(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2022-12-05
(45)【発行日】2022-12-13
(54)【発明の名称】電源システム、方法、及びプログラム
(51)【国際特許分類】
H02J 7/00 20060101AFI20221206BHJP
【FI】
H02J7/00 X
(21)【出願番号】P 2021190500
(22)【出願日】2021-11-24
(62)【分割の表示】P 2018026154の分割
【原出願日】2018-02-16
【審査請求日】2021-11-24
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110001276
【氏名又は名称】弁理士法人小笠原特許事務所
(72)【発明者】
【氏名】肥田 実
(72)【発明者】
【氏名】尾関 明弘
(72)【発明者】
【氏名】西 航平
【審査官】鈴木 大輔
(56)【参考文献】
【文献】特開2016-077124(JP,A)
【文献】特開2003-244863(JP,A)
【文献】特開2018-196252(JP,A)
【文献】特開2015-023647(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H02J1/00-7/12
7/34-7/36
(57)【特許請求の範囲】
【請求項1】
第1の負荷に接続される第1のバッテリーと、
第2のバッテリーと、
前記第1のバッテリーと前記第2のバッテリーとを接続する電圧変換器、前記第1のバッテリーと第2の負荷とを接続する第1のスイッチ、及び前記第2のバッテリーと前記第2の負荷とを接続する第2のスイッチを含む、接続切り替え部と、を備え、
前記接続切り替え部は、前記電圧変換器の1次側と2次側との電圧差を所定値以下に制御した後に、前記第1のスイッチを閉成し、かつ、前記第2のスイッチを開放する第1のモードと、前記第1のスイッチを開放し、かつ、前記第2のスイッチを閉成する第2のモードとを、選択的に切り替える、ことを特徴とする、
電源システム。
【請求項2】
前記接続切り替え部は、前記第1のモードにおいて、前記第2のバッテリーの蓄電量が規定の蓄電量よりも少ない場合、前記電圧変換器を介した充電によって前記第2のバッテリーの蓄電量が前記規定の蓄電量まで回復した後に、前記第1のモードから前記第2のモードに切り替える、ことを特徴とする、
請求項1に記載の電源システム。
【請求項3】
前記電源システムが車両に搭載されおり、
前記第1のモードは手動運転モードであり、前記第2のモードは自動運転モードである、ことを特徴とする、
請求項1又は2に記載の電源システム。
【請求項4】
第1の負荷に接続される第1のバッテリーと、第2のバッテリーと、前記第1のバッテリーと前記第2のバッテリーとを接続する電圧変換器、前記第1のバッテリーと第2の負荷とを接続する第1のスイッチ、及び前記第2のバッテリーと前記第2の負荷とを接続する第2のスイッチを含む、接続切り替え部と、を備える、電源システムが実行する方法であって、
前記電圧変換器の1次側と2次側との電圧差を所定値以下に制御した後に、前記第1のスイッチを閉成し、かつ、前記第2のスイッチを開放する第1のモードと、前記第1のスイッチを開放し、かつ、前記第2のスイッチを閉成する第2のモードとを、選択的に切り替える、ことを特徴とする、
方法。
【請求項5】
第1の負荷に接続される第1のバッテリーと、第2のバッテリーと、前記第1のバッテリーと前記第2のバッテリーとを接続する電圧変換器、前記第1のバッテリーと第2の負荷とを接続する第1のスイッチ、及び前記第2のバッテリーと前記第2の負荷とを接続する第2のスイッチを含む、接続切り替え部と、を備える、電源システムのコンピューターに実行させるプログラムであって、
前記電圧変換器の1次側と2次側との電圧差を所定値以下に制御した後に、前記第1のスイッチを閉成し、かつ、前記第2のスイッチを開放する第1のモードと、前記第1のスイッチを開放し、かつ、前記第2のスイッチを閉成する第2のモードとを、選択的に切り替えるステップを含む、ことを特徴とする、
プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、複数のバッテリーを冗長的に備えた電源システムなどに関する。
【背景技術】
【0002】
特許文献1に、メインバッテリーとサブバッテリーとを用いて電源を冗長構成にした車両用の電源システムが開示されている。この電源システムでは、メインバッテリーを車両に搭載された負荷に直接接続し、サブバッテリーをDCDCコンバーター又はリレースイッチを介して車両に搭載された負荷に接続することで、電源の冗長性を確保している。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
