図5
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図6A
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図6B
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図7
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図8A
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図8B
  • 特許-迅速な展開及び標的航空機を無力化するための固定された空中対抗手段 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-11-28
(45)【発行日】2022-12-06
(54)【発明の名称】迅速な展開及び標的航空機を無力化するための固定された空中対抗手段
(51)【国際特許分類】
   B64C 27/08 20060101AFI20221129BHJP
   B64C 39/02 20060101ALI20221129BHJP
   F41H 13/00 20060101ALI20221129BHJP
   B64D 47/08 20060101ALI20221129BHJP
【FI】
B64C27/08
B64C39/02
F41H13/00
B64D47/08
【請求項の数】 30
(21)【出願番号】P 2021518634
(86)(22)【出願日】2019-10-03
(65)【公表番号】
(43)【公表日】2022-01-13
(86)【国際出願番号】 US2019054541
(87)【国際公開番号】W WO2020072801
(87)【国際公開日】2020-04-09
【審査請求日】2022-10-03
(31)【優先権主張番号】16/151,289
(32)【優先日】2018-10-03
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】518429137
【氏名又は名称】サ-コス コーポレイション
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】スミス,フレイザー エム.
(72)【発明者】
【氏名】オリヴィエ,マーク エックス.
【審査官】塚本 英隆
(56)【参考文献】
【文献】米国特許出願公開第2018/0257780(US,A1)
【文献】国際公開第2018/016017(WO,A1)
【文献】米国特許出願公開第2017/0059692(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
B64C 27/08
B64C 39/02
F41H 13/00
B64D 47/08
(57)【特許請求の範囲】
【請求項1】
標的航空機の無力化のためのシステムであって、
1つ以上の反撃無人航空機(UAV)と、
飛行中の標的航空機を検出するよう動作可能な少なくとも1つの検出センサを含み、検出した標的航空機に関連するコマンドデータを前記1つ以上の反撃UAVに提供するよう動作可能な航空機検出システムと、
前記1つ以上の反撃UAVを構造体につなぐ航空機捕捉対抗手段と、
を含み、
前記コマンドデータの受信に応答して、前記1つ以上の反撃UAVは、前記標的航空機を捕捉するために前記航空機捕捉対抗手段を収納位置から展開位置に動かすよう動作可能である、システム。
【請求項2】
前記1つ以上の反撃UAVのそれぞれは、飛行体と、該飛行体の周りで支持された飛行制御システムとを含み、該飛行制御システムは前記反撃UAVの飛行を促進するよう動作可能である、請求項1に記載のシステム。
【請求項3】
前記1つ以上の反撃UAVのそれぞれは、前記標的航空機の位置を検出するように構成された少なくとも1つのオンボードセンサを含み、前記飛行制御システムは、前記標的航空機の検出された位置に基づいて前記反撃UAVの自律的な飛行を制御するよう動作可能なフライトコントローラを含む、請求項2に記載のシステム。
【請求項4】
前記少なくとも1つのオンボードセンサは、前記飛行体に可動に連結されたカメラを含み、該カメラは、前記標的航空機の検出された位置に従って該カメラのポインティング位置を変更するように動作可能である、請求項3に記載のシステム。
【請求項5】
前記航空機検出システムは、空域を監視するために地上構造体に関連する外部航空機検出システムを含み、前記少なくとも1つの検出センサは、複数の標的航空機を検出するように構成された複数の検出センサを含む、請求項1に記載のシステム。
【請求項6】
前記航空機捕捉対抗手段により前記構造体につながれた複数の反撃UAVをさらに含み、それぞれの反撃UAVは通信装置を含み、該通信装置は他の反撃UAVの他の通信装置と通信可能に連結されて、該複数の反撃UAVのそれぞれの位置を通信することにより、該複数の反撃UAVの協調飛行を促進する、請求項1に記載のシステム。
【請求項7】
前記航空機捕捉対抗手段は、前記標的航空機の少なくとも1つの回転プロペラ装置の動作を妨げるように構成された少なくとも1つの可撓性の絡み要素を含む、請求項1に記載のシステム。
【請求項8】
前記少なくとも1つの可撓性の絡み要素は、ネット、フィラメント、モノフィラメント、編み込みフィラメント、テンドリル、繊維、ストリング、コード、ストランド、スレッド、ロープ又はワイヤのうちの少なくとも1つを含む、請求項7に記載のシステム。
【請求項9】
前記1つ以上の反撃UAVのそれぞれは、前記1つ以上の反撃UAVに電力を供給するための外部電源に電気的に連結されている、請求項1に記載のシステム。
【請求項10】
前記航空機捕捉対抗手段はネットを含む、請求項1に記載のシステム。
【請求項11】
前記ネットは、前記1つ以上の反撃UAVの飛行に応答して、収納位置から展開位置に移動可能に構成されている、請求項10に記載のシステム。
【請求項12】
前記構造体に関連する少なくとも1つの収容装置をさらに含み、該少なくとも1つの収容装置は前記ネットが収納位置にある場合に前記ネットの少なくとも一部を収容し、前記ネットが前記展開位置に動かされた場合に前記ネットの展開を促進するように構成されている、請求項11に記載のシステム。
【請求項13】
前記構造体に関連する少なくとも1つのドラムリール装置をさらに含み、該少なくとも1つのドラムリール装置は引っ込め可能なテザーにより前記ネットに連結され、前記ネットが前記展開位置に動かされた場合に該引っ込め可能なテザーを介して前記ネットの展開を促進するように動作可能である、請求項10に記載のシステム。
【請求項14】
前記ネットにより前記構造体につながれた複数の反撃UAVをさらに含み、該複数の反撃UAVは、前記ネットが前記展開位置に動かされた後で、前記ネットを検出された前記標的航空機の位置に基づいて捕捉位置に協調的に動かすよう動作可能である、請求項10に記載のシステム。
【請求項15】
前記構造体に関連するとともに前記ネットに連結される少なくとも1つの動的なネット支持機構をさらに含み、該少なくとも1つの動的なネット支持機構は、前記ネット及び前記反撃UAVが前記少なくとも1つの動的なネット支持機構と共に移動するように前記構造体に対して第1の方向に移動するよう動作可能である、請求項10に記載のシステム。
【請求項16】
前記構造体に関連するレールシステムをさらに含み、前記少なくとも1つの動的なネット支持機構は、該レールシステムに沿って協調的に移動可能な少なくとも2つのネット支持機構を含む、請求項15に記載のシステム。
【請求項17】
前記ネットにつながれ且つ前記ネットを前記第1の方向とは異なる第2の方向に協調的に動かすよう動作可能な複数の反撃UAVをさらに含む、請求項15に記載のシステム。
【請求項18】
前記ネットにつながれ且つ外周ネット領域を定義するために前記ネットを前記展開位置で支持するよう協調的に動作可能な複数の反撃UAVをさらに含む、請求項10に記載のシステム。
【請求項19】
長期の飛行時間を促進し且つ前記外周ネット領域を維持するために前記反撃UAVのそれぞれに電気的に連結された少なくとも1つの外部電源をさらに含む、請求項18に記載のシステム。
【請求項20】
前記コマンドデータは、航空機捕捉対抗手段展開コマンドデータ、標的航空機検出データ、反撃UAV制御データ又はそれらの組み合わせのうちの少なくとも1つを含む、請求項1に記載のシステム。
【請求項21】
標的航空機の無力化のための方法であって、
飛行中の標的航空機を検出するステップと、
航空機捕捉対抗手段を展開位置で維持するために1つ以上の反撃無人航空機(UAV)を動作させるステップであって、該航空機捕捉対抗手段は該1つ以上の反撃UAVを構造体につなげる、ステップと、
前記航空機捕捉対抗手段で前記標的航空機を捕捉するステップと、
を含む方法。
【請求項22】
前記標的航空機を検出するステップは、航空機検出システムで動的飛行位置を追跡することをさらに含む、請求項21に記載の方法。
【請求項23】
前記1つ以上の反撃UAVを動作させるステップは、複数の反撃UAVを動作させることを含み、前記方法は、協調飛行を促進するために複数の反撃UAVに位置データを通信するステップであって、該複数の反撃UAVは前記航空機捕捉対抗手段により共につながれている、ステップをさらに含む、請求項21に記載の方法。
【請求項24】
前記航空機捕捉対抗手段を収納位置から展開位置に展開するために前記複数の反撃UAVを協調飛行させるステップをさらに含む、請求項23に記載の方法。
【請求項25】
前記航空機捕捉対抗手段を収納位置から展開位置に展開するために前記1つ以上の反撃UAVを協調飛行させるステップをさらに含む、請求項21に記載の方法。
【請求項26】
前記標的航空機を検出するステップは、前記標的航空機を自律的に検出することと、前記標的航空機を自律的に追跡することとを含む、請求項21に記載の方法。
【請求項27】
検出された前記標的航空機に関連するコマンドデータを航空機検出システムから前記1つ以上の反撃UAVに送信するステップをさらに含む、請求項21に記載の方法。
【請求項28】
前記複数の反撃UAVの長期の飛行時間のために外部電源から前記複数の反撃UAVに電力を供給するステップをさらに含む、請求項21に記載の方法。
【請求項29】
前記標的航空機を検出するステップは、前記標的航空機に関連する位置データを生成するために、地上構造体に関連する複数の検出センサを動作させることをさらに含み、前記方法は、前記1つ以上の反撃UAVに前記位置データを継続的に通信するステップをさらに含む、請求項21に記載の方法。
【請求項30】
前記標的航空機を検出するステップは、前記標的航空機に関連する位置データを生成するために複数の検出センサを動作させることをさらに含み、
前記方法は、前記複数の検出センサに関連する信頼性階層に基づいて、1つ以上の検出センサに関連する位置データを除外するステップをさらに含む、請求項21に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は標的航空機を無力化するための対抗手段を有する航空機に関する。
【背景技術】
【0002】
