(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-01-20
(45)【発行日】2023-01-30
(54)【発明の名称】圧縮システムの制御方法、圧縮システム及び水素ステーション
(51)【国際特許分類】
F17C 5/06 20060101AFI20230123BHJP
【FI】
F17C5/06
(21)【出願番号】P 2019219118
(22)【出願日】2019-12-03
【審査請求日】2021-10-26
(73)【特許権者】
【識別番号】000001199
【氏名又は名称】株式会社神戸製鋼所
(74)【代理人】
【識別番号】100115381
【氏名又は名称】小谷 昌崇
(74)【代理人】
【識別番号】100187908
【氏名又は名称】山本 康平
(72)【発明者】
【氏名】橋本 宏一郎
(72)【発明者】
【氏名】高野 雅士
(72)【発明者】
【氏名】姥 拓郎
(72)【発明者】
【氏名】福田 貴之
(72)【発明者】
【氏名】名倉 見治
【審査官】加藤 信秀
(56)【参考文献】
【文献】特開2019-183993(JP,A)
【文献】特開2015-232384(JP,A)
【文献】特開2018-087503(JP,A)
【文献】特開2017-131862(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
F17C 5/06
(57)【特許請求の範囲】
【請求項1】
ガスを圧縮する圧縮機と、前記圧縮機の吸込側に接続された吸込流路に設けられた第1開閉弁と、前記吸込流路のうち前記第1開閉弁よりも上流側に設けられた減圧弁と、前記圧縮機の吐出側に接続された吐出流路に設けられた第2開閉弁と、前記圧縮機を迂回するように前記吸込流路と前記吐出流路とを接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、
前記吸込流路における圧力を検知する圧力検知部と、を備えた圧縮システムを制御する方法であって、
前記圧縮機を駆動させつつ前記第1開閉弁を閉じることと、
前記第1開閉弁の閉操作の後であって前記圧力検知部によって検知される圧力が第1閾値まで低下した時に前記バイパス弁を開くことと、
前記バイパス弁の開操作の後に前記第2開閉弁を閉じることと、
前記第2開閉弁の閉操作後において
、前記吸込流路における前記バイパス流路の接続位置から前記吐出流路における前記バイパス流路の接続位置までの流路と前記バイパス流路とで構成される経路で前記ガスが循環するように前記圧縮機を駆動させ続けることと、を含
み、
前記第1閾値は予め決められた前記圧縮機の圧縮比に基づいて設定される、
圧縮システムの制御方法。
【請求項2】
前記バイパス弁は、開度調整可能に構成されており、
前記圧縮システムは、前記吸込流路に配置されると共にガスを貯留するバッファタンク
をさらに備え、
前記圧力検知部により検知される圧力を第2閾値未満に保ちながら前記バイパス弁の開度を増加させる、
請求項1
に記載の圧縮システムの制御方法。
【請求項3】
前記圧縮システムは、前記吐出流路に設けられると共に、前記圧縮機から吐出されたガスを冷却するクーラをさらに備え、
前記バイパス流路のうち前記圧縮機の吐出側の端部は、前記吐出流路のうち前記クーラよりも下流側の部位に接続されている、
請求項1
又は2に記載の圧縮システムの制御方法。
【請求項4】
前記第1開閉弁の閉操作から前記第2開閉弁の閉操作までの間及び前記第2開閉弁の閉操作後において、前記圧縮機の回転数を、前記第1開閉弁の閉操作前における前記圧縮機の回転数に維持する、
請求項1~
3のいずれか1項に記載の圧縮システムの制御方法。
【請求項5】
ガスを圧縮する圧縮機と、
前記圧縮機の吸込側に接続された吸込流路に設けられた第1開閉弁と、
前記吸込流路のうち前記第1開閉弁よりも上流側に設けられた減圧弁と、
前記圧縮機の吐出側に接続された吐出流路に設けられた第2開閉弁と、
前記圧縮機を迂回するように前記吸込流路と前記吐出流路とを接続するバイパス流路と、
前記バイパス流路に設けられたバイパス弁と、
前記吸込流路における圧力を検知する圧力検知部と、
前記圧縮機、前記第1開閉弁、前記第2開閉弁及び前記バイパス弁を制御する制御部と、を備え、
前記制御部は、前記圧縮機を駆動させつつ前記第1開閉弁を閉じ、
前記第1開閉弁の閉操作の後であって前記圧力検知部によって検知される圧力が第1閾値まで低下した時に前記バイパス弁を開き、前記バイパス弁の開操作の後に前記第2開閉弁を閉じると共に、前記第2開閉弁の閉操作後において
、前記吸込流路における前記バイパス流路の接続位置から前記吐出流路における前記バイパス流路の接続位置までの流路と前記バイパス流路とで構成される経路で前記ガスが循環するように前記圧縮機を駆動させ続ける制御を実行
し、
前記第1閾値は予め決められた前記圧縮機の圧縮比に基づいて設定される、
