IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭化成株式会社の特許一覧

特許7280271ハードコート塗膜、ハードコート塗膜付き基材、塗料組成物及び窓材
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-15
(45)【発行日】2023-05-23
(54)【発明の名称】ハードコート塗膜、ハードコート塗膜付き基材、塗料組成物及び窓材
(51)【国際特許分類】
   C09D 183/04 20060101AFI20230516BHJP
   C09D 7/61 20180101ALI20230516BHJP
   C09D 7/65 20180101ALI20230516BHJP
【FI】
C09D183/04
C09D7/61
C09D7/65
【請求項の数】 31
(21)【出願番号】P 2020539629
(86)(22)【出願日】2019-08-30
(86)【国際出願番号】 JP2019034136
(87)【国際公開番号】W WO2020045632
(87)【国際公開日】2020-03-05
【審査請求日】2021-01-25
(31)【優先権主張番号】P 2018163683
(32)【優先日】2018-08-31
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019070499
(32)【優先日】2019-04-02
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000033
【氏名又は名称】旭化成株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【弁理士】
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】高野橋 寛朗
(72)【発明者】
【氏名】服部 恭平
(72)【発明者】
【氏名】佐々木 恵
(72)【発明者】
【氏名】佐々木 恵吾
(72)【発明者】
【氏名】小笠原 利信
【審査官】本多 仁
(56)【参考文献】
【文献】国際公開第2016/208735(WO,A1)
【文献】特開2017-114949(JP,A)
【文献】特開2017-033032(JP,A)
【文献】特開2010-228314(JP,A)
【文献】国際公開第2012/111826(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C09D 1/00ー201/10
(57)【特許請求の範囲】
【請求項1】
重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、
前記重合体ナノ粒子(A)は、加水分解性珪素化合物(a)を含み、
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上であり、
前記ハードコート塗膜中の前記重合体ナノ粒子(A)の体積分率が2%以上80%以下であり、
前記重合体ナノ粒子(A)のマルテンス硬度HMAと、前記マトリクス成分(B)のマルテンス硬度HMBとが、HMB/HMA>1の関係を満たし、
前記ハードコート塗膜のマルテンス硬度HMが、100N/mm2以上である、ハードコート塗膜。
【請求項2】
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数500回におけるヘイズと、回転数10回におけるヘイズとの差が、10以下である、請求項1に記載のハードコート塗膜。
【請求項3】
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数1000回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が、10以下である、請求項1又は2に記載のハードコート塗膜。
【請求項4】
ISO14577-1に準拠し、インデンテーション試験から測定される、弾性回復率ηITが、0.50以上である、請求項1乃至3のいずれか1項に記載のハードコート塗膜。
【請求項5】
前記ハードコート塗膜の膜厚が、1μm以上100μm以下である、請求項1乃至4のいずれか1項に記載のハードコート塗膜。
【請求項6】
前記重合体ナノ粒子(A)の平均粒子径が、10nm以上400nm以下である、請求項1乃至5のいずれか1項に記載のハードコート塗膜。
【請求項7】
前記加水分解性珪素化合物(a)が、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、請求項1乃至6のいずれか1項に記載のハードコート塗膜。
-R1 n1SiX1 3-n1 (a-1)
(式(a-1)中、R1は、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、R1は、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、X1は、加水分解性基を表し、n1は、0~2の整数を表す。)
SiX2 4 (a-2)
(式(a-2)中、X2は、加水分解性基を表す。)
【請求項8】
前記加水分解性珪素化合物(b)が、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、請求項1乃至6のいずれか1項に記載のハードコート塗膜。
-R2 n2SiX3 3-n2 (b-1)
(式(b-1)中、R2は、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、R2は、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、X3は、加水分解性基を表し、n2は、0~2の整数を表す。)
SiX4 4 (b-2)
(式(b-2)中、X4は、加水分解性基を表す。)
【請求項9】
前記マトリクス成分(B)が、無機酸化物(D)を含む、請求項1乃至8のいずれか1項に記載のハードコート塗膜。
【請求項10】
前記無機酸化物(D)の平均粒子径が、2nm以上150nm以下である、請求項9に記載のハードコート塗膜。
【請求項11】
前記無機酸化物(D)が、シリカ粒子である、請求項9又は10に記載のハードコート塗膜。
【請求項12】
重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、
前記重合体ナノ粒子(A)は、加水分解性珪素化合物(a)を含み、
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上であり、
前記ハードコート塗膜中の前記重合体ナノ粒子(A)の体積分率が2%以上80%以下であり、
走査型プローブ顕微鏡の凝着力モードで測定される、前記重合体ナノ粒子(A)の凝着力FAと、前記マトリクス成分(B)の凝着力FBとが、FA/FB>1の関係を満たし、
前記ハードコート塗膜のマルテンス硬度HMが、100N/mm2以上である、ハードコート塗膜。
【請求項13】
自動車部材用である、請求項1乃至12のいずれか1項に記載のハードコート塗膜。
【請求項14】
基材と、
前記基材の片面及び/又は両面に形成された、請求項1乃至13のいずれか1項に記載のハードコート塗膜と、
を含む、ハードコート塗膜付き基材。
【請求項15】
前記基材と前記ハードコート塗膜との間に配される接着層をさらに含む、請求項14に記載のハードコート塗膜付き基材。
【請求項16】
前記接着層が、接着性エマルション粒子(F)を含む、請求項15に記載のハードコート塗膜付き基材。
【請求項17】
前記接着性エマルション粒子(F)の平均粒子径が300nm以下である、請求項16に記載のハードコート塗膜付き基材。
【請求項18】
前記接着層が、無機酸化物(G)を更に含む、請求項15乃至17のいずれか1項に記載のハードコート塗膜付き基材。
【請求項19】
前記無機酸化物(G)がシリカ粒子である、請求項18に記載のハードコート塗膜付き基材。
【請求項20】
自動車部材用である、請求項14乃至19のいずれか1項に記載のハードコート塗膜付き基材。
【請求項21】
重合体ナノ粒子(A)と、マトリクス原料成分(B’)と、を含む塗料組成物であって、
前記重合体ナノ粒子(A)が、加水分解性珪素化合物(a)を含み、
前記マトリクス原料成分(B’)が、加水分解性珪素化合物(b)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上であり、
前記重合体ナノ粒子(A)と前記マトリクス原料成分(B’)の合計に対する前記重合体ナノ粒子(A)の体積分率が2~80%であり、
ISO14577-1に準拠し、インデンテーション試験から測定される、前記重合体ナノ粒子(A)の弾性回復率ηITAが、0.30以上0.90以下であり、
前記重合体ナノ粒子(A)のマルテンス硬度HMAと、前記マトリクス原料成分(B’)のマルテンス硬度HMB'とが、HMB'/HMA>1の関係を満たす、塗料組成物。
【請求項22】
前記重合体ナノ粒子(A)が、2級アミド基及び/又は3級アミド基を有する官能基(e)を有する、請求項21に記載の塗料組成物。
【請求項23】
ISO14577-1に準拠し、インデンテーション試験から測定される、前記マトリクス原料成分(B’)の弾性回復率ηITB'が、0.60以上0.95以下である、請求項21又は22に記載の塗料組成物。
【請求項24】
前記加水分解性珪素化合物(a)が、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、請求項21乃至23のいずれか1項に記載の塗料組成物。
-R1 n1SiX1 3-n1 (a-1)
(式(a-1)中、R1は、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、R1は、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、X1は、加水分解性基を表し、n1は、0~2の整数を表す。)
SiX2 4 (a-2)
(式(a-2)中、X2は、加水分解性基を表す。)
【請求項25】
前記加水分解性珪素化合物(b)が、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、請求項21乃至24のいずれか1項に記載の塗料組成物。
-R2 n2SiX3 3-n2 (b-1)
(式(b-1)中、R2は、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、R2は、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、X3は、加水分解性基を表し、n2は、0~2の整数を表す。)
SiX4 4 (b-2)
(式(b-2)中、X4は、加水分解性基を表す。)
【請求項26】
前記マトリクス原料成分(B’)が、更に無機酸化物(D)を含む、請求項21乃至25のいずれか1項に記載の塗料組成物。
【請求項27】
前記無機酸化物(D)の平均粒子径が、2nm以上150nm以下である、請求項26に記載の塗料組成物。
【請求項28】
前記無機酸化物(D)が、シリカ粒子である、請求項26又は27に記載の塗料組成物。
【請求項29】
前記重合体ナノ粒子(A)が、コア層と、前記コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有する、請求項21乃至28のいずれか1項に記載の塗料組成物。
【請求項30】
ポリカーボネート樹脂と、前記ポリカーボネート樹脂上に配された塗膜と、を有する窓材であって、
前記塗膜が、重合体ナノ粒子(A)と、マトリクス成分(B)と、を含み、
前記重合体ナノ粒子(A)が、加水分解性珪素化合物(a)を含み、
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上であり、
前記塗膜中の前記重合体ナノ粒子(A)の体積分率が2%以上80%以下であり、
前記窓材のマルテンス硬度HMJが、100N/mm2以上4000N/mm2以下であり、
ISO14577-1に準拠し、インデンテーション試験から測定される、前記窓材の弾性回復率ηITJが、0.50以上である、窓材。
【請求項31】
自動車用である、請求項30に記載の窓材。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ハードコート塗膜、ハードコート塗膜付き基材、塗料組成物及び窓材に関する。
【背景技術】
【0002】
樹脂材料は、成形性及び軽量性に優れるが、金属やガラスなどの無機材料と比較し、硬度、バリア性、耐汚染性、耐薬品性、難燃性、耐熱性、耐候性などに劣る場合が多い。中でも、樹脂材料の硬度は、無機ガラスと比較し著しく低く、表面が傷つきやすいため、ハードコートを施して使用することが多いが、ハードコート塗膜の煤塵などへの耐汚染性や高温高湿下での性能保持が難しく、ハードコートを施した樹脂材料は、高い耐摩耗性や高い耐久性を必要とする用途には使用されていない。
【0003】
樹脂材料に耐摩耗性を付与する目的で、活性エネルギー線硬化型樹脂組成物を用いた方法(例えば、特許文献1)、樹脂材料に無機酸化物を添加する方法(例えば、特許文献2、特許文献3)、及び樹脂材料に重合体粒子を添加する方法(例えば、特許文献4)が提案されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2014-109712号公報
【文献】特開2006-63244号公報
【文献】特開平8-238683号公報
【文献】特開2017-114949号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1や特許文献2の方法は、樹脂材料に耐摩耗性を付与する一般的な方法であるが、高い耐摩耗性を付与することは困難である。
【0006】
特許文献3の方法は、ハードコート塗膜として柔軟なシリコーンポリマーと、硬質な無機酸化物微粒子と、を用いた一般的な方法であるが、マトリクス成分に該当するシリコーンポリマーが十分な硬度を有していないために耐摩耗性が十分ではない。
特許文献4の方法は、ハードコート塗膜として重合体粒子、シリコーンポリマー、無機酸化物微粒子と、を用いた方法であり、塗膜の物性に関する記載はあるが、各成分の物性に関する記載はなく、耐摩耗性が十分ではなく、耐汚染性に関する記載はない。
【0007】
本発明は、上記課題に鑑みてなされたものであり、高い耐摩耗性と高い耐久性を有する、ハードコート塗膜、ハードコート塗膜付き基材、塗料組成物及び窓材を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明者らは、鋭意検討した結果、所定の成分を含む塗膜により上記課題を解決できることを見出し、本発明を完成するに至った。
すなわち、本発明は下記の態様を包含する。
[1]
重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、
前記重合体ナノ粒子(A)のマルテンス硬度HMと、前記マトリクス成分(B)のマルテンス硬度HMとが、HM/HM>1の関係を満たし、
前記ハードコート塗膜のマルテンス硬度HMが、100N/mm以上である、ハードコート塗膜。
[2]
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数500回におけるヘイズと、回転数10回におけるヘイズとの差が、10以下である、[1]に記載のハードコート塗膜。
[3]
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数1000回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が、10以下である、[1]又は[2]に記載のハードコート塗膜。
[4]
ISO14577-1に準拠し、インデンテーション試験から測定される、弾性回復率ηITが、0.50以上である、[1]乃至[3]のいずれかに記載のハードコート塗膜。
[5]
前記重合体ナノ粒子(A)は、加水分解性珪素化合物(a)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上である、[1]乃至[4]のいずれかに記載のハードコート塗膜。
[6]
前記ハードコート塗膜の膜厚が、1μm以上100μm以下である、[1]乃至[5]のいずれかに記載のハードコート塗膜。
[7]
前記重合体ナノ粒子(A)の平均粒子径が、10nm以上400nm以下である、[1]乃至[6]のいずれかに記載のハードコート塗膜。
[8]
前記ハードコート塗膜中の前記重合体ナノ粒子(A)の体積分率が2%以上80%以下である、[1]乃至[7]のいずれかに記載のハードコート塗膜。
[9]
前記加水分解性珪素化合物(a)が、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[1]乃至[8]のいずれかに記載のハードコート塗膜。
-R n1SiX 3-n1 (a-1)
(式(a-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n1は、0~2の整数を表す。)
SiX (a-2)
(式(a-2)中、Xは、加水分解性基を表す。)
[10]
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含む、[1]乃至[9]のいずれかに記載のハードコート塗膜。
[11]
前記加水分解性珪素化合物(b)が、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[10]に記載のハードコート塗膜。
-R n2SiX 3-n2 (b-1)
(式(b-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n2は、0~2の整数を表す。)
SiX (b-2)
(式(b-2)中、Xは、加水分解性基を表す。)
[12]
前記マトリクス成分(B)が、無機酸化物(D)を含む、[1]乃至[11]のいずれかに記載のハードコート塗膜。
[13]
前記無機酸化物(D)の平均粒子径が、2nm以上150nm以下である、[12]に記載のハードコート塗膜。
[14]
前記無機酸化物(D)が、シリカ粒子である、[12]又は[13]に記載のハードコート塗膜。
[15-1]
重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、
走査型プローブ顕微鏡の凝着力モードで測定される、前記重合体ナノ粒子(A)の凝着力Fと、前記マトリクス成分(B)の凝着力Fとが、F/F>1の関係を満たし、
前記ハードコート塗膜のマルテンス硬度HMが、100N/mm以上である、ハードコート塗膜。
[15-2]
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数500回におけるヘイズと、回転数10回におけるヘイズとの差が、10以下である、[15-1]に記載のハードコート塗膜。
[15-3]
ASTM D1044に準拠し、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施したとき、回転数1000回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が、10以下である、[15-1]又は[15-2]に記載のハードコート塗膜。
[15-4]
ISO14577-1に準拠し、インデンテーション試験から測定される、弾性回復率ηITが、0.50以上である、[15-1]乃至[15-3]のいずれかに記載のハードコート塗膜。
[15-5]
前記重合体ナノ粒子(A)は、加水分解性珪素化合物(a)を含み、
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上である、[15-1]乃至[15-4]のいずれかに記載のハードコート塗膜。
[15-6]
前記ハードコート塗膜の膜厚が、1μm以上100μm以下である、[15-1]乃至[15-5]のいずれかに記載のハードコート塗膜。
[15-7]
前記重合体ナノ粒子(A)の平均粒子径が、10nm以上400nm以下である、[15-1]乃至[15-6]のいずれかに記載のハードコート塗膜。
[15-8]
前記ハードコート塗膜中の前記重合体ナノ粒子(A)の体積分率が2%以上80%以下である、[15-1]乃至[15-7]のいずれかに記載のハードコート塗膜。
[15-9]
前記加水分解性珪素化合物(a)が、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[15-1]乃至[15-8]のいずれかに記載のハードコート塗膜。
-R n1SiX 3-n1 (a-1)
(式(a-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n1は、0~2の整数を表す。)
SiX (a-2)
(式(a-2)中、Xは、加水分解性基を表す。)
[15-10]
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含む、[15-1]乃至[15-9]のいずれかに記載のハードコート塗膜。
[15-11]
前記加水分解性珪素化合物(b)が、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[15-10]に記載のハードコート塗膜。
-R n2SiX 3-n2 (b-1)
(式(b-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n2は、0~2の整数を表す。)
SiX (b-2)
(式(b-2)中、Xは、加水分解性基を表す。)
[15-12]
前記マトリクス成分(B)が、無機酸化物(D)を含む、[15-1]乃至[15-11]のいずれかに記載のハードコート塗膜。
[15-13]
前記無機酸化物(D)の平均粒子径が、2nm以上150nm以下である、[15-12]に記載のハードコート塗膜。
[15-14]
前記無機酸化物(D)が、シリカ粒子である、[15-12]又は[15-13]に記載のハードコート塗膜。
[16]
自動車部材用である、[1]乃至[14]及び[15-1]乃至[15-14]のいずれかに記載のハードコート塗膜。
[17]
基材と、
前記基材の片面及び/又は両面に形成された、[1]乃至[14]、[15-1]乃至[15-14]及び[16]のいずれかに記載のハードコート塗膜と、