マルチロータドローン、固定翼ドローン及び傾斜ロータドローン等の無人航空機(UAV)は過去10年間でますます人気が高まっている。この人気は、常に性能を向上させていることとあいまって、偶発的又は意図的であろうと他の航空機又は構造体との衝突という点で脅威となっている。また、政府の施設、国際空港、原子力又は他の発電所、石油化学施設、貯水池、スポーツイベント及び他の人口が多いか又は重要なインフラ又は場所等の価値の高い標的に対するテロ攻撃等より深刻な脅威がますます現実化し且つ可能性が高まっている。そのような脅威に寄与する要因は、ドローンの高速性、その小さな形跡及び多数の攻撃性ドローンからの同時的且つ秩序的攻撃の可能性及びそれらのかなり大きなペイロードを行う能力等である。これらの要因は、ドローンは比較的安価で、入手が容易で、携帯性が高く、機動性が高いという要因によって悪化している。さらに、消費者用ドローンは、耐久性、射程及びペイロード輸送能力の点で劇的に改善されており(例えば、一部の消費者用ドローンは最大で50ポンドまで運搬でき、他のより高価で高度なドローンは最高で400ポンドまで運搬できる)、これは、大量の爆発物、飛翔体、生物及び/又は化学兵器を運搬するのに十分である。多くの場合、意図的な攻撃のために操作されるドローンはわずか数秒のうちに保護された周辺に打ち上げて飛ばすことができ、攻撃するドローンを検知し、無力化するための時間が最小限にとどめられる。
【0003】
これらの全ての考慮を念頭に置いて、プログラマ/オペレータによる非常に小さいコスト及び労力で、1つ以上の安価な敵対ドローンを自律的に又は手動で保護領域内に飛ばしながら、大きなダメージ及び/又は損害を潜在的に与えられ得る。既存の技術でそのような脅威に対処することは、特に、数百エーカー又は平方キロに及ぶ地所に関連する比較的大きな空域を保護しようとする場合には非常に費用がかかり且つ複雑になり得る。
【発明の概要】
【課題を解決するための手段】
【0004】
本開示は標的航空機の無力化のためのシステムを説明する。システムは、1つ以上の反撃無人航空機(UAV)と、飛行中の標的航空機(target aerial vehicle)を検出するよう動作可能な少なくとも1つの検出センサを含み、、検出した標的航空機に関連する(位置データを含むことができる)コマンドデータを前記1つ以上の反撃UAVに提供するよう動作可能な航空機検出システムと、を含む。システムは、前記1つ以上の反撃UAVと構造体との間につながれた航空機捕捉対抗手段(aerial vehicle capture countermeasure)を含む。前記コマンドデータの受信に応答して、前記1つ以上の反撃UAVは、前記標的航空機を捕捉することにより前記標的航空機を無力化するために、前記航空機捕捉対抗手段を収納位置から展開位置に動かすよう動作可能である。
【0005】
1つの例では、前記1つ以上の反撃UAVのそれぞれは、飛行体と、反撃UAVの飛行を制御する飛行制御システムとを含む。
【0006】
1つの例では、前記1つ以上の反撃UAVのそれぞれは、前記標的航空機の位置を検出するように構成された少なくとも1つのオンボードセンサを含み、前記飛行制御システムは、前記標的航空機の検出された位置に基づいて前記反撃UAVの自律的な飛行を制御するよう動作可能なフライトコントローラを含むことができる。
【0007】
1つの例では、前記少なくとも1つのオンボードセンサは、前記飛行体に可動に連結されたカメラを含み、該カメラは、前記標的航空機の検出された位置に従って該カメラのポインティング位置を変更するように動作可能である。
【0008】
1つの例では、前記航空機検出システムは、空域を監視するために地上構造体に関連する外部航空機検出システムを含み、前記少なくとも1つの検出センサは、複数の標的航空機を検出するように構成された複数の検出センサを含む。
【0009】
1つの例では、前記航空機捕捉対抗手段により前記構造体につながれた複数の反撃UAVをさらに含む。それぞれの反撃UAVは通信装置を含み、該通信装置は他の反撃UAVの他の通信装置と通信可能に連結されて、該複数の反撃UAVのそれぞれの位置を通信することにより、該複数の反撃UAVの協調飛行を促進する。
【0010】
1つの例では、前記航空機捕捉対抗手段は、前記標的航空機の少なくとも1つの回転プロペラ装置の動作を妨げるように構成された少なくとも1つの可撓性の絡み要素を含む。
【0011】
1つの例では、前記少なくとも1つの可撓性の絡み要素は、ネット、フィラメント、モノフィラメント、編み込みフィラメント、テンドリル、繊維、ストリング、コード、ストランド、スレッド、ロープ又はワイヤのうちの少なくとも1つを含む。
【0012】
1つの例では、前記1つ以上の反撃UAVのそれぞれは、前記1つ以上の反撃UAVに電力を供給するための、前記構造体に関連する外部電源に電気的に連結されている。
【0013】
1つの例では、前記航空機捕捉対抗手段はネットを含む。
【0014】
1つの例では、前記ネットは、前記1つ以上の反撃UAVの飛行に応答して、収納位置から展開位置に移動可能に構成されている。
【0015】
1つの例では、システムは前記構造体に関連する少なくとも1つの収容装置を含むことができ、該少なくとも1つの収容装置は前記ネットが収納位置にある場合に前記ネットの少なくとも一部を収容し、前記ネットが前記展開位置に動かされた場合に前記ネットの展開を促進するように構成されている。
【0016】
1つの例では、システムは、前記構造体に関連する少なくとも1つのドラムリール装置を含み、該少なくとも1つのドラムリール装置は引っ込め可能なテザー(retractable tether)により前記ネットに連結でき、前記ネットが前記展開位置に動かされた場合に該引っ込め可能なテザーを介して前記ネットの展開を促進するように動作可能である。
【0017】
1つの例では、システムは、前記ネットにより前記構造体につながれた複数の反撃UAVをさらに含む。該複数の反撃UAVは、前記ネットが前記展開位置に動かされた後で、前記ネットを検出された前記標的航空機の位置に基づいて捕捉位置に協調的に動かすよう動作可能である。
【0018】
1つの例では、システムは、前記構造体に関連するとともに前記ネットに連結される少なくとも1つの動的なネット支持機構をさらに含み、該少なくとも1つの動的なネット支持機構は、前記ネット及び前記反撃UAVが前記少なくとも1つの動的なネット支持機構と共に移動するように前記構造体に対して第1の方向に移動するよう動作可能である。
【0019】
1つの例では、システムは、前記構造体に関連するレールシステムをさらに含み、前記少なくとも1つの動的なネット支持機構は、該レールシステムに沿って協調的に移動可能な少なくとも2つのネット支持機構を含むことができる。
【0020】
1つの例では、複数の反撃UAVは前記ネットを前記第1の方向とは異なる第2の方向に協調的に動かすよう動作可能である。
【0021】
1つの例では、複数の反撃UAVは、外周ネット領域(perimeter net area)を定義するために前記ネットを前記展開位置で支持するよう協調的に動作可能である。
【0022】
1つの例では、システムは、長期の飛行時間を促進し且つ前記外周ネット領域を維持するために前記反撃UAVのそれぞれに電気的に連結された少なくとも1つの外部電源をさらに含む。
【0023】
1つの例では、前記コマンドデータは、航空機捕捉対抗手段展開コマンドデータ、標的航空機検出データ、反撃UAV制御データ又はそれらの組み合わせのうちの少なくとも1つを含む。
【0024】
本開示は、標的航空機の無力化のためのシステムを説明し、システムは、複数の反撃無人航空機(UAV)と、飛行中の標的航空機を検出するよう動作可能な少なくとも1つの検出センサを含む航空機検出システムと、前記複数のUAVを互いにつなぐネットと、構造体に関連する少なくとも1つのネット収容装置であって、該少なくとも1つの収容装置は前記ネットが収納位置にある場合に前記ネットの少なくとも一部を収容し、検出された標的航空機に基づく前記複数の反撃UAVの協調飛行に応答して前記ネットが展開位置に動かされた場合に前記ネットの展開を促進するように構成されている、少なくとも1つのネット収容装置と、を含む。
【0025】
1つの例では、本開示は標的航空機の無力化のための方法を説明する。方法は、飛行中の標的航空機を検出するステップと、航空機捕捉対抗手段を展開位置で維持するために1つ以上の反撃無人航空機(UAV)を動作させる(航空機捕捉対抗手段は該1つ以上の反撃UAVを構造体につなげるか又はすなわち、1つ以上の反撃UAVは航空機捕捉対抗手段を介して構造体につながれている)ステップと、前記航空機捕捉対抗手段で前記標的航空機を捕捉することにより前記標的航空機を無力化するステップと、を含む。
【0026】
1つの例では、方法は、協調飛行と、前記標的航空機の協調的な無力化とを促進するために複数の反撃UAVに位置データを通信するステップをさらに含む。該複数の反撃UAVは前記航空機捕捉対抗手段により共につなぐことができる。
【0027】
1つの例では、方法は、前記航空機捕捉対抗手段を収納位置から展開位置に展開するために前記複数の反撃UAVを協調飛行させるステップをさらに含む。
【0028】
1つの例では、方法は、前記航空機捕捉対抗手段を収納位置から展開位置に展開するために前記複数の反撃UAVを協調飛行させるステップをさらに含む。
【0029】
1つの例では、方法は、検出された前記標的航空機に関連するコマンドデータを航空機検出システムから前記1つ以上の反撃UAVに送信するステップを含む。
【図面の簡単な説明】
【0030】
本発明の特徴及び利点は、添付の図面と併せて以下の詳細な説明から明らかになるであろう。詳細な説明及び添付の図面は共に本発明の特徴を一例として示す。
図1図1は、本開示の一例に係る、複数の反撃UAVで標的航空機を検出し、無力化するためのシステムを図式的且つ概略的に示す図である。
図2図2は、本開示の一例に係る、図1のシステムの潜在的な検出及び通信態様を示すブロック図である。
図3図3は、本開示の一例に係る、(例えば、図1内の等の)反撃UAVの潜在的な検出及び動作態様を示すブロック図である。
図4図4は、本開示の一例に係る、航空機捕捉対抗手段を支持する複数の反撃UAVのシステムを示すブロック図である。
図5図5は、編隊又は他の協調的な構成にある複数の反撃UAVの制御ための計算の方法に基づいて、協調飛行に利用可能であり、航空機捕捉対抗手段を支持可能な複数の反撃UAVを示す。
図6A図6Aは、本開示の一例に係る、収納位置にある航空機捕捉対抗手段を支持する複数の反撃UAVで標的航空機を無力化するためのシステムを示す。
図6B図6Bは、展開位置にある航空機捕捉対抗手段を支持する複数の反撃UAVを示す、図6Aのシステムを示す。
図7図7は、本開示の一例に係る、展開位置にある航空機捕捉対抗手段を支持する複数の反撃UAVで標的航空機を無力化するためのシステムを示す。
図8A図8Aは、本開示の別の例に係る、収納位置にある航空機捕捉対抗手段を支持する複数の反撃UAVを含む、標的航空機を無力化するためのシステムを示す。
図8B図8Bは、展開位置にある航空機捕捉対抗手段を支持する複数の反撃UAVを示す、図8Aのシステムを示す。
図9図8Aは、本開示の一例に係る、展開位置にある航空機捕捉対抗手段を支持する複数の反撃UAVを含む、標的航空機を無力化するためのシステムを示す。
【発明を実施するための形態】
【0031】
