IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱瓦斯化学株式会社の特許一覧

特許7290114化合物、樹脂、組成物及びパターン形成方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-05
(45)【発行日】2023-06-13
(54)【発明の名称】化合物、樹脂、組成物及びパターン形成方法
(51)【国際特許分類】
   C07C 321/26 20060101AFI20230606BHJP
   G03F 7/11 20060101ALI20230606BHJP
   G03F 7/20 20060101ALI20230606BHJP
   G03F 7/039 20060101ALN20230606BHJP
【FI】
C07C321/26 CSP
G03F7/11 503
G03F7/11 502
G03F7/20 501
G03F7/20 521
G03F7/039 601
【請求項の数】 17
(21)【出願番号】P 2019566518
(86)(22)【出願日】2019-01-18
(86)【国際出願番号】 JP2019001421
(87)【国際公開番号】W WO2019142897
(87)【国際公開日】2019-07-25
【審査請求日】2021-12-08
(31)【優先権主張番号】P 2018007892
(32)【優先日】2018-01-22
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2018032476
(32)【優先日】2018-02-26
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004466
【氏名又は名称】三菱瓦斯化学株式会社
(74)【代理人】
【識別番号】100079108
【弁理士】
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【弁理士】
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100134120
【弁理士】
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】越後 雅敏
(72)【発明者】
【氏名】岡田 悠
(72)【発明者】
【氏名】瀧川 具明
(72)【発明者】
【氏名】牧野嶋 高史
【審査官】松澤 優子
(56)【参考文献】
【文献】特開2017-227810(JP,A)
【文献】特開2000-351846(JP,A)
【文献】特開2017-082205(JP,A)
【文献】特開2015-018220(JP,A)
【文献】特開平02-118639(JP,A)
【文献】米国特許出願公開第2018/0013074(US,A1)
【文献】米国特許出願公開第2014/0319097(US,A1)
【文献】国際公開第2017/018360(WO,A1)
【文献】国際公開第2001/068595(WO,A1)
【文献】Journal of Molecular Catalysis A: Chemical,2012年,Vol.363-364,pp.254-264
【文献】Chemical Papers,2014年,Vol.68, No.11,pp.1593-1600
【文献】Russian Journal of General Chemstry,2015年,Vol.85, No.4,pp.989-992
【文献】Journal the Chemical Society,1951年,pp.251-255
(58)【調査した分野】(Int.Cl.,DB名)
C07C
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式で表される化合物。
【化1】
式中、
0 は、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基であり、
1 は、炭素数1~60の1価の基である
【請求項2】
請求項に記載の化合物を構成単位として含む樹脂。
【請求項3】
請求項1に記載の化合物及び請求項に記載の樹脂からなる群より選ばれる1種以上を含有する組成物。
【請求項4】
溶媒をさらに含有する、請求項に記載の組成物。
【請求項5】
酸発生剤をさらに含有する、請求項又はに記載の組成物。
【請求項6】
酸架橋剤をさらに含有する、請求項のいずれかに記載の組成物。
【請求項7】
ラジカル発生剤をさらに含有する、請求項のいずれかに記載の組成物。
【請求項8】
リソグラフィー用膜形成に用いられる、請求項のいずれかに記載の組成物。
【請求項9】
レジスト下層膜形成に用いられる、請求項に記載の組成物。
【請求項10】
レジスト膜形成に用いられる、請求項に記載の組成物。
【請求項11】
レジスト永久膜形成に用いられる、請求項に記載の組成物。
【請求項12】
光学部品形成に用いられる、請求項のいずれかに記載の組成物。
【請求項13】
基板上に、請求項に記載の組成物を用いてフォトレジスト層を形成する工程、
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
【請求項14】
基板上に、請求項に記載の組成物を用いてフォトレジスト層を形成する工程、及び
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、絶縁膜の形成方法。
【請求項15】
基板上に、請求項に記載の組成物を用いて下層膜を形成する工程、
前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
【請求項16】
基板上に、請求項に記載の組成物を用いて下層膜を形成する工程、
前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成する工程、
前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
前記レジストパターンをマスクとして前記中間層膜をエッチングする工程、
得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び
得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、
を含む、回路パターン形成方法。
【請求項17】
請求項に記載の化合物又は請求項に記載の樹脂の精製方法であって、
前記化合物又は樹脂、及び水と任意に混和しない有機溶媒を含む溶液と、酸性の水溶液とを接触させて抽出する抽出工程を含む、精製方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特定の構造を有する化合物、樹脂及びこれらを含有する組成物に関する。また、本発明は、該組成物を用いるパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)に関する。
【背景技術】
【0002】
半導体デバイスの製造において、フォトレジスト材料を用いたリソグラフィーによる微細加工が行われているが、近年、LSIの高集積化と高速度化に伴い、パターンルールによる更なる微細化が求められている。また、レジストパターン形成の際に使用するリソグラフィー用の光源は、KrFエキシマレーザー(248nm)からArFエキシマレーザー(193nm)へと短波長化されており、極端紫外光(EUV、13.5nm)の導入も見込まれている。
【0003】
しかしながら、従来の高分子系レジスト材料を用いるリソグラフィーでは、その分子量が1万~10万程度と大きく、分子量分布も広いため、パターン表面にラフネスが生じ、パターン寸法の制御が困難となり、微細化に限界がある。
そこで、これまでに、より解像性の高いレジストパターンを与えるために、種々の低分子量レジスト材料が提案されている。低分子量レジスト材料は分子サイズが小さいことから、解像性が高く、ラフネスが小さいレジストパターンを与えることが期待される。
【0004】
現在、このような低分子量レジスト材料として、様々なものが知られている。例えば、低分子量多核ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献1及び特許文献2参照。)が提案されており、高耐熱性を有する低分子量レジスト材料の候補として、低分子量環状ポリフェノール化合物を主成分として用いるアルカリ現像型のネガ型感放射線性組成物(例えば、特許文献3及び非特許文献1参照。)も提案されている。また、レジスト材料のベース化合物として、ポリフェノール化合物が、低分子量ながら高耐熱性を付与でき、レジストパターンの解像性やラフネスの改善に有用であることが知られている(例えば、非特許文献2参照。)。
【0005】
本発明者らは、エッチング耐性に優れるとともに、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するレジスト組成物(特許文献4を参照。)を提案している。
【0006】
また、レジストパターンの微細化が進むと、解像度の問題若しくは現像後にレジストパターンが倒れるといった問題が生じてくるため、レジストの薄膜化が望まれるようになる。ところが、単にレジストの薄膜化を行うと、基板加工に十分なレジストパターンの膜厚を得ることが難しくなる。そのため、レジストパターンだけではなく、レジストと加工する半導体基板との間にレジスト下層膜を作製し、このレジスト下層膜にも基板加工時のマスクとしての機能を持たせるプロセスが必要になってきた。
【0007】
現在、このようなプロセス用のレジスト下層膜として、種々のものが知られている。例えば、従来のエッチング速度の速いレジスト下層膜とは異なり、レジストに近いドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、所定のエネルギーが印加されることにより末端基が脱離してスルホン酸残基を生じる置換基を少なくとも有する樹脂成分と溶媒とを含有する多層レジストプロセス用下層膜形成材料が提案されている(特許文献5参照。)。また、レジストに比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、特定の繰り返し単位を有する重合体を含むレジスト下層膜材料が提案されている(特許文献6参照。)。さらに、半導体基板に比べて小さいドライエッチング速度の選択比を持つリソグラフィー用レジスト下層膜を実現するものとして、アセナフチレン類の繰り返し単位と、置換又は非置換のヒドロキシ基を有する繰り返し単位とを共重合してなる重合体を含むレジスト下層膜材料が提案されている(特許文献7参照。)。
【0008】
一方、この種のレジスト下層膜において高いエッチング耐性を持つ材料としては、メタンガス、エタンガス、アセチレンガス等を原料に用いたCVDによって形成されたアモルファスカーボン下層膜がよく知られている。しかしながら、プロセス上の観点から、スピンコート法やスクリーン印刷等の湿式プロセスでレジスト下層膜を形成できるレジスト下層膜材料が求められている。
【0009】
また、本発明者らは、エッチング耐性に優れるとともに、耐熱性が高く、溶媒に可溶で湿式プロセスが適用可能な材料として、特定の構造の化合物及び有機溶媒を含有するリソグラフィー用下層膜形成組成物(特許文献8参照。)を提案している。
【0010】
なお、3層プロセスにおけるレジスト下層膜の形成において用いられる中間層の形成方法に関しては、例えば、シリコン窒化膜の形成方法(特許文献9参照。)や、シリコン窒化膜のCVD形成方法(特許文献10参照。)が知られている。また、3層プロセス用の中間層材料としては、シルセスキオキサンベースの珪素化合物を含む材料が知られている(特許文献11及び12参照。)。
【0011】
さらに光学部品形成組成物として、様々なものが提案されている。例えば、アクリル系樹脂が挙げられる(特許文献13及び14参照。)。
【先行技術文献】
【特許文献】
【0012】
【文献】特開2005-326838号公報
【文献】特開2008-145539号公報
【文献】特開2009-173623号公報
【文献】国際公開第2013/024778号
【文献】特開2004-177668号公報
【文献】特開2004-271838号公報
【文献】特開2005-250434号公報
【文献】国際公開第2013/024779号
【文献】特開2002-334869号公報
【文献】国際公開第2004/066377号
【文献】特開2007-226170号公報
【文献】特開2007-226204号公報
【文献】特開2010-138393号公報
【文献】特開2015-174877号公報
【非特許文献】
【0013】
【文献】T.Nakayama,M.Nomura,K.Haga,M.Ueda:Bull.Chem.Soc.Jpn.,71,2979(1998)
【文献】岡崎信次、他22名「フォトレジスト材料開発の新展開」株式会社シーエムシー出版、2009年9月、p.211-259
【発明の概要】
【発明が解決しようとする課題】
【0014】
上述したように、従来数多くのレジスト用途向けリソグラフィー用膜形成組成物及び下層膜用途向けリソグラフィー用膜形成組成物が提案されているが、スピンコート法やスクリーン印刷等の湿式プロセスが適用可能な高い溶媒溶解性を有するのみならず、溶媒溶解性と耐熱性及びエッチング耐性とを高い次元で両立させたものはなく、新たな材料の開発が求められている。
また、従来数多くの光学部材向け組成物が提案されているが、耐熱性、透明性及び屈折率を高い次元で両立させたものはなく、新たな材料の開発が求められている。
【0015】
本発明は、上述の課題を解決すべくなされたものであり、その目的は、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂、及び組成物(例えば、リソグラフィー用膜形成又は光学部品形成に用いられる組成物)、並びに該組成物を用いたパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)を提供することにある。
【課題を解決するための手段】
【0016】
本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、特定構造を有する化合物又は樹脂を用いることにより、前記課題を解決できることを見出し、本発明を完成するに到った。すなわち、本発明は次のとおりである。
【0017】
[1]
下記式(1)又は(1’)で表される、化合物。
【化1】
(式(1)中、
は、水素原子、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~60のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~60のアリール基であり、
は、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60のN価の基又は単結合であり、
又は、R及びRは、それらが結合している炭素原子を含めて、置換基及び/又はヘテロ原子を有していてもよい4員~30員の環を形成していてもよく、
Aは、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60の芳香族性を示す基であり、
は、各々独立して、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~40のアリール基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルケニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルキニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシ基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキルチオ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、カルボン酸基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
Xは、酸素原子、硫黄原子又は無架橋であり、
ここで、
A、R、R、R、及びXから選ばれる少なくとも1つは硫黄原子を含み、
の少なくとも1つは、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基を含み、
mは、各々独立して0~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)
【化2】
(式(1’)中、
は、各々独立して、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~40のアリール基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルケニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルキニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシ基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキルチオ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基、及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
は、各々独立して、水素原子、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基であり、
又は、2つのRは、それらが結合している炭素原子を含めて、置換基及び/又はヘテロ原子を有していてもよい4員~30員の環を形成していてもよく、2つのRは、それらが結合している炭素原子に結合する2重結合であって、当該2重結合に、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基が結合していてもよく、
A、及びA’は、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60の芳香族性を示す基であり、
Lは1~9の整数であり、
k及びL’は、各々独立して0~9の整数である)
[2]
前記式(1)で表される化合物が下記式(1-1)で表される化合物である、[1]に記載の化合物。
【化3】
(式(1-1)中、
、R、A、X、及びNは、[1]で定義したとおりであり、
3Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、又はチオール基であり、
4Aは、各々独立して、水素原子、酸架橋性基又は酸解離性基であり、
ここで、A、R、R、R3A、R4A、及びXから選ばれる少なくとも1つは硫黄原子を含み、
6Aは、各々独立して0~5の整数であり、
7Aは、各々独立して0~5の整数である、
ただし、2つのm7Aは同時に0ではない。)
[3]
前記式(1)で表される化合物が下記式(2)で表される化合物である、[1]に記載の化合物。
【化4】
(式(2)中、
は、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つはチオール基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
[4]
前記式(2)で表される化合物が下記式(3)で表される化合物である、[3]に記載の化合物。
【化5】
(式(3)中、
は、[3]におけるRと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R~Rの少なくとも1つはチオール基であり、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0となることはなく、
nは[3]におけるNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、[3]におけるrと同義である。)
[5]
前記式(2)で表される化合物が下記式(4)で表される化合物である、[3]に記載の化合物。
【化6】
(式(4)中、
0Aは、[3]におけるRと同義であり、
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つはチオール基であり、
は、[3]におけるNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを表し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~7の整数であり、
は、各々独立して、0又は1である。)
[6]
前記式(3)で表される化合物が下記式(3-1)で表される化合物である、[4]に記載の化合物。
【化7】
(式(3-1)中、
、R、R、R、n、p~p、m及びmは、[4]で定義されるとおりであり、
及びRは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、
及びmは、各々独立して、0~7の整数である。)
[7]
前記式(3-1)で表される化合物が下記式(3-2)で表される化合物である、[6]に記載の化合物。
【化8】
(式(3-2)中、
、R、n、及びp~pは、[4]で定義されるとおりであり、
、R、m及びmは、[6]で定義される通りであり、
及びRは、R及びRと同義であり、
及びmは、各々独立して、0~8の整数である。)
[8]
前記式(4)で表される化合物が下記式(4-1)で表される化合物である、[5]に記載の化合物。
【化9】
(式(4-1)中、
0A、R1A、n、q及びX、は、[5]で定義されるとおりであり、
3Aは、各々独立して、ハロゲン原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、又は置換基を有していてもよい炭素数1~30のアルコキシ基であり、
6Aは、各々独立して、0~5の整数である。)
[9]
[1]又は[2]に記載の化合物を構成単位として含む樹脂。
[10]
下記(5)で表される、[9]に記載の樹脂。
【化10】
(式(5)中、
、R、A、R、X、及びNは、[1]で定義されるとおりであり、
mは、各々独立して0~8の整数であり、
ここで、
A、R、R、R、及びXから選ばれる少なくとも1つは硫黄原子を含み、
の少なくとも1つは、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基を含み、
Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
Lは、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキレン基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリーレン基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシレン基、又は単結合であり、前記アルキレン基、前記アリーレン基、及び前記アルコキシレン基は、エーテル結合、チオエーテル結合、ケトン結合又はエステル結合を含んでいてもよい。)
[11]
[3]~[8]のいずれかに記載の化合物を構成単位として含む樹脂。
[12]
下記式(6)で表される構造を有する、[11]に記載の樹脂。
【化11】
(式(6)中、
Lは、置換基を有していてもよい炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
は、[3]におけるRと同義であり、
は、炭素数1~60のn価の基又は単結合であり、
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R~Rの少なくとも1つはチオール基であり、
及びmは、各々独立して、0~8の整数であり、
及びmは、各々独立して、0~9の整数であり、
但し、m、m、m及びmは同時に0となることはなく、
nは[3]におけるNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
~pは、[3]におけるrと同義である。)
[13]
下記式(7)で表される構造を有する、[11]に記載の樹脂。
【化12】
(式(7)中、
Lは、置換基を有していてもよい炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合であり、
0Aは、[3]におけるRと同義であり、
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、R2Aの少なくとも1つはチオール基であり、
は、[3]におけるNと同義であり、ここで、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよく、
は、酸素原子、硫黄原子又は無架橋であることを表し、
2Aは、各々独立して、0~7の整数であり、但し、少なくとも1つのm2Aは1~6の整数であり、
は、各々独立して、0又は1である。)
[14]
[1]~[8]に記載の化合物及び[9]~[13]に記載の樹脂からなる群より選ばれる1種以上を含有する組成物。
[15]
溶媒をさらに含有する、[14]に記載の組成物。
[16]
酸発生剤をさらに含有する、[14]又は[15]に記載の組成物。
[17]
酸架橋剤をさらに含有する、[14]~[16]のいずれかに記載の組成物。
[18]
ラジカル発生剤をさらに含有する、[14]~[17]のいずれかに記載の組成物。
[19]
リソグラフィー用膜形成に用いられる、[14]~[18]のいずれかに記載の組成物。
[20]
レジスト下層膜形成に用いられる、[19]に記載の組成物。
[21]
レジスト膜形成に用いられる、[19]に記載の組成物。
[22]
レジスト永久膜形成に用いられる、[19]に記載の組成物。
[23]
光学部品形成に用いられる、[14]~[18]のいずれかに記載の組成物。
[24]
基板上に、[19]に記載の組成物を用いてフォトレジスト層を形成する工程、
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
[25]
基板上に、[19]に記載の組成物を用いてフォトレジスト層を形成する工程、及び
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、絶縁膜の形成方法。
[26]
基板上に、[19]に記載の組成物を用いて下層膜を形成する工程、
前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程、及び
前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程、
を含む、レジストパターン形成方法。
[27]
基板上に、[19]に記載の組成物を用いて下層膜を形成する工程、
前記下層膜上に、レジスト中間層膜材料を用いて中間層膜を形成する工程、
前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
前記レジストパターンをマスクとして前記中間層膜をエッチングする工程、
得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングする工程、及び
得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、
を含む、回路パターン形成方法。
[28]
[1]~[8]のいずれかに記載の化合物又は[9]~[13]のいずれかに記載の樹脂の精製方法であって、
前記化合物又は樹脂、及び水と任意に混和しない有機溶媒を含む溶液と、酸性の水溶液とを接触させて抽出する抽出工程を含む、精製方法。
【発明の効果】
【0018】
本発明によれば、湿式プロセスが適用可能であり、耐熱性、溶解性及びエッチング耐性に優れるフォトレジスト及びフォトレジスト用下層膜を形成するために有用な、化合物、樹脂、及び組成物(例えば、リソグラフィー用膜形成又は光学部品形成に用いられる組成物)、並びに該組成物を用いたパターン形成方法(レジストパターン形成方法、及び、回路パターン形成方法)を提供することができる。
【発明を実施するための形態】
【0019】
後述するように、本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
また、本実施形態の化合物及び樹脂は湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。加えて、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。さらには、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学形成組成物としても有用である。
【0020】
以下、本発明の実施の形態について説明する。なお、以下の実施の形態は、本発明を説明するための例示であり、本発明はその実施の形態のみに限定されない。
【0021】
本明細書に記載の構造式に関して、例えば下記のように、Cとの結合を示す線が環A及び環Bと接触している場合には、Cが環A及び環Bのいずれか一方又は両方と結合していることを意味する。
【化13】
【0022】
[式(1)で表される化合物]
本発明の化合物は、下記式(1)、又は後述の式(1’)で表される。本発明の化合物は、このような構造を有するため、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高い。また、硫黄原子を含むことにより高屈折率である。さらに、硬化前は低粘度であり、平坦化特性に優れる。
【0023】
【化14】
(式(1)中、
は、水素原子、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~60のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~60のアリール基であり、
は、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60のN価の基又は単結合であり、
又は、R及びRは、それらが結合している炭素原子を含めて、置換基及び/又はヘテロ原子を有していてもよい4員~30員の環を形成していてもよく、
Aは、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60の芳香族性を示す基であり、
は、各々独立して、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~40のアリール基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシ基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキルチオ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、カルボン酸基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