を含む、ハードコート塗膜付き基材。
[18]
前記基材と前記ハードコート塗膜との間に配される接着層をさらに含む、[17]に記載のハードコート塗膜付き基材。
[19]
前記接着層が、接着性エマルション粒子(F)を含む、[18]に記載のハードコート塗膜付き基材。
[20]
前記接着性エマルション粒子(F)の平均粒子径が300nm以下である、[19]に記載のハードコート塗膜付き基材。
[21]
前記接着層が、無機酸化物(G)を更に含む、[18]乃至[20]のいずれかに記載のハードコート塗膜付き基材。
[22]
前記無機酸化物(G)がシリカ粒子である、[21]に記載のハードコート塗膜付き基材。
[23]
自動車部材用である、[17]乃至[22]のいずれかに記載のハードコート塗膜付き基材。
[24]
重合体ナノ粒子(A)と、マトリクス原料成分(B’)と、を含む塗料組成物であって、
ISO14577-1に準拠し、インデンテーション試験から測定される、前記重合体ナノ粒子(A)の弾性回復率ηITAが、0.30以上0.90以下であり、
前記重合体ナノ粒子(A)のマルテンス硬度HMと、前記マトリクス原料成分(B’)のマルテンス硬度HMB’とが、HMB’/HM>1の関係を満たす、塗料組成物。
[25]
前記重合体ナノ粒子(A)が、加水分解性珪素化合物(a)を含み、
前記マトリクス原料成分(B’)が、加水分解性珪素化合物(b)を含む、[24]に記載の塗料組成物。
[26]
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上である、[25]に記載の塗料組成物。
[27]
前記重合体ナノ粒子(A)と前記マトリクス原料成分(B’)の合計に対する前記重合体ナノ粒子(A)の体積分率が2~80%である、[24]乃至[26]のいずれかに記載の塗料組成物。
[28]
前記重合体ナノ粒子(A)が、2級アミド基及び/又は3級アミド基を有する官能基(e)を有する、[24]乃至[27]のいずれかに記載の塗料組成物。
[29]
ISO14577-1に準拠し、インデンテーション試験から測定される、前記マトリクス原料成分(B’)の弾性回復率ηITB’が、0.60以上0.95以下である、[24]乃至[28]のいずれかに記載の塗料組成物。
[30]
前記加水分解性珪素化合物(a)が、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[24]乃至[29]のいずれかに記載の塗料組成物。
-R n1SiX 3-n1 (a-1)
(式(a-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n1は、0~2の整数を表す。)
SiX (a-2)
(式(a-2)中、Xは、加水分解性基を表す。)
[31]
前記加水分解性珪素化合物(b)が、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含む、[24]乃至[30]のいずれかに記載の塗料組成物。
-R n2SiX 3-n2 (b-1)
(式(b-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n2は、0~2の整数を表す。)
SiX (b-2)
(式(b-2)中、Xは、加水分解性基を表す。)
[32]
前記マトリクス原料成分(B’)が、更に無機酸化物(D)を含む、[24]乃至[31]のいずれかに記載の塗料組成物。
[33]
前記無機酸化物(D)の平均粒子径が、2nm以上150nm以下である、[32]に記載の塗料組成物。
[34]
前記無機酸化物(D)が、シリカ粒子である、[32]又は[33]に記載の塗料組成物。
[35]
前記重合体ナノ粒子(A)が、コア層と、前記コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有する、[24]乃至[34]のいずれかに記載の塗料組成物。
[36]
ポリカーボネート樹脂と、前記ポリカーボネート樹脂上に配された塗膜と、を有する窓材であって、
前記塗膜が、重合体ナノ粒子(A)と、マトリクス成分(B)と、を含み、
前記重合体ナノ粒子(A)が、加水分解性珪素化合物(a)を含み、
前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含み、
前記窓材のマルテンス硬度HMが、100N/mm以上4000N/mm以下であり、
ISO14577-1に準拠し、インデンテーション試験から測定される、前記窓材の弾性回復率ηITJが、0.50以上である、窓材。
[37]
前記重合体ナノ粒子(A)中の前記加水分解性珪素化合物(a)の含有量が、50質量%以上である、[36]に記載の窓材。
[38]
自動車用である、[36]又は[37]に記載の窓材。
【発明の効果】
【0009】
本発明によれば、高い耐摩耗性と高い耐久性を有する、ハードコート塗膜、ハードコート塗膜付き基材、塗料組成物及び窓材を提供できる。
【発明を実施するための形態】
【0010】
以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。なお、本発明は、以下の本実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0011】
<ハードコート塗膜>
本実施形態のハードコート塗膜(以下、「塗膜(C)」ともいう。)は、重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、前記重合体ナノ粒子(A)のマルテンス硬度HMと、前記マトリクス成分(B)のマルテンス硬度HMとが、HM/HM>1の関係を満たし、前記ハードコート塗膜のマルテンス硬度HMが、100N/mm以上である。
なお、上記マルテンス硬度HM及びマルテンス硬度HMの大小関係を確認し難い場合でも、後述する重合体ナノ粒子(A)及びマトリクス成分(B)の凝着力を比較することで、前述したマルテンス硬度の大小関係を推定することができる。凝着力は、低いほど弾性が高いため、凝着力が低いほど塗膜は変形しにくく、硬度が高いことを表す。具体的には、本実施形態のハードコート塗膜は、次のように特定することもできる。すなわち、本実施形態のハードコート塗膜は、重合体ナノ粒子(A)と、マトリクス成分(B)と、を含むハードコート塗膜であって、走査型プローブ顕微鏡(SPM)の凝着力モードで測定される、前記重合体ナノ粒子(A)の凝着力Fと、前記マトリクス成分(B)の凝着力Fとが、F/F>1の関係を満たし、前記ハードコート塗膜のマルテンス硬度HMが、100N/mm以上である。
本実施形態のハードコート塗膜は、上述のように構成されているため、高い耐摩耗性と高い耐久性を有する。本実施形態のハードコート塗膜は、高いレベルでの耐摩耗性と耐汚染性を発現するため、以下に限定されないが、例えば、建材、自動車部材や電子機器や電機製品等のハードコートとして有用であり、とりわけ自動車部材用とすることが好ましい。
【0012】
本実施形態のハード塗膜において、重合体ナノ粒子(A)は、マトリクス成分(B)に分散していることが好ましい。本実施形態における「分散」とは、重合体ナノ粒子(A)を分散相とし、マトリクス成分(B)を連続相とし、重合体ナノ粒子(A)がマトリクス成分(B)中へ均一または構造を形成しながら分布することである。上記分散は、ハードコート塗膜の断面SEM観察によって確認することができる。本実施形態のハードコート塗膜においては、重合体ナノ粒子(A)が、マトリクス成分(B)に分散していることにより、高い耐摩耗性を有する傾向にある。
【0013】
なお、本明細書において、マルテンス硬度HMが100N/mm以上である塗膜を特に「ハードコート塗膜」と称する。
【0014】
[マルテンス硬度]
本実施形態におけるマルテンス硬度は、ISO14577-1に準拠した硬度であり、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において2mNでの押し込み深さから算出される値である。本実施形態におけるマルテンス硬度は、例えば、微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)を用いて測定でき、押し込み深さが浅い程マルテンス硬度は高く、深い程マルテンス硬度は低い。
【0015】
[凝着力]
本実施形態における凝着力は、走査型プローブ顕微鏡(SPM)で測定することができ、凝着力が低いほど弾性が高いため、凝着力が低いほど塗膜は変形しにくく、硬度が高い。凝着力の測定方法は、以下に限定されないが、例えば、島津製作所製SPM-970、SPM-9700HT、Bruker AXS社製Dimension ICON、日立ハイテクサイエンス社製AFM5000II等を用いて測定することができる。
【0016】
[他の硬度]
上述した本実施形態におけるマルテンス硬度や凝着力の大小関係は、他の硬度を指標として測定値の大小関係を確認することによっても推定することができる。他の硬度としては、材料に力が加えられた際の、材料の変形のしにくさを示す指標であれば特に限定されず、微小硬度計やナノインデンテーション測定機器に代表される押し込み硬度計で測定されるビッカース硬度、インデンテーション硬度や、剛体振り子型物性試験器に代表される振り子型粘弾性で測定される対数減衰率で表現される指標を挙げることができる。その他、走査型プローブ顕微鏡(SPM)で測定される、位相、摩擦力、粘弾性、吸着力、硬さ及び弾性率で表現される指標を挙げることもできる。これらの指標において、マトリクス成分(B)の硬度が重合体ナノ粒子(A)の硬度よりも高いことが確認されれば、マルテンス硬度や凝着力についても、マトリクス成分(B)の方が重合体ナノ粒子(A)よりも硬質であることが推定される。
【0017】
[重合体ナノ粒子(A)のマルテンス硬度HMとマトリクス成分(B)のマルテンス硬度HM
本実施形態における重合体ナノ粒子(A)のマルテンス硬度HMと、マトリクス成分(B)のマルテンス硬度HMとは、下記式(1)の関係を満たす。
HM/HM>1 式(1)
式(1)は、柔軟な重合体ナノ粒子(A)が硬質なマトリクス成分(B)中に存在することを表しており、このように硬度が3次元的に傾斜をもつことで、塗膜(C)は、従来の塗膜では発現しなかったような耐摩耗性を付与することができる。この要因としては、以下に限定する趣旨ではないが、柔軟なナノ粒子が衝撃を吸収し、硬質なマトリクス成分が変形を抑制しているためと推察される。HMの範囲としては50N/mm以上2000N/mm以下が好ましく、100N/mm以上800N/mm以下がより好ましく、100N/mm以上350N/mm以下が更に好ましい。HMの範囲としては100N/mm以上4000N/mm以下が好ましく、150N/mm以上4000N/mm以下がより好ましく、150N/mm以上2000N/mm以下が更に好ましい。
なお、塗膜(C)は、後述する塗料組成物(I)を加水分解縮合等により硬化させた硬化物として得ることができる。重合体ナノ粒子(A)は、かかる硬化の過程においてその組成は変化しないことが通常である。したがって、後述する実施例に記載された方法により測定される塗料組成物(I)中の重合体ナノ粒子(A)のマルテンス硬度HMの値は、塗膜(C)中の重合体ナノ粒子(A)のマルテンス硬度HMによく一致するものとして、塗膜(C)におけるマルテンス硬度HMの値を決定することができる。
また、マトリクス成分(B)は、後述するマトリクス原料成分(B’)を加水分解縮合等により硬化させた硬化物に該当する。したがって、後述する実施例に記載された方法により測定されるマトリクス原料成分(B’)のマルテンス硬度HMB’の値は、対応するマトリクス成分(B)のマルテンス硬度HMによく一致するものとして、マルテンス硬度HMの値を決定することができる。
上記HM及びHMの値は、それぞれ、重合体ナノ粒子(A)及び後述するマトリクス原料成分(B’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
【0018】
[重合体ナノ粒子(A)の凝着力Fとマトリクス成分(B)の凝着力F
本実施形態における重合体ナノ粒子(A)の凝着力Fと、マトリクス成分(B)の凝着力Fとは、下記式(2)の関係を満たす。
/F>1 式(2)
上記式(1)と同様に、式(2)も柔軟な重合体ナノ粒子(A)が硬質なマトリクス成分(B)中に存在することを表しており、このように硬度が3次元的に傾斜をもつことで、塗膜(C)は、従来の塗膜では発現しなかったような耐摩耗性を付与することができる。この要因としては、以下に限定する趣旨ではないが、柔軟なナノ粒子が衝撃を吸収し、硬質なマトリクス成分が変形を抑制しているためと推察される。
上述のとおり、重合体ナノ粒子(A)の凝着力F及びマトリクス成分(B)の凝着力Fとは各成分の硬度と相関があり、重合体ナノ粒子(A)及び後述するマトリクス原料成分(B’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
【0019】
[塗膜(C)のマルテンス硬度HM]
塗膜(C)のマルテンス硬度HMは、耐摩耗性の観点から100N/mm以上であり、高いほど衝撃に対し変形が少なく、破壊を伴う傷付きが少ない点で有利である。塗膜(C)のマルテンス硬度HMは、耐屈曲性の観点から、好ましくは100N/mm以上4000N/mm以下、より好ましくは150N/mm以上1500N/mm以下である。塗膜(C)のマルテンス硬度HMを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)と後述するマトリクス原料成分(B’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。特に、重合体ナノ粒子(A)とマトリクス成分(B)の合計量に対するマトリクス成分(B)の含有量を増やすと、塗膜(C)のマルテンス硬度HMは上がる傾向にあり、マトリクス成分(B)の含有量を減らすと塗膜(C)のマルテンス硬度HMは下がる傾向にある。
【0020】
[テーバー摩耗試験におけるヘイズ変化量]
本実施形態におけるテーバー摩耗試験とは、ASTM D1044に記載の方法で測定される方法に準じており、摩耗輪CS-10F、荷重500gの条件下で測定を実施する。ヘイズ変化量が小さいほど耐摩耗性に優れた材料となり、試験前におけるヘイズに対する1000回転におけるヘイズ変化量、すなわち、回転数1000回におけるヘイズと前記テーバー摩耗試験前のヘイズとの差が10以下であれば、自動車窓の規格に適合し、自動車窓用ハードコート塗膜として好適に使用でき、2以下であればANSI/SAE Z.26.1、ECE R43、JIS R3211/R3212の規格に適合し、全ての自動車窓ガラスに好適に使用可能である。ヘイズ変化量を上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)と後述するマトリクス原料成分(B’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。
【0021】
[テーバー摩耗試験回転数500回におけるヘイズと回転数10回におけるヘイズの差(以下、「ΔA」ともいう。)]
塗膜(C)のΔAは、上記テーバー摩耗試験において、回転数500回におけるヘイズと回転数10回におけるヘイズの差を示し、ΔAが低いほど長期的な耐汚染性に優れる。ΔAが10以下であれば高い耐汚染性を発現し、好ましくは7以下、さらに好ましくは5以下である。詳細な理由は不明であるが、例えば、ΔAが低いほど汚染物質が膜内に食い込みにくく、汚染物質の洗浄性に優れる傾向があると推察される。塗膜(C)のΔAを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)と後述するマトリクス原料成分(B’)を混合した組成物を溶媒中に分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。特に、重合体ナノ粒子(A)の組成、後述するマトリクス原料成分(B’)の組成、配合比率、加えて、配合条件として例えば溶媒組成、配合順、撹拌時間、固形分濃度など、成膜条件として熱処理の場合、乾燥温度、湿度、乾燥時間など、紫外線照射の場合、照射強度、照射時間、湿度など、赤外線照射の場合、照射強度、照射時間、湿度などが挙げられる。
【0022】
[塗膜(C)の弾性回復率ηIT
塗膜(C)の弾性回復率ηITは、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比であり、ISO14577-1で「Welast/Wtotalの比ηIT」として記載されているパラメータである。弾性回復率ηITが高いほど、塗膜が変形した際、元の状態に戻ることが可能であり、変形に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、弾性回復率ηITは、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.50以上であることが好ましく、この範囲であれば値が大きいほど好ましい。より具体的には、弾性回復率ηITが0.55以上であるとより好ましく、更に好ましくは0.60以上であり、より更に好ましくは0.65以上である。本実施形態における塗膜の弾性回復率の測定は、以下に制限されないが、例えば、ハードコート塗膜の表面を、微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)、などを用いて押し込み試験を行うことで測定することができる。弾性回復率ηITを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、後述する式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)と後述するマトリクス原料成分(B’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。
【0023】
[塗膜(C)の膜厚]
本実施形態において、ハードコート塗膜の耐摩耗性を一層発現させる観点と、基材の変形への追従性を十分に確保する観点から、膜厚を適宜調整することが好ましい。具体的には、塗膜(C)の膜厚は、耐摩耗性の観点から1.0μm以上であることが好ましく、より好ましくは3.0μm以上である。更に、塗膜(C)の膜厚は、基材追従性の観点から100.0μm以下であることが好ましく、より好ましくは50.0μm以下、さらに好ましくは20.0μm以下である。
【0024】
[重合体ナノ粒子(A)]
本実施形態における重合体ナノ粒子(A)を用いることにより、ハードコート塗膜に衝撃吸収性を付与でき、ハードコート塗膜のテーバー摩耗試験におけるヘイズ変化量を小さくできる。重合体ナノ粒子(A)は、その粒子サイズがnmオーダー(1μm未満)であれば形状は特に限定されない。なお、重合体ナノ粒子(A)のマルテンス硬度HMについては、重合体ナノ粒子(A)の構成成分の構造および組成比により、前述した範囲に制御できるが、特にこの方法に限定されるものではない。
【0025】
[重合体ナノ粒子(A)の平均粒子径]
本実施形態における重合体ナノ粒子(A)の平均粒子径は、nmオーダー(1μm未満)であれば特に限定されず、断面SEM又は動的光散乱法により観測される粒子の大きさから求められる。重合体ナノ粒子(A)の平均粒子径は、光学特性の観点から10nm以上400nm以下であることが好ましく、より好ましくは15nm以上200nm以下であり、更に好ましくは20nm以上100nm以下である。重合体ナノ粒子(A)の平均粒子径の測定方法は、以下に限定されないが、例えば、重合体ナノ粒子(A)水分散体を用いて大塚電子株式会社製動的光散乱式粒度分布測定装置(品番:ELSZ-1000)によりキュムラント粒子径を測定することで可能である。
【0026】
[塗膜(C)中の重合体ナノ粒子(A)の体積分率]
本実施形態において、塗膜(C)中の重合体ナノ粒子(A)の体積分率は成膜性の観点から、好ましくは2%以上、透明性の観点から、好ましくは80%以下である。すなわち、塗膜(C)中の重合体ナノ粒子(A)の体積分率は2%以上80%以下が好ましく、より好ましくは3%以上70%以下であり、更に好ましくは5%以上45%以下である。塗膜(C)中の重合体ナノ粒子(A)の体積分率は、例えば、塗膜(C)の断面SEM画像における塗膜全体の中での重合体ナノ粒子(A)の割合や、塗膜(C)を構成させる成分中の重合体ナノ粒子(A)の成分比から算出することができる。
【0027】
[重合体ナノ粒子(A)の構成成分]
[加水分解性珪素化合物(a)]
本実施形態における重合体ナノ粒子(A)は、加水分解性珪素化合物(a)を含むことが好ましい。加水分解性珪素化合物(a)は、加水分解性を有する珪素化合物、その加水分解生成物、及び縮合物であれば、特に限定されない。
【0028】
加水分解性珪素化合物(a)は、耐摩耗性や耐候性が向上する観点から、下記式(a-1)で表される原子団を含有する化合物、その加水分解生成物、及び縮合物であることが好ましい。
-R n1SiX 3-n1 (a-1)
【0029】
式(a-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n1は、0~2の整数を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、このような基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
【0030】
