(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-17
(45)【発行日】2023-04-25
(54)【発明の名称】距離測定装置
(51)【国際特許分類】
G01S 7/497 20060101AFI20230418BHJP
G01S 7/481 20060101ALI20230418BHJP
G01S 17/10 20200101ALI20230418BHJP
G01C 3/00 20060101ALI20230418BHJP
G01C 3/06 20060101ALI20230418BHJP
【FI】
G01S7/497
G01S7/481 A
G01S17/10
G01C3/00 120
G01C3/06 120Q
(21)【出願番号】P 2018180278
(22)【出願日】2018-09-26
【審査請求日】2021-09-22
(73)【特許権者】
【識別番号】501428545
【氏名又は名称】株式会社デンソーウェーブ
(74)【代理人】
【識別番号】100106149
【氏名又は名称】矢作 和行
(74)【代理人】
【識別番号】100121991
【氏名又は名称】野々部 泰平
(74)【代理人】
【識別番号】100145595
【氏名又は名称】久保 貴則
(72)【発明者】
【氏名】丸谷 太一
(72)【発明者】
【氏名】松田 直丈
【審査官】梶田 真也
(56)【参考文献】
【文献】特開2016-219258(JP,A)
【文献】特開2013-252431(JP,A)
【文献】特開平07-210773(JP,A)
【文献】特開2017-194424(JP,A)
【文献】特開2013-210379(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01S 7/48 - 7/51
G01S 17/00 - 17/95
G01B 11/00 - 11/30
G01C 3/00 - 3/32
(57)【特許請求の範囲】
【請求項1】
半天球ミラー(30)
の全面にパルス状の光を照射する光源部(20)と、
前記光源部から照射されたパルス状の光を偏光して、前記半天球ミラーの球中心から前記半天球ミラーの頂点を通る軸の周囲360度全方向に向かうパルス状の光を、装置外部に向けて照射する前記半天球ミラーと、
前記半天球ミラーの球中心から前記半天球ミラーの頂点を通る軸上に配置され、前記半天球ミラーを介して、前記パルス状の光が物体で反射して生じた反射光を受光するイメージセンサ(42)と、
前記光源部が光を照射してから、前記イメージセンサが前記反射光を受光するまでの時間差に基づいて、前記物体までの距離を算出する距離算出部(53)と、
前記イメージセンサにおいて、前記半天球ミラーの球中心と前記半天球ミラーの頂点とを通る軸上にある点を含む頂点対応領域で受光される前記反射光の受光時間をもとに、前記距離算出部が算出する前記距離を補正する補正部(54)とを備える距離測定装置。
【請求項2】
前記半天球ミラーの頂点に凹み(31、131、231、331)が形成されている請求項1に記載の距離測定装置。
【請求項3】
前記凹みの表面に凹凸が形成されている請求項2に記載の距離測定装置。
【請求項4】
前記凹みにおいて前記光源部が発光した光を一次反射する部分が、一次反射により生じた一次内部反射光を、前記イメージセンサの前記頂点対応領域に向かう方向に偏向しつつ、前記一次内部反射光の光束を集光する凹面形状になっている請求項2に記載の距離測定装置。
【請求項5】
前記凹みにおいて前記光源部が発光した光を一次反射する部分が、反射抑制材料製となっている請求項4に記載の距離測定装置。
【請求項6】
前記凹みは、
その開口よりも
、前記半天球ミラーの球中心と前記半天球ミラーの頂点とを通る軸に垂直な平面における断面積が大きい部分がある請求項2に記載の距離測定装置。
【発明の詳細な説明】
【技術分野】
【0001】
光の投受光を用いた距離測定装置に関する。
【背景技術】
【0002】
特許文献1には、レーザ光を装置外部に投光して、反射光を一つのフォトダイオードにより受光する装置が開示されている。また、特許文献1に開示されている装置は、回転ミラーを備えており、回転ミラーが回転することにより、逐次、反射光をフォトダイオードに導く水平方向の角度を変化させる。