以下、示された例示の実施形態について参照する。これを表す際に、特定の言語が使用される。ただし、これにより、本発明の範囲が制限されることは、意図されていないことが理解される。
【0032】
本願において、「実質的に」という用語は、作用、特徴、特性、状態、構造、項目若しくは結果の完全な又はほぼ完全な範囲又は程度を表す。例えば、「実質的に」囲まれた物体は、完全に囲まれている物体又はほぼ完全に囲まれている物体を意味する。ある場合には、絶対的完全性からの正確な許容可能な逸脱の程度は、特定の文脈に依存する。ただし、一般には、完全性の近さは、絶対的及び完全な完成が得られた場合のような、同じような全体的結果が得られる。「実質的に」という用語は、否定の意味で使用される場合も同様に利用することができ、作用、特徴、特性、状態、構造、項目、もしくは結果の完全な又はほぼ完全な欠如を表す。
【0033】
本願で使用される「隣接」という用語は、2つの構造又は要素の近接性を意味する。特に、「隣接」していると定められる要素は、境界を接しても、接続されてもよい。そのような素子は、相互に接近又は近づいていてもよく、必ずしも互いに接触している必要はない。ある場合には、正確な近接の度合いは、特定の状況に依存する。
【0034】
本技術をさらに記載するため、図面を参照して実施例について説明する。
【0035】
図1は、例示的な、外部航空機検出システム100及び複数の反撃UAV、例えば反撃UAV102a及び102b(例えば、2つ以上の反撃UAV;図6A図9参照)(本明細書では、最大でn個の反撃UAVを利用でき且つ想定される)を用いて空域Aを保護するためのシステム及び方法を概略的且つ視覚的に示す。外部航空機検出システム100は、空域Aに侵入又は接近し、空域Aに対して脅威であると判断され得る1つ以上の標的航空機(例えば、標的航空機104a及び104bを参照)を無力化する(n個の標的航空機を無力化できる)目的で、反撃UAV102a又は102bのうちの少なくとも一方又はその両方と通信するように構成できる。図2は、外部航空機検出システム100の構成要素及び標的航空機104a及び/又は104bの検出及びリアルタイム追跡を行い、反撃UAV102a及び102bにコマンドデータを通信するその能力を示すブロック図である。コマンドデータは、標的UAVの捕捉の促進に関連する任意のデータを含むことができ、限定されないが、標的UAVの位置に関するデータを含む。図3は、標的航空機104a及び104bのうちの1つ以上又は両方を無力化ための、反撃UAV102a(又は複数の反撃UAVのうちのいずれか1つ)の制御システム及び制御システムがどのように外部航空機検出システム100及び他の反撃UAVと共に動作可能かを示すブロック図である。最後に、図4は、構造体又は地面につながれた航空機捕捉対抗手段を支持する複数の反撃UAV302a~n(又は102a又は102bのうちのいずれか1つ)のシステムを示すブロック図である。
【0036】
概観として、また図1及び図2をとりわけ参照した一例において、システムは、空域A内のインフラ及び/又は資産(例えば、建物、民間航空機、公共公益設備、人員)に対する脅威となり得る飛来する標的航空機104a及び104b(又はその他の)を検出するように構成された外部航空機検出システム100を含むことができる。外部航空機検出システム100は、検出された標的航空機104a若しくは104又はその両方に関する情報、例えば、時間と共に定期的に又はリアルタイムに追跡されたそれらの位置、それらの高度、それらの軌跡、速度及び標的航空機104a及び104bに関連する任意の他の検出又は取得された情報を取得及び通信するように構成することができる。この情報が一旦取得されると、この情報は、下記でより詳細に説明するように、標的航空機104a及び104bを捕捉することにより標的航空機104a及び104bを無力化するために、反撃UAV102a及び102bが航空機捕捉対抗手段134(例えば、少なくとも1つの構造体137に、地面に、地上構造体につながれるか又は固定されたネット)を展開又は配置することができるように、少なくとも1つの反撃UAV102a若しくは102b又はその両方に通信することができる。「標的航空機の無力化のために固定」とは、すなわち、航空機捕捉対抗手段134内に飛行する検出された標的航空機の飛行又は動作を無力化するために、反撃UAV102a及び102bが航空機捕捉対抗手段134を介して構造体又は地面に固定されているか又はつながれていることを意味する。 標的航空機104a及び104bは、限定されないが、自律的にまたは手動で動作可能な無人のシングル又はマルチロータUAV又は固定翼UAV(又は傾斜ロータUAV)等の任意の種類のものであり得る。あるいは、標的航空機104a及び104bは、有人ヘリコプター、有人プロペラ機又は他の有人航空機等の有人の乗り物であり得る。前述したように、標的航空機104a及び104b(例えば、マルチロータUAV)は、空域で最大数キロメートル垂直に上昇/降下することができ、長時間滞空でき、非常に機敏、高速で、障害物の周囲を操縦可能であり、視覚/IR/レーダーシグニチャが小さく、実質的なペイロードを輸送できるため大きな脅威となり得る。したがって、比較的短い時間枠(例えば、数秒)内でそれらの位置及び速度を迅速に検出し且つ追跡することは空域Aの侵入を効果的に防止するために、また、より重要なこととして監視空域Aに関連する資産を保護するために極めて重要である。
【0037】
外部航空機検出システム100は、地上構造、車両(例えば、陸上、海上又は空中)、可動プラットフォーム又は外部航空機検出システム100と関連して本明細書で説明する多くの構成要素を支持可能な他のプラットフォームにより支持されるか又は関連できる。外部航空機検出システム100は、ある領域の周りで又は異なる構造の周囲で互いに離隔された多数のセンサ又はプラットフォームを含むことができ、各センサ又はプラットフォームはセンサアレイからの/センサアレイへの情報を統合/融合するために、標的の検出、特定及び/又は追跡の確率及び精度を高めるために、標的航空機に関連するデータを処理するために及び1つ以上の反撃UAVにコマンドデータを通信するために互いに及び/又は中央コンピュータシステムに通信可能に連結できる。なお、複数の航空機検出システム(例えば、100)は、より大きな空域を保護するために領域の周囲に組み込みこむことができ、所定の空域を協調的に監視及び保護するために、他の航空機検出システムのコンピュータシステムに通信可能に連結されたコンピュータシステムをそれぞれが有することができる。
【0038】
図2により詳細に示すように、外部航空機検出システム100は、標的航空機104a及び104bに関連するデータ(例えば、速度、地理位置、高度、軌道又は飛行経路等)を収集及び生成するように動作可能な少なくとも1つの検出センサ106a(図示していないが、当業者に理解されるように、最大でn(任意の)個の検出センサが考えられる)を含むことができる。例えば、検出センサ106aは、標的航空機104a~nに関連するデータを収集及び生成するように動作可能な、音響センサ108a等の1つ以上の音響センサと、カメラ110a等の1つ以上のカメラとを含むことができる。検出センサ106aは、それぞれがCPU112に連結され、標的航空機の方位角/傾斜角を測定する能力を有するレーダー装置107a、LIDAR装置109a及び/又は双眼鏡111a等の他の標的取得資産を含むことができる。検出センサ106aは、離陸前の標的航空機を検出するために用いられる電磁シグニチャセンサ又はLWIRからSWIRから可視スペクトルまでの電磁スペクトルの異なる部分にわたって動作するカメラ等の他のセンサをさらに含むことができる。他の想定されるセンサには、検出器(例えば、カメラ)を備えた狭小バンドの発光装置であって、光エミッタのそれに近い検出バンドを有する発光装置及び/又は狭小バンド光エミッタ(例えば、UV源)等他のセンサであって、検出を容易にする電磁スペクトルの異なる部分において対象蛍光を発光させるセンサが含まれる。なお、検出センサ106aは、複数の標的航空機を同時に検出してもよい。CPU112(又は複数のCPU)は、どのセンサが標的航空機に関して最も信憑性又は信頼性があるかを決定するように構成され、その後、特定の標的航空機を追跡することに他のセンサを割り当てずに、そのようなセンサの1つ以上を割り当て、標的航空機を追跡及び監視し続けるように構成される。この概念は、「信頼性階層」に関して以下でさらに説明する。
【0039】
一部の例では、音響センサ110aは、1つ以上のマイクロホンを有し、標的航空機104aを大きな距離(例えば、最大500メートル、又はそれ以上)で検出し、追跡することができる。UAV形跡のデータベースを取得又は構築し、航空機検出システム110aのCPU112によりアクセスして、検出された標的航空機104aの存在及び種類を定めることができる。この方法では、CPU112は、プロセッサを使用して、飛行可能性のある任意の(友好的な)反撃UAV102a及び/又は102bの痕跡を除去又は無視する一方、標的航空機104a~nの痕跡を検出できる(「友好的な」及び「敵対する」UAVが異なるタイプのUAVである場合、又は、例えば、CPU112が反撃UAVの既知の位置に基づいて、2つの間を区別するようにプログラムされていると仮定する場合)。
【0040】
一部の例では、1つ以上のセンサ若しくはカメラ(例えば、センサ114a参照;なおn個のセンサが想定される)(例えば、IR、光学、CCD、CMOS)を、外部航空機検出システム100の検出センサ(例えば、検出センサ106a参照;なおn個のセンサが想定される)の1つ以上として組み込むことができる。例えば、赤外線(IR)カメラをシステムに実装し、特定の空域に向けて誘導し、侵入の可能性のある標的航空機を視認することができる。IRカメラは、このシステムにおいて有用である。これらは、他のセンサ(例えば、光学カメラ)により生じる環境の課題の解決の支援ができるためである。何故なら、IRカメラは、暗所、霧状、ほこり状又は曇った状態で動作することができるからである。このシステムで使用されるIRカメラは、標的航空機(例えば、UAV)からのIR信号が、飛行中の鳥類の信号とは大きく異なるという、追加の利点を有する。短波赤外(SWIR)スペクトルに基づくIRカメラは、反射性で、跳ね返る物体であり、可視波長と同様の方法で、対象と相互作用することができる。その結果、SWIR光は、そのイメージに影とコントラストを有する。SWIRカメラからの画像は、解像度及び細部において可視画像と同等である。夜空の輝き又は夜光と呼ばれる大気の現象は、星光よりも5~7倍の照度の光を放射し、そのほとんどは、SWIR波長に含まれる。このため、SWIRカメラでは、月のない夜でも鮮明に物体を見ることができる。そのようなSWIRカメラを、本外部航空機検出システム100(及び/又は反撃UAV)に組み込むことができる。長波長赤外(LWIR)カメラは、SWIRカメラよりも太陽からの放射線の影響を受けにくいため、屋外での使用により適切である。このように、LWIRカメラを外部航空機検出システム100に組み込み、屋外利用の利点を得て、標的航空機を検出し、追跡することができる。光学カメラ(例えば、HD、4K)のような他のカメラも、外部航空機検出システム100の検出センサ106aとして組み込み、標的航空機104a及び104b(又は任意の他のもの)の動的位置の検出及び追跡を支援することができる。
【0041】