Xは、酸素原子、硫黄原子又は無架橋であり、
ここで、
A、R、R、R、及びXから選ばれる少なくとも1つは硫黄原子を含み、
の少なくとも1つは、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基を含み、
mは、各々独立して0~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよい。)
【0024】
用語「アルキル基」は、特段明記しない限り、直鎖状、分岐状及び環状のアルキル基を含む。
【0025】
「アルキル基」としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基等が挙げられる。
アルキル基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0026】
「アリール基」としては、例えば、フェニル基、ナフチル基等が挙げられる。
アリール基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、フェニル基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0027】
「アルケニル基」としては、例えば、プロペニル基、ブテニル基等が挙げられる。
アルケニル基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0028】
「アルキニル基」としては、例えば、プロパギル基、ブタニル基等が挙げられる。
アルキニル基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0029】
「アルコキシ基」としては、例えば、メトキシ基、エトキシ基、プロポキシ基、シクロヘキシロキシ基、フェノキシ基、ナフトキシ基等が挙げられる。
アルコキシ基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0030】
「アルキルチオ」としては、例えば、メチルチオ基、エチルチオ基、n-プロピルチオ基、i-プロピルチオ基、n-ブチルチオ基、i-ブチルチオ基、t-ブチルチオ基、シクロプロピルチオ基、シクロブチルチオ基等が挙げられる。
アルキルチオ基に対する置換基としては、例えば、ハロゲン原子、ニトロ基、アミノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基等が挙げられる。
【0031】
「ハロゲン原子」としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
【0032】
「ヘテロ原子」としては、例えば、硫黄原子、窒素原子、酸素原子等が挙げられる。
【0033】
「酸解離性基」とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、特に限定されないが、例えば、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、中でも、導入試薬の入手容易性の観点から、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。
【0034】
酸解離性反応基は、高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。酸解離性反応基としては、特に限定されないが、例えば、KrFやArF用の化学増幅型レジスト組成物に用いられるヒドロキシスチレン系樹脂、(メタ)アクリル酸系樹脂等において提案されているもののなかから適宜選択して用いることができる。
【0035】
酸解離性反応基の好ましい例としては、酸により解離する性質を有する、置換メチル基、1-置換エチル基、1-置換-n-プロピル基、1-分岐アルキル基、シリル基、アシル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基からなる群より選ばれる基が挙げられる。なお、酸解離性反応基は、ラフネス性の観点から、架橋性官能基を有さないことが好ましい。
【0036】
置換メチル基としては、特に限定されないが、通常、炭素数2~20の置換メチル基であり、炭素数4~18の置換メチル基が好ましく、炭素数6~16の置換メチル基がより好ましい。置換メチル基の具体例としては、以下に限定されないが、メトキシメチル基、メチルチオメチル基、エトキシメチル基、n-プロポキシメチル基、イソプロポキシメチル基、n-ブトキシメチル基、t-ブトキシメチル基、2-メチルプロポキシメチル基、エチルチオメチル基、メトキシエトキシメチル基、フェニルオキシメチル基、1-シクロペンチルオキシメチル基、1-シクロヘキシルオキシメチル基、ベンジルチオメチル基、フェナシル基、4-ブロモフェナシル基、4-メトキシフェナシル基、ピペロニル基、及び下記式(Y-1)で表される置換基等を挙げることができる。
【0037】
【化15】
【0038】
前記式(Y-1)中、R2Aは、炭素数1~4のアルキル基である。R2Aの具体例としては、以下に限定されないが、メチル基、エチル基、イソプロピル基、n-プロピル基、t-ブチル基、n-ブチル基等が挙げられる。
【0039】
1-置換エチル基としては、特に限定されないが、通常、炭素数3~20の1-置換エチル基であり、炭素数5~18の1-置換エチル基が好ましく、炭素数7~16の置換エチル基がより好ましい。1-置換エチル基の具体例としては、以下に限定されないが、1-メトキシエチル基、1-メチルチオエチル基、1,1-ジメトキシエチル基、1-エトキシエチル基、1-エチルチオエチル基、1,1-ジエトキシエチル基、n-プロポキシエチル基、イソプロポキシエチル基、n-ブトキシエチル基、t-ブトキシエチル基、2-メチルプロポキシエチル基、1-フェノキシエチル基、1-フェニルチオエチル基、1,1-ジフェノキシエチル基、1-シクロペンチルオキシエチル基、1-シクロヘキシルオキシエチル基、1-フェニルエチル基、1,1-ジフェニルエチル基、及び下記式(Y-2)で表される置換基等を挙げることができる。
【0040】
【化16】
【0041】
前記式(Y-2)中、R2Aは、前記と同様である。
【0042】
1-置換-n-プロピル基としては、特に限定されないが、通常、炭素数4~20の1-置換-n-プロピル基であり、炭素数6~18の1-置換-n-プロピル基が好ましく、炭素数8~16の1-置換-n-プロピル基がより好ましい。1-置換-n-プロピル基の具体例としては、以下に限定されないが、1-メトキシ-n-プロピル基及び1-エトキシ-n-プロピル基等を挙げることができる。
【0043】
1-分岐アルキル基としては、特に限定されないが、通常、炭素数3~20の1-分岐アルキル基であり、炭素数5~18の1-分岐アルキル基が好ましく、炭素数7~16の分岐アルキル基がより好ましい。1-分岐アルキル基の具体例としては、以下に限定されないが、イソプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルプロピル基、1-メチルブチル基、1,1-ジメチルブチル基、2-メチルアダマンチル基、及び2-エチルアダマンチル基等を挙げることができる。
【0044】
シリル基としては、特に限定されないが、通常、炭素数1~20のシリル基であり、炭素数3~18のシリル基が好ましく、炭素数5~16のシリル基がより好ましい。シリル基の具体例としては、以下に限定されないが、トリメチルシリル基、エチルジメチルシリル基、メチルジエチルシリル基、トリエチルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジエチルシリル基、tert-ブチルジフェニルシリル基、トリ-tert-ブチルシリル基及びトリフェニルシリル基等を挙げることができる。
【0045】
アシル基としては、特に限定されないが、通常、炭素数2~20のアシル基であり、炭素数4~18のアシル基が好ましく、炭素数6~16のアシル基がより好ましい。アシル基の具体例としては、以下に限定されないが、アセチル基、フェノキシアセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、アダマンチルカルボニル基、ベンゾイル基及びナフトイル基等を挙げることができる。
【0046】
1-置換アルコキシメチル基としては、特に限定されないが、通常、炭素数2~20の1-置換アルコキシメチル基であり、炭素数4~18の1-置換アルコキシメチル基が好ましく、炭素数6~16の1-置換アルコキシメチル基がより好ましい。1-置換アルコキシメチル基の具体例としては、以下に限定されないが、1-シクロペンチルメトキシメチル基、1-シクロペンチルエトキシメチル基、1-シクロヘキシルメトキシメチル基、1-シクロヘキシルエトキシメチル基、1-シクロオクチルメトキシメチル基及び1-アダマンチルメトキシメチル基等を挙げることができる。
【0047】
環状エーテル基としては、特に限定されないが、通常、炭素数2~20の環状エーテル基であり、炭素数4~18の環状エーテル基が好ましく、炭素数6~16の環状エーテル基がより好ましい。環状エーテル基の具体例としては、以下に限定されないが、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、4-メトキシテトラヒドロピラニル基及び4-メトキシテトラヒドロチオピラニル基等を挙げることができる。
【0048】
アルコキシカルボニル基としては、通常、炭素数2~20のアルコキシカルボニル基であり、炭素数4~18のアルコキシカルボニル基が好ましく、炭素数6~16のアルコキシカルボニル基がさらに好ましい。アルコキシカルボニル基の具体例としては、以下に限定されないが、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、tert-ブトキシカルボニル基又は下記式(Y-3)のn=0で表される酸解離性反応基等を挙げることができる。
【0049】
アルコキシカルボニルアルキル基としては、特に限定されないが、通常、炭素数2~20のアルコキシカルボニルアルキル基であり、炭素数4~18のアルコキシカルボニルアルキル基が好ましく、炭素数6~16のアルコキシカルボニルアルキル基がさらに好ましい。アルコキシカルボニルアルキル基の具体例としては、以下に限定されないが、メトキシカルボニルメチル基、エトキシカルボニルメチル基、n-プロポキシカルボニルメチル基、イソプロポキシカルボニルメチル基、n-ブトキシカルボニルメチル基又は下記式(Y-3)のn=1~4で表される酸解離性反応基等を挙げることができる。
【0050】
【化17】
【0051】
前記式(Y-3)中、R3Aは水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、nは0~4の整数である。
【0052】
これらの酸解離性反応基の中でも、置換メチル基、1-置換エチル基、1-置換アルコキシメチル基、環状エーテル基、アルコキシカルボニル基、及びアルコキシカルボニルアルキル基が好ましく、より高い感度を発現する観点から、置換メチル基、1-置換エチル基、アルコキシカルボニル基及びアルコキシカルボニルアルキル基がより好ましく、炭素数3~12のシクロアルカン、ラクトン及び6~12の芳香族環から選ばれる構造を有する酸解離性反応基がさらに好ましい。
【0053】
炭素数3~12のシクロアルカンとしては、単環でも多環でもよいが、多環であることが好ましい。
炭素数3~12のシクロアルカンの具体例としては、以下に限定されないが、モノシクロアルカン、ビシクロアルカン、トリシクロアルカン、テトラシクロアルカン等が挙げられ、より具体的には、以下に限定されないが、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン等のモノシクロアルカンや、アダマンタン、ノルボルナン、イソボルナン、トリシクロデカン、テトラシクロデカン等のポリシクロアルカンが挙げられる。これらの中でも、アダマンタン、トリシクロデカン、テトラシクロデカンが好ましく、アダマンタン、トリシクロデカンがより好ましい。炭素数3~12のシクロアルカンは置換基を有してもよい。
ラクトンとしては、以下に限定されないが、例えば、ブチロラクトン又はラクトン基を有する炭素数3~12のシクロアルカン基が挙げられる。
6~12の芳香族環としては、以下に限定されないが、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ピレン環等が挙げられ、ベンゼン環、ナフタレン環が好ましく、ナフタレン環がより好ましい。
【0054】
前記の中でも、特に下記式(Y-4)で表される各基からなる群から選ばれる酸解離性反応基が、解像性がより高くなる傾向にあるため好ましい。
【0055】
【化18】
【0056】
前記式(Y-4)中、R5Aは、水素原子又は炭素数1~4の直鎖状若しくは分岐状アルキル基であり、R6Aは、水素原子、炭素数1~4の直鎖状若しくは分岐状アルキル基、シアノ基、ニトロ基、複素環基、ハロゲン原子又はカルボキシル基であり、n1Aは0~4の整数であり、n2Aは1~5の整数であり、n0Aは0~4の整数である。
【0057】
本明細書において「酸架橋性基」とは、触媒存在下、又は無触媒下で架橋する基をいう。酸架橋性基としては、特に限定されないが、例えば、炭素数1~20のアルコキシ基、アリル基を有する基、(メタ)アクリロイル基を有する基、エポキシ(メタ)アクリロイル基を有する基、水酸基を有する基、ウレタン(メタ)アクリロイル基を有する基、グリシジル基を有する基、含ビニルフェニルメチル基を有する基、各種アルキニル基を有する基、炭素-炭素二重結合を有する基、炭素-炭素三重結合を有する基が挙げられる。
【0058】
アリル基を有する基としては、特に限定されないが、例えば、下記一般式(X-1)で表される基が挙げられる。
【化19】
(一般式(X-1)において、nX1は、1~5の整数である。)
【0059】
(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記一般式(X-2)で表される基が挙げられる。
【化20】
(一般式(X-2)において、nX2は、1~5の整数であり、Rは水素原子、又はメチル基である。)
【0060】
エポキシ(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記一般式(X-3)で表される基が挙げられる。ここで、エポキシ(メタ)アクリロイル基とは、エポキシ(メタ)アクリレートと水酸基が反応して生成する基をいう。
【化21】
(一般式(X-3)において、nx3は、0~5の整数であり、Rは水素原子、又はメチル基である。)
【0061】
ウレタン(メタ)アクリロイル基を有する基としては、特に限定されないが、例えば、下記一般式(X-4)で表される基が挙げられる。
【化22】
(一般式(X-4)において、nx4は、0~5の整数であり、sは、0~3の整数であり、Rは水素原子、又はメチル基である。)
【0062】
水酸基を有する基としては、特に限定されないが、例えば、下記一般式(X-5)で表される基が挙げられる。
【化23】
(一般式(X-5)において、nx5は、1~5の整数である。)
【0063】
グリシジル基を有する基としては、特に限定されないが、例えば、下記一般式(X-6)で表される基が挙げられる。
【化24】
(一般式(X-6)において、nx6は、1~5の整数である。)
【0064】
含ビニルフェニルメチル基を有する基としては、特に限定されないが、例えば、下記一般式(X-7)で表される基が挙げられる。
【化25】
(一般式(X-7)において、nx7は、1~5の整数である。)
【0065】
各種アルキニル基を有する基としては、特に限定されないが、例えば、下記一般式(X-8)で表される基が挙げられる。
【化26】
(一般式(X-8)において、nx8は、1~5の整数である。)
【0066】
上記炭素-炭素二重結合含有基としては、例えば、(メタ)アクリロイル基、置換又は非置換のビニルフェニル基、下記式(X-9-1)で表される基等が挙げられる。また、上記炭素-炭素三重結合含有基としては、例えば、置換又は非置換のエチニル基、置換又は非置換のプロパルギル基、下記式(X-9-2)、(X-9-3)で表される基等が挙げられる。
【0067】
【化27】
【化28】
【化29】
【0068】
上記式(X-9-1)中、RX9A、RX9B及びRX9Cは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。上記式(X-9-2)、(X-9-3)中、RX9D、RX9E及びRX9Fは、それぞれ独立して、水素原子又は炭素数1~20の1価の炭化水素基である。
【0069】
上記の中でも、紫外線硬化性の観点から、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基、グリシジル基を有する基、スチレン基を含有する基が好ましく、(メタ)アクリロイル基、エポキシ(メタ)アクリロイル基、ウレタン(メタ)アクリロイル基がより好ましく、(メタ)アクリロイル基がさらに好ましい。また、耐熱性の観点から、各種アルキニル基を有する基も好ましい。
【0070】
は、好ましくは、水素原子、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~6のアルキル基であり、より好ましくは水素原子又炭素数1~6のアルキル基であり、さらに好ましくは水素原子又炭素数1~3のアルキル基である。
【0071】
は、好ましくは炭素数1~30のN価の基であり、より好ましくは環を含む炭素数3~30のN価の基であり、さらに好ましくは環を含む炭素数3~12のN価の基であり、特に好ましくは芳香環を含む炭素数3~12のN価の基である。N価の基は、硫黄原子を含んでいてもよい。環又は芳香環は、環員原子として、硫黄原子及び/又は窒素原子を含んでいてもよい。環又は芳香環は、硫黄原子を含む置換基(例えば、アルキルチオ基)、水酸基、フェニル基、又は炭素数1~6のアルキル基で置換されていてもよい。N価は、好ましくは1~3価であり、より好ましくは1又は2価である。
【0072】
は、例えば、炭素数1~60のアルキル基、炭素数1~60のアルキレン基、炭素数2~60のアルカントリイル基、炭素数3~60のアルカンテトライル基、又は炭素数6~60の芳香族基であってもよい。これらの基は、脂環式炭化水素基、二重結合、ヘテロ原子、又は炭素数6~60の芳香族基を有していてもよい。前記脂環式炭化水素基は、有橋脂環式炭化水素基であってもよい。
【0073】
及びRは、好ましくは、それらが結合している炭素原子を含めて、4員~21員の環を形成し、より好ましくは、それらが結合している炭素原子を含めて、6員~13員の環を形成する。環は、脂環式炭化水素環、芳香環、又はこれらの縮合環であってもよい。脂環式炭化水素環は有橋脂環式炭化水素環であってもよい。環は、環員原子として、硫黄原子及び/又は窒素原子を含んでいてもよい。環は、硫黄原子を含む置換基(例えば、アルキルチオ基)、水酸基、フェニル基、又は炭素数1~6のアルキル基で置換されていてもよい。
【0074】
又はR-C-Rとしては、例えば、以下の骨格を有するものを挙げることができる。屈折率を向上させる観点から、硫黄原子が骨格に含まれていることが好ましい。
【0075】
【化30】
【0076】
Aは、好ましくは炭素数6~14のアリール基であり、より好ましくはフェニル基又はナフチル基である。
【0077】
は、好ましくは、各々独立して、チオール基、水酸基、又はフェニル基である。フェニル基は、チオール基及び/又は水酸基で置換されていてもよい。フェニル基は、スルフィド結合又はジスルフィド結合を介してAに結合していてもよい。
【0078】
Xは、好ましくは、酸素原子又は無架橋である。
【0079】
mは、好ましくは、各々独立して1~4の整数であり、より好ましくは、各々独立して1~3の整数であり、更に好ましくは、各々独立して1又は2である。
【0080】
Nは、好ましくは1~3の整数であり、より好ましくは1又は2である。
【0081】
上記式(1)で表される化合物は、比較的低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に用いられる。
【0082】
また、前記式(1)で表される化合物は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、上記式(1)で表される化合物を含むリソグラフィー用レジスト形成組成物は、良好なレジストパターン形状を与えることができる。また硫黄原子を含むことから、EUVリソグラフィー用途においては、増感作用が期待しうる。
【0083】
さらに、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が良好である。また、比較的高い炭素濃度を有する化合物であり、硫黄原子を含むことから、高いエッチング耐性をも付与することができる。
【0084】
さらにまた、芳香族密度が高く、かつ硫黄原子を含むため屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、及び有機薄膜トランジスタ(TFT)として有用である。特に特に高屈折率が求められている固体撮像素子の部材である、フォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜として好適に利用できる。
【0085】
上記式(1)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1-1)で表される化合物であることが好ましい。
【化31】
【0086】
上記(1-1)中、
、R、A、X、及びNは、式(1)で定義されるとおりであり、
3Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、ハロゲン原子、ニトロ基、アミノ基、カルボン酸基、又はチオール基であり、
4Aは、各々独立して、水素原子、酸架橋性基又は酸解離性基であり、
ここで、A、R、R、R3A、R4A、及びXから選ばれる少なくとも1つは硫黄原子を含み、
6Aは、各々独立して0~5の整数であり、
7Aは、各々独立して0~5の整数である。
【0087】
上記式(1)で表わされる化合物の具体例を、さらに以下に例示するが、式(1)で表わされる化合物は、ここで列記した具体例に限定されるものではない。
【化32-1】
【化32-2】
【化32-3】
【化32-4】
【化32-5】
【化32-6】
【化32-7】
【化32-8】
【化32-9】
【0088】
前記式(1-1)は、耐熱性、溶解性の観点から、下記式(1-2)、又は(1-3)、(1-3-1)、(1-3-2)、(1-4)、(1-4-1)であることが好ましい。

【化33】
(式(1-2)中、
は、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
ここで、R、R、R、及びXから選ばれる少なくとも1つは硫黄原子を含み、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
【0089】
また、式(1-2)で表される化合物は、特に限定されるものではないが、着色性の抑制や化合物の分解性の抑制の観点から、下記(a)~(e)の1つ以上を満たすことが好ましい。
(a):式(1-2)中、[ ]内の構造式におけるrが同じであること、すなわち、[ ]内の構造式における2つのアリール構造で示される部位が同じ構造であること。
(b):式(1-2)中、[ ]内の構造式において各アリール構造で示される部位に結合するRが、同一のものであること、更には各アリール構造で示される部位における結合部位が同一であること。
(c):式(1-2)において、Nが1~2であること、更には1であること。
(d):式(1-2)において、Rが、炭素数1~30の直鎖状のアルキル基、又はフェニル基であること、更にはメチル基又はフェニル基であること。
(e):式(1-2)において、Rが、炭素数1~60のN価の基であること。
【0090】
化合物が下記構造を有すると、さらに耐熱性が高くなり、溶媒溶解性も高くなる。
【化34】
【0091】
前記(1-3)式中、Rは、前記Rと同義であり、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基である。Rが、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基であると、本化合物の酸化分解が抑制されて着色が抑えられ、耐熱性が高くなり、溶媒溶解性が向上する。
は炭素数1~60のn価の基又は単結合であり、このRを介して各々の芳香環が結合している。
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基である。
ここで、R、R、R、R、R、及びRから選ばれる少なくとも1つは硫黄原子を含み、
及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数である。但し、m、m、m及びmは同時に0となることはない。
nは1~4の整数である。
~pは各々独立して0~2の整数である。なお、p~pが0の場合には式(3)でナフタレン構造で示される部位は、ベンゼン構造を示し、p~pが1の場合にはナフタレン構造を示し、p~pが2の場合にはアントラセン又はフェナントレン等の三環構造を示す。
nは前記Nと同義であり、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
【0092】
なお、前記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~60のアルキレン基、n=3のときには、炭素数2~60のアルカントリイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6~60の芳香族基を有していてもよい。
【0093】
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
【0094】
【化35】
【0095】
式(1-3-1)中、
、R、R、R、n、p~p、m及びmは、式(1-3)で説明したものと同義であり、
及びRは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、
は、独立して、水酸基、又はチオール基であり、
、R、R、R、R、R、及びRから選ばれる少なくとも1つは硫黄原子を含み、
及びmは、各々独立して0~7の整数である。
【0096】
【化36】
【0097】
式(1-3-2)中、
、R、n、p~pは、式(1-3)で説明したものと同義であり、R、R、m及びmは、式(1-3-1)で説明したものと同義であり、
及びRは、前記R及びRと同義であり、
は、独立して、水酸基、又はチオール基であり、
、R、R、R、R、R、及びRから選ばれる少なくとも1つは硫黄原子を含み、
及びmは、各々独立して、0~8の整数である。
【0098】
【化37】
【0099】
式(1-4)中、R0Aは、前記Rと同義であり、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基である。
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
式(1-4)中、R0A、R1A、R2Aから選ばれる少なくとも1つは硫黄原子を含み、
は1~4の整数であり、ここで、式(1-4)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
は、各々独立して、酸素原子、硫黄原子又は無架橋であることを表す。ここで、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
2Aは、各々独立して、0~6の整数である。但し、少なくとも1つのm2Aは1~6の整数である。
は、各々独立して、0又は1である。なお、qが0の場合には式(1-4)でナフタレン構造で示される部位は、ベンゼン構造を示し、qが1の場合にはナフタレン構造を示す。
【0100】
なお、前記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~30のアルキレン基、n=3のときには、炭素数2~60のアルカントリイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6~60の芳香族基を有していてもよい。
【0101】
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60若しくは6~30の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
【0102】
【化38】
【0103】
式(1-4-1)中、R0A、R1A、n、q及びXは、前記式(1-4)で説明したものと同義である。
3Aは、各々独立して、ハロゲン原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、又は置換基を有していてもよい炭素数1~30のアルコキシ基であり、
は、独立して、水酸基、又はチオール基であり、
0A、R1A、R3A、及びRから選ばれる少なくとも1つは硫黄原子を含み、
6Aは、各々独立して、0~5の整数である。
【0104】
[式(1’)で表される化合物]
本発明の化合物は、下記式(1’)でも表される。本発明の化合物は、このような構造を有するため、耐熱性が高く、炭素濃度が比較的に高く、酸素濃度が比較的に低く、溶媒溶解性も高い。また、硫黄原子を含むことにより高屈折率である。さらに、硬化前は低粘度であり、平坦化特性に優れる。
【0105】
【化39】
(式(1’)中、
は、各々独立して、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~40のアリール基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルケニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルキニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシ基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキルチオ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
は、各々独立して、水素原子、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基であり、
又は、2つのRは、それらが結合している炭素原子を含めて、置換基及び/又はヘテロ原子を有していてもよい4員~30員の環を形成していてもよく、2つのRは、それらが結合している炭素原子に結合する2重結合であって、当該2重結合に、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基が結合していてもよく、
A、及びA’は、置換基及び/又はヘテロ原子を有していてもよい炭素数1~60の芳香族性を示す基であり、
Lは1~9の整数であり、