【0003】
加えて、水平方向の一部に物体検出をしない非検出角度領域があることを利用し、非検出角度領域に光路長が既知となる内部物体を配置して、その内部物体にレーザ光が照射されたときの受光時間に基づいて、距離を補正する補正データを算出する。補正データを算出する理由は、温度の影響により、回路内における信号伝達に遅延が生じるからである。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
パルス状に光を発光する光源と、イメージセンサとを用いた距離測定装置も知られている。イメージセンサを用いる場合には、一度に広い範囲から反射光を受光できる。そこで、半天球ミラーを備え、光源が発光した光を、半天球ミラーで水平方向の360度全方向に照射することが考えられる。
【0006】
しかし、半天球ミラーで光を水平方向の360度全方向に照射する場合、上述の非検出角度領域が存在しない。したがって、距離を補正するための受光時間をどのようにして得るかが問題となる。
【0007】
本開示は、この事情に基づいて成されたものであり、その目的とするところは、観測方位を制限することなく、距離補正を行うことができる距離測定装置を提供することにある。
【課題を解決するための手段】
【0008】
上記目的は独立請求項に記載の特徴の組み合わせにより達成され、また、下位請求項は更なる有利な具体例を規定する。特許請求の範囲に記載した括弧内の符号は、一つの態様として後述する実施形態に記載の具体的手段との対応関係を示すものであって、開示した技術的範囲を限定するものではない。
【0009】
上記目的を達成するための請求項1に係る開示は、
半天球ミラー(30)の全面にパルス状の光を照射する光源部(20)と、
光源部から照射されたパルス状の光を偏光して、半天球ミラーの球中心から半天球ミラーの頂点を通る軸の周囲360度全方向に向かうパルス状の光を、装置外部に向けて照射する半天球ミラーと、
半天球ミラーの球中心から半天球ミラーの頂点を通る軸上に配置され、半天球ミラーを介して、パルス状の光が物体で反射して生じた反射光を受光するイメージセンサ(42)と、
光源部が光を照射してから、イメージセンサが反射光を受光するまでの時間差に基づいて、物体までの距離を算出する距離算出部(53)と、
イメージセンサにおいて、半天球ミラーの球中心と半天球ミラーの頂点とを通る軸上にある点を含む頂点対応領域で受光される反射光の受光時間をもとに、距離算出部が算出する距離を補正する補正部(54)とを備える距離測定装置である。
【0010】
半天球ミラーの球中心と半天球ミラーの頂点とを通る軸(以下、半天球軸)上にイメージセンサがある場合、半天球ミラーは、装置外部から装置内に入射する反射光(以下、外部反射光)であって、半天球軸に垂直な外部反射光を、イメージセンサに向けて偏向する。ただし、半天球ミラーの頂点部分は、半天球軸に垂直に装置内に入射する外部反射光を、イメージセンサの方向に偏向する機能はほとんどない。
【0011】
一方で、光源から照射された光が半天球ミラーの頂点部分で反射して生じた反射光であって、装置外部へ投光されない反射光(以下、内部反射光)の一部は、頂点部分での散乱により、イメージセンサに受光される。なお、外部反射光も、半天球ミラーでの散乱により一部は、イメージセンサの頂点対応領域に受光される。しかし、外部反射光は、半天球ミラーの頂点部分で反射して生じた反射光と比較して強度が弱く、観測できないレベルである。
【0012】
つまり、頂点対応領域で受光される反射光は、内部反射光であると考えることができる。内部反射光であれば、光路長は既知である。そこで、この距離測定装置では、頂点対応領域で受光される反射光の受光時間をもとに、距離算出部が算出する距離を補正する。また、頂点対応領域は、外部反射光を受光する領域ではないので、観測方位を制限することもない。
【0013】
請求項2に係る距離測定装置は、半天球ミラーの頂点に凹み(31、131、231、331)が形成されている。
【0014】