一部の例では、1つ以上の望遠レンズがSWIR及びLWIRカメラ及び/又は光学カメラの1つ以上と共に設けられ、外部航空機検出システム100に関連する高解像度モータジンバル(例えば、2軸又は3軸ジンバル)上に取り付けられ、ある場合には、使用センサの種類に応じて、角度位置及び/又は方位角の高さを含む、標的航空機104a~nの動的位置の検出及び追跡が支援される。本願に記載された2つ以上の検出センサを使用して、標的航空機の範囲を計算することができる。また、特定のカメラ(例えば、IR、光学)をオンボード(又は遠隔サポート)のレーザレンジファインダと組み合わせて使用して、三次元空間(例えば、距離、方位角及び仰角)における標的航空機の位置を決定することができる。そのような望遠レンズ及びジンバルは、各々、関連するカメラのポインティング位置を確立する(及びポインティング位置を動的に修正する)ように作動され、従って、(例えば)特定のカメラの視野(FOV)105a(図1)が調整され、監視された標的航空機104aを、カメラの略中心に維持できる(外部航空機検出システム100のカメラ又はFOV105bの略中心に配置されている標的航空機104bについても同様である)。これらの望遠鏡レンズ及びジンバルは、手動又は自動で(以降に示す)作動され、特定の標的航空機の動的飛行位置又は経路を連続的に追跡する。また、ある例では、360°のカメラ装置(IRカメラ又は光学カメラを有する)を、外部航空機検出システム100と一体化して、全360°の空域を監視してもよい。これは、そのような空域を監視する動作に、ジンバルを必要としても、しなくてもよい。一部の例では、標的の位置(範囲、方位角及び高度)及び/又は地理的位置及び速度を追跡及び特定するためにレーダー及びLIDARが用いられ得る。
【0042】
外部航空機検出システム100のCPU112により保管され処理されるコンピュータビジョンアルゴリズムは、標的航空機104a、104bの自動検出と追跡のために実装され得る。そのようなコンピュータビジョンアルゴリズムは、静止背景から移動物体を「引き抜き」、これを形状により分類できる(すなわち、特徴検出)。標的航空機104a~nの分類の他の機構には、ニューラルネットワークを使用することが含まれ、これは、人間の脳の動作を模倣するように設計されたコンピュータアルゴリズムであり、特定の検出された標的航空機104a~nに似たプロファイルの既知の/保管された画像を認識するように訓練される。当業者には、業界で知られるYOU ONLY LOOK ONCE(YOLO)検出アーキテクチャによって提供されるような、迅速検出と組み合わされた「畳み込みニューラルネットワーク」(CNN)を含む、各種既知のアルゴリズムを実装して、この機能を達成することが認識される。いったん、コンピュータビジョンシステム(例えば、CNN、YOLO)により、標的航空機が検出されると、カメラを支持するジンバル配向を使用して、標的航空機の方位角及び高さが決定できる。複数のコンピュータビジョンシステムからの情報を組み合わせて、方位角及び仰角に加えて、範囲が計算される。さらに、コンピュータビジョンシステムを使用して収集された対象の分類及び位置情報は、別のセンサ(例えば、106a)から収集された情報と組み合わされ/融合され、検出の可能性及び/又は標的航空機の分類の精度、及び/又は、標的航空機の位置の追跡の可能性を高められる。
【0043】
一部の例では、位相ベースのビデオモーション処理技術を、外部航空機検出システム100に組み込むことができる(例えば、CPU112により処理されるソフトウェア)。位相ベースのビデオモーション処理技術は、そうでなければ検出できないような、極めて小さな動きを増幅する。この技術は、2015年7月1日に出願された米国特許公開公報US20170000356A1号にさらに記載されている。本文献は、本願の参照により取り入れられる。従って、標的航空機(例えば、UAV)に固有の小さな振動運動を検出することができ、これは、カメラのみを使用して、標的航空機を検出し追跡することに伴う問題を克服できる。例えば、同様に米国特許公開公報US20170000356A1号に記載されているように、プロセッサ(例えば、CPU112)により実行される方法では、入力としてビデオを受信し(例えば、標的航空機のビデオ)、微妙な変化及び微小な動きが誇張される。本方法では、動きの増幅のために特徴物の追跡、又は光学的流れ計算が実行されることはなく、単に時空間処理が使用され、一時的な変化が増幅される。このオイラーベースの方法では、固定空間領域において画素が一時的に処理され、有益な信号が明確化され、実世界のビデオにおける小さな動きが増幅される。オイラーベースの方法では、2つ以上の画像の画素値の検査から開始される。次に、この方法では、検査された画素値の時間変化が(プロセッサを用いて)定められる。この方法は、小さな時間変動のみを増幅するように設計される。この方法は、大きな時間変動に適用し得るが、この方法の利点は、標的航空機が長い範囲で検出される場合などに、小さな時間変動が提供されることである。従って、飛行中の特定の標的航空機の画像の間に、入力ビデオが小さな時間的変動を示す場合、この方法が最適化できる。この方法では、その後、画素値に信号処理が適用され得る。例えば、信号処理では、例えば、本開示の外部航空機検出システムの光学センサにより、連続画像に捕捉された標的航空機の振動のように、時間変動が小さい場合であっても、定められた時間変動が増幅できる。
【0044】
いったん、標的航空機104a、104bが(例えば、IR及び/若しくは4K光学カメラ並びに/又はレーダーのような他のセンサを使用して)ビデオの連続フレームに識別されると、標的航空機104a、104bの動的飛行位置又は経路が自動的に追跡され、異なる検知方法(例えば、カメラ及びレーダー)により提供される位置情報の融合が、カルマンフィルタ、拡張カルマンフィルタ、粒子フィルタ、又は別のベイズフィルタの変形を利用することにより、実行される。これらのフィルタは、例えば、特定の標的航空機104aの速度、位置、及び配向の予測を取り、その後、標的航空機104aがビデオの次のフレーム及び/又はレーダトラックのどこにあるかを予測することにより、作動する。その後、次のビデオフレームにおける標的航空機104aの位置が予測された位置と比較され、速度、位置、及び方向の推定が更新される。カメラ114aの1つによるそのような追跡の間、フィードバック制御ループは、(特定のカメラを支持する)ジンバルを、自動且つ連続的に調節して、外部航空機検出システム100のカメラのFOV105aの略中心に、標的航空機104aを維持できる。これは、特定の標的航空機の動的飛行位置の連続的な追跡を容易にし、又は維持する。一般的なアルゴリズムは、重心追跡、エッジ検出、特徴物ベースアルゴリズム、及び面積相関追跡を含む。カメラ及びフィルタのこのシステムを使用して、外部航空機検出システム100は、特定の標的航空機空の飛行位置又は経路をリアルタイムで検出し、追跡できる。
【0045】
実際に、外部航空機検出システム100の位置の周囲の空域に関し、最大360°の周囲を協力的かつ集合的に監視することができるように、多数の検出センサ106aを、外部航空機検出システム100の構造又はプラットフォームの周囲に配置するか又は周囲で支持して、領域(例えば、空域の被覆率の半径500メートル以上)を保護することができる。あるいは、検出センサ106aは、峡谷、又は保護領域Aに対して重要な他の特定の出口を介して、被覆率360°未満の特定の関心領域を示すように取り付けられ、構成されてもよい。
【0046】
一部の例では、外部航空機検出システム100は、レーザ又は高出力LEDのような、(上述したように標的航空機104aを継続して追跡しながら)検出された標的航空機104aに照射するように作動される、少なくとも1つの照射装置(照射装置116a参照)を有し得る。特定の照射装置116aは、ジンバル装置(例えば、3軸)に取り付けることができ、これは、一定の照射で、照射装置のポインティング位置又は方向を変更して、標的航空機104aに向かって、照射装置を連続的に誘導するように作動される。このように、コントローラ(CPU112に動作可能に結合される)は、標的航空機104aの追跡位置又は飛行経路に基づいて、ポインティング位置を制御するように作動され得る。以下に示すように、反撃UAV102a及び102bのそれぞれは、バンドパスフィルタ(又はカメラ)を有し、外部航空機検出システム100の照射装置116aにより、標的航空機104aに照射された光の狭小のバンドの周波数のみを検出できる。
【0047】
外部航空機検出システム(100)の検出センサの別の例では、望遠鏡、又は方位角センサと仰角センサとを備えた一組の人用双眼鏡を使用して、潜在的な標的航空機の位置を特定し、反撃UAV(及び/又は外部航空機検出システムのCPU)に、部分位置情報を伝送してもよい。別の例では、望遠鏡又は双眼鏡系の検出システムは、レーザ距離検出器のような距離センサを備えることができ、この距離センサにより提供される情報は、方位角センサ及び仰角センサにより提供される情報と組み合わされ、これにより、対象UAVの位置を3Dで追跡することができる。
【0048】
標的航空機104aが監視空域に侵入したこと(例えば、外部航空機検出システム100の半径500m以内)が検出されると、外部航空機検出システム100は、特定の航空機対抗手段(例えば、モノフィラメント繊維)で標的航空機104aを無力化する目的で、コマンドデータを少なくとも1つの反撃UAV102a又は102bに又はその両方に伝送できる。コマンドデータは、CPU112により生成され、無線機(例えば、、無線機118a参照;なお、n個の無線機が想定される)を介して少なくとも1つの反撃UAV102a又は102bに又はその両方に送信される。任意で、双方向自由空間通信リンク113を、無線機118a~cの交換(又は補足)に利用することができる。コマンドデータは、位置データを含むことができ、標的航空機104aの検出された位置に関連付けることができ、飛行経路、高度、経度、緯度、GPS座標(度、分、秒)に関連するデータ及び/又は標的航空機104aの空間的位置及び又は速度に関連する他のデータを含むことができる。コマンドデータは、特定の標的航空機を捕捉するために特定の速度で飛行するように反撃UAV102a又は102bのうちの少なくとも1つ又はその両方に指令する情報又は命令等のインターセプトデータを含むこともできる。
【0049】
外部航空機検出システム100により、反撃UAVに伝送されるコマンドデータは、反撃UAV102a及び102bに特定の航空機捕捉対抗手段134を特定の位置で/位置に、方向に及び時間に展開又は移動させるよう指示若しくは命令する情報又は命令等の航空機捕捉対抗手段展開コマンドデータも含み得る。また、コマンドデータは、位置データ又は(前述の)情報のような標的航空機検出データ、及び検出センサ106aによって検出された標的航空機104a及び104bのUAVのタイプに関する識別情報のような、位置情報以外の情報を含むことができる。そのような情報は、外部航空機検出システム100及び/又は反撃UAV102a及び102bが、特定の標的航空機のサイズ、タイプ(例えば、固定翼又は回転翼)、オンボード特徴物及び/又は特性能力を定めることに役立つ。これらは、例えば、標的航空機を無力化するために実施される対抗手段の種類に影響を与え得る。