k及びL’は、各々独立して0~9の整数である。)
【0106】
上記式(1’)中の、「アルキル基」、及び、「アリール基」、「アルケニル基」、「アルキニル基」、「アルコキシ基」、「アルキルチオ基」、「ハロゲン原子」、「ヘテロ原子」、「酸解離性」、「酸架橋性基」等の用語は、式(1)で説明したものと同義である。
【0107】
上記式(1’)で表される化合物は、有機溶媒への溶解性の観点から、下記式(1-1’)で表される化合物であることが好ましい。
【0108】
【化40】
(式(1-1’)中、
は、各々独立して、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~40のアリール基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルケニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数2~30のアルキニル基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシ基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキルチオ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
は、各々独立して、水素原子、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基であり、
又は、2つのRは、それらが結合している炭素原子を含めて、置換基及び/又はヘテロ原子を有していてもよい4員~30員の環を形成していてもよく、2つのRは、それらが結合している炭素原子に結合する2重結合であって、当該2重結合に、置換基及び/又若しくはヘテロ原子を有していてもよい炭素数1~30のアルキル基、又は置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリール基が結合していてもよく、
rは、各々独立して、0~2の整数であり、
は1~(4+2r)の整数であり、
k’及びL’は、各々独立して0~(3+2r)の整数である。)
【0109】
上記式(1-1’)で表される化合物は、特に限定されないが、例えば下記式(1-2’)で例示される。
【0110】
【化41】
【0111】
上記式(1-2’)は、エッチング耐性が高く、屈折率が高く、透過率が高い。
【0112】
[式(2)で表される化合物]
本実施形態の化合物は、下記式(2)で表されることが好ましい。
【化42】
(式(2)中、
は、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~40のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、ニトロ基、アミノ基、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、ここで、前記アルキル基、前記アルケニル基、前記アルキニル基及び前記アリール基は、エーテル結合、ケトン結合又はエステル結合を含んでいてもよく、ここで、Rの少なくとも1つはチオール基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
【0113】
また、式(2)で表される化合物は、特に限定されるものではないが、着色性の抑制や化合物の分解性の抑制の観点から、下記(a)~(e)の1つ以上を満たすことが好ましい。
(a):式(2)中、[ ]内の構造式におけるrが同じであること、すなわち、[ ]内の構造式における2つのアリール構造で示される部位が同じ構造であること。
(b):式(2)中、[ ]内の構造式において各アリール構造で示される部位に結合するRが、同一のものであること、更には各アリール構造で示される部位における結合部位が同一であること。
(c):式(2)において、Nが1~2であること、更には1であること。
(d):式(2)において、Rが、炭素数1~30の直鎖状のアルキル基、又はフェニル基であること、更にはメチル基又はフェニル基であること。
(e):式(2)において、Rが、炭素数1~60のN価の基であること。
【0114】
前記式(2)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(2-1)で表される化合物が好ましい。
【化43】
(式(2-1)中、
Y’は、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基であり、
は、炭素数1~60のN価の基又は単結合であり、
T’は、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
ここで、RT’の少なくとも1つはチオール基であり、
Xは、酸素原子、硫黄原子又は無架橋であることを表し、
mは、各々独立して0~9の整数であり、ここで、mの少なくとも1つは1~9の整数であり、
Nは、1~4の整数であり、ここで、Nが2以上の整数の場合、N個の[ ]内の構造式は同一であっても異なっていてもよく、
rは、各々独立して0~2の整数である。)
【0115】
以下、式(3)で表される化合物及び式(4)で表される化合物を中心として、式(2)で表される化合物及び式(2-1)で表される化合物について説明する。但し、式(2)で表される化合物及び式(2-1)で表される化合物は、下記で説明される化合物に限定されるものではない。
【0116】
[式(3)で表される化合物]
本実施形態の化合物は、下記式(3)で表されることが好ましい。本実施形態の化合物が下記構造を有すると、さらに耐熱性が高くなり、溶媒溶解性も高くなる。
【0117】
【化44】
【0118】
前記(3)式中、Rは、前記Rと同義であり、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基である。Rが、置換基を有していてもよい炭素数1~30のアルキル基、又は置換基を有していてもよい炭素数6~30のアリール基であると、本化合物の酸化分解が抑制されて着色が抑えられ、耐熱性が高くなり、溶媒溶解性が向上する。
は炭素数1~60のn価の基又は単結合であり、このRを介して各々の芳香環が結合している。
~Rは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基である。但し、式(3)中、R~Rの少なくとも1つは、チオール基である。
及びmは、各々独立して、0~8の整数であり、m及びmは、各々独立して、0~9の整数である。但し、m、m、m及びmは同時に0となることはない。
nは1~4の整数である。
~pは各々独立して0~2の整数である。なお、p~pが0の場合には式(3)でナフタレン構造で示される部位は、ベンゼン構造を示し、p~pが1の場合にはナフタレン構造を示し、p~pが2の場合にはアントラセン又はフェナントレン等の三環構造を示す。
nは前記Nと同義であり、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
【0119】
なお、前記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~60のアルキレン基、n=3のときには、炭素数2~60のアルカントリイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6~60の芳香族基を有していてもよい。
【0120】
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子若しくは炭素数6~60の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
【0121】
前記式(3)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に3級炭素又は4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。結晶性抑制の観点では、4級炭素を有していることが好ましい。
【0122】
また、前記式(3)で表される化合物は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、本実施形態のリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与える。
【0123】
さらに、式(3)で表される化合物は、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は、埋め込み及び平坦化特性が比較的に有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。
【0124】
式(3)で表される化合物は、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路、液晶ディスプレイ、有機エレクトロルミネッセンス(EL)ディスプレイ、光半導体(LED)素子、固体撮像素子、有機薄膜太陽電池、色素増感太陽電池、及び有機薄膜トランジスタ(TFT)として有用である。特に高屈折率が求められている固体撮像素子の部材である、フォトダイオード上の埋め込み膜及び平坦化膜、カラーフィルター前後の平坦化膜、マイクロレンズ、マイクロレンズ上の平坦化膜及びコンフォーマル膜として好適に利用できる。
【0125】
前記式(3)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(3-1)で表される化合物であることが好ましい。
【化45】
【0126】
式(3-1)中、
、R、R、R、n、p~p、m及びmは、式(3)で説明したものと同義であり、
及びRは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、
及びmは、各々独立して0~7の整数である。
【0127】
また、前記式(3-1)で表される化合物は、更なる架橋のし易さと有機溶媒への溶解性の観点から、下記式(3-2)で表される化合物が好ましい。
【0128】
【化46】
【0129】
式(3-2)中、
、R、n、p~pは、式(3)で説明したものと同義であり、R、R、m及びmは、式(3-1)で説明したものと同義であり、
及びRは、前記R及びRと同義であり、
及びmは、各々独立して、0~8の整数である。
【0130】
また、原料の供給性の観点から、下記式(3a)で表される化合物であることが好ましい。
【0131】
【化47】
【0132】
前記式(3a)中、R~R、m~m及びnは、前記式(3)で説明したものと同義である。
【0133】
前記式(3a)で表される化合物は、有機溶媒への溶解性の観点から、下記式(3b)で表される化合物であることがより好ましい。
【0134】
【化48】
【0135】
前記式(3b)中、R、R、R、R、m、m、及びnは前記式(3)で説明したものと同義であり、R、R、m、及びmは前記式(3-1)で説明したものと同義である。
【0136】
前記式(3a)で表される化合物は、反応性の観点から、下記式(3b’)で表される化合物であることがさらに好ましい。
【化49】
【0137】
前記式(3b’)中、R、R、R、R、m、m、及びnは前記式(3)で説明したものと同義であり、R、R、m、及びmは前記式(3-1)で説明したものと同義である。
【0138】
前記式(3b)で表される化合物は、有機溶媒への溶解性の観点から、下記式(3c)で表される化合物であることがさらに好ましい。
【0139】
【化50】
【0140】
前記式(3c)中、R、R、及びnは式(3)で説明したものと同義であり、R、R、m、及びmは式(3-1)で説明したものと同義であり、R、R、m、及びmは式(3-2)で説明したものと同義である。
【0141】
前記式(3b’)で表される化合物は、反応性の観点から、下記式(3c’)で表される化合物であることがさらに好ましい。
【0142】
【化51】
【0143】
前記式(3c’)中、R、R、及びnは式(3)で説明したものと同義であり、R、R、m、及びmは式(3-1)で説明したものと同義であり、R、R、m、及びmは式(3-2)で説明したものと同義である。
【0144】
前記式(3)で表される化合物は、有機溶媒へのさらなる溶解性の観点から、下記式(3d-1)又は(3d-2)で表される化合物であることが特に好ましい。
【化52】
【0145】
前記式(3d-1)中、R、R、及びnは式(3)で説明したものと同義であり、R4’及びR5’は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、又はハロゲン原子である。m4’及びm5’は、0~8の整数であり、m10’及びm11’は1~9の整数であり、m4’+m10’及びm5’+m11’は各々独立して1~9の整数である。
としては、例えば、水素原子、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基が挙げられる。
4’及びR5’としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R、R4’、R5’の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0146】
【化53】
【0147】
前記式(3d-2)中、R、R4’、R5’、m4’、m5’、m10’、及びm11’は前記式(3d-1)で説明したものと同義であり、R1’は、炭素数1~60の1価の基である。
【0148】
式(3)で表される化合物としては、以下の式で表される化合物を用いることができる。
【0149】
【化54】
【0150】
前記化合物中、R14は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、m14は0~5の整数であり、m14’は0~4の整数であり、m14’’は0~3の整数である。
14としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0151】
式(3)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
【0152】
【化55】
【0153】
【化56】
【0154】
前記化学式中、R15は、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基である。
15としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R15の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0155】
式(3)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
【0156】
【化57】
【0157】
前記化合物中、R16は、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30の2価のアリール基、置換基を有していてもよい炭素数2~30の2価のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基である。
16としては、例えば、メチレン基、エチレン基、プロペン基、ブテン基、ペンテン基、ヘキセン基、ヘプテン基、オクテン基、ノネン基、デセン基、ウンデセン基、ドデセン基、トリアコンテン基、シクロプロペン基、シクロブテン基、シクロペンテン基、シクロヘキセン基、シクロヘプテン基、シクロオクテン基、シクロノネン基、シクロデセン基、シクロウンデセン基、シクロドデセン基、シクロトリアコンテン基、2価のノルボルニル基、2価のアダマンチル基、2価のフェニル基、2価のナフチル基、2価のアントラセニル基、2価のピレン基、2価のビフェニル基、2価のヘプタセニル基、2価のビニル基、2価のアリル基、2価のトリアコンテニル基が挙げられる。
前記R16の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0158】
式(3)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
【0159】
【化58】
【0160】
【化59】
【0161】
【化60】
【0162】
前記式化合物中、R14は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、m14は0~5の整数であり、m14’は0~4の整数である。
14は、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、チオール基が挙げられる。
前記R14の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0163】
式(3)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
【0164】
【化61】
【0165】
【化62】
【0166】
【化63】
【0167】
【化64】
【0168】
【化65】
【0169】
式(3)で表される化合物としては、更に以下の式で表される化合物を用いることができる。
【0170】
【化66】
【0171】
原料の入手性の観点から、以下に表される化合物が更に好ましい。
【0172】
【化67】
【0173】
【化68】
【0174】
【化69】
【0175】
【化70】
【0176】
【化71】
【0177】
【化72】
【0178】
【化73】
【0179】
【化74】
【0180】
【化75】
【0181】
【化76】
【0182】
【化77】
【0183】
【化78】
【0184】
【化79】
【0185】
【化80】
【0186】
【化81】
【0187】
[式(4)で表される化合物]
本実施形態の化合物は、下記式(4)で表されることが好ましい。本実施形態の化合物が下記構造を有すると、さらに耐熱性及び溶媒溶解性が高くなる。
【0188】
【化82】
【0189】
式(4)中、R0Aは、前記Rと同義であり、水素原子、置換基を有していてもよい炭素数1~30のアルキル基又は置換基を有していてもよい炭素数6~30のアリール基である。
1Aは、炭素数1~60のn価の基又は単結合であり、
2Aは、各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、シアノ基、チオール基、水酸基又は水酸基の水素原子が酸解離性基で置換された基であり、
式(4)中、R2Aの少なくとも1つはチオール基である。
は1~4の整数であり、ここで、式(4)中、nが2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
は、各々独立して、酸素原子、硫黄原子又は無架橋であることを表す。ここで、Xが酸素原子又は硫黄原子である場合、高い耐熱性を発現する傾向にあるため好ましく、酸素原子であることがより好ましい。Xは、溶解性の観点からは、無架橋であることが好ましい。
2Aは、各々独立して、0~6の整数である。但し、少なくとも1つのm2Aは1~6の整数である。
は、各々独立して、0又は1である。なお、qが0の場合には式(4)でナフタレン構造で示される部位は、ベンゼン構造を示し、qが1の場合にはナフタレン構造を示す。
【0190】
なお、前記n価の基とは、n=1のときには、炭素数1~60のアルキル基、n=2のときには、炭素数1~30のアルキレン基、n=3のときには、炭素数2~60のアルカントリイル基、n=4のときには、炭素数3~60のアルカンテトライル基のことを示す。前記n価の基としては、例えば、直鎖状炭化水素基、分岐状炭化水素基又は脂環式炭化水素基を有するもの等が挙げられる。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。また、前記n価の基は、炭素数6~60の芳香族基を有していてもよい。
【0191】
また、前記n価の炭化水素基は、脂環式炭化水素基、二重結合、ヘテロ原子又は炭素数6~60若しくは6~30の芳香族基を有していてもよい。ここで、前記脂環式炭化水素基については、有橋脂環式炭化水素基も含まれる。
【0192】
前記式(4)で表される化合物は、比較的に低分子量ながらも、その構造の剛直さにより高い耐熱性を有するので、高温ベーク条件でも使用可能である。また、分子中に4級炭素を有しており、結晶性が抑制され、リソグラフィー用膜製造に使用できるリソグラフィー用膜形成組成物として好適に使用される。
【0193】
また、前記式(4)で表される化合物は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であるため、本実施形態のリソグラフィー用レジスト形成組成物は良好なレジストパターン形状を与える。
【0194】
さらに、前記式(4)で表される化合物は、比較的に低分子量で低粘度であることから、段差を有する基板(特に、微細なスペースやホールパターン等)であっても、その段差の隅々まで均一に充填させつつ、膜の平坦性を高めることが容易であり、その結果、これを用いたリソグラフィー用下層膜形成組成物は埋め込み及び平坦化特性が比較的に有利に高められ得る。また、比較的に高い炭素濃度を有する化合物であることから、高いエッチング耐性をも付与される。
【0195】
前記式(4)で表される化合物は、屈折率が高く、また低温から高温までの広範囲の熱処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。光学部品は、フィルム状、シート状で使われるほか、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路として有用である。
【0196】
前記式(4)で表される化合物は、架橋のし易さと有機溶媒への溶解性の観点から、下記式(4-1)で表される化合物が好ましい。
【化83】
【0197】
式(4-1)中、R0A、R1A、n、q及びXは、前記式(4)で説明したものと同義である。
3Aは、各々独立して、ハロゲン原子、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、又は置換基を有していてもよい炭素数1~30のアルコキシ基である。
6Aは、各々独立して、0~5の整数である。
【0198】
また、原料の供給性の観点から、下記式(4a)で表される化合物であることが好ましい。
【0199】
【化84】
【0200】
前記式(4a)中、X、R0A~R2A、m2A及びnは、前記式(4)で説明したものと同義である。
【0201】
また、有機溶媒への溶解性の観点から、下記式(4b)で表される化合物であることがより好ましい。
【0202】
【化85】
【0203】
前記式(4b)中、X、R0A、R1A、及びnは、前記式(4)で説明したものと同義であり、R3A及びm6Aは、前記式(4-1)で説明したものと同義である。
【0204】
また、有機溶媒への溶解性の観点から、下記式(4c)で表される化合物であることがさらに好ましい。
【0205】
【化86】
【0206】
前記式(4c)中、X、R0A、R1A、及びnは、前記式(4)で説明したものと同義であり、R3A及びm6Aは、前記式(4-1)で説明したものと同義である。
【0207】
前記式(4)で表される化合物は、有機溶媒へのさらなる溶解性の観点から、下記式(4d-1)又は(4d-2)で表される化合物であることが特に好ましい。
【0208】
【化87】
【0209】
前記式(4d-1)中、R0A、R1A、n、q、及びXは前記式(4)で説明したものと同義であり、R3A’は各々独立して、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、又はハロゲン原子である。m3A’は、0~6の整数であり、m4A’は1~7の整数であり、m3A’+m4A’は各々独立して1~7の整数である。
0Aとしては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基が挙げられる。
3A’としては、例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリアコンチル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、シクロウンデシル基、シクロドデシル基、シクロトリアコンチル基、ノルボルニル基、アダマンチル基、フェニル基、ナフチル基、アントラセニル基、ピレニル基、ビフェニル基、ヘプタセニル基、ビニル基、アリル基、トリアコンテニル基、メトキシ基、エトキシ基、トリアコンチキシ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
前記R0A、R3A’の各例示は、異性体を含んでいる。例えば、ブチル基は、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を含んでいる。
【0210】
【化88】
【0211】
前記式(4d-2)中、R0A、q、及びXは前記式(4)で説明したものと同義であり、R3A’、m3A’、及びm4A’は前記式(4d-1)で説明したものと同義であり、R1A’は、炭素数1~60の1価の基である。
【0212】
前記式(4)で表される化合物は、原料入手性の観点から以下の構造が好ましい。
【0213】
【化89】
【0214】
【化90】
【0215】
前記化合物中、R0Aは前記式(4)で説明したものと同義であり、R1A’は前記式(4d-2)で説明したものと同義である。
前記化合物は、キサンテン骨格又はチオキサンテン骨格を有する方が耐熱性の観点から好ましい。
【0216】
式(4)で表される化合物は、エッチング耐性の観点から、以下の構造を有することが好ましい。
【0217】
【化91】
【0218】
【化92】
【0219】
前記化合物中、R0A、は前記式(4)で説明したものと同義であり、R1A’は前記式(4d-2)で説明したものと同義である。
前記化合物は、ジベンゾキサンテン骨格を有する方が耐熱性の観点から好ましい。
【0220】
式(4)で表される化合物としては、例えば以下の構造を有するものが挙げられる。
【化93】
【0221】
【化94】
【0222】
【化95】
【0223】
【化96】
【0224】
【化97】
【0225】
【化98】
【0226】
【化99】
【0227】
【化100】
【0228】
【化101】
【0229】
【化102】
【0230】
【化103】
【0231】
【化104】
【0232】
【化105】
【0233】
【化106】
【0234】
【化107】
【0235】
【化108】
【0236】
【化109】
【0237】
【化110】
【0238】
【化111】
【0239】
【化112】
【0240】
【化113】
【0241】
【化114】
【0242】
【化115】
【0243】
【化116】
【0244】
【化117】
【0245】
【化118】
【0246】
【化119】
【0247】
前記化合物中、R14は、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基であり、m14は0~5の整数であり、m14’は0~4の整数である。
15は、置換基を有していてもよい炭素数1~30のアルキル基、置換基を有していてもよい炭素数6~30のアリール基、置換基を有していてもよい炭素数2~30のアルケニル基、置換基を有していてもよい炭素数2~30のアルキニル基、置換基を有していてもよい炭素数1~30のアルコキシ基、ハロゲン原子、又はチオール基である。
16は、置換基を有していてもよい炭素数1~30の直鎖状、分岐状若しくは環状のアルキレン基、置換基を有していてもよい炭素数6~30の2価のアリール基、置換基を有していてもよい炭素数2~30の2価のアルケニル基、又は置換基を有していてもよい炭素数2~30のアルキニル基である。
【0248】
前記化合物は、キサンテン骨格を有する方が耐熱性の観点から好ましい。
【0249】
[式(1)で表される化合物の製造方法]
本実施形態における式(1)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。
例えば、常圧下、フェノール類と、対応するアルデヒド類又はケトン類とを酸触媒下にて重縮合反応させることによりポリフェノール化合物を得ることができる。硫黄原子を含むフェノール類及び/又は硫黄原子を含むアルデヒド類又はケトン類を用いることが好ましい。また、必要に応じて、加圧下で行うこともできる。
【0250】
前記フェノール類としては、例えば、フェノール、クレゾール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン、ピロガロール、フェニルフェノール、ビフェノール、メチルビフェノール、メトキシビフェノール、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール、ナフタレントリオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらの中でも、原料の安定供給性の観点から、フェノール、クレゾール、カテコール、レゾルシノール、ハイドロキノン、フェニルフェノール、ビフェノール、ナフトール、ナフタレンジオール、ナフタレントリオールを用いることが好ましく、高耐熱性の観点から、フェニルフェノール、ビフェノール、ナフトール、ナフタレンジオール、ナフタレントリオールを用いることがより好ましい。
【0251】
前記アルデヒド類としては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒド等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、高い耐熱性を付与する観点から、ベンズアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒドを用いることが好ましく、エッチング耐性を向上させる観点から、ベンズアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、シクロヘキシルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒドを用いることがより好ましく、屈折率を向上させる観点から硫黄原子の導入した、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒドがさらに好ましい。
【0252】