内部反射光は飛行距離が短いので強度が強い。しかも、半天球ミラーの頂点部分での散乱により生じた内部反射光は、イメージセンサの頂点対応領域以外の受光領域にも受光される。したがって、内部反射光は、外部反射光の観測を阻害する恐れがある。しかし、この距離測定装置は、半天球ミラーの頂点に凹みが形成されているため、イメージセンサの頂点対応領域以外の受光領域へ向かう内部反射光の一部は、凹みの壁面に阻害される。よって、内部反射光は、イメージセンサの頂点対応領域以外の受光領域に向かいにくくなる。したがって、この距離測定装置では、内部反射光により、装置外部の物体の検出精度が低下してしまうことを抑制できる。
【0015】
一方、凹みは半天球ミラーの頂点部分に形成されているため、イメージセンサの頂点対応領域に向かう内部反射光は、凹みに阻害されることはない。したがって、頂点対応領域に受光される内部反射光の強度が低くなりすぎることも抑制できる。
【0016】
請求項3に係る距離測定装置は、凹みの表面に凹凸が形成されている。凹みの表面に凹凸が形成されていることで、凹み内部での光の反射回数が増加する。そのため、凹みから出て、頂点対応領域以外の受光領域に向かう内部反射光がより弱められる。よって、内部反射光により、装置外部の物体の検出精度が低下してしまうことを、より抑制できる。
【0017】
加えて、頂点対応領域に受光される内部反射光の強度が強すぎる場合には、イメージセンサの頂点対応領域に配置された画素が備えるレジスタが飽和する恐れがあり、レジスタが飽和すると、受光時間の測定精度が低下してしまう。
【0018】
しかし、凹みの表面に凹凸が形成されていると、内部反射光が弱められる。したがって、頂点対応領域に配置された画素が備えるレジスタが飽和する恐れが低減する。よって、内部反射光の受光時間の測定精度が低下することを抑制できる。
【0019】
請求項4に係る距離測定装置は、凹みにおいて光源部が発光した光を一次反射する部分が、一次反射により生じた一次内部反射光を、イメージセンサの頂点対応領域に向かう方向に偏向しつつ、一次内部反射光の光束を集光する凹面形状になっている。
【0020】
光を反射する部分が凹面になっていると、その凹面形状により、その部分が平面になっている場合よりも、反射光の光束を集光することができる。また、その凹面の向きを調整することで、反射光が向かう方向は調整できる。
【0021】
請求項4のようになっている場合、イメージセンサの頂点対応領域以外の受光領域に受光される内部反射光がより減少する。したがって、内部反射光により、装置外部の物体の検出精度が低下してしまうことを、より抑制できる。
【0022】
請求項5に係る距離測定装置は、凹みにおいて光源部が発光した光を一次反射する部分が、反射抑制材料製となっている。
【0023】
このようにすれば、イメージセンサの頂点対応領域以外の受光領域に受光される内部反射光が、さらに減少する。加えて次の効果もある。
【0024】
一次内部反射光をイメージセンサの頂点対応領域に向かう方向に偏向する場合、頂点対応領域で受光される内部反射光の強度が強すぎて、頂点対応領域に配置された画素が備えるレジスタが飽和する恐れがあり、レジスタが飽和すると、受光時間の測定精度が低下してしまう。しかし、この請求項5のようにすることで、一次内部反射光の強度を弱めることができる。これにより、内部反射光の受光時間の測定精度が低下することを抑制できる。
【0025】
請求項6に係る距離測定装置では、凹みは、その開口よりも、半天球ミラーの球中心と半天球ミラーの頂点とを通る軸に垂直な平面における断面積が大きい部分がある。このようにすると、凹み内での内部反射光の反射回数を増やすことができるので、イメージセンサが受光する内部反射光の受光強度を弱くすることができる。そのため、内部反射光により、装置外部の物体の検出精度が低下してしまうことをより抑制でき、かつ、内部反射光の受光時間の測定精度が低下することも抑制できる。
【図面の簡単な説明】
【0026】
【
図1】第1実施形態となる距離測定装置1の構成を示すブロック図である。
【
図2】制御部50が備える機能を示すブロック図である。
【
図3】監視エリア60の画像を概念的に示す図である。
【
図4】第2実施形態の距離測定装置100を示す図である。
【
図5】第3実施形態の距離測定装置200を示す図である。
【
図6】第4実施形態の距離測定装置200を示す図である。
【発明を実施するための形態】
【0027】
<第1実施形態>
以下、実施形態を図面に基づいて説明する。