【0050】
また、コマンドデータは反撃UAV制御データを含むことができ、これは、反撃UAV102a及び102bのある又は全ての態様を制御する(外部航空機検出システム100からの)命令を含み得る。このように、反撃UAV102a及び102bは、内部飛行制御を無効化し又は覆す「ダミー」ドローンとなり、その結果、外部航空機検出システム100は反撃UAV102a及び102bの飛行、展開、センサ位置等を制御することができる。したがって、外部航空機検出システム100は、1つの検出センサ及び処理ユニットで、例えば反撃UAV104aの位置又は飛行経路を検出及び監視しながら、反撃UAV102a及び102bのそれぞれの位置及び動作を監視及び制御することができる。
【0051】
反撃UAV102a及び102bは、図6A図9に関して以下で説明するように、航空機捕捉対抗手段134を自律的に動かすか又は展開するために動作/航行することができる。図1及び図2に関して説明したこのシステムは、標的航空機104aが、空域Aから数キロメートル離れ、さらに高度が数キロメートル離れている場合、特に有意である。これは、個々の反撃UAVにとって、妥当と思われる大きな空域と想定される長い範囲で、どこを「見るか」を把握ことは、容易ではないからである。これは、反撃UAVの多くのオンボードカメラは、FOVが著しく低下する場合(例えば10度以下)、より大きな範囲(例えば、100m超)で対象を検出し、識別し、分類することしかできないためである。
【0052】
前述のように、外部航空機検出システム100は、複数の検出センサ(例えば、検出センサ106aのうちの2つ以上)を作動し、標的航空機に関連する位置データを生成することができる。次に、CPU112は、複数の検出センサに関する信頼性階層に基づいて、1つ以上の検出センサに関する位置データを除去するように作動できる。そのような信頼性の階層は、環境条件に基づくことができる。例えば雲のない昼間に動作する場合、信頼性階層は、優先順位付けされた検出センサの以下のリストから得られる位置データを含み得る:(1)光学カメラ、(2)双眼鏡、(3)赤外線カメラ、(4)レーダー装置、(5)LIDAR(ライダー)装置、(6)音響センサ、(7)照射装置及び(8)他のセンサ。より具体的には、CPU112がこのような環境条件を判断し、又は検知すると、CPU112は、センサ3~7に関する位置データを除去する(及び/又はそのようなセンサを動作から割り当てないようにする)一方、(1)光学カメラ、及び(2)双眼鏡(例えば、割り当てられた検出センサ)から生成された位置データを使用することができる。理想的には、光学カメラから生成された位置データは、雲や鳥類等がない、昼間の日中において、最も信頼される。しかしながら、(2)の双眼鏡から生成された信号が、任意の特定の理由でより信頼性が高い場合(例えば、双眼鏡は、光学カメラよりも間欠的な信号損失が少ない)、CPU112は、光学カメラから生成された位置データを除去し、双眼鏡から生成された位置データを使用し、その後、位置データを1又は2以上の反撃UAVに伝送できる。特定の位置データを除去するそのような処理は、毎分何度も起こり得る。従って、最良のトラッキング情報は、反撃UAVに伝送するための外部航空機検出システム100により生成され処理され、これにより、検出された標的航空機をインターセプトし、捕獲するチャンスが改善され、又は高められる。
【0053】
信頼性階層の別の例では、作動条件が夜間であり、雲の覆いがあり、外部航空機検出システム100により監視される領域に、非常に少ない光しか放射されないと仮定される。ここで、信頼性階層は、(1)赤外線カメラ、(2)音響センサ、(3)レーダー装置、(4)ライダー装置、(5)照射装置、(6)その他のセンサ、(7)光学カメラ、(8)双眼鏡であってもよい。これは、夜間、IRカメラは、前述のように、最も信頼できる位置データを生成し得るからである。従って、CPU112は、検出センサ4~8から生成された位置データを除去し、その後、検出センサ1~3から生成された信号を分析して、生成された最も信頼できる位置データを決定できる。例えば、音響センサが他の音からの干渉を受け、レーダー装置が気象パターンの影響を受けている場合、CPUは、IRカメラからの位置データのみを、反撃UAVに伝送する最も信頼性の高い位置データ(及び唯一のデータ)として使用し、検出された標的航空機をインターセプトし、捕獲するチャンスを高めることができる。
【0054】
CPU112が1つ以上のプロセッサを誘導して、本願に記載の方法ステップ及び動作を実行するように構成された1つ以上のコンピュータソフトウェアモジュールを含む、有形で、非一時的なコンピュータ可読媒体を含み得ることは、当業者には明らかである。
【0055】
図3に示すように、(例えば)特定の反撃UAV102aは1つ以上の光学センサ(例えば、光学センサ119を参照)及び/又は他の検出センサ120を含むことができる。光学センサ119及び他のセンサ120はCPU122に動作可能に結合され、例えば、標的航空機104aの存在又は位置に関連する光学センサ119及び他のセンサ120により生成されたデータが処理される。
【0056】
そのような1つ以上のセンサのうちの1つ以上を動作させることか生成された収集データに基づき、フライトコントローラは、少なくとも1つの標的航空機の検出された位置又は飛行経路に基づいて1つ以上のプロペラ/モータ及びジンバル装置を反撃UAVの航行/飛行のために動作させるよう構成することができる。
【0057】
さらに、反撃UAV102aは、RF無線機124(例えば、モビリコムソフトウェアに定義された無線又は他の同様の無線)のような無線通信装置を備え、この無線通信装置は、外部航空機検出システム100からのコマンドデータを無線受信することができる。次に、処理のためコマンドデータがCPU122に伝送される。無線機124を用いて、光学センサ119により捕捉されたビデオフィードが、外部航空機検出システム100(又は他の外部コンピュータシステム又は手動監視ディスプレイ)に戻される。
【0058】
受信コマンドデータに基づき、反撃UAV102aは、航空機対抗手段装置134内で標的航空機104aを捕捉するために、標的航空機104aの特定の追跡された飛行経路に基づいて航空機対抗手段装置134を動かすか又は展開するため特定の方向に及び速度で飛行するよう自律的に動作できる。より具体的には、反撃UAV102aは、CPU122に電気的に連結されたフライトコントローラ126を有し、CPU122により処理されたコマンドデータに関するコマンド信号が受信される。次に、フライトコントローラ126は、反撃UAVの様々な構成要素、例えばロータアセンブリ(例えば、ロータアセンブリ128参照)、ジンバル又はジンバルアセンブリ及び任意の他の構成要素又はシステムを制御することができる。ロータアセンブリのそれぞれは、航空機対抗手段装置134を適切に動かすために反撃UAV102aに特定の位置に及び/又は所定の速度で移動させるため電子速度コントローラ130及びモータ及びプロペラ132を含むことができる。そのため、少なくともCPU122、フライトコントローラ126及びロータアセンブリ128は、本明細書でさらに説明するように、反撃UAV102aの飛行を促進して、航空機対抗手段装置134の位置を制御及び方向付けるよう動作可能なフライト制御システム133を定義できる。
【0059】
更新されたコマンドデータは、例えば反撃UAV102a及び102bのうちの少なくとも1つと連続的に通信することができ、フライトコントローラ126は、標的航空機104aの追跡飛行経路又は位置に対応して、特定の反撃UAV102aの飛行を制御することができる。このように、反撃UAV102aは、構造体又は地面につながれた航空機対抗手段装置134を何時及びどこに動かすかを知ることができる
光学センサ119(及び/又は他のセンサ120)及びCPU122は、オンボード航空機検出システム137を定め、これは、一例では(例えば、外部の航空機検出システムの支援がなくても)、標的航空機104aをそれ自身で検出するように作動される。従って、反撃UAV102aは、標的航空機104aを検出することができ(範囲内であることを仮定)、その後、CPU122は、コマンドデータを生成し、次に、コマンドデータに関する信号をフライトコントローラ126に伝送でき、反撃UAV102aの飛行が容易となる(そのような飛行がつながれたネットの位置を維持するために静止したものであるか又はつながれたネットを展開するかさもなければ動かすために動的なものであるかに関わらず)。そのようなオンボード航空機検出システム137は、外部航空機検出システム100と連動して、標的航空機104aの動的飛行位置を追跡することができ、その結果、外部航空機検出システム100がそれを行うことをできない場合、オンボード航空機検出システム137が、バックアップ検出システムとして、それ自身でそれを継続できる。
【0060】
1つの例では、これとともに(又はこれとは別に)、航空機対抗手段装置134を動かすために(又はその位置を維持するために)反撃UAV102aが動作される前に、外部航空機検出システム100からのコマンドデータを反撃UAV102aのCPU122で処理して、光学センサ119のポインティング位置を制御し、例えば、反撃UAV102aに、空中で、標的航空機104aを「見つける」位置を「知らせる」ことができる。具体的には、光学センサ119のうちの1つは、1つ以上のジンバル装置138により、反撃UAV102aの飛行本体又はプラットフォームに回転可能に取り付けることができる。次に、CPU122は、ジンバル制御器に制御信号を伝送し、該ジンバル制御器は、ジンバル装置138(例えば3軸ジンバル)の動作を制御し、光学センサ119のポインティング位置が確立され、制御される(すなわち、検出された標的航空機104aに向かって、カメラを指向させる)。標的航空機104aがカメラの検出範囲内にある限り(例えば、いくつかの例では、最大150m又はそれ以上)、反撃UAV102aは、必要に応じて、外部航空機検出システム100の支援がなくても、それ自体で、標的航空機104aの位置を検出し、追跡できる。本明細書で例示の他の反撃UAV102もそのような特徴及び機能を有することができる。
【0061】
一部の例では、別のセンサ120は、小型位相アレイレーダー及び自動車レーダー等の1つ以上のレーダー装置を備えることができる。Echodyne Mesa-X7、Fortem Technologies TrueView R20のような、小型位相アレイレーダシステム、及びDelphi Automotive Radarのような、自動車レーダシステムは、反撃UAV102aに組み込まれ、これは、小型の民生ドローン(例えば、DJI Fantom 4)等の小型対象用に、200mを超える射程を有する。また、レーダーアレイは、標的航空機の検出用の外部航空機検出システム100の検出センサとして使用され得る。
【0062】
一部の例では、外部航空機検出システム100が、(例えば、天候又は断続的な信号損失のため)、標的航空機104aを検出できない場合、反撃UAV102は、標的航空機104a)の位置を検出及び追跡するためにその構成要素(図3)を利用し得る。
【0063】
図3に概略的に示す様々な構成要素は反撃UAV102Aの飛行体201の周囲で支持することができる(例えば、図6A)。飛行体201は、図3の構成要素を構造的に支持する(また、そのような構成要素に電力を供給するバッテリも支持する)飛行体又はその一部を含むことができる。