式(a-1)で表される原子団を含有する化合物の具体例としては、以下に限定されないが、例えば、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシラン、ヘキシルトリエトキシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリフェノキシシリル)エタン、1,1-ビス(トリエトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,1-ビス(トリエトキシシリル)プロパン、1,2-ビス(トリエトキシシリル)プロパン、1,3-ビス(トリエトキシシリル)プロパン、1,4-ビス(トリエトキシシリル)ブタン、1,5-ビス(トリエトキシシリル)ペンタン、1,1-ビス(トリメトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,1-ビス(トリメトキシシリル)プロパン、1,2-ビス(トリメトキシシリル)プロパン、1,3-ビス(トリメトキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,3-ビス(トリフェノキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,7-ビス(トリエトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(トリエトキシシリル)オクタン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシラン、3-グリシドキシプロピルメチルジエトキシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、トリアセトキシシラン、トリス(トリクロロアセトキシ)シラン、トリス(トリフルオロアセトキシ)シラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、トリス-(トリエトキシシリルプロピル)イソシアヌレート、メチルトリアセトキシシラン、メチルトリス(トリクロロアセトキシ)シラン、トリクロロシラン、トリブロモシラン、メチルトリフルオロシラン、トリス(メチルエチルケトキシム)シラン、フェニルトリス(メチルエチルケトキシム)シラン、ビス(メチルエチルケトキシム)シラン、メチルビス(メチルエチルケトキシム)シラン、ヘキサメチルジシラン、ヘキサメチルシクロトリシラザン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルシラン、ビス(ジエチルアミノ)メチルシラン、2-[(トリエトキシシリル)プロピル]ジベンジルレゾルシノール、2-[(トリメトキシシリル)プロピル]ジベンジルレゾルシノール、2,2,6,6-テトラメチル-4-[3-(トリエトキシシリル)プロポキシ]ピペリジン、2,2,6,6-テトラメチル-4-[3-(トリメトキシシリル)プロポキシ]ピペリジン、2-ヒドロキシ-4-[3-(トリエトキシシリル)プロポキシ]ベンゾフェノン、2-ヒドロキシ-4-[3-(トリメトキシシリル)プロポキシ]ベンゾフェノンなどが挙げられる。
【0031】
加水分解性珪素化合物(a)は、ハードコート塗膜に高い硬度を付与でき、より耐摩耗性が向上する観点から、下記式(a-2)で表される化合物、その加水分解生成物、及び縮合物を含むことが好ましい。
SiX (a-2)
式(a-2)中、Xは、加水分解性基を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
【0032】
式(a-2)で表される化合物の具体例としては、以下に限定されないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(i-ブトキシ)シラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラアセトキシシラン、テトラ(トリクロロアセトキシ)シラン、テトラ(トリフルオロアセトキシ)シラン、テトラクロロシラン、テトラブロモシラン、テトラフルオロシラン、テトラ(メチルエチルケトキシム)シラン、テトラメトキシシラン又はテトラエトキシシランの部分加水分解縮合物(例えば、多摩化学工業社製の商品名「Mシリケート51」、「シリケート35」、「シリケート45」、「シリケート40」、「FR-3」;三菱化学社製の商品名「MS51」、「MS56」、「MS57」、「MS56S」;コルコート社製の商品名「メチルシリケート51」、「メチルシリケート53A」、「エチルシリケート40」、「エチルシリケート48」、「EMS-485」、「N-103X」、「PX」、「PS-169」、「PS-162R」、「PC-291」、「PC-301」、「PC-302R」、「PC-309」、「EMSi48」)などが挙げられる。
【0033】
以上のとおり、本実施形態において、加水分解性珪素化合物(a)が、上記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。
【0034】
[重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量]
本実施形態における加水分解性珪素化合物(a)の含有量とは、重合体ナノ粒子(A)中に含まれる加水分解性珪素化合物(a)の固形分重量割合を示し、含有量が高いほど耐摩耗性や耐候性、耐熱性が向上する観点から、含有量が高いほど好ましく、含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量は、以下に限定されないが、例えば、重合体ナノ粒子(A)のIR解析、NMR解析、元素分析等で測定することができる。
【0035】
[マトリクス成分(B)]
本実施形態におけるマトリクス成分(B)を用いることにより、ハードコート塗膜に衝撃吸収性を付与でき、ハードコート塗膜のテーバー摩耗試験におけるヘイズ変化量を小さくできる。マトリクス成分(B)の硬度HMについては、後述するマトリクス原料成分(B’)の構成成分の構造および組成比により、前述した範囲に制御できるが、特にこの方法に限定されるものではない。
【0036】
[マトリクス成分(B)の構成成分]
[加水分解性珪素化合物(b)]
本実施形態におけるマトリクス成分(B)は、重合体ナノ粒子(A)が分散できるような成分であれば特に限定されない。本実施形態において、高靭性の観点から、マトリクス成分(B)は、加水分解性珪素化合物(b)を含むことが好ましい。本明細書において、「マトリクス成分(B)が加水分解性珪素化合物(b)を含む」とは、マトリクス成分(B)が、加水分解性珪素化合物(b)に由来する構成単位を有する高分子を含むことを意味する。加水分解性珪素化合物(b)は、加水分解性を有する珪素化合物、その加水分解生成物及び縮合物であれば、特に限定されない。
マトリクス成分(B)としては、上述した高分子以外にも、重合体ナノ粒子(A)を除く様々な成分が含まれていてもよい。その中でも、上述した高分子以外に含まれ得るその他の高分子としては、ポリビニルアルコール、ポリエチレングリコール、ポリビニルピロリドン、ポリアクリル酸等の水溶性樹脂;PMMA、PAN、ポリアクリルアミド等のアクリル樹脂;ポリスチレン、ポリウレタン、ポリアミド、ポリイミド、ポリ塩化ビニリデン、ポリエステル、ポリカーボネート、ポリエーテル、ポリエチレン、ポリスルホン、ポリプロピレン、ポリブタジエン、PTFE、PVDF、EVA等のポリマー;及びこれらのコポリマー等が挙げられる。
【0037】
加水分解性珪素化合物(b)は、耐摩耗性及び耐候性が一層向上する観点から、下記式(b-1)で表される原子団を含有する化合物、その加水分解生成物、及び縮合物、並びに下記式(b-2)で表される化合物、その加水分解生成物、及び縮合物からなる群より選択される1種以上を含むことが好ましい。
-R n2SiX 3-n2 (b-1)
式(b-1)中、Rは、水素原子、炭素数1~10のアルキル基、アルケニル基、アルキニル基、又はアリール基を表し、Rは、ハロゲン、ヒドロキシ基、メルカプト基、アミノ基、(メタ)アクリロイル基、又はエポキシ基を含有する置換基を有していてもよく、Xは、加水分解性基を表し、n2は、0~2の整数を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、そのような基としては、例えば、ハロゲン原子、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
SiX (b-2)
式(b-2)中、Xは、加水分解性基を表す。加水分解性基は、加水分解により水酸基が生じる基であれば特に限定されず、そのような基としては、例えば、ハロゲン、アルコキシ基、アシルオキシ基、アミノ基、フェノキシ基、オキシム基などが挙げられる。
【0038】
一般式(b-1)で表される原子団を含む化合物の具体例としては、以下に限定されないが、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリエトキシシラン、ヘキシルトリメトキシラン、ヘキシルトリエトキシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、デシルトリメトキシシラン、デシルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ビス(トリメトキシシリル)メタン、ビス(トリエトキシシリル)メタン、ビス(トリフェノキシシリル)エタン、1,1-ビス(トリエトキシシリル)エタン、1,2-ビス(トリエトキシシリル)エタン、1,1-ビス(トリエトキシシリル)プロパン、1,2-ビス(トリエトキシシリル)プロパン、1,3-ビス(トリエトキシシリル)プロパン、1,4-ビス(トリエトキシシリル)ブタン、1,5-ビス(トリエトキシシリル)ペンタン、1,1-ビス(トリメトキシシリル)エタン、1,2-ビス(トリメトキシシリル)エタン、1,1-ビス(トリメトキシシリル)プロパン、1,2-ビス(トリメトキシシリル)プロパン、1,3-ビス(トリメトキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ブタン、1,5-ビス(トリメトキシシリル)ペンタン、1,3-ビス(トリフェノキシシリル)プロパン、1,4-ビス(トリメトキシシリル)ベンゼン、1,4-ビス(トリエトキシシリル)ベンゼン、1,6-ビス(トリメトキシシリル)ヘキサン、1,6-ビス(トリエトキシシリル)ヘキサン、1,7-ビス(トリメトキシシリル)ヘプタン、1,7-ビス(トリエトキシシリル)ヘプタン、1,8-ビス(トリメトキシシリル)オクタン、1,8-ビス(トリエトキシシリル)オクタン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、3-ヒドロキシプロピルトリメトキシシラン、3-ヒドロキシプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシラン、3-グリシドキシプロピルメチルジエトキシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、3-トリメトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、トリアセトキシシラン、トリス(トリクロロアセトキシ)シラン、トリス(トリフルオロアセトキシ)シラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、トリス-(トリエトキシシリルプロピル)イソシアヌレート、メチルトリアセトキシシラン、メチルトリス(トリクロロアセトキシ)シラン、トリクロロシラン、トリブロモシラン、メチルトリフルオロシラン、トリス(メチルエチルケトキシム)シラン、フェニルトリス(メチルエチルケトキシム)シラン、ビス(メチルエチルケトキシム)シラン、メチルビス(メチルエチルケトキシム)シラン、ヘキサメチルジシラン、ヘキサメチルシクロトリシラザン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジエチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルシラン、ビス(ジエチルアミノ)メチルシラン、2-[(トリエトキシシリル)プロピル]ジベンジルレゾルシノール、2-[(トリメトキシシリル)プロピル]ジベンジルレゾルシノール、2,2,6,6-テトラメチル-4-[3-(トリエトキシシリル)プロポキシ]ピペリジン、2,2,6,6-テトラメチル-4-[3-(トリメトキシシリル)プロポキシ]ピペリジン、2-ヒドロキシ-4-[3-(トリエトキシシリル)プロポキシ]ベンゾフェノン、2-ヒドロキシ-4-[3-(トリメトキシシリル)プロポキシ]ベンゾフェノンなどが挙げられる。
【0039】
式(b-2)で表される化合物の具体例としては、以下に限定されないが、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラ(n-プロポキシ)シラン、テトラ(i-プロポキシ)シラン、テトラ(n-ブトキシ)シラン、テトラ(i-ブトキシ)シラン、テトラ-sec-ブトキシシラン、テトラ-tert-ブトキシシラン、テトラアセトキシシラン、テトラ(トリクロロアセトキシ)シラン、テトラ(トリフルオロアセトキシ)シラン、テトラクロロシラン、テトラブロモシラン、テトラフルオロシラン、テトラ(メチルエチルケトキシム)シラン、テトラメトキシシラン又はテトラエトキシシランの部分加水分解縮合物(例えば、多摩化学工業社製の商品名「Mシリケート51」、「シリケート35」、「シリケート45」、「シリケート40」、「FR-3」;三菱化学社製の商品名「MS51」、「MS56」、「MS57」、「MS56S」;コルコート社製の商品名「メチルシリケート51」、「メチルシリケート53A」、「エチルシリケート40」、「エチルシリケート48」、「EMS-485」、「N-103X」、「PX」、「PS-169」、「PS-162R」、「PC-291」、「PC-301」、「PC-302R」、「PC-309」、「EMSi48」)などが挙げられる。
【0040】
以上のとおり、本実施形態において、加水分解性珪素化合物(b)が、上記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。
【0041】
本実施形態において、「重合体ナノ粒子(A)に含まれる加水分解性珪素化合物(a)」は、「マトリクス成分(B)に含まれる加水分解性珪素化合物(b)」と同一種のものであってもよく、別種のものであってもよい。両者が同一種である場合であっても、重合体ナノ粒子(A)に含まれる方を加水分解性珪素化合物(a)とし、マトリクス成分(B)に含まれる方を加水分解性珪素化合物(b)とすることで区別するものとする。
【0042】
[無機酸化物(D)]
本実施形態におけるマトリクス成分(B)は、無機酸化物(D)を含むことが好ましい。無機酸化物(D)を含むことにより、マトリクス成分(B)の硬度を向上させ耐摩耗性が向上するだけでなく、粒子表面の水酸基の親水性により、塗膜の耐汚染性が向上する傾向にある。
【0043】
本実施形態における無機酸化物(D)の具体例としては、以下に限定されないが、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、セリウム、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデンなどの酸化物が挙げられる。これらは形状を問わず、単独で用いてもよく、混合物として用いてもよい。前述した加水分解性珪素化合物(b)との相互作用の観点から、特に限定されないが、乾式シリカやコロイダルシリカに代表されるシリカ粒子が好ましく、分散性の観点から、シリカ粒子の形態としてコロイダルシリカが好ましい。無機酸化物(D)としてコロイダルシリカを用いる場合、水性分散液の形態であることが好ましく、酸性、塩基性のいずれであっても用いることができる。
【0044】
[無機酸化物(D)の平均粒子径]
本実施形態における無機酸化物(D)の平均粒子径は、ハードコート塗膜の組成物の貯蔵安定性が良好となる観点から、2nm以上であることが好ましく、透明性が良好となる観点から、150nm以下であることが好ましい。すなわち、無機酸化物(D)の平均粒子径は、2nm以上150nm以下であることが好ましく、より好ましくは2nm以上100nm以下であり、更に好ましくは2nm以上50nm以下である。無機酸化物の平均粒子径(D)の測定方法は、以下に限定されないが、例えば、水分散コロイダルシリカに対し、透過型顕微鏡写真を用いて50,000~100,000倍に拡大して観察し、粒子として100~200個の無機酸化物が写るように撮影して、その無機酸化物粒子の長径及び短径の平均値から測定することができる。
【0045】
[無機酸化物(D)として好適に用いられるコロイダルシリカ]
本実施形態で好適に用いられる水を分散溶媒とする酸性のコロイダルシリカとしては、特に限定されないが、ゾル-ゲル法で調製して使用することもでき、市販品を利用することもできる。ゾル-ゲル法で調製する場合には、Werner Stober et al;J.Colloid and Interface Sci.,26,62-69(1968)、Rickey D.Badley et al;Lang muir 6,792-801(1990)、色材協会誌,61[9]488-493(1988)などを参照できる。市販品を利用する場合、例えば、スノーテックス-O、スノーテックス-OS、スノーテックス-OXS、スノーテックス-O-40、スノーテックス-OL、スノーテックスOYL、スノーテックス-OUP、スノーテックス-PS-SO、スノーテックス-PS-MO、スノーテックス-AK-XS、スノーテックス-AK、スノーテックス-AK-L、スノーテックス-AK-YL、スノーテックス-AK-PS-S(商品名、日産化学工業株式会社製)、アデライトAT-20Q(商品名、旭電化工業株式会社製)、クレボゾール20H12、クレボゾール30CAL25(商品名、クラリアントジャパン株式会社製)などが挙げられる。
【0046】
また、塩基性のコロイダルシリカとしては、アルカリ金属イオン、アンモニウムイオン、アミンの添加で安定化したシリカがあり、特に限定されないが、例えば、スノーテックス-20、スノーテックス-30、スノーテックス-XS、スノーテックス-50、スノーテックス-30L、スノーテックス-XL、スノーテックス-YL、スノーテックスZL、スノーテックス-UP、スノーテックス-ST-PS-S、スノーテックスST-PS-M、スノーテックス-C、スノーテックス-CXS、スノーテックス-CM、スノーテックス-N、スノーテックス-NXS、スノーテックス-NS、スノーテックス-N-40(商品名、日産化学工業株式会社製)、アデライトAT-20、アデライトAT-30、アデライトAT-20N、アデライトAT-30N、アデライトAT-20A、アデライトAT-30A、アデライトAT-40、アデライトAT-50(商品名、旭電化工業株式会社製)、クレボゾール30R9、クレボゾール30R50、クレボゾール50R50(商品名、クラリアントジャパン株式会社製)、ルドックスHS-40、ルドックスHS-30、ルドックスLS、ルドックスAS-30、ルドックスSM-AS、ルドックスAM、ルドックスHSA及びルドックスSM(商品名、デュポン社製)などが挙げられる。
【0047】
また、水溶性溶媒を分散媒体とするコロイダルシリカとしては、特に限定されないが、例えば、日産化学工業株式会社製MA-ST-M(粒子径が20~25nmのメタノール分散タイプ)、IPA-ST(粒子径が10~15nmのイソプロピルアルコール分散タイプ)、EG-ST(粒子径が10~15nmのエチレングリコール分散タイプ)、EGST-ZL(粒子径が70~100nmのエチレングリコール分散タイプ)、NPC-ST(粒子径が10~15nmのエチレングリコールモノプロピルエーテール分散タイプ)、TOL-ST(粒子径が10~15nmのトルエン分散タイプ)などが挙げられる。
【0048】
乾式シリカ粒子としては、特に限定されないが、例えば、日本アエロジル株式会社製 AEROSIL、株式会社トクヤマ製レオロシールなどが挙げられる。
【0049】
また、これらシリカ粒子は、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や有機塩基(テトラメチルアンモニウム、トリエチルアミンなど)を含んでいてもよい。
【0050】
[無機酸化物(D)の形状]
さらに、本実施形態における無機酸化物(D)の形状は、以下に限定されないが、例えば、球状、角状、多面体形状、楕円状、扁平状、線状、数珠状、などが挙げられ、ハードコート塗膜の硬度及び透明性の観点から、球形であることが特に好ましい。
【0051】
[官能基(e)]
本実施形態における重合体ナノ粒子(A)は、マトリクス成分(B)中への重合体ナノ粒子(A)の分散性が向上し、耐摩耗性を向上させることができる観点から、マトリクス成分(B)と相互作用する官能基(e)を有することが好ましい。重合体ナノ粒子(A)が官能基(e)を有することは、例えば、IR、GC-MS、熱分解GC-MS、LC-MS、GPC、MALDI-MS、TOF-SIMS、TG-DTA、NMRによる組成解析、及びこれらの組み合わせによる解析等により確認することができる。
【0052】
本実施形態における官能基(e)の具体例としては、以下に限定されないが、水酸基、カルボキシル基、アミノ基、アミド基、エーテル結合からなる官能基が挙げられ、相互作用の観点から水素結合を有する官能基であることが好ましく、高い水素結合性の観点から、アミド基であることがより好ましく、2級アミド基及び/又は3級アミド基であることが更に好ましい。
【0053】
官能基(e)を含有している化合物及びその反応物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチルビニルエーテル若しくは4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルアリルエーテル、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-ジ-n-プロピルアミノエチル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、4-ジメチルアミノブチル(メタ)アクリレート、N-[2-(メタ)アクリロイルオキシ]エチルモルホリン、ビニルピリジン、N-ビニルカルバゾール、N-ビニルキノリン、N-メチルアクリルアミド、N-メチルメタアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタアクリルアミド、N,N-ジエチルアクリルアミド、N-エチルメタアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-エチルメタアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルメタアクリルアミド、N-n-プロピルメタアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピロリジン、N-メタクリロイルピロリジン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルヘキサヒドロアゼピン、N-アクリロイルモルホリン、N-メタクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N-ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタアクリルアミド、ブレンマーPE-90、PE-200、PE-350、PME-100、PME-200、PME-400、AE-350(商品名、日本油脂社製)、MA-30、MA-50、MA-100、MA-150、RA-1120、RA-2614、RMA-564、RMA-568、RMA-1114、MPG130-MA(商品名、日本乳化剤社製)などが挙げられる。なお、本明細書中で、(メタ)アクリレートとはアクリレート又はメタアクリレートを、(メタ)アクリル酸とはアクリル酸又はメタアクリル酸を簡便に表記したものである。