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、シクロブタノン、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、メルカプト安息香酸、メチルチオアセトフェノン、アセチルチオフェン、アセチルベンゾチオフェン等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらの中でも、高い耐熱性を付与する観点から、シクロペンタノン、シクロヘキサノン、ノルボルナノン、トリシクロヘキサノン、トリシクロデカノン、アダマンタノン、フルオレノン、ベンゾフルオレノン、アセナフテンキノン、アセナフテノン、アントラキノン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、メルカプト安息香酸、メチルチオアセトフェノン、アセチルチオフェン、アセチルベンゾチオフェンを用いることが好ましく、エッチング耐性を向上させる観点から、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、メルカプト安息香酸、メチルチオアセトフェノン、アセチルチオフェン、アセチルベンゾチオフェンを用いることがより好ましく、屈折率を向上させる観点から硫黄原子の導入した、メルカプト安息香酸、メチルチオアセトフェノン、アセチルチオフェン、アセチルベンゾチオフェンがさらに好ましい。
【0253】
アルデヒド類又はケトン類としては、高い耐熱性及び高いエッチング耐性を兼備するという観点から、芳香環を有するアルデヒド又は芳香族を有するケトンを用いることが好ましい。
【0254】
上記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸、有機酸、ルイス酸、固体酸等が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることがより好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
【0255】
上記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるアルデヒド類又はケトン類と、フェノール類との反応が進行するものであれば、特に限定されず、公知のものの中から適宜選択して用いることができる。反応溶媒としては、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
【0256】
また、これらの反応溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、上記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
【0257】
ポリフェノール化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、フェノール類、アルデヒド類又はケトン類、及び触媒を一括で仕込む方法や、フェノール類やアルデヒド類又はケトン類を触媒存在下で滴下していく方法が挙げられる。重縮合反応終了後、得られた化合物の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を単離することができる。
【0258】
好ましい反応条件としては、アルデヒド類又はケトン類1モルに対し、フェノール類を1モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。
【0259】
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトグラフにより副生成物と分離精製し、溶媒留去、濾過、及び乾燥を行って目的物である前記式(1)で表される化合物を得ることができる。
【0260】
[式(3)で表される化合物の製造方法]
本実施形態で使用される式(3)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、(i)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させて得られるポリフェノールの水酸基を、J. Am. Chem. Soc., Vol. 122, No. 28, 2000に記載の方法でチオール基に置換する方法、(ii)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換反応させて得られるポリフェノールの水酸基を、J. Am. Chem. Soc., Vol. 122, No. 28, 2000に記載の方法でチオール基に置換する方法がある。
【0261】
また(i)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては(a)有機溶媒中で行う方法、(b)水溶媒中で行う方法、(c)無溶媒で行う方法等がある。
【0262】
(i)(a)有機溶媒中で、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、常圧下、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによって、前記式(3)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。
【0263】
(i)(b)水溶媒中、又は(c)無溶媒で、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するケトン類とを酸及びメルカプト触媒下にて重縮合反応させることによって、前記式(3)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、本反応は、減圧下、常圧、又は加圧下で行うことができる。
【0264】
前記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
【0265】
前記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0266】
前記ビアントラセンオール類としては、例えば、ビアントラセンオール、メチルビアントラセンオール、メトキシビアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビアントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0267】
前記ケトン類としては、例えば、アセトン、メチルエチルケトン、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高いエッチング耐性を与える点でより好ましい。
ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備し好ましい。
【0268】
前記反応に用いる酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸、有機酸、ルイス酸及び固体酸が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸や、シュウ酸、マロン酸、コハク酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸や、塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、又はケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらのなかでも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
【0269】
前記反応に用いるメルカプト触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような触媒としては、アルキルチオール類やメルカプトカルボン酸類が広く知られており、例えばアルキルチオールとしては炭素数1~12のアルキルメルカプタン、好ましくはn-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタンが挙げられ、メルカプトカルボン酸としては2-メルカプトプロピオン酸、3-メルカプトプロピオン酸が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタンが好ましい。なお、メルカプト触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、メルカプト触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
【0270】
前記反応の際には、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類と、ビフェノール類、ビナフトール類又はビアントラセンジオールとの反応が進行するものであれば、特に限定されず、公知のものから適宜選択して用いることができる。例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
【0271】
また、これらの溶媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、前記反応における反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。
【0272】
本実施形態の式(3)で表される化合物を得るためには、反応温度は高い方が好ましく、具体的には60~200℃の範囲が好ましい。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、ビフェノール類、ビナフトール類又はビアントラセンジオール、ケトン類、触媒を一括で仕込む方法や、ビフェノール類、ビナフトール類又はビアントラセンジオールやケトン類を触媒存在下で滴下していく方法がある。重縮合反応終了後、得られた化合物の単離は、常法にしたがって行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物である化合物を得ることができる。
【0273】
好ましい反応条件としては、ケトン類1モルに対し、ビフェノール類、ビナフトール類又はビアントラセンジオールを1.0モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、50~150℃で20分~100時間程度反応させることが挙げられる。
【0274】
反応終了後、公知の方法により目的物を単離することができる。例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離させ、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的物である前記式(3)で表される化合物を得ることができる。
【0275】
(ii)ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法としては、ビフェノール類、ビナフトール類又はビアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合反応させることによって、前記式(3)で表される化合物のRを水素原子に置換した化合物(A)を得る。保護基導入剤によって化合物(A)の水酸基を保護基に置換した化合物(B)としたのち、前記式(3)で表される化合物のR部分に相当する水素原子を、塩基触媒下にてアルキル化剤と反応させることによって、前記式(3)で表される化合物のR部分に相当するアルキル基を導入する。更にその後に、前記化合物(B)で水酸基を置換した保護基を脱保護することによって前記式(3)が得られる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。前記アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、塩化アルキル、臭化アルキル、ヨウ化アルキル等が挙げられる。
【0276】
前記製造方法において、化合物(B)の前記式(3)で表される化合物のR部分に相当する水素原子を、前記式(3)で表される化合物のR部分に相当するアルキル基を導入する方法としては、前記製造方法の塩基触媒下にてアルキル化剤と反応させる方法にかえて、化合物(B)にハロゲン化剤を反応させて、前記式(3)で表される化合物のR部分に相当する水素原子をハロゲン原子に置換した後に、アルキル化剤と反応させることにより、前記式(3)を得ることもできる。アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、グリニャール試薬、アルキルリチウム等が挙げられる。
【0277】
前記ビフェノール類としては、例えば、ビフェノール、メチルビフェノール、メトキシビフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、ビフェノールを用いることが原料の安定供給性の点でより好ましい。
【0278】
前記ビナフトール類としては、例えば、ビナフトール、メチルビナフトール、メトキシビナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0279】
前記ビアントラセンオール類としては、例えば、ビアントラセンオール、メチルビアントラセンオール、メトキシビアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ビアントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0280】
前記アルデヒド類としては、例えば、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。
【0281】
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入する方法は公知である。例えば、以下のようにして、前記化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入することができる。酸解離性基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、酸クロライド、酸無水物、ジカーボネート等の活性カルボン酸誘導体化合物、アルキルハライド、ビニルアルキルエーテル、ジヒドロピラン、ハロカルボン酸アルキルエステル等が挙げられるが特に限定はされない。
【0282】
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に前記化合物を溶解又は懸濁させる。続いて、エチルビニルエーテル等のビニルアルキルエーテル又はジヒドロピランを加え、ピリジニウム p-トルエンスルホナート等の酸触媒の存在下、常圧で、20~60℃、6~72時間反応させる。反応液をアルカリ化合物で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
【0283】
また、例えば、アセトン、THF、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に、水酸基を有する前記化合物を溶解又は懸濁させる。続いて、エチルクロロメチルエーテル等のアルキルハライド又はブロモ酢酸メチルアダマンチル等のハロカルボン酸アルキルエステルを加え、炭酸カリウム等のアルカリ触媒の存在下、常圧で、20~110℃、6~72時間反応させる。反応液を塩酸等の酸で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
なお、酸解離性基を導入するタイミングについては、ビナフトール類とケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行ったのちに行ってもよい。
【0284】
本実施形態において、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性基は、更に高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
【0285】
[式(4)で表される化合物の製造方法]
本実施形態で使用される式(4)で表される化合物は、公知の手法を応用して適宜合成することができ、その合成手法は特に限定されない。例えば、(i)フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させて得られるポリフェノールのフェノール性水酸基を、J. Am. Chem. Soc., Vol. 122, No. 28, 2000に記載の方法でチオール基に置換する方法、(ii)フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換させて得られるポリフェノールのフェノール性水酸基を、J. Am. Chem. Soc., Vol. 122, No. 28, 2000記載にの方法でチオール基に置換する方法がある。
【0286】
また(i)フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては(a)有機溶媒中で行う方法、(b)水溶媒中で行う方法、(c)無溶媒で行う方法等がある。
【0287】
(i)(a)有機溶媒中で、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、常圧下、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させることによって、前記式(4)で表される化合物を得ることができる。また、必要に応じて、加圧下で行うこともできる。またその化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。
【0288】
(i)(b)水溶媒中、又は(c)無溶媒で、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸触媒下にて重縮合反応させる方法としては、フェノール類、ナフトール類又はアントラセンオールと、対応するケトン類とを酸及びメルカプト触媒下にて重縮合反応させることによって、前記式(4)で表される化合物を得ることができる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、本反応は、減圧下、常圧、又は加圧下で行うことができる。
【0289】
前記ナフトール類としては、特に限定されず、例えば、ナフトール、メチルナフトール、メトキシナフトール、ナフタレンジオール等が挙げられ、ナフタレンジオールを用いることがキサンテン構造を容易に作ることができる点でより好ましい。
【0290】
前記フェノール類としては、特に限定されず、例えば、フェノール、メチルフェノール、メトキシベンゼン、カテコール、レゾルシノール、ハイドロキノン、トリメチルハイドロキノン等が挙げられる。
【0291】
前記アントラセンオール類としては、例えば、アントラセンオール、メチルアントラセンオール、メトキシアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0292】
前記ケトン類としては、例えば、アセトン、メチルエチルケトンアセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高い耐熱性を与える点で好ましく、アセトフェノン、ジアセチルベンゼン、トリアセチルベンゼン、アセトナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニル、ベンゾフェノン、ジフェニルカルボニルベンゼン、トリフェニルカルボニルベンゼン、ベンゾナフトン、ジフェニルカルボニルナフタレン、フェニルカルボニルビフェニル、ジフェニルカルボニルビフェニルを用いることが、高いエッチング耐性を与える点でより好ましい。
ケトン類として、芳香環を有するケトンを用いることが、高い耐熱性及び高いエッチング耐性を兼備し好ましい。
【0293】
前記酸触媒は、特に限定されず、周知の無機酸、有機酸、ルイス酸、及び個体酸より適宜選択することができる。例えば、塩酸、硫酸、リン酸、臭化水素酸、ふっ酸等の無機酸;シュウ酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸;又はケイタングステン酸、リンタングステン酸、ケイモリブデン酸若しくはリンモリブデン酸等の固体酸が挙げられる。入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸を用いることが好ましい。また酸触媒については、1種類又は2種類以上を用いることができる。また、酸触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
【0294】
前記反応に用いるメルカプト触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような触媒としては、アルキルチオール類やメルカプトカルボン酸類が広く知られており、例えばアルキルチオールとしては炭素数1~12のアルキルメルカプタン、好ましくはn-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタンが挙げられ、メルカプトカルボン酸としては2-メルカプトプロピオン酸、3-メルカプトプロピオン酸が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタンが好ましい。なお、メルカプト触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。また、メルカプト触媒の使用量は、使用する原料及び使用する触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。
【0295】
前記式(4)で表される化合物を製造する際、反応溶媒を用いてもよい。反応溶媒としては、用いるケトン類とナフトール類等との反応が進行すれば特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒を用いることができる。前記溶媒の量は、特に限定されず、例えば、反応原料100質量部に対して0~2000質量部の範囲である。
前記ポリフェノール化合物を製造する際、反応温度は、特に限定されず、反応原料の反応性に応じて適宜選択することができるが、10~200℃の範囲であることが好ましい。本実施形態の式(4)で表される化合物を選択性良く合成するには、温度が低い方が効果が高く、10~60℃の範囲がより好ましい。
前記式(4)で表される化合物の製造方法は、特に限定されないが、例えば、ナフトール類等、ケトン類、触媒を一括で仕込む方法や、触媒存在下でナフトール類やケトン類を滴下していく方法がある。重縮合反応終了後、系内に存在する未反応原料、触媒等を除去するために、反応釜の温度を130~230℃ にまで上昇させ、1~50mmHg程度で揮発分を除去することもできる。
【0296】
前記式(4)で表される化合物を製造する際の原料の量は、特に限定されないが、例えば、ケトン類1モルに対し、ナフトール類等を2モル~過剰量、及び酸触媒を0.001~1モル使用し、常圧で、20~60℃で20分~100時間程度反応させることにより進行する。
【0297】
前記式(4)で表される化合物を製造する際、前記反応終了後、公知の方法により目的物を単離する。目的物の単離方法は、特に限定されず、例えば、反応液を濃縮し、純水を加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って分離、得られた固形物を濾過し、乾燥させた後、カラムクロマトにより、副生成物と分離精製し、溶媒留去、濾過、乾燥を行って目的化合物を得る方法が挙げられる。
【0298】
(ii)フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合し、得られたトリアリールメタン、又はキサンテン類のメチン部位を置換する方法としては、フェノール類、ナフトール類又はアントラセンオールと、対応するアルデヒド類とを酸触媒下にて重縮合反応させることによって、前記式(4)で表される化合物のRを水素原子に置換した化合物(A’)を得る。保護基導入剤によって化合物(A’)の水酸基を保護基に置換した化合物(B’)としたのち、前記式(4)で表される化合物のR部分に相当する水素原子を、塩基触媒下にてアルキル化剤と反応させることによって、前記式(4)で表される化合物のR部分に相当するアルキル基を導入する。更にその後に、前記化合物(B’)で水酸基を置換した保護基を脱保護することによって前記式(4)が得られる。また、その化合物の少なくとも1つのフェノール性水酸基に公知の方法により酸解離性基を導入できる。また、必要に応じて、加圧下で行うこともできる。前記アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、塩化アルキル、臭化アルキル、ヨウ化アルキル等が挙げられる。
【0299】
前記製造方法において、化合物(B’)の前記式(4)で表される化合物のR部分に相当する水素原子を、前記式(4)で表される化合物のR部分に相当するアルキル基を導入する方法としては、前記製造方法の塩基触媒下にてアルキル化剤と反応させる方法にかえて、化合物(B’)にハロゲン化剤を反応させて、前記式(4)で表される化合物のR部分に相当する水素原子をハロゲン原子に置換した後に、アルキル化剤と反応させることにより、前記式(4)を得ることもできる。アルキル化剤としては、公知のものから適宜選択して用いることができ、特に限定されない。例えば、グリニャール試薬、アルキルリチウム等が挙げられる。
【0300】
前記フェノール類としては、例えば、フェノール、メチルフェノール、メトキシフェノール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で、又は2種以上を組み合わせて使用することができる。これらのなかでも、フェノールを用いることが原料の安定供給性の点でより好ましい。
【0301】
前記ナフトール類としては、例えば、ナフトール、メチルナフトール、メトキシナフトール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、ナフトールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0302】
前記アントラセンオール類としては、例えば、アントラセンオール、メチルアントラセンオール、メトキシアントラセンオール等が挙げられるが、これらに特に限定されない。これらは、1種を単独で又は2種以上を組み合わせて使用することができる。これらのなかでも、アントラセンオールを用いることが、炭素原子濃度を上げ、耐熱性を向上させる点でより好ましい。
【0303】
前記アルデヒド類としては、例えば、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール等が挙げられるが、これらに特に限定されない。
【0304】
ポリフェノール化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入する方法は公知である。例えば、以下のようにして、前記化合物の少なくとも1つのフェノール性水酸基に酸解離性基を導入することができる。酸解離性基を導入するための化合物は、公知の方法で合成又は容易に入手でき、例えば、酸クロライド、酸無水物、ジカーボネート等の活性カルボン酸誘導体化合物、アルキルハライド、ビニルアルキルエーテル、ジヒドロピラン、ハロカルボン酸アルキルエステル等が挙げられるが特に限定はされない。
【0305】
例えば、アセトン、テトラヒドロフラン(THF)、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に前記化合物を溶解又は懸濁させる。続いて、エチルビニルエーテル等のビニルアルキルエーテル又はジヒドロピランを加え、ピリジニウム p-トルエンスルホナート等の酸触媒の存在下、常圧で、20~60℃、6~72時間反応させる。反応液をアルカリ化合物で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
【0306】
また、例えば、アセトン、THF、プロピレングリコールモノメチルエーテルアセテート等の非プロトン性溶媒に、水酸基を有する前記化合物を溶解又は懸濁させる。続いて、エチルクロロメチルエーテル等のアルキルハライド又はブロモ酢酸メチルアダマンチル等のハロカルボン酸アルキルエステルを加え、炭酸カリウム等のアルカリ触媒の存在下、常圧で、20~110℃、6~72時間反応させる。反応液を塩酸等の酸で中和し、蒸留水に加え白色固体を析出させた後、分離した白色固体を蒸留水で洗浄し、乾燥することにより、水酸基の水素原子が酸解離性基に置換された化合物を得ることができる。
なお、酸解離性基を導入するタイミングについては、ナフトール類とケトン類との縮合反応後のみならず、縮合反応の前段階でもよい。また、後述する樹脂の製造を行ったのちに行ってもよい。
【0307】
本実施形態において、酸解離性基とは、酸の存在下で開裂して、アルカリ可溶性基等の溶解性を変化させる官能基を生じる特性基をいう。アルカリ可溶性基としては、フェノール性水酸基、カルボキシル基、スルホン酸基、ヘキサフルオロイソプロパノール基等が挙げられ、フェノール性水酸基及びカルボキシル基が好ましく、フェノール性水酸基が特に好ましい。前記酸解離性基は、更に高感度・高解像度なパターン形成を可能にするために、酸の存在下で連鎖的に開裂反応を起こす性質を有することが好ましい。
【0308】
[式(1)で表される化合物を構成単位として含む樹脂]
前記式(1)で表される化合物は、リソグラフィー用膜形成や光学部品形成に用いられる組成物(以下、単に「組成物」ともいう。)中で、そのまま使用することができる。また、前記式(1)で表される化合物を構成単位として含む樹脂を使用することもできる。樹脂は、例えば、前記式(1)で表される化合物と架橋反応性のある化合物とを反応させて得られる。
【0309】
前記式(1)で表される化合物を構成単位として含む樹脂としては、例えば、以下の式(5)で表される構造を有するものが挙げられる。すなわち、本実施形態における組成物は、下記式(5)で表される構造を有する樹脂を含有するものであってもよい。
【0310】
【化120】
(式(5)中、
、R、A、R、X、及びNは、式(1)で定義されるとおりであり、
mは、各々独立して0~8の整数であり、
Lは、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルキレン基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数6~30のアリーレン基、置換基及び/若しくはヘテロ原子を有していてもよい炭素数1~30のアルコキシレン基、又は単結合であり、前記アルキレン基、前記アリーレン基、及び前記アルコキシレン基は、エーテル結合、チオエーテル結合、ケトン結合又はエステル結合を含んでいてもよく、
ここで、A、R、R、R、X、及びLから選ばれる少なくとも1つは硫黄原子を含み、
の少なくとも1つは、チオール基、水酸基、又はチオール基若しくは水酸基の水素原子が酸架橋性基若しくは酸解離性基で置換された基を含む。)
【0311】
アルキレン基、アリーレン基、及びアルコキシレン基に対する置換基としては、それぞれ、上記のとおり、アルキル基、アリール基、及びアルコキシ基に対する置換基として例示したものを挙げることができる。
【0312】
[式(3)で表される化合物を構成単位として含む樹脂]