圧縮システム。
【請求項6】
請求項
5に記載された圧縮システムであって水素ガスを所定の圧力まで圧縮するものと、
前記圧縮システムから供給された水素ガスを燃料電池車に補給するディスペンサと、を備えた、
水素ステーション。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、圧縮システムの制御方法、圧縮システム及び当該圧縮システムを備えた水素ステーションに関する。
【背景技術】
【0002】
従来、特許文献1に記載されているように、水素ステーションにおいて燃料の水素ガスを圧縮すると共に圧縮後の水素ガスをディスペンサへ供給する圧縮システムが知られている。この圧縮システムは、水素ガスを圧縮する圧縮機及びその後段に配置された蓄圧器を有し、圧縮後の水素ガスを蓄圧器において一旦貯留した後、蓄圧器からディスペンサへ水素ガスを供給可能に構成されている。具体的に、特許文献1に記載された圧縮システムは、圧縮機と、圧縮機の吸込側に接続された吸込流路と、吸込流路に設けられた開閉弁と、圧縮機の吐出側に接続された吐出流路と、吐出流路に設けられた開閉弁と、圧縮された水素ガスを貯留する蓄圧器と、圧縮機を迂回するバイパス流路と、バイパス流路に設けられたバイパス弁と、を有している。
【0003】
特許文献1には、蓄圧器への水素ガスの充填が完了した時の圧縮システムの運転停止手順について、以下の通り記載されている。すなわち、圧縮機が駆動中で且つ吸込流路及び吐出流路に設けられた各開閉弁が開いた状態において、まず、吸込流路に設けられた開閉弁が閉じられる。そして、所定時間が経過した後に圧縮機が停止され、吐出流路に設けられた開閉弁が閉じられた後、バイパス弁が全開になる。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
ところで、特許文献1の段落0051には「停止制御を受けた圧縮機22は、モータの回転を徐々に弱めながら駆動を続け、停止制御を開始してから時間t2が経過した時点で完全に停止することになる。」と記載されている。圧縮機22を一定期間駆動させ続けることにより、圧縮機22の吸込側の圧力が過剰に低下してしまうと、許容される圧縮比を超えてしまう可能性がある。
【0006】
段落0052には「ステップST3にて圧縮機22の停止制御を開始した制御部28は、流出側開閉弁233aを閉じる閉制御を行う(ステップST4)。」と記載されている。停止制御によって圧縮機22の処理量が低下していることから、蓄圧器に送られる水素ガスの量が少なくなる可能性があり、流出側開閉弁233aを閉じることによって、圧縮機22の吐出側に多くの水素ガスが滞留してしまう可能性がある。
【0007】
段落0053には「ステップST4にて流出側開閉弁233aを閉じる閉制御を行った制御部28は、スピルバック開閉弁252を全開とする開度調整制御を行う(ステップST5)。」と記載されている。圧縮機22の吐出側に多くの水素ガスが滞留している場合に、スピルバック開閉弁252を全開としてしまうと、圧縮機22の吸込側の圧力が過剰に増大し、安全弁が作動してしまう可能性がある。
【0008】
また、特許文献1では、圧縮機が停止されてしまうことから、蓄圧器への水素ガスの再充填を行う際に圧縮機を再度立ち上げる必要があり、そのために長時間の作業や多大な労力を伴うという課題もある。
【0009】
本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、円滑に圧縮機によるガスの処理を停止することである。
【課題を解決するための手段】
【0010】
本発明の一局面に係る圧縮システムの制御方法は、ガスを圧縮する圧縮機と、前記圧縮機の吸込側に接続された吸込流路に設けられた第1開閉弁と、前記吸込流路のうち前記第1開閉弁よりも上流側に設けられた減圧弁と、前記圧縮機の吐出側に接続された吐出流路に設けられた第2開閉弁と、前記圧縮機を迂回するように前記吸込流路と前記吐出流路とを接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、前記吸込流路における圧力を検知する圧力検知部と、を備えた圧縮システムを制御する方法である。この方法は、前記圧縮機を駆動させつつ前記第1開閉弁を閉じることと、前記第1開閉弁の閉操作の後であって前記圧力検知部によって検知される圧力が第1閾値まで低下した時に前記バイパス弁を開くことと、前記バイパス弁の開操作の後に前記第2開閉弁を閉じることと、前記第2開閉弁の閉操作後において、前記吸込流路における前記バイパス流路の接続位置から前記吐出流路における前記バイパス流路の接続位置までの流路と前記バイパス流路とで構成される経路で前記ガスが循環するように前記圧縮機を駆動させ続けることと、を含み、前記第1閾値は予め決められた前記圧縮機の圧縮比に基づいて設定される。
【0011】