【0064】
1つの例では、単一の反撃UAVは、構造体又は地面につながれた航空機捕捉対抗手段を動かし且つ支持するために動作できる。このように、例えば、単一の反撃UAVが2次元のネットを自身で支持することができるように、航空機捕捉対抗手段134(例えば、ネット)の上側領域に沿って水平支持部材(図示せず)を連結することができる。
【0065】
図1に示すように、一つの例では、標的航空機104aが光学センサ119のFOV136a内にあるように、反撃UAV102aの特定の検出可能な距離(例えば、10~150m)内に標的航空機104aが移動すると、反撃UAV102aは、オンボード光学センサを利用して標的航空機104aの動的位置又は飛行経路を連続的に追跡し得る。例えば、特定のオンボード光学センサは、(反撃UAV102aにより支持及び操作される)ジンバル装置に取り付けられたビデオカメラを含むことができ、このビデオカメラは、外部航空機検出システム100の検出センサに関して前述したのと同様に、標的航空機104aを特定及び追跡するように動作可能である。例えば、カルマンフィルタ(又はベイズフィルタの別のバリエーション)は、CPU122のプロセッサによりアルゴリズムとして実行することができ、ビデオカメラにより生成されたデジタル信号を使用して、特定の標的航空機の速度、位置及び方向が推定及び予測し、その後にジンバル装置を自律的に且つ連続的に調節するフィードバック制御ループを実行して、例えば、ビデオカメラのFOV136aを中心に、標的航空機が維持される。そのようなカメラは長焦点又は中焦点の望遠写真レンズを備え、カメラのFOVを低下させるコストで、標的航空機を特定し且つ追跡する距離を一部の例では最大で150m~300mの範囲に最大化できる。しかしながら、外部航空機検出システム100は、標的航空機104aの検出された位置に関するコマンドデータを反撃UAV102aに伝送できるため、オンボードカメラがより長い範囲の検出及び追跡能力を有することを意味する場合、ある例では、狭小のFOVを許容できる。このように反撃UAV102aで標的航空機104aを追跡することは、反撃UAV102a及び102bが航空機捕捉対抗手段134を特定の位置又は向きに動かすことができる例で有利になり得る(以下で説明する図6A図8の例参照
)。
【0066】
一部の例では、図3に示すように、反撃UAV102aは、狭小バンドパスフィルタを有する光学カメラ(例えば、119)を備え、光周波数整合照明源(例えば、高出力LED)を伴うことができる。LEDは、バックグラウンド寄与を低減したまま、標的航空機104aを照らすように指向することができ、カメラ及びフィルタは、標的航空機104aをよりいっそう検出し追跡することができる。また、図1に関して前述したように、そのようなオンボードカメラ及び狭小バンドパスフィルタを使用して、外部航空機検出システム100の照射装置116aにより、標的航空機に照射された光の周波数のみを検出できる。
【0067】
図3(及び図4にも該当可能)を参照して、反撃UAV102aはフライトコントローラ126に結合されたGPS装置135(例えば、リアルタイム速度(RTK)GPS)を有し、反撃UAV102aの位置を特定及び更新することができる(例えば、他の反撃UAVと)。反撃UAV102aは、UAV間編隊通信システムを有し、これは、他の反撃UAV(例えば、反撃UAV102b)間の通信のためのCPU122に結合されたUAV間無線141を有し、図4に関して下記で及び本明細書の他の箇所で詳述するように、編隊又は調整された飛行構成が容易化される。UAV間編隊通信システムは、さらに、CPU122に動作可能に連結された、UAV間位置センサ139(例えば、超広帯域(UWB)タブ)を有し、反撃UAV102aの個々の位置の決定を支援し、以下で説明するように他の反撃UAV102(例えば、UAV102b)との協調飛行を促進する。

航空機捕捉対抗手段がネットを含む例では、反撃UAV102aは、ネット/UAVインターフェース148を介して反撃UAV102aの飛行体又は本体に連結可能なネットアセンブリ146を支持することができる。風、鳥、UAV等からネットアセンブリ146にかけられる力
を検知するために、力センサ150をネットアセンブリ146に動作可能に連結し、CPU122に電気的に(有線又は無線で)連結できる。
【0068】
図4は、複数の反撃UAV(例えば、反撃UAV302a~d)のシステムのブロック図を示し、標的航空機を検出及び追跡するための特定の例の反撃UAV302a(同様に構成可能な他のもの)及び反撃UAV302aのための航行の詳細を示す。反撃UAV302aは、図3に関して説明した反撃UAV102aと同様の特徴を一部又は全てを有することができる。反撃UAV302aは、地面又は構造体につなげられたネットアセンブリ等の航空機捕捉対抗手段により複数の反撃UAV302b~dに連結することができる(図1及び図6A図9参照)。当業者であれば、例えば、特定のネットアセンブリを支持及び展開するために少なくとも2つの反撃UAV(例えば、302A及び302b)が必要になり得ることが分かる。しかしながら、一部の構成では、特定のネットアセンブリを展開するために1つの反撃UAVが用いられ得る。
【0069】
反撃UAV302aは複数のセンサを含むことができ、センサは、センサにより収集されたデータを処理するためにCPUに動作可能に連結されている(CPUはGPUを有することができる)。いくつかの例として、反撃UAV302aは、(a)温度センサ、(b)気圧計/高度計、(c)慣性測定ユニット(IMU)(ジャイロ加速度計)、(d)コンパス(マグノメータ)、(e)超音波及び光学流量センサ、(f)光学レンジファインダ(例えば、LeddartchのLIDAR、VelodyneのLIDAR、QuanergyのLIDER)、(g)RTK-GPSタグ及びUWBタグ、(h)ステレオカメラ(光学ガイダンスシステム)、(i)高解像度カメラ、(j)低解像度カメラ、(k)LWIRカメラ及び(l)ジンバル位置センサ並びに当業者に自明な他のものの一部又は全てを含むことができる。センサ(a~e)、(g)、(i)、及び(j)は、図示のようにフライトコントローラ及びビデオダウンリンク無線に連結することもできる。そのようなセンサから収集されたデータに基づいて、フライトコントローラは、図1図3を参照して説明したのと同様に、標的航空機の(動的)位置に基づいて、反撃UAV302aの航行のための1つ以上のプロペラ/モータ及びジンバル装置を操作するように構成できる。
【0070】
反撃UAV302aと外部航空機検出システム100(例えば、図1参照)との間でデータを送信するために、1つ以上の無線(例えば、遠隔測定無線)をフライトコントローラ及びCPUに連結できる。例えば、ディスプレイ上でビデオフィードを見るために、ビデオダウンリンク無線を反撃UAV302aと人間のオペレータとの間に通信可能に連結することもできる。システムの活動を監視及び監督するために、人間のオペレータを外部航空機検出システム100と関連付けることができる。
【0071】
航空機捕捉対抗手段334は、図4に示す特徴を有するネットアセンブリであってもいいし、反撃UAV302a~dのそれぞれに連結された単なるネット(又は他の絡み要素)であってもよい。「ネットアセンブリ」として、航空機捕捉対抗手段334は、実際のネット材料と反撃UAV302a~dのそれぞれとの間に連結されたネット連結方向センサ(net coupling orientation sensor)を含むことができる。各ネット連結方向センサは、それぞれの反撃UAV302a~dに対するネットのそれぞれの位置又は方向に関連するデータを収集し、次いで、それぞれの反撃UAV302a~dの航行を協調的に制御するために、そのような収集した位置/方向データを処理のためにそれぞれのCPUに送信できる。同様に、ネット力センサをネットとそれぞれの反撃UAV302a~dとの間に連結して、それぞれの反撃UAV302a~dに対してネットに作用するそれぞれの力(例えば、空気抵抗及び/又は他の反撃UAV302a~dからの引っ張り力)に関連するデータを収集できる。そのような収集された力データは、以下でさらに説明するように、それぞれの反撃UAV302a~dの航行を協調的に制御するために、処理のためにそれぞれのCPUに送信できる。様々なセンサと共に用いられる「ネット」という用語は一例にすぎず、本明細書で例示の任意の特定の航空機捕捉手段を限定することを意味していない。
【0072】
なお、他の反撃AV302b~dのそれぞれは、図4に示した反撃UAV302aに関して説明したのと同じ特徴を有することができる。なお、反撃UAV302b及び302c(及び302d)のそれぞれは、上記で詳述したネット方位センサ及びネット力センサを支持及び操作することができる。
【0073】
飛行の間、お互いに対する各反撃UAVの位置は、それぞれの航行及びそれらの編隊動的飛行経路(又は概して静的な飛行位置)を決定及び制御する場合に重要である。その結果、それらは例えば互いに衝撃を与えたり、支持するネットに絡まったりせず、それらが標的航空機を効果的に捕捉できる。一部の例では、本開示の各反撃UAVは、GPS装置、RTK-GPS装置、UWBタグ、視覚慣性オドメトリ(VIO)技術及び/又はGPSとVIOとの融合のうちの1つ以上を有することができる(例えば、図3参照)。大半の利用可能なUAV(例えば、ドローン)はIMUに加えてGPSが組み込まれ、GPSが利用できない場合(例えば、見えるところの衛星の数が不十分)、UAVはそのIMUのみを用いて飛行し、(UAV上で視覚的な追跡が利用可能でない限り)概して航行のためにオペレータからのコマンドに依存しなければならない。標準GPSの精度は約±1m~±5mであるが、位置の不確かさをもたらす誤差の原因が数多くある。垂直の精度は概して水平の精度の約半分である。WAAS(Wide Area Augmentation System)が有効なGPS受信機は、最良の場合±1mの不確実性の範囲内に収まる。そのため、多くのUAVは、GPS技術を用いた場合ある程度の精度で、互いに約2m以内で協調構成で飛行できる。
【0074】
補正を用いてより良い位置精度を実現する別の種類のGPSはRTK(リアルタイム運動学)GPSである。RTK-GPSはGNSS(米国)に加えて、GLONASS(ロシア)及びGalileo(欧州連合)衛星配置等の他のものからバンドを受信する。重要な区別は、既知の位置から補正を送信する地上の基地局(例えば、外部航空機検出システム100)からの追加の無線リンクである。この技術は、協調飛行方式で動作する集団又は複数の反撃UAVの場合に±5cmよりも良好な、通常は±2cmの位置精度を実現できる。そのため、一つの例では、各反撃UAVは、協調して又はフォーメーションで飛行又は動作する反撃UAVのグループを制御するためにRTK-GPS技術を利用できる。
【0075】