前記式(3)で表される化合物は、リソグラフィー用膜形成組成物中で、そのまま使用することができる。また、前記式(3)で表される化合物を構成単位として含む樹脂を使用することもできる。例えば、前記式(3)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂を使用することもできる。
前記式(3)で表される化合物を構成単位として含む樹脂としては、例えば、以下の式(6)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(6)で表される構造を有する樹脂を含有するものであってもよい。
【0313】
【化121】
【0314】
式(6)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合である。R、R、R~R、m~m、p~p、及びnは前記式(3)におけるものと同義であり、但し、m~mは同時に0となることはなく、R~Rの少なくとも1つはチオール基である。
【0315】
[式(4)で表される化合物を構成単位として含む樹脂]
前記式(4)で表される化合物は、リソグラフィー用膜形成組成物中で、そのまま使用することができる。また、前記式(4)で表される化合物を構成単位として含む樹脂を使用することもできる。例えば、前記式(4)で表される化合物と架橋反応性のある化合物とを反応させて得られる樹脂を使用することもできる。
前記式(4)で表される化合物を構成単位として含む樹脂としては、例えば、以下の式(7)に表される構造を有するものが挙げられる。すなわち、本実施形態のリソグラフィー用膜形成組成物は、下記式(7)で表される構造を有する樹脂を含有するものであってもよい。
【0316】
【化122】
【0317】
式(7)中、Lは、置換基を有していてもよい炭素数1~30の直鎖状若しくは分岐状のアルキレン基又は単結合である。
0A、R1A、R2A、m2A、n、q及びXは前記式(4)におけるものと同義であり、
が2以上の整数の場合、n個の[ ]内の構造式は同一であっても異なっていてもよい。
但し、R2Aの少なくとも1つはチオール基である。
【0318】
[本実施形態の化合物を構成単位として含む樹脂の製造方法]
本実施形態における樹脂は、本実施形態の化合物を、架橋反応性のある化合物と反応させることにより得られる。架橋反応性のある化合物としては、本実施形態の化合物をオリゴマー化又はポリマー化し得るものである限り、公知のものを特に制限なく使用することができる。その具体例としては、例えば、アルデヒド、ケトン、カルボン酸、カルボン酸ハライド、ハロゲン含有化合物、アミノ化合物、イミノ化合物、イソシアネート、不飽和炭化水素基含有化合物等が挙げられるが、これらに特に限定されない。
【0319】
本実施形態の樹脂の具体例としては、例えば、上記式本実施形態の化合物と、架橋反応性のある化合物であるアルデヒド及び/又はケトンとの縮合反応等によってノボラック化した樹脂が挙げられる。
【0320】
ここで、本実施形態の化合物をノボラック化する際に用いるアルデヒドとしては、例えば、ホルムアルデヒド、トリオキサン、パラホルムアルデヒド、ベンズアルデヒド、アセトアルデヒド、プロピルアルデヒド、フェニルアセトアルデヒド、フェニルプロピルアルデヒド、ヒドロキシベンズアルデヒド、クロロベンズアルデヒド、ニトロベンズアルデヒド、メチルベンズアルデヒド、エチルベンズアルデヒド、ブチルベンズアルデヒド、ビフェニルアルデヒド、ナフトアルデヒド、アントラセンカルボアルデヒド、フェナントレンカルボアルデヒド、ピレンカルボアルデヒド、フルフラール、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒド等が挙げられるが、これらに特に限定されない。屈折率を向上させる観点から硫黄原子の導入した、メチルチオベンズアルデヒド、チオフェンカルボキシアルデヒド、メチルチオチオフェンカルボキシアルデヒド、ホルミルテトラチアフルバレン、ベンゾチオフェンカルボキシアルデヒドが好ましい。ケトンとしては、前記ケトン類が挙げられる。屈折率を向上させる観点から硫黄原子の導入した、メルカプト安息香酸、メチルチオアセトフェノン、アセチルチオフェン、アセチルベンゾチオフェンがさらに好ましい。これらの中でも、生産性の観点からホルムアルデヒドが好ましい。
【0321】
なお、これらのアルデヒド及び/又はケトン類は、1種を単独で又は2種以上を組み合わせて用いることができる。また、上記アルデヒド及び/又はケトン類の使用量は、特に限定されないが、本実施形態の化合物1モルに対して、0.2~5モルであることが好ましく、より好ましくは0.5~2モルである。
【0322】
本実施形態の化合物とアルデヒド及び/又はケトンとの縮合反応においては、酸触媒を用いることもできる。ここで使用する酸触媒については、公知のものから適宜選択して用いることができ、特に限定されない。このような酸触媒としては、無機酸有機酸、ルイス酸、固体酸等が広く知られており、例えば、塩酸、硫酸、リン酸、臭化水素酸、フッ酸等の無機酸;シュウ酸、マロン酸、こはく酸、アジピン酸、セバシン酸、クエン酸、フマル酸、マレイン酸、蟻酸、p-トルエンスルホン酸、メタンスルホン酸、トリフルオロ酢酸、ジクロロ酢酸、トリクロロ酢酸、トリフルオロメタンスルホン酸、ベンゼンスルホン酸、ナフタレンスルホン酸、ナフタレンジスルホン酸等の有機酸;塩化亜鉛、塩化アルミニウム、塩化鉄、三フッ化ホウ素等のルイス酸、或いはケイタングステン酸、リンタングステン酸、ケイモリブデン酸又はリンモリブデン酸等の固体酸等が挙げられるが、これらに特に限定されない。これらの中でも、製造上の観点から、有機酸及び固体酸が好ましく、入手の容易さや取り扱い易さ等の製造上の観点から、塩酸又は硫酸が好ましい。なお、酸触媒については、1種を単独で又は2種以上を組み合わせて用いることができる。
【0323】
また、酸触媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して、0.01~100質量部であることが好ましい。但し、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、5-ビニルノルボルナ-2-エン、α-ピネン、β-ピネン、リモネン等の非共役二重結合を有する化合物との共重合反応の場合は、必ずしもアルデヒド類は必要ない。
【0324】
本実施形態の化合物とアルデヒド及び/又はケトンとの縮合反応においては、反応溶媒を用いることもできる。この重縮合における反応溶媒としては、公知のものの中から適宜選択して用いることができ、特に限定されないが、例えば、水、メタノール、エタノール、プロパノール、ブタノール、テトラヒドロフラン、ジオキサン又はこれらの混合溶媒等が挙げられる。なお、溶媒は、1種を単独で或いは2種以上を組み合わせて用いることができる。
【0325】
また、これらの溶媒の使用量は、使用する原料及び触媒の種類、さらには反応条件等に応じて適宜設定でき、特に限定されないが、反応原料100質量部に対して0~2000質量部の範囲であることが好ましい。さらに、反応温度は、反応原料の反応性に応じて適宜選択することができ、特に限定されないが、通常10~200℃の範囲である。なお、反応方法は、公知の手法を適宜選択して用いることができ、特に限定されないが、本実施形態の化合物、アルデヒド及び/又はケトン類、並びに触媒を一括で仕込む方法や、本実施形態の化合物やアルデヒド及び/又はケトン類を触媒存在下で滴下していく方法が挙げられる。
【0326】
重縮合反応終了後、得られた樹脂の単離は、常法に従って行うことができ、特に限定されない。例えば、系内に存在する未反応原料や触媒等を除去するために、反応釜の温度を130~230℃にまで上昇させ、1~50mmHg程度で揮発分を除去する等の一般的手法を採ることにより、目的物であるノボラック化した樹脂を単離することができる。
【0327】
ここで、本実施形態の樹脂は、本実施形態の化合物の単独重合体であってもよいが、他のフェノール類との共重合体であってもよい。ここで共重合可能なフェノール類としては、例えば、フェノール、クレゾール、ジメチルフェノール、トリメチルフェノール、ブチルフェノール、フェニルフェノール、ジフェニルフェノール、ナフチルフェノール、レゾルシノール、メチルレゾルシノール、カテコール、ブチルカテコール、メトキシフェノール、メトキシフェノール、プロピルフェノール、ピロガロール、チモール、ビフェノール等が挙げられるが、これらに特に限定されない。
【0328】
また、本実施形態の樹脂は、上述した他のフェノール類以外に、重合可能なモノマーと共重合させたものであってもよい。かかる共重合モノマーとしては、例えば、ナフトール、メチルナフトール、メトキシナフトール、ジヒドロキシナフタレン、ナフタレントリオール、インデン、ヒドロキシインデン、ベンゾフラン、ヒドロキシアントラセン、アセナフチレン、ビフェニル、ビスフェノール、トリスフェノール、ジシクロペンタジエン、テトラヒドロインデン、4-ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルナエン、ピネン、リモネン等が挙げられるが、これらに特に限定されない。なお、本実施形態の樹脂は、本実施形態の化合物と上述したフェノール類との2元以上の(例えば、2~4元系)共重合体であっても、本実施形態の化合物と上述した共重合モノマーとの2元以上(例えば、2~4元系)共重合体であっても、本実施形態の化合物と上述したフェノール類と上述した共重合モノマーとの3元以上の(例えば、3~4元系)共重合体であっても構わない。
【0329】
なお、本実施形態の樹脂の分子量は、特に限定されないが、ポリスチレン換算の重量平均分子量(Mw)が500~30,000であることが好ましく、より好ましくは750~20,000である。また、架橋効率を高めるとともにベーク中の揮発成分を抑制する観点から、本実施形態の樹脂の分散度(重量平均分子量Mw/数平均分子量Mn)が1~7の範囲内であることが好ましい。なお、上記Mw及びMnは、後述する実施例に記載の方法により求めることができる。
【0330】
本実施形態の樹脂は、湿式プロセスの適用がより容易になる等の観点から、溶媒に対する溶解性が高いものであることが好ましい。より具体的には、樹脂は、1-メトキシ-2-プロパノール(PGME)及び/又はプロピレングリコールモノメチルエーテルアセテート(PGMEA)を溶媒とする場合、当該溶媒に対する溶解度が10質量%以上であることが好ましい。ここで、PGME及び/又はPGMEAに対する溶解度は、「樹脂の質量÷(樹脂の質量+溶媒の質量)×100(質量%)」と定義される。例えば、前記樹脂10gがPGMEA90gに対して溶解する場合は、前記樹脂のPGMEAに対する溶解度は、「10質量%以上」となり、溶解しない場合は、「10質量%未満」となる。
【0331】
上記式(5)で表される樹脂は、有機溶媒への溶解性の観点から、下記式(5-1)で表される化合物であることが好ましい。
【化123】
【0332】
式(5-1)中、
、R、A、X、及びNは、式(1)で定義されるとおりであり、
3A及びR4Aは、式(1-1)で定義されるとおりであり、
Lは、式(5)で定義されるとおりであり、
ここで、A、R、R、R3A、R4A、X、及びLから選ばれる少なくとも1つは硫黄原子を含み、
6Aは、各々独立して0~5の整数であり、
7Aは、各々独立して0~5の整数である。
【0333】
[化合物及び/又は樹脂の精製方法]
本実施形態における化合物及び/又は樹脂の精製方法は、本実施形態の化合物又は樹脂を、溶媒に溶解させて溶液(S)を得る工程と、得られた溶液(S)と酸性の水溶液とを接触させて、前記化合物及び/又は前記樹脂中の不純物を抽出する工程(第一抽出工程)とを含み、前記溶液(S)を得る工程で用いる溶媒が、水と任意に混和しない溶媒を含む。
【0334】
第一抽出工程において、上記樹脂は、本実施形態の化合物と架橋反応性のある化合物との反応によって得られる樹脂であることが好ましい。本実施形態の精製方法によれば、上述した特定の構造を有する化合物又は樹脂に不純物として含まれ得る種々の金属の含有量を低減することができる。
【0335】
より詳細には、本実施形態の精製方法においては、前記化合物及び/又は前記樹脂を、水と任意に混和しない有機溶媒に溶解させて溶液(S)を得て、さらにその溶液(S)を酸性水溶液と接触させて抽出処理を行うことができる。これにより、前記溶液(S)に含まれる金属分を水相に移行させた後、有機相と水相とを分離して金属含有量の低減された化合物及び/又は樹脂を得ることができる。
【0336】
本実施形態の精製方法で使用する化合物及び/又は樹脂は、単独で用いてもよく、2種以上混合して用いることもできる。また、前記化合物や樹脂は、各種界面活性剤、各種酸架橋剤、各種酸発生剤、各種安定剤等を含有していてもよい。
【0337】
本実施形態の精製方法において使用される水と任意に混和しない溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましく、具体的には、室温下における水への溶解度が30%未満、より好ましくは20%未満、さらに好ましくは10%未満である有機溶媒である。当該有機溶媒の使用量は、使用する化合物と樹脂の合計量に対して、1~100質量倍であることが好ましい。
【0338】
水と任意に混和しない溶媒の具体例としては、例えば、国際公開WO2015/080240号に記載されているものが挙げられる。これらの中でも、トルエン、2-ヘプタノン、シクロヘキサノン、シクロペンタノン、メチルイソブチルケトン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチルが好ましく、メチルイソブチルケトン、酢酸エチル、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテートがより好ましく、メチルイソブチルケトン、酢酸エチルがよりさらに好ましい。メチルイソブチルケトン、酢酸エチル等は、上記化合物及び該化合物を構成成分として含む樹脂の飽和溶解度が比較的高く、沸点が比較的低いことから、工業的に溶媒を留去する場合や乾燥により除去する工程での負荷を低減することが可能となる。これらの溶媒はそれぞれ単独で用いることもできるし、また2種以上を混合して用いることもできる。
【0339】
本実施形態の精製方法において使用される酸性水溶液としては、一般に知られる有機系化合物若しくは無機系化合物を水に溶解させた水溶液の中から適宜選択される。例えば、国際公開WO2015/080240号に記載されているものが挙げられる。これらの酸性水溶液は、それぞれ単独で用いることもできるし、また2種以上を組み合わせて用いることもできる。これらの酸性水溶液の中でも、塩酸、硫酸、硝酸及びリン酸からなる群より選ばれる1種以上の鉱酸水溶液、又は、酢酸、プロピオン酸、蓚酸、マロン酸、コハク酸、フマル酸、マレイン酸、酒石酸、クエン酸、メタンスルホン酸、フェノールスルホン酸、p-トルエンスルホン酸及びトリフルオロ酢酸からなる群より選ばれる1種以上の有機酸水溶液であることが好ましく、硫酸、硝酸、及び酢酸、蓚酸、酒石酸、クエン酸等のカルボン酸の水溶液がより好ましく、硫酸、蓚酸、酒石酸、クエン酸の水溶液がさらに好ましく、蓚酸の水溶液がよりさらに好ましい。蓚酸、酒石酸、クエン酸等の多価カルボン酸は、金属イオンに配位し、キレート効果が生じるために、より効果的に金属を除去できる傾向にあるものと考えられる。また、ここで用いる水は、本実施の形態の精製方法の目的に沿って、金属含有量の少ない水、例えばイオン交換水等であることが好ましい。
【0340】
本実施形態の精製方法において使用する酸性水溶液のpHは、特に限定されないが、上記化合物や樹脂への影響を考慮して、調整されることが好ましい。酸性水溶液のpHは、通常0~5程度であり、好ましくはpH0~3程度である。
【0341】
本実施形態の精製方法において使用する酸性水溶液の使用量は特に限定されないが、金属除去のための抽出回数を低減する観点、及び全体の液量を考慮して操作性を確保する観点から、調整されることが好ましい。上記観点から、酸性水溶液の使用量は、前記溶液(S)100質量%に対して、好ましくは10~200質量%であり、より好ましくは20~100質量%である。
【0342】
本実施形態の精製方法においては、前記酸性水溶液と、前記溶液(S)とを接触させることにより、溶液(S)中の前記化合物又は前記樹脂から金属分を抽出することができる。
【0343】
本実施形態の精製方法において、前記溶液(S)が、水と任意に混和する有機溶媒をさらに含むことが好ましい。溶液(S)が水と任意に混和する有機溶媒を含む場合、前記化合物及び/又は樹脂の仕込み量を増加させることができ、また、分液性が向上し、高い釜効率で精製を行うことができる傾向にある。水と任意に混和する有機溶媒を加える方法は特に限定されず、例えば、予め有機溶媒を含む溶液に加える方法、予め水又は酸性水溶液に加える方法、有機溶媒を含む溶液と水又は酸性水溶液とを接触させた後に加える方法のいずれでもよい。これらの中でも、操作の作業性や仕込み量の管理のし易さの観点から、予め有機溶媒を含む溶液に加える方法が好ましい。
【0344】
本実施形態の精製方法において使用される水と任意に混和する有機溶媒としては、特に限定されないが、半導体製造プロセスに安全に適用できる有機溶媒が好ましい。水と任意に混和する有機溶媒の使用量は、溶液相と水相とが分離する範囲であれば特に限定されないが、使用する化合物と樹脂の合計量に対して、0.1~100質量倍であることが好ましく、0.1~50質量倍であることがより好ましく、0.1~20質量倍であることがさらに好ましい。
【0345】
本実施形態の精製方法において使用される水と任意に混和する有機溶媒の具体例としては、例えば、国際公開WO2015/080240号に記載されているものが挙げられる。これらの中でも、N-メチルピロリドン、プロピレングリコールモノメチルエーテル等が好ましく、N-メチルピロリドン、プロピレングリコールモノメチルエーテルがより好ましい。これらの溶媒はそれぞれ単独で用いることもできるし、2種以上を混合して用いることもできる。
【0346】
抽出処理を行う際の温度は通常、20~90℃であり、好ましくは30~80℃の範囲である。抽出操作は、例えば、撹拌等により、よく混合させた後、静置することにより行われる。これにより、溶液(S)中に含まれていた金属分が水相に移行する。また、本操作により、溶液の酸性度が低下し、化合物及び/又は樹脂の変質を抑制することができる。
【0347】
前記混合溶液は静置により、化合物及び/又は樹脂と有機溶媒とを含む溶液相と、水相とに分離するので、デカンテーション等により、溶液相を回収する。静置する時間は特に限定されないが、有機溶媒を含む溶液相と水相との分離をより良好にする観点から、当該静置する時間を調整することが好ましい。通常、静置する時間は1分以上であり、好ましくは10分以上であり、より好ましくは30分以上である。また、抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。
【0348】
本実施形態の精製方法においては、前記第一抽出工程後、前記化合物又は前記樹脂を含む溶液相を、さらに水に接触させて、前記化合物又は前記樹脂中の不純物を抽出する工程(第二抽出工程)を含むことが好ましい。具体的には、例えば、酸性の水溶液を用いて上記第一抽出工程を行った後に、回収された化合物及び/又は樹脂と有機溶媒とを含む溶液相を、さらに水による抽出処理に供することが好ましい。この水による抽出処理は、特に限定されないが、例えば、前記溶液相と水とを、撹拌等により、よく混合させた後、得られた混合溶液を静置することにより行うことができる。当該静置後の混合溶液は、化合物及び/又は樹脂と有機溶媒とを含む溶液相と水相とに分離するので、デカンテーション等により溶液相を回収することができる。
【0349】
また、ここで用いる水は、本実施の形態の目的に沿って、金属含有量の少ない水、例えば、イオン交換水等であることが好ましい。抽出処理は1回だけでも構わないが、混合、静置、分離という操作を複数回繰り返して行うことも有効である。また、抽出処理における両者の使用割合や、温度、時間等の条件は特に限定されないが、先の酸性水溶液との接触処理の場合と同様で構わない。
【0350】
こうして得られた化合物及び/又は樹脂と溶媒とを含む溶液に混入しうる水分については、減圧蒸留等の操作を施すことにより容易に除去できる。また、必要により前記溶液に溶媒を加え、化合物及び/又は樹脂の濃度を任意の濃度に調整することができる。
【0351】
得られた化合物及び/又は樹脂と溶媒とを含む溶液から、化合物及び/又は樹脂を単離する方法は、特に限定されず、減圧除去、再沈殿による分離、及びそれらの組み合わせ等、公知の方法で行うことができる。必要に応じて、濃縮操作、ろ過操作、遠心分離操作、乾燥操作等の公知の処理を行うことができる。
【0352】
[リソグラフィー用膜形成組成物]
本実施形態におけるリソグラフィー用膜形成組成物は、本実施形態の化合物及び/又は樹脂を含有する。
【0353】
[化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態における化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「レジスト組成物」ともいう。)は、本実施形態の化合物及び/又は樹脂をレジスト基材として含有する。
【0354】
また、本実施形態におけるレジスト組成物は、溶媒を含有することが好ましい。溶媒としては、特に限定されないが、例えば、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-プロピルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート等のエチレングリコールモノアルキルエーテルアセテート類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル等のエチレングリコールモノアルキルエーテル類;プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノ-n-プロピルエーテルアセテート、プロピレングリコールモノ-n-ブチルエーテルアセテート等のプロピレングリコールモノアルキルエーテルアセテート類;プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノエチルエーテル等のプロピレングリコールモノアルキルエーテル類;乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸n-アミル等の乳酸エステル類;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸n-ブチル、酢酸n-アミル、酢酸n-ヘキシル、プロピオン酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類;3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシ-2-メチルプロピオン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、3-メトキシ-3-メチルプロピオン酸ブチル、3-メトキシ-3-メチル酪酸ブチル、アセト酢酸メチル、ピルビン酸メチル、ピルビン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、シクロペンタノン(CPN)、シクロヘキサノン(CHN)等のケトン類;N,N-ジメチルホルムアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド類;γ-ラクトン等のラクトン類等を挙げることができる。これらの溶媒は、単独で用いても、2種以上を併用してもよい。
【0355】
本実施形態で使用される溶媒は、安全溶媒であることが好ましく、より好ましくは、PGMEA、PGME、CHN、CPN、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルから選ばれる少なくとも1種であり、さらに好ましくはPGMEA、PGME及びCHNから選ばれる少なくとも一種である。
【0356】
本実施形態において、固形成分及び溶媒の量は、特に限定されないが、固形成分及び溶媒の合計質量100質量%に対して、固形成分1~80質量%及び溶媒20~99質量%であることが好ましく、より好ましくは固形成分1~50質量%及び溶媒50~99質量%、さらに好ましくは固形成分2~40質量%及び溶媒60~98質量%であり、特に好ましくは固形成分2~10質量%及び溶媒90~98質量%である。
【0357】
本実施形態のレジスト組成物は、他の固形成分として、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)からなる群より選ばれる少なくとも一種を含有してもよい。なお、本明細書において「固形成分」とは溶媒以外の成分をいう。
【0358】
ここで、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)については公知のものが使用でき、特に限定されないが、例えば、国際公開第2013/024778号に記載されているものが好ましい。
【0359】
また、酸架橋剤(G)としては、チオール基と反応する化合物を含有することも好ましく、チオール基と反応する化合物は特に限定されないが、例えば、エポキシ基含有化合物、エピスルフィド基含有化合物およびイソシアナート基含有化合物を挙げることができる。これら化合物は、単独または2種以上を混合して使用することができる。
【0360】
エポキシ基含有化合物としては、限定されないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂及び脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、含複素環エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、脂肪族エポキシ樹脂及びスピロ環含有エポキシ樹脂等を用いることができる。
【0361】
エピスルフィド基含有化合物はエポキシ化合物の酸素原子を硫黄原子に置換したものであり、例えば上記で記載したエポキシ化合物と硫化剤であるチオシアン酸塩やチオ尿素などと反応させることで得ることができる。
【0362】
イソシアネート基含有化合物としては、一般的にポリウレタン又はポリイソシアヌレート等に使用されている化合物が使用できる。このようなポリイソシアネートとしては、限定されないが、例えば、芳香族ポリイソシアネート、脂肪族ポリイソシアネート、脂環式ポリイソシアネート、及びこれらの変性物、イソシアネート基末端プレポリマー等が挙げられる。
【0363】
[各成分の配合割合]
本実施形態のレジスト組成物において、レジスト基材として用いる化合物及び/又は樹脂の含有量は、特に限定されないが、固形成分の全質量(レジスト基材、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)及びその他の成分(F)等の任意に使用される成分を含む固形成分の総和、以下同様。)の1~100%であることが好ましく、より好ましくは50~99.4質量%、さらに好ましくは55~90質量%、さらに好ましくは60~80質量%、特に好ましくは60~70質量%である。レジスト基材として用いる化合物及び/又は樹脂の含有量が上記範囲である場合、解像度が一層向上し、ラインエッジラフネス(LER)が一層小さくなる傾向にある。
なお、レジスト基材として化合物と樹脂の両方を含有する場合、前記含有量は、両成分の合計量である。
【0364】
[その他の成分(F)]
本実施形態におけるレジスト組成物には、本発明の目的を阻害しない範囲で、必要に応じて、レジスト基材、酸発生剤(C)、酸架橋剤(G)及び酸拡散制御剤(E)以外の成分として、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を、1種又は2種以上添加することができる。なお、本明細書において、その他の成分(F)を任意成分(F)ということがある。
【0365】
本実施形態のレジスト組成物において、レジスト基材(以下、「成分(A)」ともいう。)、酸発生剤(C)、酸架橋剤(G)、酸拡散制御剤(E)、任意成分(F)の含有量(成分(A)/酸発生剤(C)/酸架橋剤(G)/酸拡散制御剤(E)/任意成分(F))は、固形物基準の質量%で、
好ましくは1~100/0~49/0~49/0~49/0~99、
より好ましくは50~99.4/0.001~49/0.5~49/0.001~49/0~49、
さらに好ましくは55~90/1~40/0.5~40/0.01~10/0~5、
さらに好ましくは60~80/3~30/1~30/0.01~5/0~1、
特に好ましくは60~70/10~25/2~20/0.01~3/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。各成分の配合割合が上記範囲である場合、感度、解像度、現像性等の性能に優れる傾向にある。
【0366】
本実施形態のレジスト組成物は、通常は、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製される。
【0367】
本実施形態のレジスト組成物は、本発明の目的を阻害しない範囲で、本実施形態の樹脂以外のその他の樹脂を含むことができる。その他の樹脂としては、特に限定されず、例えば、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、エポキシ樹脂、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、ビニルフェノール、又はマレイミド化合物を単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。その他の樹脂の含有量は、特に限定されず、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
【0368】
[レジスト組成物の物性等]
本実施形態のレジスト組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態のレジスト組成物は、一般的な半導体製造プロセスに適用することができる。本実施形態の化合物及び/又は樹脂の種類及び/又は用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
【0369】
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、本実施形態の化合物及び/又は樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。
【0370】
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
【0371】
前記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することができる。
【0372】
ポジ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
【0373】