この圧縮システムの制御方法では、まず、第1開閉弁を閉じることによって圧縮機へのガスの吸込が停止され、圧縮機からのガスの吐出量も減少する。そして、第1開閉弁の閉操作の後にバイパス弁を開くことにより、圧縮機から吐出されたガスがバイパス流路を介して吸込流路へ還流し、圧縮機の吸込側と吐出側との間で均圧化される。これにより、圧縮機の吸込側における圧力の過剰な低下を抑制し、圧縮比超えの状態になるのを防ぐことができる。
【0012】
そして、バイパス弁の開操作の後に第2開閉弁を閉じることにより、圧縮機の後段のガス供給先へのガスの流入が遮断される。このように、第2開閉弁を閉じる前にバイパス弁を開くことにより、圧縮機の吐出側におけるガスの滞留を抑制し、バイパス弁を開いた時に圧縮機の吸込側における圧力が過上昇するのを抑制することができる。したがって、上記圧縮システムの制御方法によれば、円滑に圧縮機によるガスの処理を停止することができる。
【0013】
また、第1開閉弁、バイパス弁及び第2開閉弁をそれぞれ操作すると共に、第2開閉弁の閉操作の後も圧縮機を駆動させ続けることにより、圧縮機の吸込側と吐出側とが均圧化された状態で、バイパス流路を介して圧縮機内をガスが循環するアイドリング運転を継続することができる。これにより、ガス供給先への圧縮ガスの供給再開が必要になった時に、圧縮機を再度立ち上げる必要がなく、アイドリング運転から通常運転へスムーズに復帰することができる。したがって、圧縮機の再起動に伴う時間や労力を削減することが可能になる。
【0015】
また、第1開閉弁を閉じると、圧縮機へのガスの吸込が停止されるため、吸込流路における圧力が次第に低下する。このため、第1開閉弁の閉操作と同時ではなく、当該閉操作の後に時間を空けてからバイパス弁を開くことにより、吸込流路における圧力の過上昇を抑制することができる。しかも、吸込流路における圧力が第1閾値まで低下する時にバイパス弁を開き始めることにより、吸込流路における圧力が下がり過ぎて予め設定された圧縮比を超えてしまうことを抑制することもできる。
【0016】
上記圧縮システムの制御方法において、前記バイパス弁は、開度調整可能に構成されて
いてもよい。前記圧縮システムは、前記吸込流路に配置されると共にガスを貯留するバッファタンクをさらに備えていてもよい。前記圧力検知部により検知される圧力を第2閾値未満に保ちながら前記バイパス弁の開度を増加させてもよい。
【0017】
このようにすれば、容量が小さいバッファタンクを用いた場合であっても、吸込側の圧力の監視に基づいてバイパス弁の開度を調整することにより、吸込側における圧力の過上昇を抑制することができる。このため、吸込流路に安全弁が設けられている場合には、バイパス弁の操作中に安全弁が作動するのを防ぐことができる。
【0018】
上記圧縮システムの制御方法において、前記圧縮システムは、前記吐出流路に設けられると共に、前記圧縮機から吐出されたガスを冷却するクーラをさらに備えていてもよい。前記バイパス流路のうち前記圧縮機の吐出側の端部は、前記吐出流路のうち前記クーラよりも下流側の部位に接続されていてもよい。
【0019】
これにより、バイパス弁を開いて圧縮機の吐出側から吸込側へガスを還流させる時に、クーラによって冷却されたガスを吸込側へ還流させることができる。このため、吸込流路において高い耐熱性が要求されないという利点がある。
【0020】
上記圧縮システムの制御方法では、前記第1開閉弁の閉操作から前記第2開閉弁の閉操作までの間及び前記第2開閉弁の閉操作後において、前記圧縮機の回転数を、前記第1開閉弁の閉操作前における前記圧縮機の回転数に維持してもよい。
【0021】
このようにすれば、アイドリング運転から通常運転へ復帰させる場合にも、アイドリング運転へ移る前の通常運転に比べて圧縮機によるガスの処理量が低下せず、通常運転への復帰時に圧縮機を加速する必要がなくなる。
【0022】
本発明の他の局面に係る圧縮システムは、ガスを圧縮する圧縮機と、前記圧縮機の吸込側に接続された吸込流路に設けられた第1開閉弁と、前記吸込流路のうち前記第1開閉弁よりも上流側に設けられた減圧弁と、前記圧縮機の吐出側に接続された吐出流路に設けられた第2開閉弁と、前記圧縮機を迂回するように前記吸込流路と前記吐出流路とを接続するバイパス流路と、前記バイパス流路に設けられたバイパス弁と、前記吸込流路における圧力を検知する圧力検知部と、前記圧縮機、前記第1開閉弁、前記第2開閉弁及び前記バイパス弁を制御する制御部と、を備えている。前記制御部は、前記圧縮機を駆動させつつ前記第1開閉弁を閉じ、前記第1開閉弁の閉操作の後であって前記圧力検知部によって検知される圧力が第1閾値まで低下した時に前記バイパス弁を開き、前記バイパス弁の開操作の後に前記第2開閉弁を閉じると共に、前記第2開閉弁の閉操作後において、前記吸込流路における前記バイパス流路の接続位置から前記吐出流路における前記バイパス流路の接続位置までの流路と前記バイパス流路とで構成される経路で前記ガスが循環するように前記圧縮機を駆動させ続ける制御を実行し、前記第1閾値は予め決められた前記圧縮機の圧縮比に基づいて設定される。