特定のグループの反撃UAVの互いに対する位置に関する別の例では、各反撃UAVは、GPSが利用できない場合は、測位の目的のための代替又はバックアップとして正確な位置センサとしてUWBタグを有することができる。UWB測距は、2つのUWBタグ間で送信される非常に短い(~9ps)パルスの飛行時間(TOF)を測定することにより機能する。一般に、UWBタグに関して、正確なクロックを使用して、ノード1はノード2にパケットを送信し、ノード2はパケットの正確な到着時間(TOA)を測定する。次に、要求パケットのTOAから返信パケットの送信までの合計時間を含むパケットを返す。次に、ノード1は2つのパケットのTOFを特定し、2つのノード間の正確な距離を決定できる。自由空間の範囲は、10cmを超える精度で最大410mとすることができる。一般的な地上の三次元測定システムは、既知の位置にある3~4個のアンカータグで構成される。その空間内には、三次元の位置を正確に測定できる複数のターゲットタグがあり得る。UAV協調編隊(すなわち、反撃UAV協調編隊)内での正確な位置を特定するためにUWBタグを用いることができる。これは、反撃UAV間の正確な距離を求めるために、各UWBタグ間のピアツーピア測距を用いる。これは、反撃UAV上のUWBタグは、未知の位置を持つアンカータグと同等である点を除いてアンカータグ構成と同様である。ピアツーピア測距自体により提供される情報は、各反撃UAVの厳密な(x、y、z)座標位置を解くには不十分である。
【0076】
したがって、4つの反撃UAVが用いられる図5に示す一例では、3つの座標のうちの1つ(例えば、高度(z)及び第1の反撃UAV312aの元のノードとして任意に指定された位置(P1))が既知の場合に、相対的な測位解を計算できる。各反撃UAV312a~d上の高度計を用いてz座標を求め、次に、P1からP2(第2の反撃UAV312bの位置)のx座標線をx軸として定義すると、5つの変数の(x2、x3、y3、x4、y4)で、P2からP3、P3からP4、P1からP4、P2からP3及びP1からP3という距離に関する5つの方程式を解く。この種の一組の非線形の方程式を解くために、よく知られたニュートン法等のいくつかの数値法が開発されてきた。あるいは、開始座標としてGPS座標を用い、GPS誤差を補正するためにUWB距離を用いることもできる。UWBタグはピアツーピア通信にも用いられ得る。
【0077】
図6A及び図6Bは、航空機捕捉対抗手段434を支持する複数の反撃UAV(例えば、反撃UAV402a及び402b参照)を含む、標的航空機(例えば、104a)を無力化するためのシステム及び方法を示す。反撃UAV402a及び402bは、図1図5に関して説明した反撃UAVと同じ又は同様の特徴を有することができる。この例では、反撃UAV402a及び402bは、航空機捕捉対抗手段434(例えば、ネット435)を収納位置(図6A)から展開位置(図6B)に動かすために協調的に動作する。
【0078】
システムは、ネット435が収納位置にある場合に、ネット435の少なくとも一部を収容するように構成可能な構造(例えば、図1の137)に関連する第1のネット収容装置401a及び第2のネット収容装置401bを含むことができる。第1のテザー403aは反撃UAV402aをネット435の一方側に連結でき、第2のテザー403bは反撃UAV402bをネット435の他方側に連結できる、第1のネット収容装置401A及び第2のネット収容装置401bは中空状のチューブ又はネット435の少なくとも一部を収容する他の中空状の支持部材であり、それぞれのテザー403a及び403bが中空状のチューブを介して好適な方法で横切ることができるようにする(なお、ネット収容装置401a及び401b並びにテザー403a及び403bは、テザーが収容装置の開口を通って動かされることを示すために、幾分概略的に図示している)。
【0079】
第1のネット収容装置401A及び第2のネット収容装置401bは、反撃UAV402A及び402bが動作又は飛行していない場合にバッテリ電力を節約するために地面位置にある場合に、それぞれのための支持プラットフォーム又はペデスタルとして機能することができる。(上記で説明したように)標的航空機の検出に応答して、反撃UAV402a及び402bを自律的に展開し、(例えば、概して垂直に)飛行するように動作させることにより、ネット435が第1のネット収容装置401A及び第2のネット収容装置401bから図6Bの展開又は広げられた位置にあるように引き出される。一部の例では、テザー403a及び403bは、標的航空機の追跡位置に応じて、ネット435を比較的高い高度で戦略的に配置することができるように、比較的長くすることができる(例えば、最大で100m、またはそれ以上)。ネット435の幅も比較的長くすることができる(例えば、最大100m又はそれ以上)。
【0080】
一つの例では、(概略的に示す)第1のドラムリール405a及び第2のドラムリール405bは、テザー403a及び403bがそれぞれのドラムリール405a及び405bの周りに巻かれるような形でテザー403a及び403bの他端をそれぞれ支持することができる(あるいは、テザー403a及び403bの両方を巻く/巻き出すために1つの集中ドラムリールをmちいることができる)。ドラムリール405a及び405bは、反撃UAV402a及び402bが展開の際にネット435を上方に引くように動作された場合に、テザー403a及び403bがそれらから巻き出すことができるように動作可能である(例えば、テザーは何らかの機械的抵抗装置又はバネを用いて受動的に巻き出すことができ又は電気モータ及びコントローラを介して能動的に巻くことができる)。そのため、ドラムリール405a及び405bは、次にテザー403a及び403bのそれぞれを引っ込めることにより、ネット435並びに反撃UAV402a及び402bを下方に引いて、ネット435の高さを調整するか又はネット435を収納位置に戻すことができるよう所望により動作できるか又はプログラムできる。このように、ドラムリール405a及び405bは、それぞれのテザー403a及び403bを巻き取るか又は巻き出すために電気的に駆動及び制御することができる。ドラムリール405a及び405bは、検出された標的航空機の検出された位置(例えば、高度、飛行経路等)に基づいて、それぞれのテザー403a及び403bを巻き出すか又は巻き取る制御コマンドを受信するために、外部航空機検出システム100に通信可能に連結されたコントローラを有することができる。別の態様では、ドラムリール405a及び405bは、反撃UAV402a及び402bがテザー403a及び403bの巻き取り又は巻き出しを命令又は制御することができるように、反撃UAV402a及び402bのうちの1つ以上に(有線又は無線で)通信可能に連結することができる。
【0081】
ネット435が反撃UAV402a及び402bによって展開位置に動かされると、反撃UAV402a及び402bは、ネット435を様々な方向(ただし、ネット435が地面又は構造につながれていることにより制限されている)に動かすように動作できる。例えば、反撃UAV402a及び402bは捕捉又はトラップするのに十分な距離内にあり得る標的航空機をいくぶん「トラップする」ために垂直に高く又は概して地面の方に前方に又は後方に飛行して捕捉又はトラップすることにより(例えば、図7参照)、標的航空機がネット435を回避できる空域の量を少なくすることができる。
【0082】
一つの例では、テザー403a及び403bは、図6Bに示すように、反撃UAV402a及び402bを少なくとも1つの外部電源407(例えば、バッテリ、DC電源等)に電気的に連結するそれぞれの電力線を含むか又は支持することができる。外部電源407は、長期間又は無期限の飛行時間(例えば、数日間、数週間、数か月間)にわたって反撃UAV402a及び402bに電力を供給できることが有利である。これは、反撃UAV402a及び402bが、特定の領域を無期限に保護するために、ネット435の展開位置を継続的に維持することを可能にする。これは、電源につながれずに飛行中の標的航空機に対して有利である。何故なら、それらのバッテリ電源は限られているからである。したがって、そのような「外部から動力を受ける」反撃UAV402a及び402bは、標的航空機が搭載された電源を消費するのに要し得る期間を超えて特定のネットの位置を維持するように動作し得る。
【0083】
多くの反撃UAVを様々な形及び構成で、例えば三次元配置(例えば、図9参照)でネットに連結することができるため、図6A及び図6Bの説明は限定を意図するものではない。ネット435は、ネット435の様々な部分から数メートル延びるとともに例えば、標的航空機のロータに容易に絡まるように風にはためくことが可能な自由端を含み得るいくつかの低抗力テンドリルも含み得る。これは、反撃UAVに隣接してやや三次元の捕捉領域を生み出すことができ、これは、とりわけテンドリルが非常に薄い透明のモノフィラメントである例において、標的航空機(及びその人間のオペレータ)が検出することが困難であるか又は不可能である。
【0084】
ネット435(及び本明細書に記載の他のネット又はフィラメント要素)は多数の異なる高強度フィラメントとして製造できる。例えば、DSM社製のDyneema(登録商標)又はハネウエル社製のSpectra(登録商標)等の高強度の超高分子量ポリエチレン(UHMWPE)繊維(すなわち、モノフィラメント)を用いることができ、個々の繊維内に荷重を伝達するために長い分子鎖を用いている。他の種類のものも当業者には明らかであろう。用途に応じて、様々なポンドテスト及びメッシュサイズを用いることができ、例えば、限定されないが、1.5ポンドテスト及び2.25平方インチメッシュは任意の数の利用可能なUAVを捕捉するのに適している。一部のネットは、それらが交わる結び目を有し、他のネットは結び目を排除するために4ストランド編み込み技術を利用した結び目のないものであり得る。結び目をなくすことで抗力が低減し、特定のネット、例えば、ネット135及び本明細書で説明した他のものの展開時及び収納時の取り扱い性を改善する。
【0085】
図7は、航空機捕捉対抗手段534を支持する複数の反撃UAV502a及び502bを含む、標的航空機504を無力化するためのシステム及び方法を示す。反撃UAV502a及び502bは、図1図6Bに関して説明した反撃UAVと同じ又は同様の特徴を有することができる。この例では、反撃UAV502a及び502bは、航空機捕捉対抗手段534(例えば、ネット535)をトラップ位置又はトラップ方向(例えば、図6Bのような垂直方向)に動かすために協調的に動作させることができる。
【0086】
このように、第1のテザー503aは反撃UAV502aをネット535の一方側に連結でき、第2のテザー503bは反撃UAV502bをネット535の他方側に連結できる。テザー503a及び503bは、地上構造体であり得る構造体507a及び507b(又は単一の構造体)のそれぞれにそれぞれの端部で連結できる、反撃UAV502a及び502bがネット535を(例えば、図6Bのように)概ね垂直方向に動かすと、反撃UAV502a及び502bは前方に且つ下方アーク飛行経路に飛行して、標的航空機504をトラップするように動作できる。これは、標的航空機504がネット535を回避するために飛行可能な空域の量を減らす傾向がある。このシステムは、ネット535が概ね垂直に配置された場合に第1の次元が提供され、反撃UAV502a及び502bが標的航空機504をトラップするためにネット535を別の次元(二次元)に動かすために前方/下方に飛行するよう動作された場合に第2の次元が提供される二次元ネット捕捉システムを提供する。一部の例では、構造体507a及び507bは、図6A図6Bに関して上述したドラムリール及び/又は電源を含むか又は支持することができる。