ネガ型レジストパターンの場合、本実施形態のレジスト組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により露光した部分の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。
【0374】
[非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物]
本実施形態の非化学増幅型レジスト用途向けリソグラフィー用膜形成組成物(以下、「感放射線性組成物」ともいう。)に含有させる成分(A)は、後述するジアゾナフトキノン光活性化合物(B)と併用し、g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線を照射することにより、現像液に易溶な化合物となるポジ型レジスト用基材として有用である。g線、h線、i線、KrFエキシマレーザー、ArFエキシマレーザー、極端紫外線、電子線又はX線により、成分(A)の性質は大きくは変化しないが、現像液に難溶なジアゾナフトキノン光活性化合物(B)が易溶な化合物に変化するため、現像工程によってレジストパターンを作ることが可能となる。
【0375】
本実施形態の感放射線性組成物に含有させる成分(A)は、比較的低分子量の化合物であることから、得られるレジストパターンのラフネスは非常に小さい。また、前記式(1)中、R、A、R、Rからなる群より選択される少なくとも1つがヨウ素原子を含む基であることが好ましい。本実施形態の感放射線性組成物が、ヨウ素原子を含む成分(A)を含有すると、電子線、極端紫外線(EUV)、X線等の放射線に対する吸収能が増加し、その結果、感度が向上する。
【0376】
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度は、好ましくは100℃以上、より好ましくは120℃以上、さらに好ましくは140℃以上、特に好ましくは150℃以上である。成分(A)のガラス転移温度の上限値は、特に限定されないが、例えば、400℃である。成分(A)のガラス転移温度が上記範囲内であることにより、半導体リソグラフィープロセスにおいて、パターン形状を維持しうる耐熱性を有し、高解像度等の性能が向上する傾向にある。
【0377】
本実施形態の感放射線性組成物に含有させる成分(A)のガラス転移温度の示差走査熱量分析により求めた結晶化発熱量は、好ましくは20J/g未満である。また、(結晶化温度)-(ガラス転移温度)は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは100℃以上、特に好ましくは130℃以上である。結晶化発熱量が20J/g未満、又は(結晶化温度)-(ガラス転移温度)が上記範囲内であると、感放射線性組成物をスピンコートすることによりアモルファス膜を形成しやすく、かつレジストに必要な成膜性が長期に渡り保持でき、解像性を向上することができる傾向にある。
【0378】
本実施形態において、前記結晶化発熱量、結晶化温度及びガラス転移温度は、島津製作所製DSC/TA-50WSを用いた示差走査熱量分析により求めることができる。試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス気流中(50mL/分)昇温速度20℃/分で融点以上まで昇温する。急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で融点以上まで昇温する。さらに急冷後、再び窒素ガス気流中(30mL/分)昇温速度20℃/分で400℃まで昇温する。ステップ状に変化したベースラインの段差の中点(比熱が半分に変化したところ)の温度をガラス転移温度(Tg)、その後に現れる発熱ピークの温度を結晶化温度とする。発熱ピークとベースラインに囲まれた領域の面積から発熱量を求め、結晶化発熱量とする。
【0379】
本実施形態の感放射線性組成物に含有させる成分(A)は、常圧下、100℃以下、好ましくは120℃以下、より好ましくは130℃以下、さらに好ましくは140℃以下、特に好ましくは150℃以下において、昇華性が低いことが好ましい。昇華性が低いとは、熱重量分析において、所定温度で10分保持した際の重量減少が10%以下、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは1%以下、特に好ましくは0.1%以下であることを示す。昇華性が低いことにより、露光時のアウトガスによる露光装置の汚染を防止することができる。また低ラフネスで良好なパターン形状を得ることができる。
【0380】
本実施形態の感放射線性組成物に含有させる成分(A)は、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、シクロペンタノン(CPN)、2-ヘプタノン、アニソール、酢酸ブチル、プロピオン酸エチル及び乳酸エチルからなる群から選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、好ましくは1質量%以上、より好ましくは5質量%以上、さらに好ましくは10質量%以上溶解する。特に好ましくは、PGMEA、PGME、CHNからなる群から選ばれ、かつ、成分(A)に対して最も高い溶解能を示す溶媒に、23℃で、20質量%以上、特に好ましくはPGMEAに対して、23℃で、20質量%以上溶解する。上記条件を満たしていることにより、実生産における半導体製造工程での使用が容易となる。
【0381】
[ジアゾナフトキノン光活性化合物(B)]
本実施形態の感放射線性組成物に含有させるジアゾナフトキノン光活性化合物(B)は、ポリマー性及び非ポリマー性ジアゾナフトキノン光活性化合物を含むジアゾナフトキノン物質であり、一般にポジ型レジスト組成物において、感光性成分(感光剤)として用いられているものであれば特に制限なく、1種又は2種以上を任意に選択して用いることができる。
【0382】
成分(B)としては、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等と、これら酸クロライドと縮合反応可能な官能基を有する低分子化合物又は高分子化合物とを反応させることによって得られた化合物が好ましいものである。ここで、酸クロライドと縮合可能な官能基としては、特に限定されず、例えば、水酸基、アミノ基等が挙げられるが、特に水酸基が好適である。水酸基を含む酸クロライドと縮合可能な化合物としては、特に限定されず、例えば、ハイドロキノン、レゾルシン、2、4-ジヒドロキシベンゾフェノン、2、3、4-トリヒドロキシベンゾフェノン、2、4、6-トリヒドロキシベンゾフェノン、2、4、4’-トリヒドロキシベンゾフェノン、2、3、4、4’-テトラヒドロキシベンゾフェノン、2、2’、4、4’-テトラヒドロキシベンゾフェノン、2、2’、3、4、6’-ペンタヒドロキシベンゾフェノン等のヒドロキシベンゾフェノン類;ビス(2、4-ジヒドロキシフェニル)メタン、ビス(2、3、4-トリヒドロキシフェニル)メタン、ビス(2、4-ジヒドロキシフェニル)プロパン等のヒドロキシフェニルアルカン類;4、4’、3”、4”-テトラヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン、4、4’、2”、3”、4”-ペンタヒドロキシ-3、5、3’、5’-テトラメチルトリフェニルメタン等のヒドロキシトリフェニルメタン類等を挙げることができる。
また、ナフトキノンジアジドスルホン酸クロライドやベンゾキノンジアジドスルホン酸クロライド等の酸クロライドとしては、例えば、1、2-ナフトキノンジアジド-5-スルフォニルクロライド、1、2-ナフトキノンジアジド-4-スルフォニルクロライド等が好ましいものとして挙げられる。
【0383】
本実施形態の感放射線性組成物は、例えば、使用時に各成分を溶媒に溶解して均一溶液とし、その後、必要に応じて、例えば、孔径0.2μm程度のフィルター等でろ過することにより調製されることが好ましい。
【0384】
[感放射線性組成物の特性]
本実施形態の感放射線性組成物を用いて、スピンコートによりアモルファス膜を形成することができる。また、本実施形態の感放射性組成物は、一般的な半導体製造プロセスに適用することができる。用いる現像液の種類によって、ポジ型レジストパターン及びネガ型レジストパターンのいずれかを作り分けることができる。
【0385】
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合がある。これは、本実施形態の化合物及び/又は樹脂の露光前後の溶解性の変化により、現像液に溶解する露光部と、現像液に溶解しない未露光部との界面のコントラストが大きくなるからと推測される。またLERの低減、ディフェクトの低減効果もみられる。
【0386】
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜の23℃における現像液に対する溶解速度は、10Å/sec以上であることが好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10Å/sec以上である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
【0387】
前記溶解速度は、23℃にて、アモルファス膜を所定時間現像液に浸漬させ、その浸漬前後の膜厚を、目視、エリプソメーター又はQCM法等の公知の方法によって測定して決定することができる。
【0388】
ポジ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、10Å/sec以上が好ましく、10~10000Å/secがより好ましく、100~1000Å/secがさらに好ましい。溶解速度が10Å/sec以上である場合、現像液に易溶で、レジストに好適である。また、溶解速度が10000Å/sec以下である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂のミクロの表面部位が溶解し、LERを低減するためと推測される。またディフェクトの低減効果もみられる。
【0389】
ネガ型レジストパターンの場合、本実施形態の感放射線性組成物をスピンコートして形成したアモルファス膜のKrFエキシマレーザー、極端紫外線、電子線又はX線等の放射線により照射した後、又は、20~500℃で加熱した後の露光した部分の、23℃における現像液に対する溶解速度は、5Å/sec以下であることが好ましく、0.05~5Å/secであることがより好ましく、0.0005~5Å/secであることがさらに好ましい。溶解速度が5Å/sec以下である場合、現像液に不溶で、レジストとすることが容易となる傾向にある。また、溶解速度が0.0005Å/sec以上である場合、解像性が向上する場合もある。これは、本実施形態の化合物及び/又は樹脂の露光前後の溶解性の変化により、現像液に溶解する未露光部と、現像液に溶解しない露光部との界面のコントラストが大きくなるためと推測される。またLERの低減、ディフェクトの低減効果もみられる。
【0390】
[各成分の配合割合]
本実施形態の感放射線性組成物において、成分(A)の含有量は、固形成分全重量(成分(A)、ジアゾナフトキノン光活性化合物(B)及びその他の成分(D)等の任意に使用される固形成分の総和、以下同様。)に対して、好ましくは1~100質量%、より好ましくは1~99質量%、さらに好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施形態の感放射線性組成物は、成分(A)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
【0391】
本実施形態の感放射線性組成物において、ジアゾナフトキノン光活性化合物(B)の含有量は、固形成分全重量に対して、好ましくは1~99質量%であり、より好ましくは5~95質量%、さらに好ましくは10~90質量%、特に好ましくは25~75質量%である。本実施の形態の感放射線性組成物は、ジアゾナフトキノン光活性化合物(B)の含有量が上記範囲内であると、高感度でラフネスの小さなパターンを得ることができる傾向にある。
【0392】
[その他の成分(D)]
本実施形態の感放射線性組成物には、本発明の目的を阻害しない範囲で、必要に応じて、成分(A)及びジアゾナフトキノン光活性化合物(B)以外の成分として、酸発生剤、酸架橋剤、酸拡散制御剤、溶解促進剤、溶解制御剤、増感剤、界面活性剤、有機カルボン酸又はリンのオキソ酸若しくはその誘導体、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等の各種添加剤を1種又は2種以上添加することができる。なお、本明細書において、その他の成分(D)を任意成分(D)ということがある。
【0393】
本実施形態の感放射線性組成物において、各成分の配合割合(成分(A)/ジアゾナフトキノン光活性化合物(B)/任意成分(D))は、固形成分基準の質量%で、
好ましくは1~99/99~1/0~98、
より好ましくは5~95/95~5/0~49、
さらに好ましくは10~90/90~10/0~10、
さらにより好ましくは20~80/80~20/0~5、
特に好ましくは25~75/75~25/0、である。
各成分の配合割合は、その総和が100質量%になるように各範囲から選ばれる。本実施形態の感放射線性組成物の各成分の配合割合が上記範囲である場合、ラフネスに加え、感度、解像度等の性能に優れる傾向にある。
【0394】
本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、本実施形態以外のその他の樹脂を含んでもよい。このようなその他の樹脂としては、ノボラック樹脂、ポリビニルフェノール類、ポリアクリル酸、ポリビニルアルコール、スチレン-無水マレイン酸樹脂、及びアクリル酸、ビニルアルコール、又はビニルフェノールを単量体単位として含む重合体あるいはこれらの誘導体等が挙げられる。これらの樹脂の配合量は、使用する成分(A)の種類に応じて適宜調節されるが、成分(A)100質量部に対して、30質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下、特に好ましくは0質量部である。
【0395】
また、本実施形態の感放射線性組成物は、本発明の目的を阻害しない範囲で、後述の「下層膜用途向けリソグラフィー用膜形成組成物」で例示している、酸架橋剤、架橋促進剤、ラジカル重合開始剤、酸発生剤、塩基性化合物を用いてもよい。
【0396】
[レジストパターン又は絶縁膜の形成方法]
本実施形態におけるレジストパターンの形成方法は、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。絶縁膜は、前記レジストパターンの形成方法と同様の方法で形成することができる。
より詳しくは、上述した本実施形態のレジスト組成物又は感放射線性組成物を用いて基板上にレジスト膜を形成する工程と、形成されたレジスト膜を露光する工程と、前記レジスト膜を現像してレジストパターンを形成する工程とを備える。本実施形態におけるレジストパターンは、多層プロセスにおける上層レジストとして形成することもできる。
【0397】
レジストパターンを形成する方法としては、特に限定されないが、例えば、以下の方法が挙げられる。まず、従来公知の基板上にレジスト組成物又は感放射線性組成物を、回転塗布、流延塗布、ロール塗布等の塗布手段によって塗布することによりレジスト膜を形成する。従来公知の基板としては、特に限定されず、例えば、電子部品用の基板や、これに所定の配線パターンが形成されたもの等が挙げられる。より具体的には、シリコンウェハー、銅、クロム、鉄、アルミニウム等の金属製の基板や、ガラス基板等が挙げられる。配線パターンの材料としては、例えば、銅、アルミニウム、ニッケル、金等が挙げられる。また、必要に応じて、前述基板上に無機系及び/又は有機系の膜が設けられたものであってもよい。無機系の膜としては、無機反射防止膜(無機BARC)が挙げられる。有機系の膜としては、有機反射防止膜(有機BARC)が挙げられる。基板上にはヘキサメチレンジシラザン等による表面処理を行ってもよい。
【0398】
次に、必要に応じて、レジスト組成物又は感放射線性組成物を塗布した基板を加熱する。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。加熱することによって、レジストの基板に対する密着性が向上する傾向にあるため好ましい。次いで、可視光線、紫外線、エキシマレーザー、電子線、極端紫外線(EUV)、X線、及びイオンビームからなる群から選ばれるいずれかの放射線により、レジスト膜を所望のパターンに露光する。露光条件等は、レジスト組成物又は感放射線性組成物の配合組成等に応じて適宜選定される。本実施形態においては、露光における高精度の微細パターンを安定して形成するために、放射線照射後に加熱することが好ましい。加熱条件は、レジスト組成物又は感放射線性組成物の配合組成等により変わるが、20~250℃であることが好ましく、より好ましくは20~150℃である。
【0399】
次いで、露光されたレジスト膜を現像液で現像することにより、所定のレジストパターンを形成する。現像液としては、本実施形態の化合物又は樹脂と溶解度パラメーター(SP値)が近い溶剤を選択することが好ましい。例えば、国際公開WO2013/024778号に記載されているケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤等の極性溶剤、炭化水素系溶剤又はアルカリ水溶液を用いることができる。
【0400】
上記溶剤は、複数混合してもよいし、性能を有する範囲内で、上記以外の溶剤や水と混合し使用してもよい。但し、本発明の効果を十二分に奏するという観点からは、現像液全体としての含水率が70質量%未満であることが好ましく、50質量%未満であることがより好ましく、30質量%未満であることがさらに好ましく、10質量%未満であることがさらにより好ましく、実質的に水分を含有しないことが特に好ましい。すなわち、現像液に対する有機溶剤の含有量は、現像液の全量に対して、30質量%以上100質量%以下であることが好ましく、50質量%以上100質量%以下であることがより好ましく、70質量%以上100質量%以下であることがさらに好ましく、90質量%以上100質量%以下であることがさらにより好ましく、95質量%以上100質量%以下であることが特に好ましい。
【0401】
特に、レジストパターンの解像性やラフネス等のレジスト性能を改善するという観点から、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種の溶剤を含有する現像液が好ましい。
【0402】
現像液の蒸気圧は、20℃において、5kPa以下であることが好ましく、3kPa以下であることがより好ましく、2kPa以下であることがさらに好ましい。現像液の蒸気圧が5kPa以下である場合、現像液の基板上あるいは現像カップ内での蒸発が抑制され、ウェハ面内の温度均一性が向上し、結果としてウェハ面内の寸法均一性が良化する傾向にある。
【0403】
20℃において5kPa以下の蒸気圧を有する現像液の具体例としては、例えば、国際公開WO2013/024778号に記載されているものが挙げられる。
【0404】
20℃において2kPa以下の蒸気圧を有する現像液の具体例としては、例えば、国際公開WO2013/024778号に記載されているものが挙げられる。
【0405】
現像液には、必要に応じて界面活性剤を適当量添加することができる。界面活性剤としては特に限定されないが、例えば、イオン性や非イオン性のフッ素系及び/又はシリコン系界面活性剤等を用いることができる。これらのフッ素及び/又はシリコン系界面活性剤としては、例えば、特開昭62-36663号公報、特開昭61-226746号公報、特開昭61-226745号公報、特開昭62-170950号公報、特開昭63-34540号公報、特開平7-230165号公報、特開平8-62834号公報、特開平9-54432号公報、特開平9-5988号公報、米国特許第5405720号明細書、同5360692号明細書、同5529881号明細書、同5296330号明細書、同5436098号明細書、同5576143号明細書、同5294511号明細書、同5824451号明細書に記載された界面活性剤を挙げることができ、好ましくは、非イオン性の界面活性剤である。非イオン性の界面活性剤としては特に限定されないが、好ましくは、フッ素系界面活性剤又はシリコン系界面活性剤である。
【0406】
界面活性剤の使用量は、現像液の全量に対して、通常0.001~5質量%、好ましくは0.005~2質量%、さらに好ましくは0.01~0.5質量%である。
【0407】
現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液塗出ノズルをスキャンしながら現像液を塗出し続ける方法(ダイナミックディスペンス法)等を適用することができる。パターンの現像を行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。
【0408】
また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
【0409】
現像の後には、有機溶剤を含むリンス液を用いて洗浄する工程を含むことが好ましい。
【0410】
現像後のリンス工程に用いるリンス液としては、架橋により硬化したレジストパターンを溶解しなければ特に制限はなく、一般的な有機溶剤を含む溶液又は水を使用することができる。前記リンス液としては、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤及びエーテル系溶剤から選択される少なくとも1種類の有機溶剤を含有するリンス液を用いることが好ましい。より好ましくは、現像の後に、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤からなる群より選択される少なくとも1種類の有機溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、アルコール系溶剤又はエステル系溶剤を含有するリンス液を用いて洗浄する工程を行う。さらにより好ましくは、現像の後に、1価アルコールを含有するリンス液を用いて洗浄する工程を行う。特に好ましくは、現像の後に、炭素数5以上の1価アルコールを含有するリンス液を用いて洗浄する工程を行う。パターンのリンスを行なう時間としては、特に制限はないが、好ましくは10秒~90秒である。
【0411】
ここで、現像後のリンス工程で用いられる1価アルコールとしては、直鎖状、分岐状、環状の1価アルコールが挙げられ、例えば、国際公開WO2013/024778号に記載されているものを用いることができる。特に好ましい炭素数5以上の1価アルコールとしては、1-ヘキサノール、2-ヘキサノール、4-メチル-2-ペンタノール、1-ペンタノール、3-メチル-1-ブタノール等が挙げられる。
【0412】
前記各成分は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。
【0413】
リンス液中の含水率は、10質量%以下であることが好ましく、より好ましくは5質量%以下であり、さらに好ましくは3質量%以下である。リンス液中の含水率を10質量%以下にすることで、より良好な現像特性を得ることができる傾向にある。
【0414】
現像後に用いるリンス液の蒸気圧は、20℃において0.05kPa以上、5kPa以下であることが好ましく、0.1kPa以上、5kPa以下であることがより好ましく、0.12kPa以上、3kPa以下であることがさらに好ましい。リンス液の蒸気圧が0.05kPa以上、5kPa以下である場合、ウェハ面内の温度均一性がより向上し、さらにはリンス液の浸透に起因した膨潤がより抑制され、ウェハ面内の寸法均一性がより良化する傾向にある。
【0415】
リンス液には、界面活性剤を適当量添加して使用することもできる。
【0416】
リンス工程においては、現像を行ったウェハを前記の有機溶剤を含むリンス液を用いて洗浄処理する。洗浄処理の方法は特に限定されないが、例えば、一定速度で回転している基板上にリンス液を塗出し続ける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)等を適用することができ、中でも、回転塗布方法により洗浄処理を行い、洗浄後に基板を2000rpm~4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
【0417】
レジストパターンを形成した後、エッチングすることによりパターン配線基板が得られる。エッチングの方法はプラズマガスを使用するドライエッチング及びアルカリ溶液、塩化第二銅溶液、塩化第二鉄溶液等によるウェットエッチング等公知の方法で行うことができる。
【0418】
レジストパターンを形成した後、めっきを行うこともできる。めっき法としては、例えば、銅めっき、はんだめっき、ニッケルめっき、金めっき等が挙げられる。
【0419】
エッチング後の残存レジストパターンは有機溶剤で剥離することができる。有機溶剤としては、PGMEA(プロピレングリコールモノメチルエーテルアセテート)、PGME(プロピレングリコールモノメチルエーテル)、EL(乳酸エチル)等が挙げられる。剥離方法としては、例えば、浸漬方法、スプレイ方式等が挙げられる。また、レジストパターンが形成された配線基板は、多層配線基板でもよく、小径スルーホールを有していてもよい。
【0420】
本実施形態における配線基板は、レジストパターン形成後、金属を真空中で蒸着し、その後レジストパターンを溶液で溶かす方法、すなわちリフトオフ法により形成することもできる。
【0421】
[下層膜用途向けリソグラフィー用膜形成組成物]
本実施形態における下層膜用途向けリソグラフィー用膜形成組成物(以下、「下層膜形成材料」ともいう。)は、本実施形態の化合物及び/又は樹脂を含有する。本実施形態において前記物質は塗布性及び品質安定性の点から、下層膜形成材料の固形成分中、1~100質量%であることが好ましく、10~100質量%であることがより好ましく、50~100質量%であることがさらに好ましく、80~100質量%であることがさらにより好ましく、100質量%であることが特に好ましい。
【0422】
本実施形態における下層膜用途向けリソグラフィー用膜形成組成物は、光学部品形成組成物として使用することもできる。光学部品形成組成物を、例えば、基板上に塗布、又は注型することにより、光学部品形成膜を形成することができる。
【0423】
本実施形態の下層膜形成材料は、湿式プロセスへの適用が可能であり、耐熱性及びエッチング耐性に優れる。さらに、本実施形態の下層膜形成材料は、上記物質を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れた下層膜を形成することができる。さらに、本実施形態の下層膜形成材料は、レジスト層との密着性にも優れるので、優れたレジストパターンを得ることができる。なお、本実施形態の下層膜形成材料は、本発明の効果が損なわれない範囲において、既に知られているリソグラフィー用下層膜形成材料等を含んでいてもよい。
【0424】
[溶媒]
本実施形態における下層膜形成材料は、溶媒を含有してもよい。下層膜形成材料に用いられる溶媒としては、上述した物質が少なくとも溶解するものであれば特に限定されず、公知のものを適宜用いることができる。
【0425】
溶媒の具体例としては、特に限定されないが、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等のセロソルブ系溶媒;乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソアミル、乳酸エチル、メトキシプロピオン酸メチル、ヒドロキシイソ酪酸メチル等のエステル系溶媒;メタノール、エタノール、イソプロパノール、1-エトキシ-2-プロパノール等のアルコール系溶媒;トルエン、キシレン、アニソール等の芳香族系炭化水素等が挙げられる。これらの溶媒は、1種を単独で、或いは2種以上を組み合わせて用いることができる。
【0426】
上記溶媒の中でも、安全性の観点から、シクロヘキサノン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル、ヒドロキシイソ酪酸メチル、アニソールが特に好ましい。
【0427】
溶媒の含有量は、特に限定されないが、溶解性及び製膜上の観点から、本実施形態の化合物及び/又は樹脂100質量部に対して、100~10,000質量部であることが好ましく、200~5,000質量部であることがより好ましく、200~1,000質量部であることがさらに好ましい。
【0428】
[酸架橋剤]
本実施形態における下層膜形成材料は、インターミキシングを抑制する等の観点から、必要に応じて酸架橋剤を含有していてもよい。酸架橋剤としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
【0429】
本実施形態において使用可能な酸架橋剤の具体例としては、例えば、フェノール化合物、エポキシ化合物、シアネート化合物、アミノ化合物、ベンゾオキサジン化合物、アクリレート化合物、メラミン化合物、グアナミン化合物、グリコールウリル化合物、ウレア化合物、イソシアネート化合物、アジド化合物等が挙げられるが、これらに特に限定されない。これらの酸架橋剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもベンゾオキサジン化合物、エポキシ化合物又はシアネート化合物が好ましく、エッチング耐性向上の観点から、ベンゾオキサジン化合物がより好ましい。
【0430】
前記フェノール化合物としては、公知のものが使用できる。例えば、フェノール類としては、フェノールの他、クレゾール類、キシレノール類等のアルキルフェノール類、ヒドロキノン等の多価フェノール類、ナフトール類、ナフタレンジオール類等の多環フェノール類、ビスフェノールA、ビスフェノールF等のビスフェノール類、あるいはフェノールノボラック、フェノールアラルキル樹脂等の多官能性フェノール化合物等が挙げられる。中でも、耐熱性及び溶解性の点から、アラルキル型フェノール樹脂が好ましい。
【0431】
前記エポキシ化合物としては、公知のものが使用でき、1分子中にエポキシ基を2個以上有するものの中から選択される。例えば、ビスフェノールA、ビスフェノールF、3,3',5,5’-テトラメチル-ビスフェノールF、ビスフェノールS、フルオレンビスフェノール、2,2' -ビフェノール、3,3',5,5’-テトラメチル-4,4’-ジヒドロキシビフェノール、レゾルシン、ナフタレンジオール類等の2価のフェノール類のエポキシ化物、トリス-(4-ヒドロキシフェニル)メタン、1,1,2,2-テトラキス(4-ヒドロキシフェニル)エタン、トリス(2,3-エポキシプロピル)イソシアヌレート、トリメチロールメタントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、トリエチロールエタントリグリシジルエーテル、フェノールノボラック、o-クレゾールノボラック等の3価以上のフェノール類のエポキシ化物、ジシクロペンタジエンとフェノール類の共縮合樹脂のエポキシ化物、フェノール類とパラキシリレンジクロライド等から合成されるフェノールアラルキル樹脂類のエポキシ化物、フェノール類とビスクロロメチルビフェニル等から合成されるビフェニルアラルキル型フェノール樹脂のエポキシ化物、ナフトール類とパラキシリレンジクロライド等から合成されるナフトールアラルキル樹脂類のエポキシ化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。中でも、耐熱性と溶解性の観点から、フェノールアラルキル樹脂類、ビフェニルアラルキル樹脂類から得られるエポキシ樹脂等の常温で固体状エポキシ樹脂が好ましい。