図1は、第1実施形態となる距離測定装置1の構成を示すブロック図である。距離測定装置1は、筐体10の内部に、光源部20、半天球ミラー30、受光部40、制御部50を備えている。距離測定装置1は、周囲に移動体が存在するかどうかを検出する必要がある場所に、半天球ミラー30の球中心と頂点とを通る半天球軸Cが上下方向となるように配置される。
【0028】
[ハードウェア構成]
筐体10の一部は、光源部20から出射された投光Fと、その投光Fが装置外部の物体Sで反射して生じた外部反射光Roが通過できるように、光透過性になっている。
【0029】
光源部20は、光源21と拡散レンズ22とを備えている。光源21は、LEDやパルスレーザーダイオードであり、パルス状に光を発光する。拡散レンズ22は、投光Fが半天球ミラー30の全面に照射されるように、光源21が発光した光を拡散する。なお、距離測定装置1は、光源部20を2つ備えているが、投光Fが半天球ミラー30の全面に照射されれば、光源部20は1つでもよいし、また、3つ以上でもよい。
【0030】
半天球ミラー30は、投光Fを、装置外部に向かう方向に偏向する。また、装置外部から、水平に半天球ミラー30に入射した外部反射光Roをイメージセンサ42に向けて偏向する。半天球ミラー30の形状は、真球を半分にした形状である必要はなく、上述した投光Fの偏向と、外部反射光Roの偏向とが可能な半球型の形状であればよい。
【0031】
半天球ミラー30には、頂点に凹みである穴31が形成されている。穴31は、半天球ミラー30の頂点にあり、頂点から半天球ミラー30の球中心に向かう方向に延びる有底の穴である。穴31の形状は、円柱あるいは角柱である。穴31の開口径の大きさは、半天球ミラー30の外部反射光Roの偏向機能に問題が生じない範囲で適宜設定される。具体的な開口径は実験等に基づいて決定される。なお、半天球軸Cは、穴31がないとした場合の半天球ミラー30の形状において頂点を通る軸である。
【0032】
受光部40は、集光レンズ41とイメージセンサ42とを備えている。集光レンズ41は、半天球ミラー30で反射された外部反射光Roをイメージセンサ42の受光エリアに入るように集光する。
【0033】
イメージセンサ42は、半天球軸Cと交差する位置に配置され、かつ、受光面が半天球軸Cに直交する。イメージセンサ42は、TOF(Time-of-Flight)方式で物体までの距離を測定するイメージセンサである。CMOSイメージセンサおよびCCDイメージセンサが広く知られており、CMOSイメージセンサ、CCDイメージセンサとも、本実施形態のイメージセンサ42として用いることができる。
【0034】
イメージセンサ42は、格子状に画素が平面配列された構成である。各画素は、1つ光電変換素子と複数のレジスタと、各レジスタに対応したシャッタとを備えた構成である。光電変換素子は、たとえばフォトダイオードであり、レジスタは、たとえばコンデンサである。
【0035】
制御部50は、CPU、ROM、RAM等を備えたコンピュータであり、また、光源21を駆動する駆動回路も備える。CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの記録媒体に記憶されているプログラムを実行する。このプログラムを実行することで、光源21の発光制御、イメージセンサ42の制御、物体までの距離算出などを行う。また、プログラムを実行することは、プログラムに対応する方法が実行されることを意味する。
【0036】
[距離測定処理]
次に、制御部50が実行する距離測定処理を説明する。
図2に示すように、制御部50は、発光制御部51、時間測定部52、距離算出部53、補正部54を備えている。
【0037】
発光制御部51は、駆動回路に発光指令を出力して、光源21から光をパルス状に発生させる。この発光指令には、駆動電圧値を指示する情報が含まれており、駆動回路は、発光指令により定まる駆動電圧値で光源21から光を発生させる。駆動電圧値の変化をパルス状とすることで、光源21からパルス状のレーザ光が発生する。発光制御部51は、一定周期で、パルス状に光を発生させる。
【0038】
光源21から出力された投光Fは、半天球ミラー30で偏向されて、装置外部へ投光される。装置外部へ出力される投光Fは、半天球軸Cに直交する方向であって、かつ、半天球軸Cの周囲360度全方向に向かう。
【0039】