【0087】
図8A及び図8Bは、航空機捕捉対抗手段634を支持する複数の反撃UAV602a~602dを含む、標的航空機(例えば、104a)を無力化するためのシステム及び方法を示す。反撃UAV602a~602dは、図1図6Bに関して説明した反撃UAVと同じ又は同様の特徴を有することができる。この例では、反撃UAV602a~602dは、標的航空機を捕捉するために、航空機捕捉対抗手段634(例えば、ネット635)を配備し且つ動かすために協調的に動作させることができる。
【0088】
より具体的には、第1のテザー603aは反撃UAV602aをネット635の一方側に連結でき、第2のテザー603bは反撃UAV602bをネット635の他方側に連結できる。他の反撃UAV602b及び602cは、ネット635の上側領域又は部分に沿って連結でき、反撃UAV602a~602dは、ネット635の上側領域に沿って空間的に離間できる。
【0089】
他方の端では、テザー603a及び603bは、可動ネット支持機構607a及び607bのそれぞれに連結できる。可動支持機構607a及び607bは、可動地上車両又は図示のようにレールシステム又はトラック609に沿って(又は、地面に拘束されているか又は拘束されていないかに関わらず、地面に沿って)移動するように動作可能な他の装置であり得る。トラック609は、空港の周囲の地面又はさらには建物、船舶、スタジアム等の上面の上等の地面又は他の構造体で支持できる。トラック609は、保護すべき特定の周辺領域の一部又は全ての周りに延びることができる。
【0090】
図8Aに示すように、反撃UAV602a~602dは、ネット635が収納位置又は地面位置にある間(例えば、束ねられているか又は巻かれている等)、地面位置にあり得る。標的航空機の検出に応答して、反撃UAV602a~602dは、図8Bに示すように、ネット635を収納位置から展開位置へ動かすように動作可能である。反撃UAV602a~602dは、反撃UAV602a~602dのうちの1つ以上が標的航空機を検出すること応答して、自身で自律的に飛行することができるか又は反撃UAV602a~602dは、外部航空機検出システム(例えば、図1に関して説明したシステム100)から送信されるコマンドデータを介して飛行するように又はどこに飛行すべきかを指示又は指令することができる。あるいは、可動ネット支持機構607a及び607bの一方又は両方は少なくとも1つの検出センサ(例えば、上述の106a)を支持することができるため、可動ネット支持機構607a及び607bは標的航空機を検出し、そして反撃UAV602a~602dのうちの1つ以上にコマンドデータを通信でき、反攻撃UAV602a~602dは適切な時期及び場所でネット635を展開できる。
【0091】
反撃UAV602a~602dは、展開された場合に概ね垂直方向にネット635を動かすと(例えば、図8B)、可動支持機構607a及び607bは、標的航空機の追跡された飛行経路に応じて、標的航空機を捕捉するためにネット635をより良い位置に配置するために、ネット635をトラック609沿いの横位置からトラック609沿いの別の位置に動かすために協調的に動作することができる。それと同時に、反撃UAV602a~602dは、可動支持機構607a及び607bの動きに沿って同じ横方向に飛行するように動作することができる(しかしながら、反撃UAV602a~602dは、可動支持機構607a及び607bを動かす力によって単に引っ張られるか又は動かされ得る)。
【0092】
可動支持機構607a及び607bは、トラック609に対する反撃UAV602a~602d及び可動支持機構607a、607bの集合的な動きを促進するために、反撃UAV602a~dのうちの1つ以上に通信可能に連結される無線(又は有線)通信装置を有することができる。これは、ネット335が概ね垂直に配置された場合に第1の次元が提供され、可動支持機構607a及び607bがネット635をトラック609に沿って横方向に別の次元(二次元)に動かすよう動作された場合に第2の次元が提供される二次元ネット捕捉システムを提供する。同様に、図7に関して上述したように、反撃UAV602a~602dは、ネット635をトラップ位置又は方向に動かすために、トラック609に対して前方又は後方に飛行する(図8Bの紙面に入るか又は出る)ように動作させることができる。これは、ネット635の別の(第3の)次元の移動を提供する。
【0093】
したがって、(例えば、収納されたネット635及び地上にある反撃UAV602a~d(図8A)の位置から100m以下及び約1km離れた)比較的低い高度を飛行する標的航空機の検出に応答して、反撃UAV602a~602dは、ネット635を素早く(数秒以内に)展開でき、そして可動支持機構607a、607b及び反撃UAV602a~602dは軌道に沿って、標的航空機の検出された位置又は飛行経路の方に比較的高速で移動できる(例えば、最大40m/s以上)。そして、可動支持機構607a、607b及び反撃UAV602a~602dは、標的航空機をネット635内に捕捉するために、正確であると判定された標的航空機の推定飛行経路に沿って特定の位置又は場所で停止又は減速するように動作できる。
【0094】
一部の例では、可動支持機構607a及び607bは、図6A図6Bに関して説明したように、ドラムリール及び/又は電源を含むか又は支持することができる。このように、反撃UAV602a~602dは、バックアップバッテリが可動支持機構607a及び607bによって支持され、反撃UAV602a~602dに電気的に連結されている場合に、長期間飛行できる。別の例では、反撃UAV602a~602dは、トラック609が、例えば可動支持機構607a、607bに及び反撃UAV602a~602dに電力を供給する導管として用いられる場合に無期限に動作させることができる。
【0095】
動的なネット支持機構607a及び607bは、代わりに、ネットの下端に連結され、ネットを適切に方向付けるためにネットの下端に沿って連結される追加の水平支持構造を有する単一の動的なネット支持機構又は車両とすることができる。動的なネット支持機構607a及び607bは電動のカート又は車両であってもよく又はそれらは、ネット支持機構607a及び607bを軌道に沿っていずれかの方向に引っ張る、トラック609に関連するケーブル又はコードによって機械的に動かすことができる。当業者に明らかなように、ネットを地面又は地上構造体(例えば、建物)に沿ってつなぐこと、動かすこと及び配置することが可能なさらに他の機構及びシステムが本明細書で想定されるため、図面に示し、本明細書で説明した例は何ら制限を意図していない。
【0096】
図9は、航空機捕捉対抗手段734を支持する複数の反撃UAV702a~702dを含む、標的航空機(例えば、104a)を無力化するためのシステム及び方法を示す。反撃UAV702a~702dは、図1図8Bに関して説明した反撃UAVと同じ又は同様の特徴を有することができる。この例では、反撃UAV702a~702dは、外周ネット領域B(例えば、その内部の領域又は資産を保護するための矩形の外周)を画定するために、航空機捕捉対抗手段734(例えば、ネット735)を展開位置で維持又は支持するために協調的に動作可能である。より具体的には、複数のテザー(例えば、図示のテザー703aに類似)は反撃UAV702a~702dをそれぞれの構造(例えば、テザー703aが連結される代表的な構造体707aを参照)に連結できる。複数のテザー(例えば、テザー703a)は、それぞれの構造体(例えば、707a)(又は単一の構造体)にそれぞれの端部で連結できる。反撃UAV702a~702dは、ネット735を収納位置と展開位置との間で動かすことができる(ここでは、展開位置のみを示す)。ネット735が比較的大きいな領域を、例えば場合によっては500m×500m又はそれ以上の領域を取り囲むことができるように、任意の数の反撃UAVでネット735を支持することができる。反撃UAV702a~702dによって保護されている領域の方向に標的航空機が来ていることが検出されると、反撃UAV702a~702dは、ネット735の周りの全ての横方向から係る領域を保護するために、ネット735を展開するため垂直に協調的に飛行するように動作することができる。これは、標的航空機の検出からわずか数秒で実現できる。
【0097】
一部の例では、構造体707aは、図6A図6Bに関して上述したようなドラムリール及び/又は電源709aを含むか又は支持することができる。反撃UAV702a~702dが外部電源により電気供給される場合、外周ネット領域Bを長期間(例えば、数日間、数週間、数か月間)、さらには無期限に維持できる。一部の例では、図9のシステムは、例えば、操舵室を保護するために船上で又は建物又は他の構造体の屋上にある重要な資産を保護するために、建物又は他の構造体の屋上で展開することができる。
【0098】
他の場合には、図9のシステムは、保護領域の周囲で必要とされ得る防護フェンスシステムに完全に取って代わるか又は再現できる。このように、センサ(例えば、動き、トルク等)をネット735の様々な部分の周りに連結して、ネット735に接触し得る地上車両、航空機、人員等の望ましくない敵対的な人物又は資産の存在/影響を検出することができる。加えて、反撃UAV702a~702dはそれらのオンボードカメラを介してビデオ監視を提供することができ、それによりビデオフィードを遠隔地に送信できる。
【0099】
図面に示した例を参照し、これを記載するために特定の用語を用いてきた。しかしながら、これは、技術の範囲を限定することを意図するものではないことが理解される。本明細書で示した特徴の変更及びさらなる修正並びに本明細書に示す例の追加の適用も本明細書の範囲内にあると考えられる。
【0100】
本開示は、本明細書に記載の一部の実施形態又は特徴が本明細書に記載の他の実施形態又は特徴と組み合わされ得ることを明確に開示していないかもしれないが、当業者によりそのような任意の組み合わせは実施可能であり得ると説明しているものと本開示を読むべきである。本開示における「又は」の使用は、別段指摘されていない場合は、非排他的であること、すなわち「及び/又は」を意味すると理解すべきである。
【0101】
さらに、1つ以上の例において、説明した特徴、構造又は特性が任意の好適な方法で組合され得る。先行する説明では、説明した技術の例を完全に理解できるように様々な構成の例等の数々の具体的な詳細を提供してきた。しかしながら、係る技術は1つ以上の具体的な詳細なしで又は他の方法、構成要素、装置等を用いて実施され得ることを認識すべきである。他の場合では、当該技術の態様をあいまいにするのを避けるために、周知の構造又は動作が詳細に図示されていないか又は説明されていない。
【0102】
構造的な特徴及び/又は動作に特有の言葉で主題を説明してきたが、添付の特許請求の範囲で定義される主題は、上述した特定の特徴及び動作に必ずしも限定されないことを理解すべきである。むしろ、上述した具体的な特徴及び作用は、特許請求の範囲を実施するための例示的な形態として開示している。説明した技術の精神及び範囲から逸脱することなく、数多くの変更及び代替的な構成が考案され得る。
図1
図2
図3
図4
図5
図6A
図6B
図7
図8A
図8B
図9