【0432】
前記シアネート化合物としては、1分子中に2個以上のシアネート基を有する化合物であれば特に制限なく、公知のものを使用することができる。本実施形態において、好ましいシアネート化合物としては、1分子中に2個以上の水酸基を有する化合物の水酸基をシアネート基に置換した構造のものが挙げられる。また、シアネート化合物は、芳香族基を有するものが好ましく、シアネート基が芳香族基に直結した構造のものを好適に使用することができる。このようなシアネート化合物としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールM、ビスフェノールP、ビスフェノールE、フェノールノボラック樹脂、クレゾールノボラック樹脂、ジシクロペンタジエンノボラック樹脂、テトラメチルビスフェノールF、ビスフェノールAノボラック樹脂、臭素化ビスフェノールA、臭素化フェノールノボラック樹脂、3官能フェノール、4官能フェノール、ナフタレン型フェノール、ビフェニル型フェノール、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ナフトールアラルキル樹脂、ジシクロペンタジエンアラルキル樹脂、脂環式フェノール、リン含有フェノール等の水酸基をシアネート基に置換した構造のものが挙げられる。これらのシアネート化合物は、単独で又は2種以上を適宜組み合わせて使用してもよい。また、上記したシアネート化合物は、モノマー、オリゴマー及び樹脂のいずれの形態であってもよい。
【0433】
前記アミノ化合物としては、m-フェニレンジアミン、p-フェニレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、3,4’-ジアミノジフェニルスルフィド、3,3’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル、9,9-ビス(4-アミノフェニル)フルオレン、9,9-ビス(4-アミノ-3-クロロフェニル)フルオレン、9,9-ビス(4-アミノ-3-フルオロフェニル)フルオレン、O-トリジン、m-トリジン、4,4’-ジアミノベンズアニリド、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、4-アミノフェニル-4-アミノベンゾエート、2-(4-アミノフェニル)-6-アミノベンゾオキサゾール等が例示される。さらに、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルプロパン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(3-アミノフェノキシ)フェニル]プロパン、4,4’-ビス(4-アミノフェノキシ)ビフェニル、4,4'-ビス(3-アミノフェノキシ)ビフェニル、ビス[4-(4-アミノフェノキシ)フェニル]エーテル、ビス[4-(3-アミノフェノキシ)フェニル]エーテル等の芳香族アミン類、ジアミノシクロヘキサン、ジアミノジシクロヘキシルメタン、ジメチルージアミノジシクロヘキシルメタン、テトラメチルージアミノジシクロヘキシルメタン、ジアミノジシクロヘキシルプロパン、ジアミノビシクロ[2.2.1]ヘプタン、ビス(アミノメチル)-ビシクロ[2.2.1]ヘプタン、3(4),8(9)-ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、1,3-ビスアミノメチルシクロヘキサン、イソホロンジアミン等の脂環式アミン類、エチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン等の脂肪族アミン類等が挙げられる。
【0434】
前記ベンゾオキサジン化合物としては、二官能性ジアミン類と単官能フェノール類から得られるP-d型ベンゾオキサジン、単官能性ジアミン類と二官能性フェノール類から得られるF-a型ベンゾオキサジン等が挙げられる。
【0435】
前記メラミン化合物の具体例としては、例えば、ヘキサメチロールメラミン、ヘキサメトキシメチルメラミン、ヘキサメチロールメラミンの1~6個のメチロール基がメトキシメチル化した化合物又はその混合物、ヘキサメトキシエチルメラミン、ヘキサアシロキシメチルメラミン、ヘキサメチロールメラミンのメチロール基の1~6個がアシロキシメチル化した化合物又はその混合物等が挙げられる。
【0436】
前記グアナミン化合物の具体例としては、例えば、テトラメチロールグアナミン、テトラメトキシメチルグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルグアナミン、テトラアシロキシグアナミン、テトラメチロールグアナミンの1~4個のメチロール基がアシロキシメチル化した化合物又はその混合物等が挙げられる。
【0437】
前記グリコールウリル化合物の具体例としては、例えば、テトラメチロールグリコールウリル、テトラメトキシグリコールウリル、テトラメトキシメチルグリコールウリル、テトラメチロールグリコールウリルのメチロール基の1~4個がメトキシメチル化した化合物又はその混合物、テトラメチロールグリコールウリルのメチロール基の1~4個がアシロキシメチル化した化合物又はその混合物等が挙げられる。
【0438】
前記ウレア化合物の具体例としては、例えば、テトラメチロールウレア、テトラメトキシメチルウレア、テトラメチロールウレアの1~4個のメチロール基がメトキシメチル化した化合物又はその混合物、テトラメトキシエチルウレア等が挙げられる。
【0439】
また、本実施形態においては、架橋性向上の観点から、少なくとも1つのアリル基を有する酸架橋剤を用いてもよい。少なくとも1つのアリル基を有する酸架橋剤の具体例としては、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類、2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-シアナトフェニル)プロパン、ビス(3-アリル-4-シアナトシフェニル)スルホン、ビス(3-アリル-4-シアナトフェニル)スルフィド、ビス(3-アリル-4-シアナトフェニル)エ-テル等のアリルシアネート類、ジアリルフタレート、ジアリルイソフタレート、ジアリルテレフタレート、トリアリルイソシアヌレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールアリルエーテル等が挙げられるが、これらに限定されるものではない。これらは単独でも、2種類以上の混合物であってもよい。これらの中でも、ビスマレイミド化合物及び/又は付加重合型マレイミド樹脂との相溶性に優れるという観点から、2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3-アリル-4-ヒドロキシフェニル)プロパン、ビス(3-アリル-4-ヒドロキシフェニル)スルホン、ビス(3-アリル-4-ヒドロキシフェニル)スルフィド、ビス(3-アリル-4-ヒドロキシフェニル)エ-テル等のアリルフェノール類が好ましい。
【0440】
下層膜形成材料中の酸架橋剤の含有量は、特に限定されないが、本実施形態の化合物及び/又は樹脂100質量部に対して、0.1~100質量部であることが好ましく、5~50質量部であることがより好ましく、さらに好ましくは10~40質量部である。酸架橋剤の含有量を上記範囲にすることで、レジスト層とのミキシング現象の発生が抑制される傾向にあり、また、反射防止効果が高められ、架橋後の膜形成性が高められる傾向にある。
【0441】
[架橋促進剤]
本実施形態の下層膜形成材料には、必要に応じて、架橋、硬化反応を促進させるための架橋促進剤を用いることができる。
【0442】
前記架橋促進剤としては、架橋、硬化反応を促進させるものであれば、特に限定されないが、例えば、アミン類、イミダゾール類、有機ホスフィン類、ルイス酸等が挙げられる。これらの架橋促進剤は、1種を単独で、或いは2種以上を組み合わせて用いることができる。これらの中でもイミダゾール類又は有機ホスフィン類が好ましく、架橋温度の低温化の観点から、イミダゾール類がより好ましい。
【0443】
前記架橋促進剤としては、以下に限定されないが、例えば、1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノール等の三級アミン、2-メチルイミダゾール、2-フェニルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、2-へプタデシルイミダゾール、2,4,5-トリフェニルイミダゾール等のイミダゾール類、トリブチルホスフィン、メチルジフェニルホスフイン、トリフェニルホスフィン、ジフェニルホスフィン、フェニルホスフィン等の有機ホスフィン類、テトラフェニルホスホニウム・テトラフェニルボレート、テトラフェニルホスホニウム・エチルトリフェニルボレート、テトラブチルホスホニウム・テトラブチルボレート等のテトラ置換ホスホニウム・テトラ置換ボレート、2-エチル-4-メチルイミダゾール・テトラフェニルボレート、N-メチルモルホリン・テトラフェニルボレート等のテトラフェニルボロン塩等が挙げられる。
【0444】
架橋促進剤の配合量としては、通常、本実施形態の化合物及び/又は樹脂を100質量部とした場合に、好ましくは0.1~10質量部であり、より好ましくは、制御のし易さ及び経済性の観点から0.1~5質量部であり、さらに好ましくは0.1~3質量部である。
【0445】
[ラジカル重合開始剤]
本実施形態の下層膜形成材料には、必要に応じてラジカル重合開始剤を配合することができる。ラジカル重合開始剤は、光によりラジカル重合を開始させる光重合開始剤であってもよいし、熱によりラジカル重合を開始させる熱重合開始剤であってもよい。
【0446】
このようなラジカル重合開始剤としては、特に制限されず、従来用いられているものを適宜採用することができる。例えば、1-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチルプロパン-1-オン、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のケトン系光重合開始剤、メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド、メチルシクロヘキサノンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセテートパーオキサイド、1,1-ビス(t-ヘキシルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ヘキシルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-2-メチルシクロヘキサン、1,1-ビス(t-ブチルパーオキシ)-シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、1,1-ビス(t-ブチルパーオキシ)ブタン、2,2-ビス(4,4-ジ-t-ブチルパーオキシシクロヘキシル)プロパン、p-メンタンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ヘキシルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサン、t-ブチルクミルパーオキサイド、ジ-t-ブチルパーオキサイド、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキシン-3、イソブチリルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ステアロイルパーオキサイド、スクシン酸パーオキサイド、m-トルオイルベンゾイルパーオキサイド、ベンゾイルパーオキサイド、ジ-n-プロピルパーオキシジカーボネート、ジイソプロピルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-2-エトキシエチルパーオキシジカーボネート、ジ-2-エトキシヘキシルパーオキシジカーボネート、ジ-3-メトキシブチルパーオキシジカーボネート、ジ-s-ブチルパーオキシジカーボネート、ジ(3-メチル-3-メトキシブチル)パーオキシジカーボネート、α,α’-ビス(ネオデカノイルパーオキシ)ジイソプロピルベンゼン、クミルパーオキシネオデカノエート、1,1,3,3-テトラメチルブチルパーオキシネオデカノエート、1-シクロヘキシル-1-メチルエチルパーオキシネオデカノエート、t-ヘキシルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、t-ブチルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノオエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)ヘキサノエート、1-シクロヘキシル-1-メチルエチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシイソブチレート、t-ブチルパーオキシマレート、t-ブチルパーオキシ-3,5,5-トリメトルヘキサノエート、t-ブチルパーオキシラウレート、t-ブチルパーオキシイソプロピルモノカーボネート、t-ブチルパーオキシ-2-エチルヘキシルモノカーボネート、t-ブチルパーオキシアセテート、t-ブチルパーオキシ-m-トルイルベンゾエート、t-ブチルパーオキシベンゾエート、ビス(t-ブチルパーオキシ)イソフタレート、2,5-ジメチル-2,5-ビス(m-トルイルパーオキシ)ヘキサン、t-ヘキシルパーオキシベンゾエート、2,5-ジメチル-2,5-ビス(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシアリルモノカーボネート、t-ブチルトリメチルシリルパーオキサイド、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、2,3-ジメチル-2,3-ジフェニルブタン等の有機過酸化物系重合開始剤が挙げられる。
【0447】
また、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、1-[(1-シアノ-1-メチルエチル)アゾ]ホルムアミド、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス(2-メチル-N-フェニルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[N-(4-クロロフェニル)-2-メチルプロピオンアミジン]ジヒドリドクロリド、2,2’-アゾビス[N-(4-ヒドロフェニル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(フェニルメチル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[N-(2-ヒドロキシエチル)-2-メチルプロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス[2-(5-メチル-2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(4,5,6,7-テトラヒドロ-1H-1,3-ジアゼピン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(5-ヒドロキシ-3,4,5,6-テトラヒドロピリミジン-2-イル)プロパン]ジヒドロクロリド、2,2’-アゾビス[2-[1-(2-ヒドロキシエチル)-2-イミダゾリン-2-イル]プロパン]ジヒドロクロリド、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-[1,1-ビス(ヒドロキシメチル)エチル]プロピオンアミド]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス(2-メチルプロパン)、ジメチル-2,2-アゾビス(2-メチルプロピオネート)、4,4’-アゾビス(4-シアノペンタン酸)、2,2’-アゾビス[2-(ヒドロキシメチル)プロピオニトリル]等のアゾ系重合開始剤も挙げられる。本実施形態におけるラジカル重合開始剤としては、これらのうちの1種を単独で用いても2種以上を組み合わせて用いてもよく、他の公知の重合開始剤をさらに組み合わせて用いてもよい。
【0448】
前記ラジカル重合開始剤の含有量としては、化学量論的に必要な量であればよいが、本実施形態の化合物及び/又は樹脂を100質量部とした場合に0.05~25質量部であることが好ましく、0.1~10質量部であることがより好ましい。ラジカル重合開始剤の含有量が0.05質量部以上である場合には、硬化が不十分となることを防ぐことができる傾向にあり、他方、ラジカル重合開始剤の含有量が25質量部以下である場合には、下層膜形成材料の室温での長期保存安定性が損なわれることを防ぐことができる傾向にある。
【0449】
[酸発生剤]
本実施形態における下層膜形成材料は、熱による架橋反応をさらに促進させる等の観点から、必要に応じて酸発生剤を含有していてもよい。酸発生剤としては、熱分解によって酸を発生するもの、光照射によって酸を発生するもの等が知られているが、いずれも使用することができる。酸発生剤としては、例えば、国際公開第2013/024779号に記載されたものを用いることができる。
【0450】
下層膜形成材料中の酸発生剤の含有量は、特に限定されないが、本実施形態の化合物及び/又は樹脂100質量部に対して、0.1~50質量部であることが好ましく、より好ましくは0.5~40質量部である。酸発生剤の含有量を上記範囲にすることで、酸発生量が多くなって架橋反応が高められる傾向にあり、また、レジスト層とのミキシング現象の発生が抑制される傾向にある。
【0451】
[塩基性化合物]
本実施形態における下層膜形成材料は、保存安定性を向上させる等の観点から、塩基性化合物を含有していてもよい。
【0452】
塩基性化合物は、酸発生剤から微量に発生した酸が架橋反応を進行させるのを防ぐための、酸に対するクエンチャーの役割を果たす。このような塩基性化合物としては、特に限定されないが、例えば、国際公開第2013/024779号に記載されたものが挙げられる。
【0453】
下層膜形成材料中の塩基性化合物の含有量は、特に限定されないが、本実施形態の化合物及び/又は樹脂100質量部に対して、0.001~2質量部であることが好ましく、より好ましくは0.01~1質量部である。塩基性化合物の含有量を上記範囲にすることで、架橋反応を過度に損なうことなく保存安定性が高められる傾向にある。
【0454】
[その他の添加剤]
また、本実施形態における下層膜形成材料は、熱や光による硬化性の付与や吸光度をコントロールする目的で、他の樹脂及び/又は化合物を含有していてもよい。このような他の樹脂及び/又は化合物としては、ナフトール樹脂、キシレン樹脂、ナフトール変性樹脂、ナフタレン樹脂のフェノール変性樹脂;ポリヒドロキシスチレン、ジシクロペンタジエン樹脂、(メタ)アクリレート、ジメタクリレート、トリメタクリレート、テトラメタクリレート、ビニルナフタレン、ポリアセナフチレン等のナフタレン環、フェナントレンキノン、フルオレン等のビフェニル環、チオフェン、インデン等のヘテロ原子を有する複素環を含む樹脂や芳香族環を含まない樹脂;ロジン系樹脂、シクロデキストリン、アダマンタン(ポリ)オール、トリシクロデカン(ポリ)オール及びそれらの誘導体等の脂環構造を含む樹脂又は化合物等が挙げられるが、これらに特に限定されない。さらに、本実施形態における下層膜形成材料は、公知の添加剤を含有していてもよい。公知の添加剤としては、以下に限定されないが、例えば、熱及び/又は光硬化触媒、重合禁止剤、難燃剤、充填剤、カップリング剤、熱硬化性樹脂、光硬化性樹脂、染料、顔料、増粘剤、滑剤、消泡剤、レベリング剤、紫外線吸収剤、界面活性剤、着色剤、ノニオン系界面活性剤等が挙げられる。
【0455】
[リソグラフィー用下層膜及び多層レジストパターンの形成方法]
本実施形態におけるリソグラフィー用下層膜は、上述した下層膜形成材料から形成される。
【0456】
また、本実施形態のレジストパターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、前記下層膜上に、少なくとも1層のフォトレジスト層を形成した後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程を含む。より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(A-1)と、前記下層膜上に、少なくとも1層のフォトレジスト層を形成する工程(A-2)と、前記(A-2)工程の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像を行う工程(A-3)と、を有する。
【0457】
さらに、本実施形態の回路パターン形成方法は、上記組成物を用いて基板上に下層膜を形成し、前記下層膜上にレジスト中間層膜材料を用いて中間層膜を形成し、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程、
前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程、
前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることにより基板にパターンを形成する工程、を含む。
より詳しくは、基板上に、本実施形態の下層膜形成材料を用いて下層膜を形成する工程(B-1)と、前記下層膜上に、珪素原子を含有するレジスト中間層膜材料を用いて中間層膜を形成する工程(B-2)と、前記中間層膜上に、少なくとも1層のフォトレジスト層を形成する工程(B-3)と、前記工程(B-3)の後、前記フォトレジスト層の所定の領域に放射線を照射し、現像してレジストパターンを形成する工程(B-4)と、前記工程(B-4)の後、前記レジストパターンをマスクとして前記中間層膜をエッチングし、得られた中間層膜パターンをエッチングマスクとして前記下層膜をエッチングし、得られた下層膜パターンをエッチングマスクとして基板をエッチングすることで基板にパターンを形成する工程(B-5)と、を有する。
【0458】
本実施形態におけるリソグラフィー用下層膜は、本実施形態の下層膜形成材料から形成されるものであれば、その形成方法は特に限定されず、公知の手法を適用することができる。例えば、本実施形態の下層膜材料をスピンコートやスクリーン印刷等の公知の塗布法或いは印刷法等で基板上に付与した後、有機溶媒を揮発させる等して除去し、次いで、公知の方法で架橋、硬化させて、本実施形態のリソグラフィー用下層膜を形成することができる。架橋方法としては、熱硬化、光硬化等の手法が挙げられる。有機溶媒を揮発させる等して除去することで、下層膜を形成することができる。
【0459】
下層膜の形成時には、上層レジストとのミキシング現象の発生を抑制するとともに架橋反応を促進させるために、ベークを施すことが好ましい。この場合、ベーク温度は、特に限定されないが、80~450℃の範囲内であることが好ましく、より好ましくは200~400℃である。また、ベーク時間も、特に限定されないが、10~300秒の範囲内であることが好ましい。なお、下層膜の厚さは、要求性能に応じて適宜選定することができ、特に限定されないが、通常、30~20,000nm程度であることが好ましく、より好ましくは50~15,000nmである。
【0460】
基板上に下層膜を作製した後、2層プロセスの場合は、その下層膜上に珪素含有レジスト層あるいは通常の炭化水素からなる単層レジストを作製することができる。3層プロセスの場合は、その下層膜上に珪素含有中間層、さらにその珪素含有中間層上に珪素を含まない単層レジスト層を作製することができる。これらの場合において、レジスト層を形成するためのフォトレジスト材料としては、公知のものから適宜選択して使用することができ、特に限定されない。
【0461】
2層プロセス用の珪素含有レジスト材料としては、酸素ガスエッチング耐性の観点から、ベースポリマーとしてポリシルセスキオキサン誘導体又はビニルシラン誘導体等の珪素原子含有ポリマーが使用され、さらに有機溶媒、酸発生剤、必要により塩基性化合物等を含むポジ型のフォトレジスト材料が好ましく用いられる。ここで珪素原子含有ポリマーとしては、この種のレジスト材料において用いられている公知のポリマーを使用することができる。
【0462】
3層プロセス用の珪素含有中間層としては、ポリシルセスキオキサンベースの中間層が好ましく用いられる。中間層に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。例えば、193nm露光用プロセスにおいて、下層膜として芳香族基を多く含み基板エッチング耐性が高い材料を用いると、k値が高くなり、基板反射が高くなる傾向にあるが、中間層で反射を抑えることによって、基板反射を0.5%以下にすることができる。このような反射防止効果を有する中間層としては、以下に限定されないが、193nm露光用としては、フェニル基又は珪素-珪素結合を有する吸光基が導入された、酸或いは熱で架橋するポリシルセスキオキサンが好ましく用いられる。
【0463】
また、Chemical Vapour Deposition(CVD)法で形成した中間層を用いることもできる。CVD法で作製した、反射防止膜としての効果が高い中間層としては、以下に限定されないが、例えば、SiON膜が知られている。一般的には、CVD法よりスピンコート法やスクリーン印刷等の湿式プロセスによって中間層を形成する方が、簡便でコスト的なメリットがある。なお、3層プロセスにおける上層レジストは、ポジ型、ネガ型のどちらでもよく、また、通常用いられている単層レジストと同じものを用いることができる。
【0464】
さらに、本実施形態における下層膜は、通常の単層レジスト用の反射防止膜或いはパターン倒れ抑制のための下地材として用いることもできる。本実施形態の下層膜は、下地加工のためのエッチング耐性に優れるため、下地加工のためのハードマスクとしての機能も期待できる。
【0465】
上記フォトレジスト材料によりレジスト層を形成する場合においては、上記下層膜を形成する場合と同様に、スピンコート法やスクリーン印刷等の湿式プロセスが好ましく用いられる。また、レジスト材料をスピンコート法等で塗布した後、通常、プリベークが行われるが、このプリベークは、80~180℃で10~300秒の範囲で行うことが好ましい。その後、常法にしたがい、露光を行い、ポストエクスポジュアーベーク(PEB)、現像を行うことで、レジストパターンを得ることができる。なお、レジスト膜の厚さは特に制限されないが、一般的には、30~500nmが好ましく、より好ましくは50~400nmである。
【0466】
また、露光光は、使用するフォトレジスト材料に応じて適宜選択して用いればよい。一般的には、露光光として、波長300nm以下の高エネルギー線、具体的には248nm、193nm、157nmのエキシマレーザー、3~20nmの軟X線、電子ビーム、X線等を挙げることができる。
【0467】
上述した方法により形成されるレジストパターンは、下層膜によってパターン倒れが抑制されたものとなる。そのため、本実施形態における下層膜を用いることで、より微細なパターンを得ることができ、また、そのレジストパターンを得るために必要な露光量を低下させ得る。
【0468】
次に、得られたレジストパターンをマスクにしてエッチングを行う。2層プロセスにおける下層膜のエッチングとしては、ガスエッチングが好ましく用いられる。ガスエッチングとしては、酸素ガスを用いたエッチングが好適である。酸素ガスに加えて、He、Ar等の不活性ガスや、CO、CO、NH、SO、N、NO、Hガスを加えることも可能である。また、酸素ガスを用いずに、CO、CO、NH、N、NO、Hガスだけでガスエッチングを行うこともできる。特に後者のガスは、パターン側壁のアンダーカット防止のための側壁保護のために好ましく用いられる。
【0469】
一方、3層プロセスにおける中間層のエッチングにおいても、ガスエッチングが好ましく用いられる。ガスエッチングとしては、上記の2層プロセスにおいて説明したものと同様のものが適用可能である。とりわけ、3層プロセスにおける中間層の加工は、フロン系のガスを用いてレジストパターンをマスクにして行うことが好ましい。その後、上述したように中間層パターンをマスクにして、例えば酸素ガスエッチングを行うことで、下層膜の加工を行うことができる。
【0470】
ここで、中間層として無機ハードマスク中間層膜を形成する場合は、CVD法やALD法等で、珪素酸化膜、珪素窒化膜、珪素酸化窒化膜(SiON膜)が形成される。窒化膜の形成方法としては、以下に限定されないが、例えば、特開2002-334869号公報、WO2004/066377に記載された方法を用いることができる。このような中間層膜の上に直接フォトレジスト膜を形成することができるが、中間層膜の上に有機反射防止膜(BARC)をスピンコートで形成して、その上にフォトレジスト膜を形成してもよい。
【0471】
中間層としては、ポリシルセスキオキサンベースの中間層も好ましく用いられる。レジスト中間層膜に反射防止膜としての効果を持たせることによって、効果的に反射を抑えることができる傾向にある。ポリシルセスキオキサンベースの中間層の具体的な材料については、以下に限定されないが、例えば、特開2007-226170号、特開2007-226204号に記載されたものを用いることができる。
【0472】
また、次の基板のエッチングも、常法によって行うことができ、例えば、基板がSiO、SiNであればフロン系ガスを主体としたエッチング、p-SiやAl、Wでは塩素系、臭素系ガスを主体としたエッチングを行うことができる。基板をフロン系ガスでエッチングする場合、2層レジストプロセスの珪素含有レジストと3層プロセスの珪素含有中間層は、基板加工と同時に剥離される。一方、塩素系或いは臭素系ガスで基板をエッチングした場合は、珪素含有レジスト層又は珪素含有中間層の剥離が別途行われ、一般的には、基板加工後にフロン系ガスによるドライエッチング剥離が行われる。
【0473】