【0023】
この圧縮システムによれば、第1開閉弁の閉操作の後にバイパス弁を開くことにより、圧縮機の吸込側における圧力の過剰な低下が抑制される。またバイパス弁の開操作の後に第2開閉弁を閉じることにより、圧縮機の吐出側におけるガスの滞留を抑制し、バイパス弁を開いた時に圧縮機の吸込側における圧力が過上昇するのを抑制することができる。したがって、円滑に圧縮機によるガスの処理を停止することができる。
【0024】
また第1開閉弁、バイパス弁及び第2開閉弁をそれぞれ制御すると共に、第2開閉弁の閉操作の後も圧縮機を駆動させ続けることにより、圧縮機の吸込側と吐出側とが均圧化された状態で、バイパス流路を介して圧縮機内をガスが循環するアイドリング運転を継続することができる。これにより、ガス供給先への圧縮ガスの供給再開が必要になった時に、圧縮機を再度立ち上げる必要がなく、アイドリング運転から通常運転へスムーズに復帰することができる。したがって、圧縮機の再起動に伴う時間や労力を削減することが可能になる。
また、第1開閉弁を閉じると、圧縮機へのガスの吸込が停止されるため、吸込流路における圧力が次第に低下する。このため、第1開閉弁の閉操作と同時ではなく、当該閉操作の後に時間を空けてからバイパス弁を開くことにより、吸込流路における圧力の過上昇を抑制することができる。しかも、吸込流路における圧力が第1閾値まで低下する時にバイパス弁を開き始めることにより、吸込流路における圧力が下がり過ぎて予め設定された圧縮比を超えてしまうことを抑制することもできる。
【0025】
本発明のさらに他の局面に係る水素ステーションは、上記圧縮システムであって水素ガスを所定の圧力まで圧縮するものと、前記圧縮システムから供給された水素ガスを燃料電池車に補給するディスペンサと、を備えている。
【0026】
この水素ステーションは、上記圧縮システムを備えているため、圧縮機が一旦アイドリング運転の状態になった後、ガス供給先への圧縮ガスの供給再開が必要になった時に、圧縮機を再度立ち上げる必要がなく、アイドリング運転から通常運転へスムーズに復帰することができる。
【発明の効果】
【0027】
以上の説明から明らかなように、本発明によれば、円滑に圧縮機によるガスの処理を停止することが可能な圧縮システムの制御方法及び圧縮システム、並びに当該圧縮システムを備えた水素ステーションを提供することができる。
【図面の簡単な説明】
【0028】
【
図1】本発明の実施形態1に係る水素ステーション及び圧縮システムの構成を模式的に示す図である。
【
図2】本発明の実施形態1に係る圧縮システムの制御方法を説明するためのフローチャートである。
【
図3】本発明の実施形態2に係る水素ステーション及び圧縮システムの構成を模式的に示す図である。
【発明を実施するための形態】
【0029】
以下、図面に基づいて、本発明の実施形態に係る圧縮システムの制御方法、圧縮システム及び水素ステーションを詳細に説明する。
【0030】
(実施形態1)
まず、本発明の実施形態1に係る圧縮システム2及びこれを備えた水素ステーション1の構成を、
図1に基づいて説明する。水素ステーション1は、燃料電池車100に燃料の水素ガスを補給するための施設であり、圧縮システム2と、ディスペンサ3とを主に備えている。
【0031】
圧縮システム2は、トレーラータンク16から供給された水素ガスを圧縮し、ディスペンサ3へ供給するものである。
図1に示すように、圧縮システム2は、圧縮機10と、吸込流路11と、バッファタンク12と、第1開閉弁13と、減圧弁14と、安全弁15と、第1圧力検知部51と、吐出流路21と、クーラ22と、逆止弁23と、第2開閉弁24と、第2圧力検知部52と、蓄圧器20と、バイパス流路61と、バイパス弁62と、圧縮システム制御部40と、を主に備えている。以下、これらの構成要素をそれぞれ詳細に説明する。
【0032】
圧縮機10は、吸込流路11から吸い込まれる水素ガスを所定の圧力(本実施形態では82MPa)まで圧縮するものであり、例えば往復動圧縮機(レシプロコンプレッサ)である。本実施形態における圧縮機10は、複数の圧縮室(図示しない)が直列に設けられた多段式のものであるが、これに限定されない。圧縮機10は、圧縮室が1つのみ設けられた単段式のものであってもよい。
【0033】
吸込流路11は、トレーラータンク16から供給された水素ガスを、圧縮機10の吸込側(吸込口)へ導くための流路である。
図1に示すように、吸込流路11は、上流端がトレーラータンク16に接続可能であると共に下流端がバッファタンク12の入口に接続された第1吸込流路11Aと、バッファタンク12の出口と圧縮機10の吸込口とを接続する第2吸込流路11Bと、を有している。バッファタンク12は、吸込流路11に配置されており、圧縮機10へ吸い込まれる前の水素ガスを一時的に貯留する。