【0054】
[重合体ナノ粒子(A)のコア/シェル構造]
本実施形態における重合体ナノ粒子(A)は、コア層と、コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有することが好ましい。重合体ナノ粒子(A)は、コア/シェル構造の最外層におけるマトリクス成分(B)との相互作用の観点から、官能基(e)を有することが好ましい。
【0055】
[重合体ナノ粒子(A)に含んでもよいその他の化合物]
本実施形態による重合体ナノ粒子(A)は、粒子間の静電反発力をもたせることで粒子の安定性を向上させる観点から、以下に示す重合体を含んでもよい。例えば、ポリウレタン系、ポリエステル系、ポリ(メタ)アクリレート系、ポリ(メタ)アクリル酸、ポリビニルアセテート系、ポリブタジエン系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系の重合体、又はポリ(メタ)アクリレート-シリコーン系、ポリスチレン-(メタ)アクリレート系、スチレン無水マレイン酸系の共重合体が挙げられる。
【0056】
上述の重合体ナノ粒子(A)に含んでもよい重合体の中でも、静電反発に特に優れる化合物として、(メタ)アクリル酸と(メタ)アクリレートの重合体又は共重合体が挙げられる。具体例としては、以下に限定されないが、メチルアクリレート、(メタ)アクリル酸、メチルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレート、2-エチルヘキシルアクリレート、n-ブチルアクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートの重合体または共重合体が挙げられる。この際、(メタ)アルクリ酸は、静電反発力をさらに向上させるために、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミンなどのアミン類や、NaOH、KOHなどの塩基で中和してもよい。
【0057】
また、重合体ナノ粒子(A)は乳化剤を含んでもよい。乳化剤としては、特に限定されず、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸などの酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K、など)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸などのアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートなどの四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンボロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルなどのノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤などが挙げられる。
【0058】
前記ラジカル重合性の二重結合を有する反応性乳化剤としては、以下に限定されるものではないが、例えば、エレミノールJS-2(商品名、三洋化成株式会社製)、ラテムルS-120、S-180A又はS-180(商品名、花王株式会社製)、アクアロンHS-10、KH-1025、RN-10、RN-20、RN30、RN50(商品名、第一工業製薬株式会社製)、アデカリアソープSE1025、SR-1025、NE-20、NE-30、NE-40(商品名、旭電化工業株式会社製)、p-スチレンスルホン酸のアンモニウム塩、p-スチレンスルホン酸のナトリウム塩、p-スチレンスルホン酸のカリウム塩、2-スルホエチルアクリレートなどのアルキルスルホン酸(メタ)アクリレートやメチルプロパンスルホン酸(メタ)アクリルアミド、アリルスホン酸のアンモニウム塩、アリルスホン酸のナトリウム塩、アリルスホン酸のカリウム塩などが挙げられる。
【0059】
[塗膜(C)に含んでもよいその他の成分]
本実施形態の塗膜(C)は、用途に応じて、マトリクス成分(B)として、溶媒、乳化剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤、触媒を含んでもよい。特に屋外用途では高い耐候性が求められることから、紫外線吸収剤、光安定剤を含むことが好ましい。紫外線吸収剤及び光安定剤の具体例としては、以下に限定されないが、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’ジメトキシベンゾフェノン(BASF社製の商品名「UVINUL3049」)、2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製の商品名「UVINUL3050」)、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、5-ベンゾイルー2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-ステアリルオキシベンゾフェノン、4,6-ジベンゾイルレゾルチノール、などのベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル-3-〔3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASF社製の商品名「TINUVIN1130」)、イソオクチル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル〕プロピオネート(BASF社製の商品名「TINUVIN384」)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASF社製の商品名「TINUVIN571」)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製の商品名「TINUVIN900」)、TINUVIN384-2、TINUVIN326、TINUVIN327、TINUVIN109、TINUVIN970、TINUVIN328、TINUVIN171、TINUVIN970、TINUVIN PS、TINUVIN P、TINUVIN99-2、TINVIN928(商品名、BASF社製)などのベンゾトリアゾール系紫外線吸収剤;2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシー4-ブチルオキシフェニル)-6-(2,4-ビスブチルオキシフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN460」)、、2-(2-ヒドロキシ-4-[1-オクチロキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN479」)、TINUVIN400、TINUVIN405、TINUVIN477、TINUVIN1600(商品名、BASF社製)などのトリアジン系紫外線吸収剤;HOSTAVIN PR25、HOSTAVIN B-CAP、HOSTAVIN VSU(商品名、クラリアント社製)、などのマロン酸エステル系紫外線吸収剤;エチル-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3035」)、(2-エチルヘキシル)-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3039」、1,3-ビス((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)-2,2-ビス-(((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)メチル)プロパン(BASF社製の商品名「UVINUL3030)、などのシアノアクリレート系紫外線吸収剤;2-ヒドロキシ-4-アクリロキシベンゾフェノン、2-ヒドロキシ-4-メタクリロキシベンゾフェノン、2-ヒドロキシ-5-アクリロキシベンゾフェノン、2-ヒドロキシ-5-メタクリロキシベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-ジエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-トリエトキシ)ベンゾフェノン、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(大塚化学株式会社製の商品名「RUVA-93」)、2-(2’-ヒドロキシ-5’-メタクリロキシエチル-3-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリリルオキシプロピル-3-tert-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、3-メタクリロイル-2-ヒドロキシプロピル-3-〔3’-(2’’-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル〕フェニルプロピオネート(日本チバガイギー株式会社製の商品名「CGL-104」)などの分子内にラジカル重合性の二重結合を有するラジカル重合性紫外線吸収剤;UV-G101、UV-G301、UV-G137、UV-G12、UV-G13(日本触媒株式会社製の商品名)などの紫外線吸収性を有する重合体;ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASF社製の商品名「TINUVIN292」)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN249、TINUVIN292、TINUVIN5100(商品名、BASF社製)などのヒンダードアミン系光安定剤;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルアクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6,-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレートなどのラジカル重合性ヒンダードアミン系光安定剤;ユーダブルE-133、ユーダブルE-135、ユーダブルS-2000、ユーダブルS-2834、ユーダブルS-2840、ユーダブルS-2818、ユーダブルS-2860(商品名、日本触媒株式会社製)などの光安定性を有する重合体;シラノール基、イソシアネート基、エポキシ基、セミカルバジド基、ヒドラジド基との反応性を有する紫外線吸収剤;酸化セリウム、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ビスマス、酸化コバルト、酸化銅、酸化錫、酸化チタンなどの無機系紫外線吸収剤等が挙げられ、これらは1種もしくは2種以上を併用しても構わない。
【0060】
[ハードコート塗膜の透明性]
本実施形態のハードコート塗膜を透明材料として適用する場合は、材料の外観や材料越しの視認性に悪影響を与えないような透明性を有することが好ましい。ハードコート塗膜の透明性は、外観変化の観点から、下記式で得られる全光線透過率維持率で評価することができる。本実施形態において、ハードコート塗膜の全光線透過率維持率は、90%以上が好ましく、採光確保の観点から95%以上がより好ましく、材料越しにおける視認性確保の観点から98%以上がとりわけ好ましい。ハードコート塗膜の全光線透過率維持率は、例えば、重合体ナノ粒子(A)及びマトリクス成分(B)として前述した好ましい態様を採用することで、上記した範囲に調整することができる。
ハードコート塗膜の全光線透過率維持率(%)=(ハードコート塗膜付き基材の全光線透過率(%)/基材の全光線透過率(%)) × 100
【0061】
[ハードコート塗膜の耐汚染性]
本実施形態のハードコート塗膜を透明材料として適用する場合は、長期間使用した際の視認性に悪影響を与えないことが要求される。すなわち、上記用途において、ハードコート塗膜は良好な耐汚染性を有することが好ましい。ここでの耐汚染性とは、長期間使用した際の煤塵の付着度合いを示し、例えば、摩耗試験後の塗膜にJIS試験用粉体1(12種 カーボンブラック)を付着させ、下記式で得られる試験後における全光線透過率維持率で評価することができる。
ブラックカーボン試験後の全光線透過率維持率(%)=(試験後の全光線透過率/試験前の全光線透過率) × 100
ブラックカーボン試験後の全光線透過率維持率が高いほど、長期間使用した際のブラックカーボンの付着は少なく、耐汚染性に優れる傾向にある。
【0062】
[ハードコート塗膜の耐湿性]
本実施形態のハードコート塗膜を長期間使用する用途においては、使用環境下においてハードコート塗膜の性能を維持することが求められる。例えば、自動車の窓材の用途においては、高い温度と高い湿度下での使用が想定されるため、JIS-R3211、R3222に準拠し、50℃95%RHで2週間晒した後、外観や密着性に変化がないことが好ましい。
【0063】
<ハードコート塗膜付き基材>
本実施形態に係るハードコート塗膜付き基材は、基材と、基材の片面及び/又は両面に形成された本実施形態のハードコート塗膜と、を含む。ハードコート塗膜付き基材は、少なくとも基材の片面及び/又は両面に有する。
本実施形態のハードコート塗膜付き基材は、上述のように構成されているため、高い耐摩耗性と高い耐久性を有する。本実施形態のハードコート塗膜付き基材は、高いレベルでの耐摩耗性と耐汚染性を発現するため、以下に限定されないが、例えば、建材、自動車部材や電子機器や電機製品等のハードコートとして有用であり、とりわけ自動車部材用とすることが好ましい。
【0064】
[基材]
本実施形態のハードコート塗膜が塗布される基材としては、特に限定されないが、樹脂、金属、ガラス等が挙げられる。基材の形状としては、以下に限定されないが、例えば、板状、凹凸を含む形状、曲面を含む形状、中空の形状、多孔体の形状、それらの組み合わせ、などが挙げられる。また、基材の種類は問わず、例えば、シート、フィルム、繊維、などが挙げられる。その中で、ハードコート性の付与や成形性の観点から樹脂であることが好ましい。すなわち、樹脂を含む基材と、本実施形態のハードコート塗膜と、を有する構造体は、優れた耐摩耗性、成形性、耐汚染性を有する。基材として用いられる樹脂としては、以下に限定されないが、例えば、熱可塑性樹脂や熱硬化性樹脂が挙げられる。基材として用いられる熱可塑性樹脂としては、以下に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、塩化ビニル樹脂、メタクリル酸メチル樹脂、ナイロン、フッ素樹脂、ポリカーボネート、ポリエステル樹脂などが挙げられる。また基材として用いられる熱硬化性樹脂としては、以下に限定されないが、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ケイ素樹脂、シリコーンゴム、SBゴム、天然ゴム、熱硬化性エラストマー、などが挙げられる。
【0065】
[接着層]
本実施形態に係るハードコート塗膜付き基材は、基材とハードコート塗膜との間に、接着層をさらに有していてもよい。接着層としては、一般的に使用される接着層を用いることができ、特に限定されず、例えば、熱可塑性樹脂、熱硬化性樹脂、ゴム・エラストマーなどが挙げられ、その中でもアクリル系樹脂、アクリルウレタン系樹脂、ウレタン系樹脂、シリコーン系樹脂などが好ましい。また、上記接着層は、必要に応じて、任意の適切な添加剤を含んでもよい。添加剤としては、以下に限定されないが、例えば、架橋剤、粘着付与剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、無機酸化物、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤などが挙げられる。架橋剤は、以下に限定されないが、例えば、イソシアネート系架橋剤、エポキシ系架橋剤、カルボジイミド系架橋剤、オキサゾリン系架橋剤、アジリジン系架橋剤、アミン系架橋剤過酸化物系架橋剤、メラミン系架橋剤、尿素系架橋剤、金属アルコキシド系架橋剤、金属キレート系架橋剤、金属塩系架橋剤などが挙げられる。
【0066】
[接着性エマルション粒子(F)]
本実施形態において、前記接着層は、接着性エマルション粒子(F)を含むことが好ましい。接着性エマルション粒子(F)は、柔軟性付与と基材への密着性向上の役割を果たすものである。接着性エマルション粒子(F)は、特に限定されないが、例えば、ポリウレタン系、ポリエステル系、ポリ(メタ)アクリレート系、ポリビニルアセテート系、ポリブタジエン系、ポリ塩化ビニル系、塩素化ポリプロピレン系、ポリエチレン系、ポリスチレン系、ポリスチレン-(メタ)アクリレート系共重合体、ロジン系誘導体、スチレン-無水マレイン酸共重合体のアルコール付加物、セルロース系樹脂などのポリカルボニル化合物、シリコーン化合物などを1種又は2種以上から構成される粒子である。本実施形態において、接着性エマルション粒子(F)は、ポリ(メタ)アクリレート系であることが好ましい。
【0067】
本実施形態における接着性エマルション粒子(F)の調製方法としては、特に限定されないが、水及び乳化剤の存在下に、ビニル単量体を重合して得られる構造であることが好ましい。このようにして得られる接着性エマルション粒子(F)が接着層に含まれる場合、基材への密着性の維持により優れる傾向にある。
【0068】
ビニル単量体としては、特に限定されないが、例えば、(メタ)アクリル酸エステル、芳香族ビニル化合物、シアン化ビニル化合物の他、カルボキシル基含有ビニル単量体、水酸基含有ビニル単量体、エポキシ基含有ビニル単量体、カルボニル基含有ビニル単量体、2級及び/又は3級アミド基を有するビニル単量体のような官能基を含有する単量体等を挙げることができる。
【0069】
上記(メタ)アクリル酸エステルとしては、特に限定されないが、例えば、アルキル部の炭素数が1~50の(メタ)アクリル酸アルキルエステル、エチレンオキシド基の数が1~100個の(ポリ)オキシエチレンジ(メタ)アクリレート等が挙げられる。
【0070】
上記(メタ)アクリル酸アルキルエステルとしては、特に限定されないが、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ドデシル等が挙げられる。
【0071】
上記(ポリ)オキシエチレンジ(メタ)アクリレートとしては、特に限定されないが、例えば、ジ(メタ)アクリル酸エチレングリコール、ジ(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、ジ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
【0072】
芳香族ビニル化合物としては、特に限定されないが、例えば、スチレン、4-ビニルトルエン等が挙げられる。
【0073】
シアン化ビニル化合物としては、特に限定されないが、例えば、アクリロニトリル、メタクリロニトリル等が挙げられる。
【0074】
カルボキシル基含有ビニル単量体としては、特に限定されないが、例えば、(メタ)アクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸、無水マレイン酸、又はイタコン酸、マレイン酸、フマル酸などの2塩基酸のハーフエステル等が挙げられる。カルボキシル酸基含有のビニル単量体を用いる場合、本実施形態における接着性エマルション粒子(F)にカルボキシル基を導入することができ、粒子間の静電的反発力をもたせることでエマルションとしての安定性を向上させ、例えば攪拌時の凝集といった外部からの分散破壊作用への抵抗力が向上する傾向にある。この際、静電的反発力をさらに向上させる観点から、上記導入したカルボキシル基は、一部又は全部を、アンモニアやトリエチルアミン、ジメチルエタノールアミン等のアミン類やNaOH、KOH等の塩基で中和することもできる。
【0075】
上記水酸基含有ビニル単量体としては、特に限定されないが、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピ(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の(メタ)アクリル酸のヒドロキシアルキルエステル;ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート等のフマル酸のヒドロキシアルキルエステル;アリルアルコールやエチレンオキシド基の数が1~100個の(ポリ)オキシエチレンモノ(メタ)アクリレート;プロピレンオキシド基の数が1~100個の(ポリ)オキシプロピレンモノ(メタ)アクリレート;、さらには、「プラクセルFM、FAモノマー」(ダイセル化学(株)製の、カプロラクトン付加モノマーの商品名)や、その他のα,β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類などが挙げられる。
【0076】
上記(ポリ)オキシエチレン(メタ)アクリレートとしては、特に限定されないが、例えば、(メタ)アクリル酸エチレングリコール、メトキシ(メタ)アクリル酸エチレングリコール、(メタ)アクリル酸ジエチレングリコール、メトキシ(メタ)アクリル酸ジエチレングリコール、(メタ)アクリル酸テトラエチレングリコール、メトキシ(メタ)アクリル酸テトラエチレングリコール等が挙げられる。