自動運転における重要な負荷のバックアップ用電源としてサブバッテリーを使用する場合、サブバッテリーの状態をバックアップ用電源に要求される予め定められた状態に維持しておく必要がある。しかしながら、特許文献1に記載された電源システムは、サブバッテリーがDCDCコンバーター又はリレースイッチのいずれかを介して負荷に常時接続されている構成であるため、サブバッテリー単体の状態を診断して所定の状態を維持することが容易ではない。
【0005】
本開示は、上記課題を鑑みてなされたものであり、所定のバッテリー単体の状態を容易に診断し、かつ、予め定められた状態に維持することができる電源システムなどを、提供することを目的とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本開示技術の一態様は、電源システムであって、第1の負荷に接続される第1のバッテリーと、第2のバッテリーと、第1のバッテリーと第2のバッテリーとを接続するDCDCコンバーター、第1のバッテリーと第2の負荷とを接続する第1のスイッチ、及び第2のバッテリーと第2の負荷とを接続する第2のスイッチを含む、接続切り替え部と、を備え、接続切り替え部は、第1のスイッチを閉成し、かつ、第2のスイッチを開放する第1のモードと、前記第1のスイッチを開放し、かつ、前記第2のスイッチを閉成する第2のモードとを、選択的に切り替える、ことを特徴とする。
【0007】
この本開示の一態様の電源システムは、第1のスイッチを閉成して第1のバッテリーから第2の負荷に電力を直接供給する場合、第2のスイッチを開放して第2のバッテリーを第2の負荷から切り離す(第1のモード)。これにより、DCDCコンバーターを用いた充放電制御によって、第2のバッテリー単体の状態を容易に診断することができ、かつ、予め定められた状態も容易に維持することができる。また、この第1のモードでは、DCDCコンバーターは、第2の負荷への電力供給は必要なく、第2のバッテリーの状態診断及び状態維持を行うだけでよいので、消費電力を抑制できる。一方、第1のスイッチを開放して第1のバッテリーを第2の負荷から切り離す場合には、第2のスイッチを閉成して第2のバッテリーを第2の負荷に接続する(第2のモード)。これにより、第1のバッテリーが失陥しても第2のバッテリーから第2の負荷に電力を供給することができる。
【0008】
また、この一態様において、接続切り替え部は、DCDCコンバーターの1次側と2次側との電圧差を所定値以下に制御した後に、第1のスイッチ及び第2のスイッチの状態を切り替えてもよい。
【0009】
この制御によって、DCDCコンバーターの1次側と2次側との電圧差を小さくすることができるので、モードを切り替えるときの電圧変動の発生を抑えることができる。また、モードの速やかな切り替えが可能となる。
【0010】
本一態様の電源システムを車両に搭載した場合には、第1のモードを手動運転モードとし、第2のモードを自動運転モードとすることができる。
【発明の効果】
【0011】
上記本開示の電源システムなどによれば、バッテリー単体の状態を容易に診断し、かつ、予め定められた状態に維持することができる。
【図面の簡単な説明】
【0012】
【
図1】本開示の一実施形態に係る電源システムの概略構成を示す図
【
図3】接続切り替え部が行うモード切り替え制御を説明するフローチャート
【
図4】手動運転モードにおける第1及び第2のスイッチの状態を示す図
【
図5】自動運転モードにおける第1及び第2のスイッチの状態を示す図
【発明を実施するための形態】
【0013】
[概要]
本開示の複数のバッテリーを冗長的に備えた電源システムは、メインバッテリーから負荷に電力供給を行っている通常の状態において、サブバッテリーを負荷から切り離しておく。これにより、サブバッテリー単体の状態を容易に診断することができ、かつ、予め定められた状態も容易に維持することができる。
【0014】
[電源システムの構成]
図1は、本開示の一実施形態に係る電源システム1の概略構成を示す図である。
図1に例示した電源システム1は、第1のバッテリー11と、第2のバッテリー12と、第1の負荷21と、第2の負荷22と、接続切り替え部30と、発電機40と、を備えている。
【0015】
第1のバッテリー11、第1の負荷21、接続切り替え部30、及び発電機40は、第1の配線51で相互に接続されている。第2のバッテリー12及び接続切り替え部30は、第2の配線52で接続されている。第2の負荷22及び接続切り替え部30は、第3の配線53で接続されている。
【0016】
本実施形態に係る電源システム1は、冗長的な電源構成を必要とする設備装置に搭載することが可能である。以下の実施形態では、手動運転モードと自動運転モードとを切り替え可能な車両に電源システム1が搭載される場合を一例に説明する。