この投光Fが装置外部の物体で反射して生じた外部反射光Roが距離測定装置1の内部に入射すると、半天球ミラー30により偏向されて、外部反射光Roは受光部40に向かう。その外部反射光Roは受光部40の集光レンズ41で集光されて、イメージセンサ42により受光される。イメージセンサ42は、受光した信号の強度を出力する。この信号が、イメージセンサ42が検出した画像を示す信号である。
【0040】
図3には、イメージセンサ42により物体までの距離を監視できる監視エリア60の画像を概念的に示している。半天球ミラー30により、装置外部の360度全方向から入射する光をイメージセンサ42に受光させることができる。そのため、
図3に示すように、監視エリア60は円形である。
【0041】
図3に示す監視エリア60には中心に死角エリア61が存在する。死角エリア61は、装置外部の物体を検出できていないエリアである。この死角エリア61は、半天球ミラー30の頂点に対応するエリアであり、頂点対応領域に相当する。半天球ミラー30の頂点部分は、装置外部から水平に入射した外光、すなわち半天球軸Cに対して直交する方向に入射した外光を、イメージセンサ42の方向に偏向する機能はほとんどない。そのため、監視エリア60には死角エリア61が存在するのである。
【0042】
時間測定部52は、光源21が光を投光してから、イメージセンサ42が外部反射光Roを検出するまでの時間である反射光検出時間を測定する。光源21が光を投光する時点としては、発光制御部51が駆動回路に発光指令を出力した時点を用いる。イメージセンサ42が外部反射光Roを検出する時点としては、イメージセンサ42が出力した電気信号を取得し、その電気信号が所定の反射光検出閾値を超えた時点とする。
【0043】
距離算出部53は、反射光検出時間と、予め記憶されている距離算出式とを用いて、物体までの距離を算出する。
【0044】
補正部54は、距離算出式の補正係数を補正する。補正をする理由は、光源21への信号の伝達時間や、イメージセンサ42からの信号の伝達時間など、演算処理において生じる遅延時間が、温度特性などの影響を受けて動的に変化するからである。補正は一定周期で実行する。補正部54が距離算出式の補正係数を補正することで、距離算出部53が算出する距離が補正されることになる。
【0045】
補正には、時間測定部52が、内部反射光Riについて算出した反射光検出時間(以下、内部反射光検出時間)を用いる。イメージセンサ42は、外部反射光Roだけでなく、内部反射光Riも受光する。補正に用いる内部反射光Riは、死角エリア61の画像信号、すなわち、イメージセンサ42の死角エリア61で検出された内部反射光Riを用いる。
【0046】
内部反射光Riは、半天球ミラー30の頂点で投光Fが反射して生じる以外に、装置内部の種々の場所で投光Fが反射して生じる。ただし、イメージセンサ42に受光される内部反射光Riは、主として、半天球ミラー30の頂点で反射されて生じた光である。頂点以外の部分に照射された投光Fは、半天球ミラー30の表面の傾斜により、ほとんど、装置外部へ偏向されるからである。以下、単に、内部反射光Riと記載している場合、半天球ミラー30の頂点で反射されて生じた光を意味する。
【0047】
半天球ミラー30の頂点に照射された投光Fが反射して生じる内部反射光Riも、入射角と反射角とが同じになると、イメージセンサ42に受光されない。しかし、投光Fは半天球ミラー30での散乱があり、頂点付近で投光Fが散乱して生じる内部反射光Riは、一部がイメージセンサ42に向かい、イメージセンサ42により受光される。
【0048】
なお、外部反射光Roも、半天球ミラー30での散乱により、一部は、イメージセンサ42の死角エリア61に受光される。しかし、外部反射光Roは、内部反射光Riと比較して強度が弱く、実質的に、外部反射光Roは死角エリア61には受光されないとみなすことができる。つまり、死角エリア61で受光される反射光は、内部反射光Riであると考えることができる。
【0049】
内部反射光Riの光路長には、測定中の外乱要因はなく、既知である。したがって、時間測定部52が測定した内部反射光検出時間の変化は、演算処理の遅延時間の変化に対応する。よって、時間測定部52が測定した内部反射光検出時間に基づいて補正係数を補正できるのである。