【0034】
なお、本実施形態に係る水素ステーション1は、別の場所で製造されてトレーラー(図示しない)により輸送された水素ガスをステーション内へ受け入れるオフサイト型のものであるが、水素製造装置をさらに備えたオンサイト型のステーションであってもよい。
【0035】
第1開閉弁13は、圧縮機10への水素ガスの吸込及びその停止を切り替えるためのものであり、吸込流路11(第1吸込流路11A)に設けられている。本実施形態における第1開閉弁13は、圧縮システム制御部40により開閉状態が切り替わる自動制御弁であるが、これに限定されない。第1開閉弁13は、手動弁であってもよい。
【0036】
減圧弁14は、トレーラータンク16から供給される水素ガスを減圧するための弁であり、吸込流路11(第1吸込流路11A)のうち第1開閉弁13よりも上流側(トレーラータンク16側)に設けられている。本実施形態では、減圧弁14は、吸込流路11のうち減圧弁14よりも下流側における圧力が0.6MPaになるように、水素ガスの圧力を調整する。トレーラータンク16内の圧力は減圧弁14の設定圧よりも高いため(例えば20MPa)、減圧弁14を設けることによってトレーラータンク16内の水素ガスを全て使い切ることができる。
【0037】
安全弁15は、圧縮機10の吸込側における圧力を所定圧力以下に保つためのものであり、第2吸込流路11Bに設けられている。すなわち、安全弁15は、圧縮機10の吸込側における圧力が上記所定圧力を超える時に作動し(弁が開き)、吸込流路11から外部空間へ水素ガスを放出させる。
【0038】
第1圧力検知部51は、吸込流路11における水素ガスの圧力を検知するセンサであり、本実施形態では第2吸込流路11Bのうち安全弁15よりも上流側(バッファタンク12側)の部位に設置されている。第1圧力検知部51は、水素ガスの圧力に応じた検知信号を、圧縮システム制御部40へ出力する。
【0039】
吐出流路21は、圧縮機10により圧縮(昇圧)された水素ガスを蓄圧器20へ導くための流路であり、圧縮機10の吐出側に接続されている。
図1に示すように、吐出流路21は、上流端が圧縮機10の吐出口に接続されていると共に、下流端が蓄圧器20の入口に接続されている。
【0040】
クーラ22は、圧縮機10から吐出された水素ガスを冷却するものであり、吐出流路21のうち圧縮機10の吐出口近傍(逆止弁23よりも圧縮機10側)に設置されている。クーラ22は、例えば、冷却水等の冷却媒体との熱交換により圧縮後の水素ガスを冷却する熱交換器であるが、これに限定されない。
【0041】
図1に示すように、逆止弁23は、吐出流路21のうちクーラ22よりも下流側(蓄圧器20側)に設置されており、蓄圧器20側から圧縮機10側への水素ガスの流れ(逆流)を阻止する。第2開閉弁24は、蓄圧器20への水素ガスの流入及びその停止を切り替えるためのものであり、吐出流路21のうち逆止弁23よりも下流側に設置されている。
【0042】
第2圧力検知部52は、吐出流路21における水素ガスの圧力を検知するセンサであり、本実施形態では吐出流路21のうち第2開閉弁24よりも下流側(蓄圧器20の入口近傍)に設置されている。第2圧力検知部52は、水素ガスの圧力に応じた検知信号を、水素ステーション1の全体を制御するステーション制御部110へ送信する。
図1に示すように、ステーション制御部110は、第2圧力検知部52から送信される検知信号を受信する受付部111と、圧縮システム制御部40へ制御指令を送信する指令部112と、を含む。
【0043】
蓄圧器20は、圧縮機10から吐出された水素ガスを貯留する。蓄圧器20は、設計圧力が例えば82MPaとなっている。
図1に示すように、吐出流路21のうち第2開閉弁24と第2圧力検知部52との間の部位には、供給路25の上流端が接続されている。供給路25は、蓄圧器20内の水素ガスをディスペンサ3へ導入するための流路である。
図1に示すように、供給路25には、第3開閉弁26及び逆止弁27が上流側から順に設置されており、当該供給路25の下流端はディスペンサ3の入口に接続されている。第2開閉弁24を閉じた状態で第3開閉弁26を開くことにより、蓄圧器20内の水素ガスが供給路25を介してディスペンサ3へ供給される。
【0044】
バイパス流路61は、圧縮機10の吐出側から吸込側へ水素ガスを還流させるための流路であり、圧縮機10を迂回するように吸込流路11と吐出流路21とを接続している。上述の通り、本実施形態における圧縮機10は多段式に構成されているため、最終段の圧縮室から吐出された水素ガスがバイパス流路61を介して吸込側へ還流し、第1段目の圧縮室へ流入する。
【0045】