【0077】
(ポリ)オキシプロピレン(メタ)アクリレートとしては、特に限定されないが、例えば、(メタ)アクリル酸プロピレングリコール、メトキシ(メタ)アクリル酸プロピレングリコール、(メタ)アクリル酸ジプロピレングリコール、メトキシ(メタ)アクリル酸ジプロピレングリコール、(メタ)アクリル酸テトラプロピレングリコール、メトキシ(メタ)アクリル酸テトラプロピレングリコール等が挙げられる。
【0078】
上記エポキシ基含有ビニル単量体としては、特に限定されないが、例えば、グリシジル基含有ビニル単量体等が挙げられる。グリシジル基含有ビニル単量体としては、特に限定されないが、例えば、グリシジル(メタ)アクリレート、アリルグリシジルエーテル、アリルジメチルグリシジルエーテル等を挙げることができる。
【0079】
上記カルボニル含有ビニル単量体としては、特に限定されないが、例えば、ダイアセトンアクリルアミド等が挙げられる。
【0080】
また、上記以外のビニル単量体の具体例としては、特に限定されないが、例えば、エチレン、プロピレン、イソブチレン等のオレフィン類、ブタジエン等のジエン類、塩化ビニル、塩化ビニリデンフッ化ビニル、テトラフルオロエチレン、クロロトリフルオロエチレン等のハロオレフィン類、酢酸ビニル、プロピオン酸ビニル、n-酪酸ビニル、安息香酸ビニル、p-t-ブチル安息香酸ビニル、ピバリン酸ビニル、2-エチルヘキサン酸ビニル、バーサチック酸ビニル、ラウリン酸ビニル等のカルボン酸ビニルエステル類、酢酸イソプロペニル、プロピオン酸イソプロペニル等のカルボン酸イソプロペニルエステル類、エチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のビニルエーテル類、酢酸アリル、安息香酸アリル等のアリルエステル類、アリルエチルエーテル、アリルフェニルエーテル等のアリルエーテル類、さらに4-(メタ)アクリロイルオキシ-2,2,6,6,-テトラメチルピペリジン、4-(メタ)アクリロイルオキシ-1,2,2,6,6,-ペンタメチルピペリジン、パーフルオロメチル(メタ)アクリレート、パーフルオロプロピル(メタ)アクリレート、パーフルオロプロピロメチル(メタ)アクリレート、ビニルピロリドン、トリメチロールプロパントリ(メタ)アクリレート、(メタ)アクリル酸アリル等やそれらの併用が挙げられる。
【0081】
上記2級及び/又は3級アミド基を有するビニル単量体としては、特に限定されないが、例えば、N-アルキル又はN-アルキレン置換(メタ)アクリルアミド等を例示することができる。具体的には、例えば、N-メチルアクリルアミド、N-メチルメタアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタアクリルアミド、N,N-ジエチルアクリルアミド、N-エチルメタアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-エチルメタアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルメタアクリルアミド、N-n-プロピルメタアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピロリジン、N-メタクリロイルピロリジン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルヘキサヒドロアゼピン、N-アクリロイルモルホリン、N-メタクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N-ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタアクリルアミド等を挙げることができる。
上記シリコーン化合物としては、特に限定されないが、例えば、トリメトキシシラン、トリエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ジメトキシシラン、ジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、p-スチリルトリメトキシシラン、p-スチリルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、などの加水分解縮合物が挙げられる。
【0082】
前記接着性エマルション粒子(F)は乳化剤を含んでもよい。乳化剤としては、特に限定されず、例えば、アルキルベンゼンスルホン酸、アルキルスルホン酸、アルキルスルホコハク酸、ポリオキシエチレンアルキル硫酸、ポリオキシエチレンアルキルアリール硫酸、ポリオキシエチレンジスチリルフェニルエーテルスルホン酸などの酸性乳化剤;酸性乳化剤のアルカリ金属(Li、Na、K、など)塩、酸性乳化剤のアンモニウム塩、脂肪酸石鹸などのアニオン性界面活性剤;アルキルトリメチルアンモニウムブロミド、アルキルピリジニウムブロミド、イミダゾリニウムラウレートなどの四級アンモニウム塩、ピリジニウム塩、イミダゾリニウム塩型のカチオン性界面活性剤;ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンオキシプロピレンボロックコポリマー、ポリオキシエチレンジスチリルフェニルエーテルなどのノニオン型界面活性剤やラジカル重合性の二重結合を有する反応性乳化剤などが挙げられる。
【0083】
前記ラジカル重合性の二重結合を有する反応性乳化剤としては、以下に限定されるものではないが、例えば、エレミノールJS-2(商品名、三洋化成株式会社製)、ラテムルS-120、S-180A又はS-180(商品名、花王株式会社製)、アクアロンHS-10、KH-1025、RN-10、RN-20、RN30、RN50(商品名、第一工業製薬株式会社製)、アデカリアソープSE1025、SR-1025、NE-20、NE-30、NE-40(商品名、旭電化工業株式会社製)、p-スチレンスルホン酸のアンモニウム塩、p-スチレンスルホン酸のナトリウム塩、p-スチレンスルホン酸のカリウム塩、2-スルホエチルアクリレートなどのアルキルスルホン酸(メタ)アクリレートやメチルプロパンスルホン酸(メタ)アクリルアミド、アリルスホン酸のアンモニウム塩、アリルスホン酸のナトリウム塩、アリルスホン酸のカリウム塩などが挙げられる。
【0084】
[接着性エマルション粒子(F)の平均粒子径]
本実施形態における接着性エマルション粒子(F)の平均粒子径は、断面SEM又は動的光散乱法により観測される粒子の大きさから求められる。接着性エマルション粒子(F)の平均粒子径は、300nm以下であることが好ましい。接着性エマルション粒子(F)の平均粒子径を上記範囲に調整することにより、基材との接触面積向上により密着性がより一層優れた塗膜を形成できる傾向にある。また、得られる塗膜の透明性が向上する観点から、平均粒子径は200nm以下であることがより好ましい。接着性エマルション粒子(F)の平均粒子径の測定方法は、以下に限定されないが、例えば、接着性エマルション粒子(F)水分散体を用いて大塚電子株式会社製動的光散乱式粒度分布測定装置(品番:ELSZ-1000)によりキュムラント粒子径を測定することが可能である。
【0085】
[無機酸化物(G)]
前記接着層は、ハードコート塗膜との相互作用による密着性向上の観点から、無機酸化物(G)をさらに含むことが好ましい。
【0086】
本実施形態における無機酸化物(G)の具体例としては、以下に限定されないが、例えば、ケイ素、アルミニウム、チタン、ジルコニウム、亜鉛、セリウム、スズ、インジウム、ガリウム、ゲルマニウム、アンチモン、モリブデンなどの酸化物が挙げられる。これらは単体であっても混合物でもよい。上記したものの中でも、無機酸化物(G)は、シリカ粒子であることが好ましい。
【0087】
本実施形態における無機酸化物(G)の平均粒子径は、接着層の原料組成物の貯蔵安定性が良好となる観点から、2nm以上であることが好ましく、ハードコート塗膜付き基材全体としての透明性が良好となる観点から、150nm以下であることが好ましい。このため、平均粒子径は、好ましくは2nm以上100nm以下であり、より好ましくは2nm以上50nm以下である。
【0088】
前述した加水分解性珪素化合物(b)との相互作用が強く、前記ハードコート塗膜との密着性の観点から、特に限定されないが、乾式シリカやコロイダルシリカに代表される、シリカ粒子が好ましい。水性分散液の形態でも使用できるため、コロイダルシリカが好ましい。
【0089】
[無機酸化物(G)として好適に用いられるコロイダルシリカ]
本実施形態で好適に用いられる水を分散溶媒とする酸性のコロイダルシリカとしては、特に限定されないが、ゾル-ゲル法で調製して使用することもでき、市販品を利用することもできる。ゾル-ゲル法で調製する場合には、Werner Stober et al;J.Colloid and Interface Sci.,26,62-69(1968)、Rickey D.Badley et al;Lang muir 6,792-801(1990)、色材協会誌,61[9]488-493(1988)などを参照できる。
市販品を利用する場合、例えば、スノーテックス-O、スノーテックス-OS、スノーテックス-OXS、スノーテックス-O-40、スノーテックス-OL、スノーテックスOYL、スノーテックス-OUP、スノーテックス-PS-SO、スノーテックス-PS-MO、スノーテックス-AK-XS、スノーテックス-AK、スノーテックス-AK-L、スノーテックス-AK-YL、スノーテックス-AK-PS-S(商品名、日産化学工業株式会社製)、アデライトAT-20Q(商品名、旭電化工業株式会社製)、クレボゾール20H12、クレボゾール30CAL25(商品名、クラリアントジャパン株式会社製)などが挙げられる。
【0090】
また、塩基性のコロイダルシリカとしては、アルカリ金属イオン、アンモニウムイオン、アミンの添加で安定化したシリカがあり、特に限定されないが、例えば、スノーテックス-20、スノーテックス-30、スノーテックス-XS、スノーテックス-50、スノーテックス-30L、スノーテックス-XL、スノーテックス-YL、スノーテックスZL、スノーテックス-UP、スノーテックス-ST-PS-S、スノーテックスST-PS-M、スノーテックス-C、スノーテックス-CXS、スノーテックス-CM、スノーテックス-N、スノーテックス-NXS、スノーテックス-NS、スノーテックス-N-40(商品名、日産化学工業株式会社製)、アデライトAT-20、アデライトAT-30、アデライトAT-20N、アデライトAT-30N、アデライトAT-20A、アデライトAT-30A、アデライトAT-40、アデライトAT-50(商品名、旭電化工業株式会社製)、クレボゾール30R9、クレボゾール30R50、クレボゾール50R50(商品名、クラリアントジャパン株式会社製)、ルドックスHS-40、ルドックスHS-30、ルドックスLS、ルドックスAS-30、ルドックスSM-AS、ルドックスAM、ルドックスHSA及びルドックスSM(商品名、デュポン社製)などが挙げられる。
【0091】
また、水溶性溶媒を分散媒体とするコロイダルシリカとしては、特に限定されないが、例えば、日産化学工業株式会社製MA-ST-M(粒子径が20~25nmのメタノール分散タイプ)、IPA-ST(粒子径が10~15nmのイソプロピルアルコール分散タイプ)、EG-ST(粒子径が10~15nmのエチレングリコール分散タイプ)、EGST-ZL(粒子径が70~100nmのエチレングリコール分散タイプ)、NPC-ST(粒子径が10~15nmのエチレングリコールモノプロピルエーテール分散タイプ)、TOL-ST(粒子径が10~15nmのトルエン分散タイプ)などが挙げられる。
【0092】
乾式シリカ粒子としては、特に限定されないが、例えば、日本アエロジル株式会社製 AEROSIL、株式会社トクヤマ製レオロシールなどが挙げられる。
【0093】
シリカ粒子は、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニアなど)や有機塩基(テトラメチルアンモニウム、トリエチルアミンなど)を含んでいてもよい。
【0094】
[無機酸化物(G)の形状]
さらに、本実施形態における無機酸化物(G)の形状は、以下に限定されないが、例えば、球状、角状、多面体形状、楕円状、扁平状、線状、数珠状、などが挙げられ、ハードコート塗膜の硬度及び透明性の観点から、球形であることが特に好ましい。
【0095】
上記接着層の厚みは、密着性の観点から、好ましくは0.1μm以上100.0μm以下であり、より好ましくは0.3μm以上50.0μm以下である。
【0096】
塗膜(C)は、その少なくとも1つの表面上に機能層をさらに有してもよい。機能層としては、以下に限定されないが、例えば、反射防止層、防汚層、偏光層、衝撃吸収層などが挙げられる。
【0097】
ハードコート塗膜付き基材は、耐候性の観点から、表面をシリカ加工してシリカ層を形成してもよい。シリカ層の形成方法については後述する。
【0098】
[接着層に含んでもよい成分]
本実施形態の接着層は、用途に応じて、溶媒、乳化剤、可塑剤、顔料、染料、充填剤、老化防止剤、導電材、紫外線吸収剤、光安定剤、剥離調整剤、軟化剤、界面活性剤、難燃剤、酸化防止剤、触媒を含んでもよい。特に屋外用途では高い耐候性が求められることから、紫外線吸収剤、光安定剤を含むことが好ましい。具体的には、以下に限定されないが、2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン-5-スルホン酸、2-ヒドロキシ-4-n-オクトキシベンゾフェノン、2-ヒドロキシ-4-n-ドデシルオキシベンゾフェノン、2-ヒドロキシ-4-ベンジルオキシベンゾフェノン、ビス(5-ベンゾイル-4-ヒドロキシ-2-メトキシフェニル)メタン、2,2’-ジヒドロキシ-4-メトキシベンゾフェノン、2,2’-ジヒドロキシ-4,4’ジメトキシベンゾフェノン(BASF社製の商品名「UVINUL3049」)、2,2’,4,4’-テトラヒドロキシベンゾフェノン(BASF社製の商品名「UVINUL3050」)、4-ドデシルオキシ-2-ヒドロキシベンゾフェノン、5-ベンゾイルー2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-2’-カルボキシベンゾフェノン、2-ヒドロキシ-4-ステアリルオキシベンゾフェノン、4,6-ジベンゾイルレゾルチノール、などのベンゾフェノン系紫外線吸収剤;2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-tert-ブチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-5-tert-オクチルフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ジ-tert-オクチルフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’,5’-ビス(α,α’-ジメチルベンジル)フェニル〕ベンゾトリアゾール)、メチル-3-〔3-tert-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル〕プロピオネートとポリエチレングリコール(分子量300)との縮合物(BASF社製の商品名「TINUVIN1130」)、イソオクチル-3-〔3-(2H-ベンゾトリアゾール-2-イル)-5-tert-ブチル-4-ヒドロキシフェニル〕プロピオネート(BASF社製の商品名「TINUVIN384」)、2-(3-ドデシル-5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール(BASF社製の商品名「TINUVIN571」)、2-(2’-ヒドロキシ-3’-tert-ブチル-5’-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2’-ヒドロキシ-3’,5’-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-4’-オクトキシフェニル)ベンゾトリアゾール、2-〔2’-ヒドロキシ-3’-(3”,4”,5”,6”-テトラヒドロフタルイミドメチル)-5’-メチルフェニル〕ベンゾトリアゾール、2,2-メチレンビス〔4-(1,1,3,3-テトラメチルブチル)-6-(2H-ベンゾトリアゾール-2-イル)フェノール〕、2-(2H-ベンゾトリアゾール-2-イル)-4,6-ビス(1-メチル-1-フェニルエチル)フェノール(BASF社製の商品名「TINUVIN900」)、TINUVIN384-2、TINUVIN326、TINUVIN327、TINUVIN109、TINUVIN970、TINUVIN328、TINUVIN171、TINUVIN970、TINUVIN PS、TINUVIN P、TINUVIN99-2、TINVIN928(商品名、BASF社製)などのベンゾトリアゾール系紫外線吸収剤;2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス(2-ヒドロキシー4-ブチルオキシフェニル)-6-(2,4-ビスブチルオキシフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN460」)、、2-(2-ヒドロキシ-4-[1-オクチロキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(BASF社製の商品名「TINUVIN479」)、TINUVIN400、TINUVIN405、TINUVIN477、TINUVIN1600(商品名、BASF社製)などのトリアジン系紫外線吸収剤;HOSTAVIN PR25、HOSTAVIN B-CAP、HOSTAVIN VSU(商品名、クラリアント社製)、などのマロン酸エステル系紫外線吸収剤;エチル-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3035」)、(2-エチルヘキシル)-2-シアノ-3,3-ジフェニルアクリレート(BASF社製の商品名「UVINUL3039」、1,3-ビス((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)-2,2-ビス-(((2’-シアノ-3’,3’-ジフェニルアクリロイル)オキシ)メチル)プロパン(BASF社製の商品名「UVINUL3030)、などのシアノアクリレート系紫外線吸収剤;2-ヒドロキシ-4-アクリロキシベンゾフェノン、2-ヒドロキシ-4-メタクリロキシベンゾフェノン、2-ヒドロキシ-5-アクリロキシベンゾフェノン、2-ヒドロキシ-5-メタクリロキシベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-エトキシ)ベンゾフェノン、2-ヒドロキシ-4-(メタクリロキシ-ジエトキシ)ベンゾフェノン、2-ヒドロキシ-4-(アクリロキシ-トリエトキシ)ベンゾフェノン、2-(2’-ヒドロキシ-5’-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール(大塚化学株式会社製の商品名「RUVA-93」)、2-(2’-ヒドロキシ-5’-メタクリロキシエチル-3-tert-ブチルフェニル)-2H-ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メタクリリルオキシプロピル-3-tert-ブチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、3-メタクリロイル-2-ヒドロキシプロピル-3-〔3’-(2’’-ベンゾトリアゾリル)-4-ヒドロキシ-5-tert-ブチル〕フェニルプロピオネート(日本チバガイギー株式会社製の商品名「CGL-104」)などの分子内にラジカル重合性の二重結合を有するラジカル重合性紫外線吸収剤;UV-G101、UV-G301、UV-G137、UV-G12、UV-G13(日本触媒株式会社製の商品名)などの紫外線吸収性を有する重合体;ビス(2,2,6,6-テトラメチル-4-ピペリジル)サクシネート、ビス(2,2,6,6-テトラメチルピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)2-(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-2-ブチルマロネート、1-〔2-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕エチル〕-4-〔3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピニルオキシ〕-2,2,6,6-テトラメチルピペリジン、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケートとメチル-1,2,2,6,6-ペンタメチル-4-ピペリジル-セバケートの混合物(BASF社製の商品名「TINUVIN292」)、ビス(1-オクトキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート、TINUVIN123、TINUVIN144、TINUVIN152、TINUVIN249、TINUVIN292、TINUVIN5100(商品名、BASF社製)などのヒンダードアミン系光安定剤;1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレート、1,2,2,6,6-ペンタメチル-4-ピペリジルアクリレート、2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、2,2,6,6-テトラメチル-4-ピペリジルアクリレート、1,2,2,6,6-ペンタメチル-4-イミノピペリジルメタクリレート、2,2,6,6,-テトラメチル-4-イミノピペリジルメタクリレート、4-シアノ-2,2,6,6-テトラメチル-4-ピペリジルメタクリレート、4-シアノ-1,2,2,6,6-ペンタメチル-4-ピペリジルメタクリレートなどのラジカル重合性ヒンダードアミン系光安定剤;ユーダブルE-133、ユーダブルE-135、ユーダブルS-2000、ユーダブルS-2834、ユーダブルS-2840、ユーダブルS-2818、ユーダブルS-2860(商品名、日本触媒株式会社製)などの光安定性を有する重合体;シラノール基、イソシアネート基、エポキシ基、セミカルバジド基、ヒドラジド基との反応性を有する紫外線吸収剤;酸化セリウム、酸化亜鉛、酸化アルミニウム、酸化ジルコニウム、酸化ビスマス、酸化コバルト、酸化銅、酸化錫、酸化チタンなどの無機系紫外線吸収剤等が挙げられ、これらは1種もしくは2種以上を併用しても構わない。