【0050】
[穴31の作用]
本実施形態では、半天球ミラー30の頂点に穴31が形成されている。次に、この穴31の作用について説明する。第1に、この穴31は、イメージセンサ42の死角エリア61に受光される内部反射光Riの強度を弱める作用がある。第2に、この穴31は、イメージセンサ42において、死角エリア61以外の監視エリア60に内部反射光Riが受光される強度を弱める作用がある。なお、以下、イメージセンサ42において、死角エリア61以外の監視エリア60を、外部反射光受光エリア62とする。
【0051】
第1の作用について説明する。内部反射光Riは光路長が短いため、強度が強い。そのため、内部反射光Riの強度が強すぎて、イメージセンサ42の死角エリア61に配置された画素が備えるレジスタが飽和する恐れがある。そこで、穴31により、死角エリア61に受光される内部反射光Riの強度を弱めるのである。光源21が発光した投光Fが穴31内に入ると、投光Fは、穴31で複数回反射した後に、穴31から出て、イメージセンサ42の死角エリア61に受光されることになる。穴31の中で複数回反射されることで、内部反射光Riが弱められる。
【0052】
第2の作用について説明する。穴31の内部で内部反射光Riの向きが、イメージセンサ42の外部反射光受光エリア62へ向かうとしても、穴31の壁部分に遮られてしまうことがある。したがって、穴31は、内部反射光Riが外部反射光受光エリア62に受光される強度を弱めることができる。
【0053】
[第1実施形態の効果]
以上、説明した第1実施形態の距離測定装置1では、死角エリア61で受光される反射光の受光時間をもとに、距離算出部53が距離を算出するための距離算出式を補正する。死角エリア61で受光される反射光は内部反射光Riであると考えることができ、内部反射光Riは光路長が既知であるので、距離算出式が補正できるのである。また、死角エリア61は、外部反射光Roを受光するエリアではないので、観測方位を制限することもない。
【0054】
また、本実施形態の距離測定装置1は、半天球ミラー30の頂点に穴31が形成されている。イメージセンサ42の外部反射光受光エリア62へ向かう内部反射光Riの一部は、穴31の壁面に阻害される。よって、内部反射光Riは、イメージセンサ42の外部反射光受光エリア62に向かいにくくなる。したがって、この距離測定装置1では、内部反射光Riにより、装置外部の物体の検出精度が低下してしまうことを抑制できる。
【0055】
加えて、死角エリア61に受光される内部反射光Riの強度が強すぎる場合には、死角エリア61に配置された画素が備えるレジスタが飽和する恐れがあり、レジスタが飽和すると、受光時間の測定精度が低下してしまう。しかし、内部反射光Riは穴31の内部で複数回反射することで、強度が弱められる。したがって、死角エリア61に配置された画素が備えるレジスタが飽和する恐れが低減する。よって、内部反射光Riの受光時間の測定精度が低下することも抑制できる。
【0056】
<第2実施形態>
次に、第2実施形態を説明する。この第2実施形態以下の説明において、それまでに使用した符号と同一番号の符号を有する要素は、特に言及する場合を除き、それ以前の実施形態における同一符号の要素と同一である。また、構成の一部のみを説明している場合、構成の他の部分については先に説明した実施形態を適用できる。
【0057】
図4に、第2実施形態の距離測定装置100を示す。距離測定装置100は、穴131の形状が、第1実施形態の穴31と相違する。穴131は、開口径および深さは第1実施形態の穴31と同じである。しかし、穴131には、側面に凹凸が形成されている。
【0058】
この凹凸が形成されていることで、穴131の内部での光の反射回数が増加する。そのため、穴131から出て、イメージセンサ42の外部反射光受光エリア62に向かう内部反射光Riがより弱められる。よって、内部反射光Riにより、装置外部の物体の検出精度が低下してしまうことを、より抑制できる。
【0059】
また、穴131の表面に凹凸が形成されていることで、イメージセンサ42の死角エリア61に向かう内部反射光Riもより弱められる。したがって、死角エリア61に配置された画素が備えるレジスタが飽和する恐れがより低減する。よって、内部反射光Riの受光時間の測定精度が低下することをより抑制できる。なお、穴131の表面にある凹凸形状の具体的な凹凸数、凹凸の高さの差などは、内部反射光Riを適度に弱めることができるように、実験等に基づいて決定される。