図1に示すように、バイパス流路61のうち圧縮機10の吸込側の端部(上流端)は、第2吸込流路11Bのうち第1圧力検知部51よりも下流側で且つ安全弁15よりも上流側の部位(減圧弁14よりも下流側の部位)に接続されている。またバイパス流路61のうち圧縮機10の吐出側の端部(下流端)は、吐出流路21のうちクーラ22よりも下流側で且つ逆止弁23よりも上流側の部位に接続されている。
【0046】
バイパス弁62は、バイパス流路61に設けられており、吐出流路21からバイパス流路61へ流入する水素ガスの量を調整する。バイパス弁62は、圧縮システム制御部40によって開度調整可能に構成された自動制御弁である。
【0047】
圧縮システム制御部40は、圧縮システム2の各種動作を制御するコンピュータであり、受付部41と、記憶部42と、判定部43と、弁制御部44と、圧縮機制御部45と、を含む。受付部41、判定部43、弁制御部44及び圧縮機制御部45は、上記コンピュータを構成する中央演算処理装置(CPU;Central Processing Unit)により実行される各機能であり、記憶部42はメモリ等の記憶装置により構成されている。
【0048】
受付部41は、第1圧力検知部51から送信される検知信号を受信し、またステーション制御部110(指令部112)から送信される制御指令も受信する。記憶部42には、吸込流路11における圧力(より正確には、第1開閉弁13と圧縮機10との間の流路部分)について予め定められた第1閾値及び第2閾値のデータが格納されている。第1閾値は、予め決められた圧縮機10の圧縮比に基づいて設定される値である。
【0049】
判定部43は、第1圧力検知部51による検知圧力と第1閾値とを比較し、その大小関係を判定する。また判定部43は、第1圧力検知部51による検知圧力と第2閾値とを比較し、その大小関係を判定する。
【0050】
弁制御部44は、第1開閉弁13、第2開閉弁24及び第3開閉弁26の開閉を切り替えると共に、判定部43による判定結果に基づいてバイパス弁62の開度を調整する。圧縮機制御部45は、圧縮機10の駆動及びその停止(モータのオン/オフ)を切り替えると共に、圧縮機10の回転数を制御する。
【0051】
圧縮システム制御部40は、蓄圧器20へのガス充填の完了に基づいて圧縮機10を駆動させつつ第1開閉弁13を閉じ、第1開閉弁13の閉操作の後にバイパス弁62を開き、バイパス弁62の開操作の後に第2開閉弁24を閉じると共に、第2開閉弁24の閉操作後において圧縮機10を駆動させ続ける。この制御内容については、後の圧縮システムの制御方法の説明において詳述する。
【0052】
ディスペンサ3は、圧縮システム2から供給された水素ガスを燃料電池車100に補給する。
図1に示すように、ディスペンサ3にはプレクーラー31が内蔵されており、当該プレクーラー31は水素ガスの供給路25及びブライン流路32にそれぞれ接続されている。蓄圧器20から供給路25を介してディスペンサ3へ供給された水素ガスは、プレクーラー31においてブラインとの熱交換により冷却される。
【0053】
図1に示すように、圧縮システム2は、冷凍機34をさらに備えており、水素ガスと熱交換した後のブラインは冷凍機34により冷却された後、ブライン流路32を介して再びプレクーラー31へ供給される。つまり、ブラインは、ブライン流路32を介してプレクーラー31と冷凍機34との間で循環可能となっている。
【0054】
次に、上記圧縮システム2の制御方法を、
図2のフローチャートに従って説明する。
【0055】
まず、圧縮システム2の通常運転(ステップS10)では、第1開閉弁13が開き、バイパス弁62が全閉であり、第2開閉弁24が開いた状態で、圧縮機10を所定の回転数(定格回転数)で駆動する。
【0056】
これにより、トレーラータンク16内の水素ガスが吸込流路11を介して圧縮機10へ吸い込まれ、圧縮機10から吐出された高圧の水素ガスが吐出流路21を介して蓄圧器20内へ流入し、当該蓄圧器20へ水素ガスが充填される。
【0057】
上記通常運転の間、第2圧力検知部52によって蓄圧器20の入口近傍の圧力が監視される。そして、蓄圧器20内の圧力が設定圧(本実施形態では82MPa)にほぼ達すると、圧縮システム2を通常運転からアイドリング運転へ切り替えるための制御指令が、ステーション制御部110(指令部112)から圧縮システム制御部40(受付部41)へ送信される(ステップS20のYES)。この制御指令を受けて、圧縮システム制御部40は、圧縮機10を駆動させつつ第1開閉弁13を開状態から閉状態へ切り替える(ステップS30)。つまり、本実施形態における圧縮システム制御部40(弁制御部44)は、蓄圧器20へのガス充填の完了に基づいて、第1開閉弁13を閉じる。
【0058】
第1開閉弁13を閉じると、圧縮機10への水素ガスの吸込が停止され、吸込流路11(第1開閉弁13よりも下流側の部位)における圧力が次第に低下する。この間、第1圧力検知部51によって、吸込流路11における圧力変化が監視される。
【0059】