【0099】
<塗料組成物>
本実施形態の塗膜(C)は、例えば、下記の塗料組成物(I)を用いることで得られる。該塗料組成物(I)は、重合体ナノ粒子(A)と、マトリクス原料成分(B’)と、を含む塗料組成物であって、ISO14577-1に準拠し、インデンテーション試験から測定される、前記重合体ナノ粒子(A)の弾性回復率ηITAが、0.30以上0.90以下であり、前記重合体ナノ粒子(A)のマルテンス硬度HMと、前記マトリクス原料成分(B’)のマルテンス硬度HMB’とが、HMB’/HM>1の関係を満たす。
【0100】
[重合体ナノ粒子(A)の硬度HMとマトリクス原料成分(B’)の硬度HM
塗料組成物(I)において、重合体ナノ粒子(A)のマルテンス硬度HMと、マトリクス原料成分(B’)のマルテンス硬度HMB’とは、下記式(3)の関係を満たす。
HMB’/HM>1 式(3)
上記のとおり、塗料組成物(I)において、上記関係が満たされるため、塗料組成物(I)を用いることで得られる塗膜(C)において、重合体ナノ粒子(A)のマルテンス硬度HMと、マトリクス原料成分(B’)のマルテンス硬度HMB’も上記式(3)関係を満たすこととなる。塗料組成物(I)における各マルテンス硬度は、例えば、遠心分離、限外濾過等の操作により重合体ナノ粒子(A)とマトリクス原料成分(B’)とを分離し、分離された各成分に対し、後述する実施例に記載の方法に基づいて測定することができる。
上記HM及びHMの値は、それぞれ、重合体ナノ粒子(A)及びマトリクス原料成分(B’)の構成成分の構造及び組成比等により、前述した大小関係となるように調整できるが、特にこの方法に限定されるものではない。
【0101】
[重合体ナノ粒子(A)の弾性回復率ηITA
本実施形態における重合体ナノ粒子(A)の弾性回復率ηITAは、ISO14577-1でWelast/Wtotalの比ηITとして記載されているパラメータを、成膜した重合体ナノ粒子(A)の塗膜で測定したものであり、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比で示される。弾性回復率ηITAが高いほど、塗膜が衝撃を受けた際、元の状態に戻ることが可能であり、衝撃に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、重合体ナノ粒子(A)の弾性回復率ηITAは、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.30以上であり、塗膜にする際の基材やマトリクス原料成分(B’)の変形に追従できる観点からηITAは0.90以下である。重合体ナノ粒子(A)の弾性回復率ηITAは0.50以上であるとより好ましく、0.60以上であれば更に好ましい。重合体ナノ粒子(A)の弾性回復率の測定は、以下に限定されないが、例えば、遠心分離、限外濾過等の操作により重合体ナノ粒子(A)とマトリクス原料成分(B’)とを分離し、分離された重合体ナノ粒子(A)を溶媒中に分散させて得られる組成物を塗装し、乾燥させて成膜した塗膜を微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)等を用いて測定することができる。弾性回復率ηITAを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、重合体ナノ粒子(A)の構成成分の構造及び組成比を調整すること等が挙げられる。
なお、塗膜(C)は、塗料組成物(I)を加水分解縮合等により硬化させた硬化物として得ることができる。重合体ナノ粒子(A)は、かかる硬化の過程においてその組成は変化しないことが通常である。したがって、後述する実施例に記載された方法により測定される塗料組成物(I)中の重合体ナノ粒子(A)の弾性回復率ηITAの値は、塗膜(C)中の重合体ナノ粒子(A)の弾性回復率ηITAによく一致するものとして、塗膜(C)における弾性回復率ηITAの値を決定することができる。
【0102】
[溶媒(H)]
本実施形態における塗料組成物(I)は溶媒(H)を含有することが好ましい。使用可能な溶媒(H)は、特に限定されず、一般的な溶媒を用いることができる。溶媒としては、以下に限定されないが、例えば、水;エチレングリコール、ブチルセロソルブ、イソプロパノール、n-ブタノール、2-ブタノール、エタノール、メタノール、変性エタノール、2-メトキシ-1-プロパノール、1-メトキシ-2-プロパノール、ジアセトンアルコールグリセリン、モノアルキルモノグリセリルエーテル、プロピレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノブチルエーテル、ジエチレングリコールモノフェニルエーテルテトラエチレングリコールモノフェニルエーテルなどのアルコール類;トルエンやキシレンなどの芳香族炭化水素類;ヘキサン、シクロヘキサン、ヘプタンなどの脂肪族炭化水素類;酢酸エチル、酢酸n-ブチルなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン類;テトラヒドロフラン、ジオキサンなどのエーテル類;ジメチルアセトアミド、ジメチルホルムアミドなどのアミド類;クロロホルム、塩化メチレン、四塩化炭素などのハロゲン化合物類;ジメチルスルホキシド、ニトロベンゼン;などが挙げられ、これらは1種又は2種以上を併用しても構わない。その中で、溶媒除去時の環境負荷低減の観点から、水、アルコール類を含む方が特に好ましい。
【0103】
以下、塗料組成物(I)に含まれる重合体ナノ粒子(A)の構成成分、サイズ、組成比等について説明するが、以下で言及のない点についての詳細は塗膜(C)に含まれる重合体ナノ粒子(A)について前述したとおりである。
また、塗料組成物(I)に含まれるマトリクス原料成分(B’)は、塗膜(C)を得る過程において、加水分解縮合等により硬化される。すなわち、塗料組成物(I)に含まれるマトリクス原料成分(B’)は、得られる塗膜(C)中において、対応するマトリクス成分(B)となる関係にある。以下では、マトリクス原料成分(B’)の構成成分、サイズ、組成比等についても説明するが、以下で言及のない点についての詳細は、塗膜(C)に含まれるマトリクス成分(B)について前述したとおりである。
【0104】
塗料組成物(I)において、重合体ナノ粒子(A)が、前述した加水分解性珪素化合物(a)を含み、マトリクス原料成分(B’)が、前述した加水分解性珪素化合物(b)を含むことが好ましい。また、塗料組成物(I)における加水分解性珪素化合物(a)としても、上記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。同様に、塗料組成物(I)における加水分解性珪素化合物(b)としても、上記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。
塗料組成物(I)における加水分解性珪素化合物(a)及び(b)の詳細については、塗膜(C)に含まれる重合体ナノ粒子(A)及びマトリクス成分(B)について上述したとおりである。
【0105】
[重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量]
塗料組成物(I)において、加水分解性珪素化合物(a)の含有量とは、重合体ナノ粒子(A)中に含まれる加水分解性珪素化合物(a)の固形分重量割合を示し、含有量が高いほど耐摩耗性や耐候性、耐熱性が向上する観点から、含有量が高いほど好ましい。上記含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量は、以下に限定されないが、例えば、重合体ナノ粒子(A)のIR解析、NMR解析、元素分析、などで測定することができる。
【0106】
[官能基(e)]
塗料組成物(I)において、重合体ナノ粒子(A)は、マトリクス原料成分(B’)と相互作用する官能基(e)を有することが好ましい。重合体ナノ粒子(A)が官能基(e)を有する場合、重合体ナノ粒子(A)の表面にマトリクス原料成分(B’)が吸着しやすくなり、保護コロイドとなって安定化する傾向にあるため、結果として塗料組成物(I)の貯蔵安定性が向上する傾向にある。さらに、重合体ナノ粒子(A)が官能基(e)を有する場合、重合体ナノ粒子(A)とマトリクス原料成分(B’)との間の相互作用が強くなることで、塗料組成物(I)の固形分濃度に対する増粘性が高まり、複雑な形状への塗装時におけるタレが抑制される傾向にあり、結果として塗膜(C)の膜厚が均一となる傾向にある。重合体ナノ粒子(A)が官能基(e)を有することは、例えば、IR、GC-MS、熱分解GC-MS、LC-MS、GPC、MALDI-MS、TOF-SIMS、TG-DTA、NMRによる組成解析、及びこれらの組み合わせによる解析等により確認することができる。
【0107】
本実施形態における官能基(e)の具体例としては、以下に限定されないが、水酸基、カルボキシル基、アミノ基、アミド基、エーテル結合からなる官能基が挙げられ、相互作用の観点から水素結合を有する官能基であることが好ましく、高い水素結合性の観点から、アミド基であることがより好ましく、2級アミド基及び/又は3級アミド基であることが更に好ましい。
【0108】
官能基(e)を含有している化合物及びその反応物としては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチルビニルエーテル若しくは4-ヒドロキシブチルビニルエーテル、2-ヒドロキシエチルアリルエーテル、(メタ)アクリル酸、2-カルボキシエチル(メタ)アクリレート、2-ジメチルアミノエチル(メタ)アクリレート、2-ジエチルアミノエチル(メタ)アクリレート、2-ジ-n-プロピルアミノエチル(メタ)アクリレート、3-ジメチルアミノプロピル(メタ)アクリレート、4-ジメチルアミノブチル(メタ)アクリレート、N-[2-(メタ)アクリロイルオキシ]エチルモルホリン、ビニルピリジン、N-ビニルカルバゾール、N-ビニルキノリン、N-メチルアクリルアミド、N-メチルメタアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタアクリルアミド、N,N-ジエチルアクリルアミド、N-エチルメタアクリルアミド、N-メチル-N-エチルアクリルアミド、N-メチル-N-エチルメタアクリルアミド、N-イソプロピルアクリルアミド、N-n-プロピルアクリルアミド、N-イソプロピルメタアクリルアミド、N-n-プロピルメタアクリルアミド、N-メチル-N-n-プロピルアクリルアミド、N-メチル-N-イソプロピルアクリルアミド、N-アクリロイルピロリジン、N-メタクリロイルピロリジン、N-アクリロイルピペリジン、N-メタクリロイルピペリジン、N-アクリロイルヘキサヒドロアゼピン、N-アクリロイルモルホリン、N-メタクリロイルモルホリン、N-ビニルピロリドン、N-ビニルカプロラクタム、N,N’-メチレンビスアクリルアミド、N,N’-メチレンビスメタクリルアミド、N-ビニルアセトアミド、ダイアセトンアクリルアミド、ダイアセトンメタアクリルアミド、N-メチロールアクリルアミド、N-メチロールメタアクリルアミド、ブレンマーPE-90、PE-200、PE-350、PME-100、PME-200、PME-400、AE-350(商品名、日本油脂社製)、MA-30、MA-50、MA-100、MA-150、RA-1120、RA-2614、RMA-564、RMA-568、RMA-1114、MPG130-MA(商品名、日本乳化剤社製)などが挙げられる。なお、本明細書中で、(メタ)アクリレートとはアクリレート又はメタアクリレートを、(メタ)アクリル酸とはアクリル酸又はメタアクリル酸を簡便に表記したものである。
【0109】
[マトリクス原料成分(B’)の弾性回復率ηITB’及びマトリクス成分(B)の弾性回復率ηITB
塗料組成物(I)において、マトリクス原料成分(B’)の弾性回復率ηITB’は、ISO14577-1で「Welast/Wtotalの比ηIT」として記載されているパラメータで、成膜したマトリクス原料成分(B’)の塗膜を測定したものであり、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比で示される。弾性回復率ηITB’が高いほど、塗膜が衝撃を受けた際、元の状態に戻ることが可能であり、衝撃に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、マトリクス原料成分(B’)の弾性回復率ηITB’は、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.60以上が好ましく、より好ましくは0.65以上である。また、塗膜にする際の基材や成分(A)の変形に追従できる観点から、ηITB’は0.95以下であることが好ましい。マトリクス原料成分(B’)の弾性回復率の測定は、以下に限定されないが、例えば、遠心分離等の操作により重合体ナノ粒子(A)とマトリクス原料成分(B’)とを分離し、分離されたマトリクス原料成分(B’)を溶媒中に溶解させた組成物を塗装し、乾燥させて成膜した塗膜を微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)等を用いて測定することができる。
なお、前述したとおり、マトリクス原料成分(B’)を加水分解縮合等により硬化させた硬化物がマトリクス成分(B)に該当する。したがって、後述する実施例に記載された方法により測定されるマトリクス原料成分(B’)の弾性回復率ηITB’の値は、対応するマトリクス成分(B)の弾性回復率ηITBによく一致するものとして、弾性回復率ηITBの値を決定することができる。すなわち、本実施形態におけるマトリクス成分(B)の弾性回復率ηITBは、0.60以上が好ましく、より好ましくは0.65以上である。また、塗膜にする際の基材や成分(A)の変形に追従できる観点から、ηITBは0.95以下であることが好ましい。
弾性回復率ηITB’及び弾性回復率ηITBを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、マトリクス原料成分(B’)の構成成分の構造及び組成比を調整すること等が挙げられる。
【0110】
塗料組成物(I)において、「重合体ナノ粒子(A)に含まれる加水分解性珪素化合物(a)」は、「マトリクス原料成分(B’)に含まれる加水分解性珪素化合物(b)」と同一種のものであってもよく、別種のものであってもよい。両者が同一種である場合であっても、重合体ナノ粒子(A)に含まれる方を加水分解性珪素化合物(a)とし、マトリクス原料成分(B’)に含まれる方を加水分解性珪素化合物(b)とすることで区別するものとする。
【0111】
[無機酸化物(D)]
本実施形態におけるマトリクス原料成分(B’)は、無機酸化物(D)を含むことが好ましい。無機酸化物(D)を含むことにより、マトリクス原料成分(B’)の硬度を向上させ耐摩耗性が向上する傾向にある。また、例えば、無機酸化物(D)に水酸基が含まれる場合、その親水性により、塗膜の耐汚染性が向上する傾向にあるため好ましい。
【0112】
本実施形態における無機酸化物(D)は、形状を問わず、単体であっても混合物でもよい。前述した加水分解性珪素化合物(b)との相互作用の観点から、シリカ粒子が好ましく、分散性の観点から、シリカ粒子の形態としてコロイダルシリカが好ましい。無機酸化物(D)としてコロイダルシリカを用いる場合、水性分散液の形態であることが好ましく、酸性、塩基性のいずれであっても用いることができる。
【0113】
本実施形態における無機酸化物(D)の平均粒子径は、塗料組成物(I)の貯蔵安定性が良好となる観点から、2nm以上であることが好ましく、透明性が良好となる観点から、150nm以下であることが好ましい。すなわち、上記平均粒子径は、好ましくは2nm以上150nm以下であり、より好ましくは2nm以上100nm以下であり、更に好ましくは2nm以上50nm以下である。
【0114】
[重合体ナノ粒子(A)とマトリクス原料成分(B’)の合計に対する重合体ナノ粒子(A)の体積分率]
塗料組成物(I)において、重合体ナノ粒子(A)とマトリクス原料成分(B’)の合計に対する重合体ナノ粒子(A)の体積分率は、成膜性の観点から、好ましくは2%以上であり、成膜した塗膜の透明性の観点から、好ましくは80%以下である。すなわち、塗料組成物(I)における重合体ナノ粒子(A)の体積分率は、2%以上80%以下であることが好ましく、より好ましくは3%以上70%以下であり、更に好ましくは5%以上45%以下である。塗料組成物(I)における重合体ナノ粒子(A)の体積分率は、例えば、塗膜(C)とした後の断面SEM画像における塗膜全体の中での重合体ナノ粒子(A)の割合や、塗料組成物(I)を構成させる成分中の重合体ナノ粒子(A)の成分比から算出することができる。
【0115】
[重合体ナノ粒子(A)のコア/シェル構造]
塗料組成物(I)において、重合体ナノ粒子(A)は、コア層と、コア層を被覆する1層又は2層以上のシェル層とを備えたコア/シェル構造を有することが好ましい。重合体ナノ粒子(A)は、コア/シェル構造の最外層におけるマトリクス原料成分(B’)との相互作用の観点からも、前述した官能基(e)を有することが好ましい。重合体ナノ粒子(A)が、コア/シェル構造を有することは、例えば、塗膜断面の透過型電子顕微鏡画像等により確認することができる。
【0116】
[塗料組成物(I)に含まれてもよいその他の成分]
塗料組成物(I)の塗装性をより向上させる観点から、塗料組成物(I)は、マトリクス原料成分(B’)として、上述した成分に加え、必要に応じて、増粘剤、レべリング剤、チクソ化剤、消泡剤、凍結安定剤、分散剤、湿潤剤、レオロジーコントロール剤、成膜助剤、防錆剤、可塑剤、潤滑剤、防腐剤、防黴剤、静電防止剤、帯電防止剤などを配合することができる。成膜性向上の観点から、湿潤剤や成膜助剤を用いることが好ましく、具体的には、特に限定されないが、ジエチレングリコールモノブチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、2,2,4-トリメチル-1,3-ブタンジオールイソブチレート、グルタル酸ジイソプロピル、プロピレングリコール-n-ブチルエーテル、ジプロピレングリコール-n-ブチルエーテル、トリプロピレングリコール-n-ブチルエーテル、ジプロピレングリコールメチルエーテル、トリプロピレングリコールメチルエーテル、メガファックF-443、F-444、F-445、F-470、F-471、F-472SF、F-474、F-475、F-477、F-479、F-480SF、F-482、F-483、F-489、F-172D、F-178K(商品名、DIC株式会社製)、SNウェット366、SNウェット980、SNウェットL、SNウェットS、SNウェット125、SNウェット126、SNウェット970(商品名、サンノプコ株式会社製)などが挙げられる。これらの化合物は、1種もしくは2種以上を併用しても構わない。
【0117】
[触媒]
塗料組成物(I)は、マトリクス原料成分(B’)として、触媒を含んでいてもよい。塗料組成物(I)が反応性基同士の反応を促進する触媒を含む場合、塗膜中に未反応性基が残存しにくく、硬度が高くなり耐摩耗性が向上するだけでなく、耐候性も向上する点で好ましい。触媒は、特に限定されないが、ハードコート塗膜を得る際に、溶解もしくは分散するものが好ましい。そのような触媒としては、特に限定されないが、例えば、有機酸、無機酸、有機塩基、無機塩基、金属アルコキシド、金属キレートなどが挙げられ、これら触媒は、1種もしくは2種以上を併用しても構わない。
【0118】
[塗料組成物(I)の性状]
塗料組成物(I)は、塗装性の観点から好ましい固形分濃度は0.01~60質量%、より好ましくは1~40質量%である。また、塗装性の観点から、塗料組成物(I)の20℃における粘度としては、好ましくは0.1~100000mPa・s、好ましくは1~10000mPa・sである。
【0119】
<ハードコート塗膜の製法>
本実施形態のハードコート塗膜及びハードコート塗膜付き基材の製法は、特に限定されないが、例えば、重合体ナノ粒子(A)と、マトリクス原料成分(B’)と、適宜その他の成分とを溶媒に分散、溶解させた塗料組成物(I)を、前記基材に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することにより得ることができる。さらに、前記塗装方法としては、以下に限定されないが、例えばスプレー吹付法、フローコート法、刷毛塗法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法などが挙げられる。なお、前記塗装された塗料組成物(I)は、好ましくは室温~250℃、より好ましくは40℃~150℃での熱処理や紫外線、赤外線照射などにより塗膜化することができる。
【0120】
[表面加工]
本実施形態のハードコート塗膜ないしハードコート塗膜付き基材は、耐候性の観点から、表面をシリカ加工してシリカ層を形成してもよい。シリカ層の形成方法としては、特に限定されないが、具体例としては、シリコーン又はシラザンを蒸着/硬化させるPECVDによるシリカ加工、155nm紫外線照射によって表面をシリカに改質させるシリカ加工技術が挙げられる。特に、表面を劣化させることなく酸素や水蒸気を通しにくい層を作製できることから、PECVDによる表面加工が好ましい。PECVDに用いることのできるシリコーン又はシラザンは、以下に限定されないが、具体的には、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ヘキサメチルジシロキサン、ビニルメトリキシラン、ビニルメトキシシラン、ジメチルジメトキシラン、TEOS、テトラメチルジシロキサン、テトラメチルテトラビニルシクロテトラシロキサン、ヘキサメチルジシラザンなどが挙げられ、これらを1種もしくは2種以上を併用しても構わない。
【0121】
<ハードコート塗膜及びハードコート塗膜付き基材の用途>