【0017】
発電機40は、例えばオルタネーターやDCDCコンバーターなど、所定の電力を出力することができる機器である。この発電機40が出力する電力は、第1のバッテリー11や第1の負荷21などに供給される。
【0018】
第1のバッテリー11は、例えば鉛蓄電池やリチウムイオン電池などの充放電可能に構成された電力貯蔵要素である。第1のバッテリー11は、発電機40が出力する電力を蓄えたり、自らが蓄えている電力を第1の負荷21及び接続切り替え部30に放出したりする。この第1のバッテリー11は、車両の走行に専ら利用されるメインバッテリーとして設けられている。なお、バッテリーに代えてキャパシタを用いてもよい。
【0019】
第2のバッテリー12は、例えば鉛蓄電池やリチウムイオン電池などの充放電可能に構成された電力貯蔵要素である。第2のバッテリー12は、発電機40が出力する電力や第1のバッテリー11の電力を接続切り替え部30を介して蓄えたり、自らが蓄えている電力を接続切り替え部30を介して第2の負荷22などに放出(供給)したりする。この第2のバッテリー12は、第1のバッテリー11をバックアップするためのサブバッテリーとして冗長的に設けられている。
【0020】
第1の負荷21は、電力を消費する車載機器である。この第1の負荷21は、発電機40が出力する電力及び/又は第1のバッテリー11に蓄えられた電力で動作するように構成されている。
【0021】
第2の負荷22は、電力を消費する車載機器であって、特に車両の安全走行に関わる装置とすることができる。より具体的には、第2の負荷22は、第1のバッテリー11による電源が失陥した場合でも第2のバッテリー12から所定の期間かつ所定の電流による電力供給を必要とする重要負荷であり、例えば自動運転において緊急時に車両を安全に退避行動させるための重要な機能を担う負荷とすることができる。この第2の負荷22は、後述するように、手動運転時には発電機40が出力する電力及び/又は第1のバッテリー11に蓄えられた電力で動作し、自動運転時には第1のバッテリー11に蓄えられた電力及び/又は第2のバッテリー12に蓄えられた電力で動作するように、構成されている。
【0022】
接続切り替え部30は、第1のスイッチ31、第2のスイッチ32、及びDCDCコンバーター33を、構成に含んでいる。これらの構成は、図示しないマイコンなどの制御部によって制御される。
【0023】
第1のスイッチ31は、第1の配線51と第3の配線53との間に配置され、車両の運転モードに基づいて開閉可能に構成されている。この第1のスイッチ31は、車両が手動運転モードであるときは、閉成して第1の配線51と第3の配線53とを接続し、車両が自動運転モードであるときは、開放して第1の配線51と第3の配線53とを切り離す。この第1のスイッチ31には、例えば、ノーマリーオン型の半導体リレーや励磁式のメカニカルリレーなどを用いることができる。
【0024】
第2のスイッチ32は、第2の配線52と第3の配線53との間に配置され、車両の運転モードに基づいて開閉可能に構成されている。この第2のスイッチ32は、車両が自動運転モードであるときは、閉成して第2の配線52と第3の配線53とを接続し、車両が自動運転モードであるときは、開放して第2の配線52と第3の配線53とを切り離す。この第2のスイッチ32には、例えば、ノーマリーオフ型の半導体リレーや励磁式のメカニカルリレーなどを用いることができる。
【0025】
DCDCコンバーター33は、入力された電圧を予め定めた電圧に変換して出力する電圧変換器である。このDCDCコンバーター33は、1次側が第1の配線51に接続されており、2次側が第2の配線52に接続されている。このDCDCコンバーター33は、例えば、1次側の電圧を降圧して2次側に出力する降圧機能と、2次側の電圧を昇圧して1次側に出力する昇圧機能とを兼ね備えた、双方向昇降圧型のDCDCコンバーターとすることができる。
【0026】
双方向昇降圧型のDCDCコンバーターの一例を
図2に示す。
図2に例示するDCDCコンバーターは、1次側端子と2次側端子との間に、直列に接続されたスイッチング素子M1、インダクタL、及びスイッチング素子M3が挿入されている。スイッチング素子M1とインダクタLとの間はスイッチング素子M2で接地され、インダクタLとスイッチング素子M3との間はスイッチング素子M4で接地されている。また、1次側端子及び2次側端子には、それぞれ平滑用のコンデンサC1及びC2が接地されている。スイッチング素子M1~M4には、例えば、電界効果トランジスタ(MOSFET:Metal Oxide Semiconductor Field Effect Transistor)を使用することができる。スイッチング素子M1~M4は、図示しない制御部によってゲート電圧が制御され、オンオフ動作を行う。