そして、圧縮機10の吸込側の圧力、すなわち、圧縮機10と第1開閉弁13との間の流路部分の圧力が第1閾値(本実施形態では0.4MPa)まで低下した時に(ステップS40のYES)、弁制御部44がバイパス弁62を開き始める(ステップS50)。ここで、第1閾値とは、圧縮機10の吐出側の圧力(すなわち、圧縮機10と第2開閉弁24との間の流路部分の圧力)を予め設定された圧縮比で除した値、すなわち、圧縮機10において許容され得る最も低い吸込側の圧力値である。なお、上記吐出側の圧力は、必ずしも、実際に取得された圧力値である必要はなく、蓄圧器20の設定圧を吐出側の圧力とみなしてもよい。これにより、圧縮機10から吐出された水素ガスの一部がバイパス流路61を介して吸込流路11(第2吸込流路11B)へ還流し、圧縮機10の吸込側の圧力が上昇することにより、圧縮機10の吸込側と吐出側との間の圧力差が小さくなる。なお、圧縮機10が多段式の圧縮機である場合は、1段目の吸込圧と最終段の吐出圧との比が、予め設定された圧縮比を超えないように、第1閾値が設定される。
【0060】
弁制御部44は、第1圧力検知部51により検知される圧力を第2閾値未満に保ちながら、バイパス弁62の開度を次第に増加させる。ここで、第2閾値は、安全弁15を作動させるために設定された値を基準として当該値よりも低い値である。第2閾値は、第1閾値よりも大きい値である。
【0061】
上記ステップS50においてバイパス弁62の開度を増加させた後、第1圧力検知部51による検知圧力が第2閾値未満であるか否かを判定部43が判定する。そして、当該検知圧力が第2閾値以上である場合には、弁制御部44がバイパス弁62の開度を減少させる。一方、当該検知圧力が第2閾値未満であり、且つバイパス弁62が全開状態ではない場合は、弁制御部44がバイパス弁62の開度をさらに増加させる。
【0062】
このようにして、バイパス弁62が全開になるまでの間、圧縮機10の吸込側の圧力(第1圧力検知部51による検知圧力)を監視しながら、バイパス弁62の開度を時間経過と共に徐々に(段階的に)増加させる。これにより、バイパス弁62の開度調整中に安全弁15が作動して水素ガスが吸込流路11の外へ放出されるのを防ぐことができる。
【0063】
そして、バイパス弁62が全開になると、弁制御部44が第2開閉弁24を閉じる(ステップS60)。この状態において、圧縮機10の吸込側と吐出側とは均圧化され、しかもその圧力は安全弁15の作動圧力よりも低くなる。
【0064】
本方法では、圧縮システム制御部40(圧縮機制御部45)が、第2開閉弁24の閉操作後(ステップS70)において、圧縮機10を駆動させ続ける(アイドリング運転)。つまり、圧縮機制御部45は、上記ステップS60以降において、圧縮機10のモータ駆動を継続させる。アイドリング運転中は、バイパス流路61において循環する水素ガスが圧縮機10に流れるが、実質的な圧縮動作は行われない。また圧縮機制御部45は、第1開閉弁13の閉操作から第2開閉弁24の閉操作までの間及び第2開閉弁24の閉操作後において、圧縮機10の回転数を、第1開閉弁13の閉操作前における圧縮機10の回転数(つまり、上記ステップS10の通常運転時の回転数と同じ回転数)に維持する。
【0065】
その後、圧縮システム2のアイドリング運転中において、蓄圧器20内の水素ガスがディスペンサ3への供給により消費されると、蓄圧器20への水素ガスの再充填の制御指令がステーション制御部110(指令部112)から圧縮システム制御部40(受付部41)へ送信される。この制御指令を受けて、弁制御部44は、圧縮システム2をアイドリング運転から通常運転へ復帰させるために、第1開閉弁13及び第2開閉弁24を閉状態から開状態へ切り替えると共に、バイパス弁62を全開状態から全閉状態へ切り替える。この時、圧縮機制御部45は、圧縮機10を再起動する必要がなく、しかも圧縮機10の回転数を変更する必要もない。
【0066】
以上、本発明の実施形態に係る圧縮システムの制御方法について説明したが、本方法では、第1開閉弁13を閉じた後、圧縮機10を駆動させ続けて蓄圧器20に水素ガスを充填させることにより、第1開閉弁13と圧縮機10との間に残存する水素ガスを十分に減らすことができる。
【0067】
さらに、水素ガスの一部がバイパス流路61を介して圧縮機10の吐出側から吸込側に還流されることにより、第1開閉弁13と圧縮機10との間における水素ガスの圧力が急峻に低下してしまうことが抑制され、圧縮機10の吸込側と吐出側との圧力の比が、予め設定された圧縮比を超えてしまうことが防止される。圧縮システム2では、減圧弁14によって圧縮機10の吸込側の圧力が低くされているため圧縮機の吸込側と吐出側との間の圧力差が元々大きいことから、水素ガスを還流させて圧縮機10の吸込側の圧力を維持する本手法が特に好ましい。
【0068】