本実施形態のハードコート塗膜及びハードコート塗膜付き基材は、優れた耐摩耗性と耐久性を有する。したがって、ハードコート塗膜及びハードコート塗膜付き基材の用途としては、特に限定されないが、例えば、建材、自動車部材や電子機器や電機製品などが挙げられる。建材用途としては、以下に限定されないが、例えば、壁紙表皮材、看板、ガラス代替、外壁材が挙げられる。自動車部材としては、以下に限定されないが、例えば、バンパー、ドアミラーなどの外装部材、センターパネル、ドアパネルなどの内装部材、ヘッドランプ、リアランプ部材、フロントグリルの部材、エンブレムカバー、車載カメラ用レンズの部材、インストルメントパネルの部材、照明用カバー、さらにはガラス代替部材が挙げられる。電機製品としては、以下に限定されないが、例えば、携帯電話、パソコン、携帯ゲーム機等が好ましく挙げられる。本実施形態のハードコート塗膜及びハードコート塗膜付き基材は、上記した他、信号機部材、看板やその他の機械・装置のコート材などとしても用いることができる。
【0122】
<窓材>
本実施形態の窓材(以下、「窓材(J)」ともいう。)は、ポリカーボネート樹脂と、前記ポリカーボネート樹脂上に配された塗膜と、を有する窓材であって、前記塗膜が、重合体ナノ粒子(A)と、マトリクス成分(B)と、を含み、前記重合体ナノ粒子(A)が、加水分解性珪素化合物(a)を含み、前記マトリクス成分(B)が、加水分解性珪素化合物(b)を含み、前記窓材のマルテンス硬度HMが、100N/mm以上4000N/mm以下であり、ISO14577-1に準拠し、インデンテーション試験から測定される、前記窓材の弾性回復率ηITJが、0.50以上である。このように構成されているため、窓材(J)は、高い耐摩耗性と高い耐久性を有する。窓材(J)は、高いレベルでの耐摩耗性と耐汚染性を発現するため、以下に限定されないが、例えば、自動車用の窓材として適用することが好ましい。
【0123】
以下、窓材(J)に含まれる重合体ナノ粒子(A)及びマトリクス成分(B)の構成成分等に言及しながら窓材(J)について説明する場合があるが、当該構成成分等の詳細については、塗膜(C)に含まれる重合体ナノ粒子(A)及びマトリクス成分(B)について前述したとおりである。
【0124】
窓材(J)において、重合体ナノ粒子(A)がマトリクス成分(B)に分散していることが好ましい。かかる分散状態は、塗膜の断面SEM観察によって確認することができる。
【0125】
窓材(J)において、重合体ナノ粒子(A)は、前述した加水分解性珪素化合物(a)を含み、マトリクス成分(B)は、前述した加水分解性珪素化合物(b)を含む。また、窓材(J)における加水分解性珪素化合物(a)としても、上記式(a-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(a-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。同様に、窓材(J)における加水分解性珪素化合物(b)としても、上記式(b-1)で表される原子団を含有する化合物、その加水分解生成物及び縮合物、並びに上記式(b-2)で表される化合物、その加水分解生成物及び縮合物より選択される1種以上を含むことが好ましい。
窓材(J)における加水分解性珪素化合物(a)及び(b)の詳細については、塗膜(C)に含まれる重合体ナノ粒子(A)及びマトリクス成分(B)について上述したとおりである。
【0126】
[窓材(J)のマルテンス硬度HM
窓材(J)のマルテンス硬度HMは、耐摩耗性の観点から100N/mm以上であり、高いほど衝撃に対し変形が少なく、破壊を伴う傷付きが少ない点で有利である。窓材(J)のマルテンス硬度HMは、耐屈曲性の観点から、好ましくは100N/mm以上4000N/mm以下、より好ましくは150N/mm以上1500N/mm以下である。窓材(J)のマルテンス硬度HMを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、上記式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)とマトリクス原料成分(B’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。特に、重合体ナノ粒子(A)とマトリクス成分(B)の合計量に対するマトリクス成分(B)の含有量を増やすと、窓材(J)のマルテンス硬度HMは上がる傾向にあり、マトリクス成分(B)の含有量を減らすと窓材(J)のマルテンス硬度HMは下がる傾向にある。
【0127】
窓材(J)の弾性回復率ηITJは、くぼみの全機械的仕事量Wtotalとくぼみの弾性戻り変形仕事量Welastとの比であり、ISO14577-1で「Welast/Wtotalの比ηIT」として記載されているパラメータである。弾性回復率ηITJが高いほど、窓材が変形した際、元の状態に戻ることが可能であり、変形に対する自己修復能が高い。自己修復能を効果的に発揮する観点から、弾性回復率ηITJは、測定条件(ビッカース四角錘ダイヤモンド圧子、荷重の増加条件2mN/20sec、荷重の減少条件2mN/20sec)において0.50以上であり、この範囲であれば値が大きいほど好ましい。上記弾性回復率ηITJは0.55以上であると好ましく、0.60以上であるとより好ましく、更に好ましくは0.65以上である。本実施形態における窓材の弾性回復率の測定は、以下に制限されないが、例えば、窓材の表面を、微小硬度計フィッシャースコープ(フィッシャー・インストルメンツ社製HM2000S)、超微小押し込み硬さ試験機(株式会社エリオニクス社製ENT-NEXUS)、ナノインデンター(東陽テクニカ社製iNano、G200)、ナノインデンテーションシステム(ブルカー社製TI980)、など、を用いて押し込み試験を行うことで測定することができる。弾性回復率ηITJを上記範囲内に調整するための方法としては、以下に限定されないが、例えば、上記式(3)で表される所定の関係を満たす、重合体ナノ粒子(A)と後述するマトリクス原料成分(B’)を混合した組成物を溶媒中で分散、溶解させた塗料組成物を、基材上に塗装し、熱処理、紫外線照射、赤外線照射などによって塗膜化することが挙げられる。
【0128】
窓材(J)において、加水分解性珪素化合物(a)の含有量を調整することが好ましい。ここで、加水分解性珪素化合物(a)の含有量とは、重合体ナノ粒子(A)中に含まれる加水分解性珪素化合物(a)の当該重合体ナノ粒子(A)に対する固形分重量割合を示し、含有量が高いほど耐摩耗性や耐候性が向上する観点から、含有量が高いほど好ましく、含有量は、好ましくは50質量%以上であり、より好ましくは60質量%以上である。重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量は、以下に限定されないが、例えば、重合体ナノ粒子(A)のIR解析、NMR解析、元素分析等で測定することができる。
【実施例
【0129】
以下、本実施形態について、具体的な実施例及び比較例を挙げて説明するが、本実施形態はこれらに限定されるものではない。
【0130】
後述する合成例、実施例及び比較例における、各種の物性は下記の方法で測定した。
【0131】
(1)ハードコート塗膜の膜厚の測定
ハードコート塗膜の膜厚は、大塚電子株式会社製反射分光膜厚計(品番:FE-3000)を用いて測定した。
【0132】
(2)重合体ナノ粒子(A)及び接着性エマルション粒子(F)の平均粒子径
後述する方法により得られた重合体ナノ粒子(A)水分散体及び接着性エマルション粒子(F)水分散体を用いて大塚電子株式会社製動的光散乱式粒度分布測定装置(品番:ELSZ-1000)によりキュムラント粒子径を測定し、重合体ナノ粒子(A)及び接着性エマルション粒子(F)の平均粒子径とした。
【0133】
(3)無機酸化物(D)及び(G)の平均粒子径
後述する水分散コロイダルシリカに対し、透過型顕微鏡写真を用いて50,000~100,000倍に拡大して観察し、粒子として100~200個の無機酸化物が写るように撮影して、その無機酸化物粒子の長径及び短径の平均値を測定し、その値を無機酸化物(D)及び(G)の平均粒子径とした。
【0134】
(4)ヘイズの測定
ハードコート塗膜のヘイズは、日本電色工業株式会社製濁度計(品番:NDH5000SP)を用いて、JIS K7136に規定される方法により測定した。
【0135】
(5)ハードコート塗膜のマルテンス硬度HMの測定
フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、塗膜のマルテンス硬度HMを測定した。
【0136】
(6)ハードコート塗膜の弾性回復率ηITの測定
フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により塗膜の微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、くぼみの全機械的仕事量Wtotalに対するくぼみの弾性戻り変形仕事量Welastの比、すなわち、Welast/Wtotalの値を塗膜の弾性回復率ηITとして測定した。
【0137】
(7)重合体ナノ粒子(A)のマルテンス硬度HM及び弾性回復率ηITAの測定
重合体ナノ粒子(A)のマルテンス硬度HMは、重合体ナノ粒子(A)の水分散体を、バーコーターを用いて膜厚が3μmになるようにガラス基材(材質:白板ガラス、厚み:2mm)上に塗布し、130℃2時間かけて乾燥することにより、得られたハードコート塗膜を用いて上記(6)と同様に測定した。測定は、フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、重合体ナノ粒子(A)のマルテンス硬度HMを測定した。また、上記(6)と同様に弾性回復率ηITA(=Welast/Wtotal)を計測した。
【0138】
(8)成分(B’)のマルテンス硬度HMB’及び弾性回復率ηITB’の測定
成分(B’)のマルテンス硬度HMB’は、成分(B’)を固形分濃度8質量%として水/エタノール/酢酸(組成比77質量%/20質量%/3質量%)へ溶解又は分散させ、得られた溶液をバーコーターを用いて膜厚が3μmになるようにガラス基材(材質:白板ガラス、厚み:2mm)上に塗布し、130℃で2時間かけて乾燥することにより、得られたハードコート塗膜を用いて測定した。測定は、フィッシャー・インストルメンツ社製フィッシャースコープ(品番:HM2000S)を用いた押し込み試験(試験条件;圧子:ビッカース四角錘ダイヤモンド圧子、荷重の増加条件:2mN/20sec、荷重の減少条件:2mN/20sec)により微小硬度を測定し、ISO14577-1準拠のインデンテーション試験法に基づき、HMB’及びηITB’「Welast/Wtotal」を計測した。後述するとおり、成分(B)は、対応する成分(B’)の加水分解縮合物に該当することから、上記のようにして測定された成分(B’)のマルテンス硬度HMB’及び弾性回復率ηITB’の値は、それぞれ、マトリクス成分(B)のマルテンス硬度HM及び弾性回復率ηITBによく一致するものとしてマルテンス硬度HM及び弾性回復率ηITBの値を決定した。
【0139】
(9)耐摩耗性の評価
塗膜の耐摩耗性の評価は、安田精機株式会社製テーバー式アブレーションテスター(No.101)を用い、ASTM D1044の規格に準拠して行った。すなわち、摩耗輪CS-10F、及び荷重500gの条件でテーバー摩耗試験を実施し、当該試験前のヘイズ及び回転数1000回におけるヘイズを各々上記(4)に基づいて測定し、差をとることによって耐摩耗性を評価した。
【0140】
(10)全光線透過率の測定
ハードコート塗膜の全光線透過率は、日本電色工業株式会社製濁度計(品番:NDH5000SP)用いて測定した。測定値より、以下の計算式に基づいてハードコート塗膜の全光線透過率維持率を算出した。
ハードコート塗膜の全光線透過率維持率(%)=(ハードコート塗膜付き基材の全光線透過率(%)/基材の全光線透過率(%)) × 100
【0141】
(11)初期密着性の測定
初期密着性は、テープ(ニチバン社製クロスカット試験・碁盤目試験準拠テープ)をハードコート塗膜付き基材の塗膜側に貼り付け、剥がした際にハードコート塗膜が基材上に保持されるかで評価した。
【0142】
(12)耐湿性の測定
ハードコート塗膜の耐湿性は、小型環境試験機(エスペック社製型番SH-642)50℃95%RH環境下にてハードコート塗膜付き基材を2週間静置し、2週間後のハードコート塗膜の変化を密着性の変化で評価した。密着性は、テープ(ニチバン社製クロスカット試験・碁盤目試験準拠テープ)をハードコート塗膜付き基材に貼り付け、剥がした際にハードコート塗膜が基材上に保持されるか否かで評価した。表1~2において、耐湿試験後、密着性に変化のないものをA、実用上問題はないものの一部剥離したものをB、全体が剥離したものをCとして評価した。
【0143】
(13)テーバー摩耗試験回転数500回と10回とのヘイズ差(ΔA)の測定
回転数500回と10回とのヘイズ差(ΔA)の測定は、ASTM D1044の規格(摩耗輪CS-10F、及び荷重500g)に準拠して行った。評価は、テーバー摩耗試験を10回実施後、ヘイズを上記(4)に基づいて測定し、その後、ヘイズを測定した箇所において、テーバー摩耗試験を490回実施し、再度ヘイズを上記(4)に基づいて測定した。
【0144】
(14)耐汚染性の測定
ハードコート塗膜の耐汚染性は、アセトン5gにJIS試験用粉体1(12種 カーボンブラック)10gを分散させた液を、ASTM D1044の規格に準拠したテーバー摩耗試験回転数500回後のハードコート塗膜付き基材に塗り、その後、柔らかい布と洗剤及び水を用いて上記粉体を除去したハードコート塗膜付き基材を用いて評価した。評価は、上記の耐汚染性試験の前後でのハードコート塗膜の全光線透過率維持率で行い、全光線透過維持率の算出は以下の計算式で算出し、全光線透過率は日本電色工業株式会社製濁度計(品番:NDH5000SP)用いて測定した。
耐汚染試験後の全光線透過率維持率(%)=(試験後の全光線透過率/試験前の全光線透過率) × 100
【0145】
(15)塗膜(C)中の重合体ナノ粒子(A)の体積分率
塗膜(C)中の重合体ナノ粒子(A)の体積分率は、塗膜(C)を製造する際に用いた塗料組成物の配合比から算出した。
【0146】
(16)重合体ナノ粒子(A)とマトリクス成分(B)の合計に対する重合体ナノ粒子(A)の体積分率
重合体ナノ粒子(A)とマトリクス成分(B)の合計に対する重合体ナノ粒子(A)の体積分率は、塗料組成物(I)を製造する際に用いた重合体ナノ粒子(A)とマトリクス原料成分(B’)の配合比から算出した。
【0147】
(17)重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量
重合体ナノ粒子(A)中の加水分解性珪素化合物(a)の含有量は、後述する重合体ナノ粒子(A)水分散体調製時の全仕込み量から水、ドデシルベンゼンスルホン酸、過硫酸アンモニウムを除いた重量中の完全加水分解縮合換算重量の割合から算出した。ここで、完全加水分解縮合換算重量は、仕込みに用いた加水分解性珪素化合物の加水分解性基が100%加水分解してSiOH基となり、さらに完全に縮合してシロキサンになった場合の重量とした。
【0148】
(18)凝着力の測定
凝着力の測定は、サンプル断面をクライオCPを用いて作成し、Ar雰囲気下においてサンプル断面をAFM(Bruker AXS社製Dimension ICON+NanoscopeV)のPeakForce QNMモードで測定を実施した。得られた画像から、凝着力の高低を判断した。
【0149】
〔重合体ナノ粒子(A)水分散体の調製〕
後述する実施例において用いた重合体ナノ粒子(A)水分散体を以下のとおりに合成した。
【0150】
<重合体ナノ粒子(A-1)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液45g、トリメトキシシラン105g、フェニルトリメトキシシラン23g、テトラエトキシシラン27gを用いて、50℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、温度を80℃とした後、更に2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル11g、ジエチルアクリルアミド12g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-1)の水分散体を得た。得られた重合体ナノ粒子(A-1)はコアシェル構造を有するものであり、その固形分は5.9質量%であった。
【0151】
<重合体ナノ粒子(A-2)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液45g、トリメトキシシラン98g、フェニルトリメトキシシラン22g、テトラエトキシシラン25gを用いて、50℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、温度を80℃とした後、更に2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル16g、ジエチルアクリルアミド16g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-2)の水分散体を得た。得られた重合体ナノ粒子(A-2)はコアシェル構造を有するものであり、その固形分は6.1質量%であった。
【0152】
<重合体ナノ粒子(A-3)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液45g、トリメトキシシラン79g、フェニルトリメトキシシラン17g、テトラエトキシシラン20gを用いて、50℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、温度を80℃とした後、更に2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル21g、ジエチルアクリルアミド21g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-3)の水分散体を得た。得られた重合体ナノ粒子(A-3)はコアシェル構造を有するものであり、その固形分は6.0質量%であった。
【0153】
<重合体ナノ粒子(A-4)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液18g、トリメトキシシラン105g、フェニルトリメトキシシラン23g、テトラエトキシシラン27gを用いて、50℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、温度を80℃とした後、更に2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル11g、ジエチルアクリルアミド12g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-4)の水分散体を得た。得られた重合体ナノ粒子(A-4)はコアシェル構造を有するものであり、その固形分は5.8質量%であった。
【0154】
<重合体ナノ粒子(A-5)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1500g、10%ドデシルベンゼンスルホン酸水溶液45g、トリメトキシシラン105g、フェニルトリメトキシシラン23g、テトラエトキシシラン27g、2%過硫酸アンモニウム水溶液43g、アクリル酸ブチル11g、ジエチルアクリルアミド12g、アクリル酸1g、3-メタクリロキシプロピルトリメトキシシラン1.5gを用いて、80℃の環境下で一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-5)の水分散体を得た。得られた重合体ナノ粒子(A-5)はコアシェル構造を有しないものであり、その固形分は5.9質量%であった。
【0155】
<重合体ナノ粒子(A-6)水分散体>
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器で、イオン交換水1410g、10%ドデシルベンゼンスルホン酸水溶液22g、ジメチルジメトキシシラン65g、フェニルトリメトキシシラン37gを用いて、80℃の環境下で一般的な乳化重合の方法で重合を行った。重合後、更に2%過硫酸アンモニウム水溶液33g、アクリル酸ブチル50g、ジエチルアクリルアミド90g、テトラエトキシシラン120g、フェニルトリメトキシシラン50g、アクリル酸3g、3-メタクリロキシプロピルトリメトキシシラン1.3gを用いて、一般的な乳化重合の方法で重合を行い、100メッシュの金網で濾過し、重合体ナノ粒子(A-6)の水分散体を得た。得られた重合体ナノ粒子(A-6)はコアシェル構造を有するものであり、その固形分は14.0質量%であった。
【0156】
[マトリクス原料成分(B’)コーティング組成液の調整]
以下、後述する実施例及び比較例において用いた成分(B’)を調合した。
【0157】
<マトリクス原料成分(B’-1)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)66g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)63g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)500gを室温条件下で混合し、マトリクス原料成分(B’-1)のコーティング組成液を得た。
【0158】
<マトリクス原料成分(B’-2)コーティング組成液>
加水分解性珪素化合物(b)として、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)48g、トリス-(トリメトキシシリルプロピル)イソシアヌレート「KBM9659」(商品名、信越化学株式会社製)81g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-2)のコーティング組成液を得た。
【0159】
<マトリクス原料成分(B’-3)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)88g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)83g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-3)のコーティング組成液を得た。