【0060】
<第3実施形態>
図5に、第3実施形態の距離測定装置200を示す。距離測定装置200は、穴231の形状が、第1実施形態の穴31と相違する。穴231は、開口径は第1実施形態の穴31と同じである。しかし、穴231は、第1実施形態の穴31と異なり、上底面が平面形状ではない。穴231は、側面および上底面が連続した凹面形状になっている。
【0061】
そのため、穴231において光源21が発光した投光Fを一次反射する部分も凹面形状になっている。投光Fを一次反射する部分が凹面形状になっていると、その一次反射により生じた内部反射光Riである一次内部反射光の光束を集光することができる。なお、ここでの集光は、光束を1点に集めることに限られず、反射前よりも光束を細くすることを意味する。
【0062】
また、一次内部反射光をどこに集光するかは、凹面の形状と凹面の向きなどにより調整できる。そこで、穴231は、一次内部反射光を、イメージセンサ42の死角エリア61に向かう方向に偏向しつつ、その一次反射光を集光するように、投光Fを一次反射する部分の凹面形状が調整されている。凹面は、放物面、楕円面、双曲面のいずれかとすることができる。また、凹面形状をその他の自由曲面とすることもできる。
【0063】
この第3実施形態のようにすることで、一次内部反射光は、イメージセンサ42の外部反射光受光エリア62に受光されにくくなるので、外部反射光受光エリア62に受光される内部反射光Riが減少する。したがって、内部反射光Riにより、装置外部の物体の検出精度が低下してしまうことをより抑制できる。
【0064】
<第4実施形態>
図6に、第4実施形態の距離測定装置300を示す。距離測定装置300は、穴331の形状が、第1実施形態の穴31と相違する。穴331は、開口径は第1実施形態の穴31と同じである。しかし、穴331は、第1実施形態の穴31と異なり、穴底側ほど半天球軸Cに垂直な断面積が大きくなる形状である。
【0065】
これにより、穴331の内部で内部反射光Riの反射回数を増やすことができるので、イメージセンサ42が受光する内部反射光Riの受光強度を弱くすることができる。そのため、内部反射光Riにより、装置外部の物体の検出精度が低下してしまうことをより抑制でき、かつ、内部反射光Riの受光時間の測定精度が低下することも抑制できる。
【0066】
以上、実施形態を説明したが、開示した技術は上述の実施形態に限定されるものではなく、次の変形例も開示した範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施できる。
【0067】
<変形例1>
第3実施形態において、投光Fを一次反射する部分を、反射抑制材料製としてもよい。MgF2、SiO2、フッ素樹脂など低屈折率の薄膜が反射抑制材料の一例である。投光Fを一次反射する部分を反射抑制材料製とするためには、低屈折率の薄膜を、穴231において投光Fを一次反射する部分にコーティングすればよい。また、穴231において、投光Fを一次反射する部分以外も、反射抑制材料製としてもよい。
【0068】
<変形例2>
実施形態では、凹みとして穴31、131、231、331を説明した。しかし、凹みは、穴31、131、231、331ほどの深さがない形状であってもよい。
【0069】
<変形例3>
また、半天球ミラー30の頂点部分に凹みを設けず、その頂点部分に、反射抑制加工を施してもよい。反射抑制加工としては、反射抑制材料をコーティングするなど、頂点部分に反射抑制材料を設ける手段がある。また、半天球ミラー30の頂点部分自体の表面形状を小さな凹凸形状としてもよい。
【符号の説明】
【0070】
1、100、200、300:距離測定装置 10:筐体 20:光源部 21:光源 22:拡散レンズ 30:半天球ミラー 31、131、231、331:穴(凹み) 40:受光部 41:集光レンズ 42:イメージセンサ 50:制御部 51:発光制御部 52:時間測定部 53:距離算出部 54:補正部 60:監視エリア 61:死角エリア 62:外部反射光受光エリア C:半天球軸 F:投光 Ri:内部反射光 Ro:外部反射光 S:物体