また、圧縮機10の吸込側の圧力を第2閾値未満に維持しながらバイパス弁62の開度を増大させていくことで、水素ガスの圧力が急峻に増大してしまうことも抑制され、安全弁15が作動してしまうことも防止される。圧縮システム2では、減圧弁14によって減圧された吸込流路11に高圧の水素ガスが一気に還流してしまうと圧力が増加しやすいことから、バイパス弁62の開度制御を行う本手法が特に好ましい。
【0069】
また、圧縮機22の吸込側の圧力上昇が抑制されるため、バッファタンク12を容量が小さいものとすることもできる。
【0070】
本方法では、圧縮機10の駆動状態を維持することにより、蓄圧器20へのガスの再充填が必要となった時に、圧縮機10を再度立ち上げる必要がなく、通常運転へスムーズに復帰することができる。したがって、圧縮機10の再起動に伴う時間や労力を削減することができる。
【0071】
圧縮システム2では、第2開閉弁24を閉じた後もアイドリング運転を維持し続けるが(ステップS70)、必ずしも永続的に維持し続ける必要はなく、ステーション制御部110から圧縮システム2を通常運転へ復帰させずに停止する制御指令が圧縮システム制御部40に送信された場合には、圧縮機10を停止させることもできる。
【0072】
この制御指令を受けた場合には、圧縮システム制御部40(圧縮機制御部45)は、圧縮機10の駆動を停止させる。このように、アイドリング運転から通常運転へ復帰させる場合だけでなく、一旦アイドリング運転を行った後に運転停止へ切り替える場合も、本発明の範囲に含まれる。
【0073】
(実施形態2)
次に、本発明の実施形態2について
図3に基づいて説明する。実施形態2は基本的に上記実施形態1と同様であるが、蓄圧器20が設置されておらず、圧縮機10からディスペンサ3へ水素ガスが直接供給される点で上記実施形態1と異なっている。以下、上記実施形態1と異なる点についてのみ説明する。なお、
図3中において、上記実施形態1(
図1)と同じ構成要素には同じ符号を付し、その説明を省略する。
【0074】
図3に示すように、実施形態2に係る水素ステーション1Aでは、吐出流路21は、上流端が圧縮機10の吐出口に接続されていると共に、下流端がディスペンサ3の入口に接続されている。このため、圧縮機10により圧縮された水素ガスは、吐出流路21を介してディスペンサ3へ供給され、プレクーラー31においてブラインにより冷却された後、ノズル3Aから燃料電池車100へ補給される。本実施形態に係る圧縮システム2Aの制御方法においては、ディスペンサ3からの水素ガスの要求がない場合に第1開閉弁13を閉じ、それ以降、
図2のステップS40~S70を順に実行することにより圧縮システム2Aを通常運転からアイドリング運転へ切り替える。
【0075】
今回開示された実施形態は、全ての点で例示であって、制限的なものではないと解されるべきである。本発明の範囲は、上記した説明ではなくて特許請求の範囲により示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。したがって、以下の変形例も本発明の範囲に含まれる。
【0076】
上記実施形態では、第1開閉弁13を閉じた後第1圧力検知部51による検知圧力が第1閾値まで低下した時にバイパス弁62を開き始める場合を一例として説明したが、第1開閉弁13を閉じてから予め定められた所定時間が経過した時にバイパス弁62を開き始めてもよい。また本発明は、第1開閉弁13を閉じるタイミングとバイパス弁62を開き始めるタイミングとの間に時間差がある場合にも限定されない。すなわち、圧縮システム制御部40(弁制御部44)は、第1開閉弁13の閉操作と同時にバイパス弁62を開き始めてもよい。
【0077】
上記実施形態では、バイパス弁62が全開となった後に第2開閉弁24を閉じる場合を説明したが、これに限定されない。例えば、バイパス弁62を開き始めるタイミングから予め定められた所定時間経過した時に第2開閉弁24を閉じてもよい。またバイパス弁62の開度が全開状態の開度よりも小さい所定の開度になったタイミングで、第2開閉弁24を閉じてもよい。
【0078】
上記実施形態では、第1開閉弁13の閉操作から第2開閉弁24の閉操作までの制御中に圧縮機10の回転数を通常運転の回転数に維持する場合を説明したが、当該制御中において通常運転時よりも圧縮機10の回転数を下げてもよい(例えば、通常運転時の回転数の60%)。
【0079】
上記実施形態1では、蓄圧器20が1台のみ設置される場合を一例として説明したが、蓄圧器20、第2開閉弁24、第3開閉弁26及び逆止弁23,27からなる蓄圧システムが、複数個並列に設けられていてもよい。
【符号の説明】
【0080】
1,1A 水素ステーション
2,2A 圧縮システム
3 ディスペンサ
10 圧縮機
11 吸込流路
12 バッファタンク
13 第1開閉弁
14 減圧弁
20 蓄圧器
21 吐出流路
22 クーラ
24 第2開閉弁
40 圧縮システム制御部(制御部)
51 第1圧力検知部(圧力検知部)
61 バイパス流路
62 バイパス弁