【0160】
<マトリクス原料成分(B’-4)コーティング組成液>
加水分解性珪素化合物(b)として、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)76g、トリス-(トリメトキシシリルプロピル)イソシアヌレート「KBM9659」(商品名、信越化学株式会社製)129gを室温条件下で混合し、マトリクス原料成分(B’-4)のコーティング組成液を得た。
【0161】
<マトリクス原料成分(B’-5)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)68g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)71g、トリス-(トリメトキシシリルプロピル)イソシアヌレート「KBM9659」(商品名、信越化学株式会社製)20g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-5)のコーティング組成液を得た。
【0162】
<マトリクス原料成分(B’-6)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)88g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)、無機酸化物(D)83gとして水分散コロイダルシリカ「スノーテックスO」(商品名、日産化学工業株式会社製、固形分20質量%、平均粒子径15nm)167gを室温条件下で混合し、マトリクス原料成分(B’-6)のコーティング組成液を得た。
【0163】
<マトリクス原料成分(B’-7)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)186g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスO」(商品名、日産化学工業株式会社製、固形分20質量%、平均粒子径15nm)45gを室温条件下で混合し、マトリクス原料成分(B’-7)のコーティング組成液を得た。
【0164】
<マトリクス原料成分(B’-8)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)35g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)114g、トリフェニルメトキシシラン「KBM103」(商品名、信越化学工業株式会社製)27g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-8)のコーティング組成液を得た。
【0165】
<マトリクス原料成分(B’-9)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)88g、「MS-56」(商品名、三菱化学株式会社製)42g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-9)のコーティング組成液を得た。
【0166】
<マトリクス原料成分(B’-10)コーティング組成液>
加水分解性珪素化合物(b)として、トリス-(トリメトキシシリルプロピル)イソシアヌレート「KBM9659」(商品名、信越化学株式会社製)81g、「MS-56」(商品名、三菱化学株式会社製)24g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-10)のコーティング組成液を得た。
【0167】
<マトリクス原料成分(B’-11)コーティング組成液>
加水分解性珪素化合物(b)として、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)35g、トリフェニルメトキシシラン「KBM103」(商品名、信越化学工業株式会社製)27g、「MS-56」(商品名、三菱化学株式会社製)57g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-11)のコーティング組成液を得た。
【0168】
<マトリクス原料成分(B’-12)コーティング組成液>
加水分解性珪素化合物(b)として、1,2-ビス(トリエトキシシリル)エタン(ALDRICH社製)61g、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)88g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-12)のコーティング組成液を得た。
【0169】
<マトリクス原料成分(B’-13)コーティング組成液>
加水分解性珪素化合物(b)として、1,2-ビス(トリエトキシシリル)エタン(ALDRICH社製)35g、トリス-(トリメトキシシリルプロピル)イソシアヌレート「KBM9659」(商品名、信越化学株式会社製)81g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-13)のコーティング組成液を得た。
【0170】
<マトリクス原料成分(B’-14)コーティング組成液>
加水分解性珪素化合物(b)として、1,2-ビス(トリエトキシシリル)エタン(ALDRICH社製)84g、トリメトキシシラン「KBM13」(商品名、信越化学工業株式会社製)35g、トリフェニルメトキシシラン「KBM103」(商品名、信越化学工業株式会社製)27g、無機酸化物(D)として水分散コロイダルシリカ「スノーテックスOXS」(商品名、日産化学工業株式会社製、固形分10質量%、平均粒子径5nm)333gを室温条件下で混合し、マトリクス原料成分(B’-14)のコーティング組成液を得た。
【0171】
<マトリクス原料成分(B’-15)コーティング組成液>
加水分解性珪素化合物(b)として、ジメトキシジメチルシラン「KBM22」(商品名、信越化学工業株式会社製)56g、テトラエトキシシラン「KBE04」(商品名、信越化学工業株式会社製)232gを用いてマトリクス原料成分(B’-15)のコーティング組成液を得た。
【0172】
[接着層付きポリカーボネート基材の製造]
<接着層付きポリカーボネート基材1>
以下のようにして、ポリカーボネート基材(タキロン株式会社製、品番1600、厚み:2mm)の片側の表面に接着層1を形成した。すなわち、接着性エマルション粒子(F)としてE2050S水分散液(旭化成株式会社製、固形分濃度46%)19g、無機酸化物(G)として水分散コロイダルシリカ「スノーテックスC」(商品名、日産化学工業株式会社製、固形分20質量%、平均粒子径15nm)17g、水29g、エタノール35gを混合した液を、バーコーターを用いてポリカーボネート基材上に塗布した。次いで、塗布液を130℃で2時間乾燥し、膜厚1.0μmの接着層1をポリカーボネート基材上に形成した。このようにして接着層付きポリカーボネート基材1を得た。
【0173】
<接着層付きポリカーボネート基材2>
以下のようにして、ポリカーボネート基材(タキロン株式会社製、品番1600、厚み:2mm)の片側の表面に接着層2を形成した。すなわち、接着性エマルション粒子(F)としてE2050S水分散液(旭化成株式会社製、固形分濃度46%)53g、水77g、エタノール70gを混合した液を、バーコーターを用いてポリカーボネート基材上に塗布した。次いで、塗布液を130℃で2時間乾燥し、膜厚1.0μmの接着層2をポリカーボネート基材上に形成した。このようにして接着層付きポリカーボネート基材2を得た。
【0174】
<接着層付きポリカーボネート基材3>
以下のようにして、ポリカーボネート基材(タキロン株式会社製、品番1600、厚み:2mm)の片側の表面に接着層3を形成した。すなわち、AD-1(東日本塗料製、商品名「スーパーエクセルプライマー」)をスプレーにてポリカーボネート基材上に塗布した。次いで、25℃、50RH%雰囲気下で24時間乾燥させ、膜厚0.5μmの接着層3をポリカーボネート基材上に形成した。このようにして接着層付きポリカーボネート基材3を得た。
【0175】
[実施例1]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-1)=100:200となるように、上記で調整した重合体ナノ粒子(A-1)水分散体と、上記で調整したマトリクス原料成分(B’-1)とを混合して混合物を得た。エタノール濃度20質量%の水溶液を溶媒とし、固形分濃度が8質量%となるように混合物を添加し、塗料組成物(I)を得た。次いで、バーコーターを用いて塗料組成物(I)を接着層付きポリカーボネート基材1へ塗布した後、130℃で2時間乾燥し、膜厚5.0μmのハードコート塗膜を有する、ハードコート塗膜付き基材を得た。
ハードコート塗膜のマルテンス硬度HM、弾性回復率ηIT、耐摩耗性、全光線透過率、初期密着性、耐湿性、耐汚染性の評価を行った。
なお、塗料組成物中のマトリクス原料成分(B’-1)に由来する塗膜中のマトリクス成分を成分(B-1)と称し、以下同様に塗料組成物中のマトリクス原料成分(B’-2)等に由来する塗膜中のマトリクス成分を(B-2)等と称する。すなわち、マトリクス成分(B-1)~(B-16)は、それぞれ、マトリクス原料成分(B’-1)~(B’-16)の加水分解縮合物であるといえる。
【0176】
上記実施例で用いた重合体ナノ粒子(A-1)のマルテンス硬度HM及び弾性回復率ηITA、マトリクス原料成分(B’-1)のマルテンス硬度HMB’及び弾性回復率ηITB’、並びにマトリクス成分(B-1)のマルテンス硬度HM及び弾性回復率ηITBを上述の測定方法に従って測定した。
【0177】
[実施例2]
マトリクス原料成分(B’)として(B’-2)を用い、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=100:300とした以外は、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0178】
[実施例3]
ハードコート塗膜の膜厚を10.0μmにした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0179】
[実施例4]
ハードコート塗膜の膜厚を2.5μmにした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0180】
[実施例5]
マトリクス原料成分(B’)として(B’-3)を用いた以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0181】
[実施例6]
重合体ナノ粒子(A)として重合体ナノ粒子(A-2)を用いた以外は、実施例5と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0182】
[実施例7]
重合体ナノ粒子(A)として重合体ナノ粒子(A-3)を用いた以外は、実施例5と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0183】
[実施例8]
重合体ナノ粒子(A)として重合体ナノ粒子(A-4)を用いた以外は、実施例5と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0184】
[実施例9]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=50:300とした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0185】
[実施例10]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=30:300とした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0186】
[実施例11]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=10:300を用い、ハードコート塗膜の膜厚を3.0μmとした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0187】
[実施例12]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=250:300とした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0188】
[実施例13]
マトリクス原料成分(B’)として(B’-4)を用い、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-4)=100:200とした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0189】
[実施例14]
マトリクス原料成分(B’)として(B’-5)を用いた以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0190】
[実施例15]
重合体ナノ粒子(A)として重合体ナノ粒子(A-5)を用いた以外は、実施例5と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0191】
[実施例16]
マトリクス原料成分(B’)として(B’-6)を用いた以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0192】
[実施例17]
接着層付きポリカーボネート基材として接着層付きポリカーボネート基材1の代わりに接着層付きポリカーボネート基材2を用いた以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0193】
[実施例18]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-2)=100:450とした以外は、実施例2と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0194】
[実施例19]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-8)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-8)=100:200となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0195】
[実施例20]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-9)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-9)=50:300となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0196】
[実施例21]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-10)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-10)=50:300となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0197】
[実施例22]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-11)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-11)=100:200となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0198】
[実施例23]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-12)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-12)=50:300となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0199】
[実施例24]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-13)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-13)=50:300となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0200】
[実施例25]
重合体ナノ粒子(A)として(A-1)、マトリクス原料成分(B’)として(B’-14)を用いて、重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-1):(B-14)=100:200となるように、実施例1と同様にしてハードコート塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0201】
[比較例1]
マトリクス原料成分(B’)として上記で調整した(B’-1)のコーティング組成液を固形分濃度8%、溶媒としてエタノール濃度20質量%/酢酸3質量%の水溶液となるように混合した。得られたコーティング組成物を、バーコーターを用いて接着層付きポリカーボネート基材3へ塗布した後、130℃2時間乾燥し、マトリクス成分(B-1)で構成された膜厚1.0μmの塗膜を有する、塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0202】
[比較例2]
塗膜の膜厚を5.0μmとした以外は、比較例1と同様にして塗膜付き基材を作製した結果、塗膜にひび割れが発生した。
【0203】
[比較例3]
マトリクス原料成分(B’)として(B’-2)を用い、塗膜の膜厚を3.0μmとした以外は、比較例1と同様にして塗膜付き基材を作製した結果、塗膜にひび割れが発生した。
【0204】
[比較例4]
マトリクス原料成分(B’)として(B’-7)を用い、塗膜の膜厚を5.0μmとした以外は、比較例1と同様にして塗膜付き基材を作製した。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0205】
[比較例5]
重合体ナノ粒子(A)としてE2050S(商品名、旭化成社製)、マトリクス成分(B)として(B-15)が固形分質量比でE2050S:(B-15)=100:100となるように、E2050Sと、上記で調整したマトリクス原料成分(B’-15)を固形分濃度10%溶媒としてエタノール濃度20質量%/酢酸3質量%の水溶液となるように混合した。得られた塗料組成物を、バーコーターを用いて接着層付きポリカーボネート基材3へ塗布した後、130℃30分乾燥し、膜厚5.0μmの塗膜を有する、塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0206】
[比較例6]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-6):(B-15)=100:100となるように、上記で調整した重合体ナノ粒子(A-6)水分散体と、上記で調整したマトリクス原料成分(B’-15)を固形分濃度8%、溶媒としてエタノール濃度20質量%の水溶液となるように混合し、得られた塗料組成物を、バーコーターを用いて接着層付きポリカーボネート基材3へ塗布した後、130℃30分乾燥し、膜厚5.0μmの塗膜を有する、塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0207】
[比較例7]
重合体ナノ粒子(A)とマトリクス成分(B)が固形分質量比で(A-6):(B-15)=100:100となるように、上記で調整した重合体ナノ粒子(A-6)水分散体と、上記で調整したマトリクス原料成分(B’-15)を固形分濃度8%、溶媒としてエタノール濃度20質量%の水溶液となるように混合し、得られた塗料組成物を、バーコーターを用いてポリカーボネート基材(タキロン株式会社製、品番1600、厚み:2mm)へ塗布した後、130℃30分乾燥し、膜厚5.0μmの塗膜を有する、塗膜付き基材を得た。実施例1と同様の評価方法にて各物性の評価結果を得た。
【0208】
[凝着力の評価結果]
実施例1~25で得られたハードコート塗膜の凝着力を(17)の測定方法に準拠して実施した結果、いずれも重合体ナノ粒子(A)の凝着力Fはマトリクス成分(B)の凝着力Fより高かった。比較例5~7で得られた塗膜の凝着力を(17)の測定方法に準拠して実施した結果、重合体ナノ粒子(A)の凝着力Fはマトリクス成分(B)の凝着力Fより低かった。
【0209】
実施例1~25及び比較例1~7の各物性の評価結果を表1~4に示す。
【0210】
【表1】
【0211】
【表2】
【0212】
【表3】
【0213】
【表4】
【0214】
[評価結果]
表1~4より、重合体ナノ粒子(A)を含有していない比較例1~4の塗膜、並びにHM/HM>1、HMB’/HM>1及びF/F>1の関係を満たさない比較例5~7の塗膜と比較すると、マトリクス成分(B)中に重合体ナノ粒子(A)を含有し、かつ、HM/HM>1、HMB’/HM>1及びF/F>1の関係を満たす実施例1~25のハードコート塗膜は、耐摩耗性に優れることが分かった。
また、ΔAが10以下となる実施例1~25のハードコート塗膜は、ΔAが10を超える比較例1、4~7の塗膜と較べて、耐汚染性に優れることがわかった。
上記のとおり、実施例1~25のハードコート塗膜及びハードコート塗膜付き基材は、高いレベルでの耐摩耗性を発現し、さらには高いレベルでの耐汚染性をも発現するため、自動車用の窓材として好ましく適用できるものと評価された。
【0215】
本出願は、2018年8月31日出願の日本特許出願(特願2018-163683号)及び2019年4月2日出願の日本特許出願(特願2019-070499号)に基づくものであり、その内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0216】
本発明によって提供される、高いレベルでの耐摩耗性と耐汚染性を発現する塗膜は、建材、自動車部材や電子機器や電機製品などのハードコートとして有用である。