【0027】
[電源システムが実行する制御]
次に、
図3乃至
図5をさらに参照して、本実施形態に係る電源システム1が実行する制御を説明する。
図3は、電源システム1の接続切り替え部30が行うモード切り替え制御の処理手順を説明するフローチャートである。
図4は、手動運転モードにおける第1のスイッチ31及び第2のスイッチ32の状態を示す図である。
図5は、自動運転モードにおける第1のスイッチ31及び第2のスイッチ32の状態を示す図である。
【0028】
図3に例示する制御は、車両の電源がオン状態になると開始され、電源がオフ状態になるまで繰り返し実行される。なお、電源がオンされた直後における車両の初期状態は、手動運転モードが設定されるものとして説明する。
【0029】
ステップS301:接続切り替え部30は、第1のスイッチ31を閉成し、かつ、第2のスイッチ32を開放して、電源システム1を「手動運転モード(
図4)」に設定する。手動運転モードが設定されると、ステップS302に処理が進む。
【0030】
この手動運転モードでは、第1のバッテリー11から第2の負荷22へは、DCDCコンバーター33を介さずに電力供給できるため(
図4の実線矢印)、DCDCコンバーター33での電力消費を抑制できる。また、第2のバッテリー12が第2の負荷22から切り離されて第2のバッテリー12から第2の負荷22へ電流が流れないため、第2のバッテリー12の放電を抑制できる。また、第2のバッテリー12は、DCDCコンバーター33を介して第1のバッテリー11及び発電機40に接続されているため、第1のバッテリー11の電力や発電機40の発電電力で充電することが可能となる。さらに、DCDCコンバーター33が双方向型なので、第2のバッテリー12(第2の配線52側)から第1のバッテリー11など(第1の配線51側)に向けて放電することが可能となる。
【0031】
ステップS302:接続切り替え部30は、第2のバッテリー12の状態を診断する。この診断は、例えば所定の時間間隔で、第2のバッテリー12が予め定められた状態にあるか否かを判断することで行われる。この予め定められた状態とは、第2のバッテリー12が規定の電流値を規定の時間継続して出力することが可能な電力を蓄えている状態をいい、第2のバッテリー12の蓄電量(SOC)や内部抵抗値などに基づいて判断される。この診断は、例えば、第2のバッテリー12からDCDCコンバーター33を介して第1の配線51に放電する際の電圧値及び電流値の変化などに基づいて行うことが可能である(
図4の破線矢印)。第2のバッテリー12が予め定められた状態にある場合(S302、OK)は、ステップS304に処理が進み、第2のバッテリー12が予め定められた状態にない場合(S302、NG)は、ステップS303に処理が進む。
【0032】
ステップS303:接続切り替え部30は、第2のバッテリー12が予め定められた状態になるように所定の回復処理を行う。回復処理の一例として、第2のバッテリー12の蓄電量が規定の蓄電量よりも少ない場合には、DCDCコンバーター33を介して第1のバッテリー11の電力などで第2のバッテリー12を充電する処理、及び第2のバッテリー12の蓄電量が規定の蓄電量よりも多い場合には、DCDCコンバーター33を介して第2のバッテリー12の電力を第1の配線51に放出する処理が挙げられる(
図4の破線矢印)。回復処理が実行されると、ステップS304に処理が進む。
【0033】
ステップS304:接続切り替え部30は、車両が手動運転から自動運転に移行したか否かを判断する。自動運転に移行せず手動運転のままである場合(S304、No)には、ステップS302に処理が戻り、手動運転から自動運転に移行した場合(S304、Yes)には、ステップS305に処理が進む。
【0034】
なお、上記ステップS304の判断は、上記ステップS302及びS303の処理と並行して行われてもよいが、下記ステップS305は、ステップS303による第2のバッテリー12の回復を待って実行するとよい。
【0035】
ステップS305:接続切り替え部30は、第1のスイッチ31を開放し、かつ、第2のスイッチ32を閉成して、電源システム1を「自動運転モード(
図5)」に設定する。自動運転モードが設定されると、ステップS306に処理が進む。
【0036】
この自動運転モードでは、第1のバッテリー11から第2の負荷22へは、DCDCコンバーター33を介して電力供給され、また第2のバッテリー12からも電力供給を受ける状態になる(
図5の実線矢印)。これにより、例えば、第1のバッテリー11が失陥するなどの緊急時においても、介在するDCDCコンバーター33の作用によって第2のバッテリー12は失陥の影響をほとんど受けないため、第2のバッテリー12から第2の負荷22への電力供給をバックアップすることができる。
【0037】
ここで、
図2を参照して、第1のバッテリー11が失陥しても第2のバッテリー12が影響をほとんど受けない理由を説明する。第1のバッテリー11が接続されたDCDCコンバーター33の1次側の電圧が第2のバッテリー12が接続された2次側の電圧よりも低下してくると、図示しない制御部によって1次側から2次側に向けて電流を流す昇圧動作が行われる(スイッチング素子M1及びM4のオンによるインダクタLへのエネルギーチャージ、スイッチング素子M4のオフ及びスイッチング素子M3のオンによるインダクタLからのディスチャージ)。このため、第2のバッテリー12からDCDCコンバーター33を介した電流放出は生じない。さらにDCDCコンバーター33の1次側の電圧低下が進むと、図示しない制御部がDCDCコンバーター33の動作を停止(スイッチング素子M1~M4の全てオフ)するため、第2のバッテリー12からDCDCコンバーター33を介した電流放出は生じない。このようにして、第2のバッテリー12の電力が維持される。
【0038】
ステップS306:接続切り替え部30は、車両が自動運転から手動運転に移行したか否かを判断する。手動運転に移行せず自動運転のままである場合(S306、No)には、引き続きステップS306の判断を実施し、自動運転から手動運転に移行した場合(S306、Yes)には、ステップS301に処理が戻る。
【0039】
なお、運転モードを切り替える際には、電圧変動の影響を抑制するために、一方のバッテリーを充放電処理してDCDCコンバーター33の1次側と2次側の電圧差を所定値以下に極力少なくしておくことが望ましい。但し、DCDCコンバーター33の2次側から1次側に電流を放出した場合、第1の配線51の電源電圧が発電機40の出力電圧からさらに持ち上がって高くなってしまい、第1の負荷21の定格電圧を超えてしまうおそれがある。このようなことを避けるため、DCDCコンバーター33の2次側から1次側に電流を放出するときには、発電機40の出力電圧を予め下げておくことが有用である。
【0040】
[本実施形態における作用・効果]
上述した本開示の一実施形態に係る電源システム1によれば、手動運転モード(第1のモード)では、接続切り替え部30が、第1のスイッチ31を閉成して第1のバッテリー11から第2の負荷22に電力を直接供給し、第2のスイッチ32を開放して第2のバッテリー12を第2の負荷22から切り離すことを行う。
【0041】
これにより、手動運転モードでは、DCDCコンバーター33を用いた充放電制御によって、自動運転時のバックアップ用である第2のバッテリー12単体の状態を容易に診断することができ、かつ、所定の期間かつ所定の電流による電力供給が可能な状態も容易に維持することができる。また、この手動運転モードでは、DCDCコンバーター33は、第2の負荷22への電力供給は必要なく、第2のバッテリー12の状態診断及び状態維持を行うだけでよいので、消費電力を抑制できる。
【0042】
また、本実施形態に係る電源システム1によれば、自動運転モード(第2のモード)では、接続切り替え部30が、第1のスイッチ31を開放して第1のバッテリー11を第2の負荷22から切り離す場合には、第2のスイッチ32を閉成して第2のバッテリー12を第2の負荷22に接続する。
【0043】
これにより、自動運転モードでは、第1のバッテリー11が失陥しても第2のバッテリー12から第2の負荷22に電力を供給することができる。
【0044】
さらに、本実施形態に係る電源システム1によれば、接続切り替え部30は、DCDCコンバーター33の1次側と2次側との電圧差を所定値以下に制御した後に、第1のスイッチ31及び第2のスイッチ32の状態を切り替える。これにより、DCDCコンバーター33の1次側と2次側との電圧差を小さくすることができるので、運転モードを切り替えるときの電圧変動の発生を抑えることができる。また、運転モードの速やかな切り替えが可能となる。
【0045】
なお、車両の電源オフ時は、第2の負荷22に流れる暗電流を第1のバッテリー11から供給できるように、
図4に示した第1のスイッチ31を閉成し、かつ、第2のスイッチ32を開放した手動運転モードとすることが望ましい。
【0046】
また、上記実施形態は、双方向昇降圧型のDCDCコンバーターを用いて説明したが、本開示が適用される範囲は“双方向型”である必要はない。
【産業上の利用可能性】
【0047】
本開示の電源システムなどは、複数のバッテリーを冗長的に備えた車両などに利用可能である。
【符号の説明】
【0048】
1 電源システム
11 第1のバッテリー
12 第2のバッテリー
21 第1の負荷
22 第2の負荷
30 接続切り替え部
31 第1のスイッチ
32 第2のスイッチ
33 DCDCコンバーター
40 発電機
51~53 配線