本実施形態における下層膜は、基板のエッチング耐性に優れるという特徴を有する。なお、基板としては、公知のものを適宜選択して使用することができ、特に限定されないが、Si、α-Si、p-Si、SiO2、SiN、SiON、W、TiN、Al等が挙げられる。また、基板は、基材(支持体)上に被加工膜(被加工基板)を有する積層体であってもよい。このような被加工膜としては、Si、SiO2、SiON、SiN、p-Si、α-Si、W、W-Si、Al、Cu、Al-Si等、種々のLow-k膜及びそのストッパー膜等が挙げられ、通常、基材(支持体)とは異なる材質のものが用いられる。なお、加工対象となる基板或いは被加工膜の厚さは、特に限定されないが、通常、50~10,000nm程度であることが好ましく、より好ましくは75~5,000nmである。
【0474】
本実施形態における組成物を塗布してなるレジスト永久膜は、必要に応じてレジストパターンを形成した後、最終製品にも残存する永久膜として好適である。永久膜の具体例としては、半導体デバイス関連では、ソルダーレジスト、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や集積回路素子と回路基板の接着層、薄型ディスプレー関連では、薄膜トランジスタ保護膜、液晶カラーフィルター保護膜、ブラックマトリクス、スペーサー等が挙げられる。特に、本実施形態における組成物からなる永久膜は、耐熱性や耐湿性に優れている上に昇華成分による汚染性が少ないという非常に優れた利点も有する。特に表示材料において、重要な汚染による画質劣化の少ない、高感度、高耐熱、吸湿信頼性を兼ね備えた材料となる。
【0475】
本実施形態における組成物をレジスト永久膜用途に用いる場合には、硬化剤の他、更に必要に応じてその他の樹脂、界面活性剤や染料、充填剤、酸架橋剤、溶解促進剤等の各種添加剤を加え、有機溶剤に溶解することにより、レジスト永久膜用組成物とすることができる。
【0476】
本実施形態におけるリソグラフィー用膜形成組成物やレジスト永久膜用組成物は、上記各成分を配合し、攪拌機等を用いて混合することにより調製できる。また、本実施形態におけるレジスト下層膜用組成物やレジスト永久膜用組成物が充填剤や顔料を含有する場合には、ディゾルバー、ホモジナイザー、3本ロールミル等の分散装置を用いて分散あるいは混合して調製することができる。
【実施例1】
【0477】
以下、本実施形態を合成実施例、合成比較例、実施例、及び比較例によりさらに詳細に説明するが、本実施形態は、これらの例によってなんら限定されるものではない。
<<実施例A>>
【0478】
(分子量)
化合物の分子量は、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて、LC-MS分析により測定した。
また、以下の条件でゲル浸透クロマトグラフィー(GPC)分析を行い、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)、及び分散度(Mw/Mn)を求めた。
装置:Shodex GPC-101型(昭和電工(株)製)
カラム:KF-80M×3
溶離液:THF 1mL/min
温度:40℃
【0479】
(溶解性)
23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)、シクロヘキサノン(CHN)、乳酸エチル(EL)、メチルアミルケトン(MAK)又はテトラメチルウレア(TMU)に対して3質量%溶液になるよう攪拌して溶解させ、1週間後の結果を以下の基準で評価した。
評価A:いずれかの溶媒で析出物がないことを目視により確認した
評価C:全ての溶媒で析出物があることを目視により確認した
【0480】
[化合物の構造]
化合物の構造は、Bruker社製「Advance600II spectrometer」を用いて、以下の条件で、1H-NMR測定を行い、確認した。
周波数:400MHz
溶媒:d6-DMSO
内部標準:TMS
測定温度:23℃
【0481】
<合成実施例1A> BiP-1Aの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、2,7-ジヒドロキシナフタレン(シグマ-アルドリッチ社製試薬)19.7g、ベンゾ[b]チオフェン-2-カルボキシアルデヒド(シグマ-アルドリッチ社製試薬)10.0g、濃硫酸3gを1,4-ジオキサン 120gに加えて、内容物を110℃で2時間撹拌して反応を行って反応液を得た。次に反応液を純水1.5Lの純水に加えて晶析してきたものを濾別し、酢酸エチル500mLに溶解させた。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。得られた溶液を、カラムクロマトによる分離後、所定の化合物が11.0g得られた。
得られた化合物について、上述の方法により分子量を測定した結果、446であった。
得られた化合物について、上述の測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1A)の化学構造を有することを確認した。
δ(ppm):9.9(2H,O-H)、7.0~7.8(15H,Ph-H)、6.7(1H,C-H)
【0482】
【化124】
【0483】
<合成実施例2A~9A> BiP-2A~BiP-9Aの合成
合成実施例1Aのベンゾ[b]チオフェン-2-カルボキシアルデヒド及び2,7-ジヒドロキシナフタレンに代えて、下記の表1に記載のアルデヒド類及びフェノール類を使用したこと以外は、合成実施例1Aと同様にして下記式(BiP-2A)~(BiP-9A)で表されるポリフェノール化合物を得た。
【0484】
【表1】
【0485】
【化125】
【化126】
【化127】
【化128】
【化129】
【化130】
【化131】
【化132】
【0486】
<合成実施例10A> BiP-1A-MeBOCの合成
攪拌機、冷却管及びビュレットを備えた内容積200mLの容器において、上記合成実施例1Aで得られた化合物(BiP-1A)5.5g(12.4mmol)とブロモ酢酸t-ブチル(アルドリッチ社製)5.4g(27mmol)とを100mLのアセトンに仕込み、炭酸カリウム(アルドリッチ社製)3.8g(27mmol)及び18-クラウン-6 0.8gを加えて、内容物を還流下で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水100gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式(BiP-1A-MeBOC)で表される目的化合物(BiP-1A-MeBOC)を2.0g得た。
【0487】
得られた化合物(BiP-1A-MeBOC)について、上記方法により分子量を測定した結果、674であった。
得られた化合物(BiP-1A-MeBOC)について、上記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1A-MeBOC)の化学構造を有することを確認した。
δ(ppm):6.8~7.8(15H,Ph-H)、6.7(1H,C-H)、5.0(4H,-CH2-)、1.4(18H,-CH3)
【0488】
【化133】
【0489】
<合成実施例11A> BiP-1A-Propの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、上記合成実施例1Aで得られた化合物(BiP-1A)8.9g(19.9mmol)とプロパギルブロミド7.9g(66mmol)とを100mLのジメチルホルムアミドに仕込み、室温で3時間撹拌して反応を行って反応液を得た。次に反応液を濃縮し、濃縮液に純水300gを加えて反応生成物を析出させ、室温まで冷却した後、濾過を行って固形物を分離した。
得られた固形物を濾過し、乾燥させた後、カラムクロマトによる分離精製を行うことで、下記式(BiP-1A-Prop)で表される目的化合物(BiP-1A-Prop)を6.0g得た。
【0490】
得られた化合物(BiP-1A-Prop)について、上記方法により分子量を測定した結果、494であった。
得られた化合物(BiP-1A-Prop)について、上記測定条件で、NMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1A-Prop)の化学構造を有することを確認した。
δ(ppm):6.8~7.8(15H,Ph-H)、6.7(1H,C-H)、2.1(2H,≡CH)
【0491】
【化134】
【0492】
<合成実施例12A> R-BiP-2Aの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において合成実施例2Aで得られたBiP-2Aを10g、硫酸0.3g、4-ビフェニルアルデヒド(三菱瓦斯化学社製品)3.0g、1-メトキシ-2-プロパノール10gを加えて、内容物を90℃で6時間撹拌して反応を行って反応液を得た。反応液を冷却し、不溶物をろ別し、1-メトキシ-2-プロパノールを10g加え、その後、ヘキサンにより反応生成物を晶析させ、ろ過により回収した。回収物を酢酸エチル(関東化学株式会社製)100mLに溶解し、純水50mLを加えた後、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、脱水、濃縮を行って溶液を得た。得られた溶液を、カラムクロマトによる分離後、下記式(R-BiP-2A)で表される目的化合物(R-BiP-2A)を1.0g得た。

【化135】
(式(R-BiP-2A)中、qは繰り返し単位数を表す。)
【0493】
<合成実施例13A> R-BiP-3Aの合成
BiP-2Aに代えて、合成実施例3Aで得られたBiP-3を用いた以外は合成実施例12Aと同様に反応させ、下記式(R-BiP-3A)で表される目的樹脂(R-BiP-3A)を0.8g得た。
【化136】
(式(RBiP-3A)中、qは繰り返し単位数を表す。)
【0494】
(合成実施例14A)BiP-10Aの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、o-フェニルフェノール(シグマ-アルドリッチ社製試薬)12g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えた後、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
得られた溶液を、カラムクロマトによる分離後、下記式(BiP-10A)で表される目的化合物(BiP-10A)が5.0g得られた。
得られた化合物(BiP-10A)について、前記方法により分子量を測定した結果、518であった。また、炭素濃度は88.0質量%、酸素濃度は6.2質量%であった。
得られた化合物(BiP-10A)について、400MHz-1H-NMRで、DMSO-6溶媒にてNMR測定を行ったところ、以下のピークが見出され、下記式(BiP-10A)の化学構造を有することを確認した。
δ(ppm)9.48(2H,O-H)、6.88~7.61(25H,Ph-H)、3.36(3H,C-H)
【0495】
【化137】
【0496】
(合成実施例15A)SBiP-10Aの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、前記のようにして得られたBiP-10Aを、J. Am. Chem. Soc., Vol. 122, No. 28, 2000に記載の方法で、水酸基をチオール基に置換反応させ、カラムクロマトによる分離後、下記式(SBiP-10A)で表される目的化合物(SBiP-10A)が1.0g得られた。
得られた化合物(SBiP-10A)について、前記方法により分子量を測定した結果、550であった。また、炭素濃度は82.9質量%であった。
得られた化合物(SBiP-9A)について、400MHz-1H-NMRで、CDCl溶媒にてNMR測定を行ったところ、以下のピークが見出され、下記式(SBiP-9A)の化学構造を有することを確認した。
δ(ppm)3.40(2H,S-H)、6.88~7.61(25H,Ph-H)、3.36(3H,C-H)
【0497】
【化138】
【0498】
(合成比較例1A)
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mlを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒド樹脂の分子量は、Mn:562、Mw:1168であり、分散度はMw/Mn: 2.08であった。
【0499】
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、上記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後、さらに1-ナフトール52.0g(0.36mol)を加え、220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
得られた樹脂(CR-1)の分子量は、Mn:885、Mw:2220であり、分散度はMw/Mn:4.17であった。
【0500】
<合成比較例2A> BiP-C2の合成
合成実施例1Aのベンゾ[b]チオフェン-2-カルボキシアルデヒド及び2,7-ジヒドロキシナフタレンに代えて、4-メチルベンズアルデヒド及び2,6-ジヒドロキシナフタレンを使用したこと以外は、合成実施例1Aと同様にして下記式(BiP-C2)で表されるポリフェノール化合物を得た。
【化139】
【0501】
(実施例1A~14A及び比較例1A)
上記合成実施例1A~13A及び15Aに記載の化合物、及び合成比較例1Aに記載のCR-1を用いて溶解度試験を行った。結果を表2に示す。
また、表2に示す組成のリソグラフィー用下層膜形成材料を各々調製した。
次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、酸架橋剤及び有機溶媒については以下のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
酸架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテル(PGME)
【0502】
(実施例15A~26A)
また、下記表3に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、110℃で60秒間ベークして塗膜の溶媒を除去した後、高圧水銀ランプにより、積算露光量600mJ/cm、照射時間20秒で硬化させて膜厚200nmの下層膜を各々作製した。光ラジカル重合開始剤、酸架橋剤及び有機溶媒については次のものを用いた。
【0503】
光ラジカル重合開始剤:BASF社製 IRGACURE184
酸架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテル(PGME)
【0504】
そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表2及び表3に示す。
[エッチング試験]
エッチング装置:サムコインターナショナル社製 RIE-10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
【0505】
[エッチング耐性の評価]
エッチング耐性の評価は、以下の手順で行った。
まず、化合物(BiP-1A)に代えてノボラック(群栄化学社製 PSM4357)を用いたこと以外は、実施例1Aと同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、上記のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、各実施例及び比較例1Aの下層膜を対象として、上記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
C:ノボラックの下層膜に比べてエッチングレートが、+5%超
【0506】
【表2】
【表3】
【0507】
(実施例27A~38A)
次に、BiP-1A~BiP-9A、BiP-1A-Prop、R-BiP-2A~3A、SBiP-10Aを含むリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(A)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
式(A)の化合物を調製するために、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mlのn-ヘキサン中に滴下した。このようにして得られた生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて、式(A)の化合物を得た。
【0508】
【化140】
【0509】
上記式(A)中、40、40、20とあるのは、各構成単位の比率を示すものであり、ブロック共重合体を示すものではない。
【0510】
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
【0511】
現像後のレジストパターンの形状については、パターン倒れがなく、矩形性が良好なものを「良好」とし、それ以外を「不良」として評価した。また、前記観察の結果、パターン倒れが無く、矩形性が良好な最小の線幅を「解像性」として、評価の指標とした。さらに、良好なパターン形状を描画可能な最小の電子線エネルギー量を「感度」として、評価の指標とした。
評価結果を表4に示す。
【0512】
(比較例2A)
下層膜の形成を行わなかったこと以外は、実施例27A~39Aと同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表4に示す。
【0513】
【表4】
【0514】
表2及び3から明らかなように、本実施形態における化合物或いは樹脂を用いた実施例1A~26Aでは、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1Aでは、エッチング耐性が不良であった。
また、実施例27A~39Aにおいては、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。下層膜の形成を省略した比較例2Aに比べて、解像性及び感度ともに有意に優れていることが確認された。
現像後のレジストパターン形状の相違から、実施例27A~39Aにおいて用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性が良いことが示された。
【0515】
(実施例40A~53A)
実施例1A~14Aのリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO基板のドライエッチング加工とを順次行った。
【0516】
各々のエッチング条件は、下記に示すとおりである。
レジストパターンのレジスト中間層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:1min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
レジスト中間膜パターンのレジスト下層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
レジスト下層膜パターンのSiO 基板へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
=50:4:3:1(sccm)
【0517】
[評価]
上記のようにして得られたパターン断面(エッチング後のSiO基板の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例は、多層レジスト加工におけるエッチング後のSiO基板の形状は矩形であり、欠陥も認められず良好であることが確認された。
【0518】
(実施例54A~66A)
前記合成実施例で合成した各化合物、又は前記合成比較例で合成した変性樹脂CR-1を用いて、下記表5に示す配合で光学部品形成組成物を調製した。なお、表5中の光学部品形成組成物の酸発生剤、酸架橋剤、及び溶媒については、以下のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
酸架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテル(PGMEA)
【0519】
[膜形成の評価]
均一状態の光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でプレベーク(prebake:PB)して、厚さ1μmの光学部品形成膜を形成した。調製した光学部品形成組成物について、膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
【0520】
[屈折率及び透過率の評価]
均一な光学部品形成組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中でPBして、厚さ1μmの膜を形成した。その膜につき、ジェー・エー・ウーラム製多入射角分光エリプソメーターVASEにて、25℃における屈折率(λ=550nm)を測定した。調製した膜について、屈折率が1.70以上の場合には「A」、1.60以上1.70未満の場合には「B」、1.60未満の場合には「C」と評価した。また透過率(λ=400nm)が90%以上の場合には「A」、90%未満の場合には「C」と評価した。
【表5】
【0521】
(実施例67A~79A)
前記合成実施例で合成した各化合物を用いて、下記表6に示す配合でレジスト組成物を調製した。なお、表6中のレジスト組成物のラジカル発生剤、ラジカル拡散抑制剤、及び溶媒については、以下のものを用いた。
ラジカル発生剤:BASF社製 IRGACURE184
ラジカル拡散抑制剤:BASF社製 IRGACURE1010
有機溶媒:プロピレングリコールモノメチルエーテル(PGME)
【0522】
[評価方法]
(1)レジスト組成物の保存安定性及び薄膜形成
レジスト組成物の保存安定性は、レジスト組成物を作成後、23℃、50%RHにて3日間静置し、析出の有無を目視にて観察することにより評価した。3日間静置後のレジスト組成物において、均一溶液であり析出がない場合には「A」、析出がある場合は「C」と評価した。また、均一状態のレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ40nmのレジスト膜を形成した。作成したレジスト膜について、薄膜形成が良好な場合には「A」、形成した膜に欠陥がある場合には「C」と評価した。
【0523】
(2)レジストパターンのパターン評価
均一なレジスト組成物を清浄なシリコンウェハー上に回転塗布した後、110℃のオーブン中で露光前ベーク(PB)して、厚さ60nmのレジスト膜を形成した。得られたレジスト膜に対して、電子線描画装置(ELS-7500、(株)エリオニクス社製)を用いて、50nm、40nm及び30nm間隔の1:1のラインアンドスペース設定の電子線を照射した。当該照射後に、レジスト膜を、それぞれ所定の温度で、90秒間加熱し、PGMEに60秒間浸漬して現像を行った。その後、レジスト膜を、超純水で30秒間洗浄、乾燥して、ネガ型のレジストパターンを形成した。形成されたレジストパターンについて、ラインアンドスペースを走査型電子顕微鏡((株)日立ハイテクノロジー製S-4800)により観察し、レジスト組成物の電子線照射による反応性を評価した。
感度は、パターンを得るために必要な単位面積当たりの最小のエネルギー量で示し、以下に従って評価した。
A:50μC/cm未満でパターンが得られた場合
C:50μC/cm以上でパターンが得られた場合
パターン形成は、得られたパターン形状をSEM(走査型電子顕微鏡:Scanning Electron Microscope)にて観察し、以下に従って評価した。
A:矩形なパターンが得られた場合
B:ほぼ矩形なパターンが得られた場合
C:矩形でないパターンが得られた場合
【0524】
【表6】
<<実施例B>>
【0525】
(炭素濃度及び酸素濃度)
有機元素分析により炭素濃度及び酸素濃度(質量%)を測定した。
装置:CHNコーダーMT-6(ヤナコ分析工業(株)製)
【0526】
(分子量)
LC-MS分析により、Water社製Acquity UPLC/MALDI-Synapt HDMSを用いて測定した。
【0527】
(溶解性)
23℃にて、化合物をプロピレングリコールモノメチルエーテル(PGME)に対して5質量%溶液になるよう溶解させ、その後、5℃にて30日間静置し、結果を以下の基準で評価した。
評価A:目視にて析出物なしを確認
評価C:目視にて析出物ありを確認
【0528】
(合成例1B)BiP-1Bの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、o-フェニルフェノール(シグマ-アルドリッチ社製試薬)12g(69.0mmol)を120℃で溶融後、硫酸0.27gを仕込み、4-アセチルビフェニル(シグマ-アルドリッチ社製試薬)2.7g(13.8mmol)を加えて、内容物を120℃で6時間撹拌して反応を行って反応液を得た。次に反応液にN-メチル-2-ピロリドン(関東化学株式会社製)100mL、純水50mLを加えた後、酢酸エチルにより抽出した。次に純水を加えて中性になるまで分液後、濃縮を行って溶液を得た。
得られた溶液を、カラムクロマトによる分離後、下記式(BiP-1B)で表される目的化合物(BiP-1B)が5.0g得られた。
得られた化合物(BiP-1B)について、前記方法により分子量を測定した結果、518であった。また、炭素濃度は88.0質量%、酸素濃度は6.2質量%であった。
得られた化合物(BiP-1B)について、400MHz-1H-NMRで、DMSO-6溶媒にてNMR測定を行ったところ、以下のピークが見出され、下記式(BiP-1B)の化学構造を有することを確認した。
δ(ppm)9.48(2H,O-H)、6.88~7.61(25H,Ph-H)、3.36(3H,C-H)
【0529】
【化141】
【0530】
(合成例2B)SBiP-1Bの合成
攪拌機、冷却管及びビュレットを備えた内容積300mLの容器において、前記のようにして得られたBiP-1Bを、J. Am. Chem. Soc., Vol. 122, No. 28, 2000に記載の方法で、水酸基をチオール基に置換反応させ、カラムクロマトによる分離後、下記式(SBiP-1B)で表される目的化合物(SBiP-1B)が1.0g得られた。
得られた化合物(SBiP-1B)について、前記方法により分子量を測定した結果、550であった。また、炭素濃度は82.9質量%であった。
得られた化合物(SBiP-1B)について、400MHz-1H-NMRで、CDCl溶媒にてNMR測定を行ったところ、以下のピークが見出され、下記式(SBiP-1B)の化学構造を有することを確認した。
δ(ppm)3.40(2H,S-H)、6.88~7.61(25H,Ph-H)、3.36(3H,C-H)
【0531】
【化142】
【0532】
(合成例3B)
ジムロート冷却管、温度計及び攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流中、1,5-ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)及び98質量%硫酸(関東化学(株)製)0.97mLを仕込み、常圧下、100℃で還流させながら7時間反応させた。その後、希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを反応液に加え、静置後、下相の水相を除去した。さらに、中和及び水洗を行い、エチルベンゼン及び未反応の1,5-ジメチルナフタレンを減圧下で留去することにより、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
得られたジメチルナフタレンホルムアルデヒドの分子量は、Mn:562、Mw:1168、Mw/Mn:2.08であった。
【0533】
続いて、ジムロート冷却管、温度計及び攪拌翼を備えた内容積0.5Lの四つ口フラスコを準備した。この四つ口フラスコに、窒素気流下で、前記のようにして得られたジメチルナフタレンホルムアルデヒド樹脂100g(0.51mol)とパラトルエンスルホン酸0.05gとを仕込み、190℃まで昇温させて2時間加熱した後、攪拌した。その後さらに、1-ナフトール52.0g(0.36mol)を加え、さらに220℃まで昇温させて2時間反応させた。溶剤希釈後、中和及び水洗を行い、溶剤を減圧下で除去することにより、黒褐色固体の変性樹脂(CR-1)126.1gを得た。
得られた樹脂(CR-1)は、Mn:885、Mw:2220、Mw/Mn:4.17であった。また、炭素濃度は89.1質量%、酸素濃度は4.5質量%であった。
【0534】
[実施例1B及び2B並びに比較例1B]
前記SBiP-1B、CR-1につき、溶解度試験を行った。結果を表7に示す。
また、表7に示す組成のリソグラフィー用下層膜形成材料を各々調製した。次に、これらのリソグラフィー用下層膜形成材料をシリコン基板上に回転塗布し、その後、240℃で60秒間、さらに400℃で120秒間ベークして、膜厚200nmの下層膜を各々作製した。酸発生剤、架橋剤及び有機溶媒については次のものを用いた。
酸発生剤:みどり化学社製 ジターシャリーブチルジフェニルヨードニウムノナフルオロメタンスルホナート(DTDPI)
架橋剤:三和ケミカル社製 ニカラックMX270(ニカラック)
有機溶媒:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
そして、下記に示す条件でエッチング試験を行い、エッチング耐性を評価した。評価結果を表7に示す。
【0535】
[エッチング試験]
エッチング装置:サムコインターナショナル社製 RIE-10NR
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
[エッチング耐性の評価]
エッチング耐性の評価は、以下の手順で行った。
まず、実施例1Bにおいて用いる化合物(SBiP-1B)に代えてノボラック(群栄化学社製 PSM4357)を用いること以外は、実施例1Bと同様の条件で、ノボラックの下層膜を作製した。そして、このノボラックの下層膜を対象として、前記のエッチング試験を行い、そのときのエッチングレートを測定した。
次に、実施例1B及び2B並びに比較例1Bの下層膜を対象として、前記エッチング試験を同様に行い、そのときのエッチングレートを測定した。
そして、ノボラックの下層膜のエッチングレートを基準として、以下の評価基準でエッチング耐性を評価した。
[評価基準]
A:ノボラックの下層膜に比べてエッチングレートが、-10%未満
B:ノボラックの下層膜に比べてエッチングレートが、-10%~+5%
C:ノボラックの下層膜に比べてエッチングレートが、+5%超
【0536】
【表7】
【0537】
[実施例3B及び4B]
次に、実施例1B及び2BのSBiP-1Bを含むリソグラフィー用下層膜形成材料の各溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚70nmの下層膜を形成した。この下層膜上に、ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚140nmのフォトレジスト層を形成した。なお、ArFレジスト溶液としては、下記式(11)の化合物:5質量部、トリフェニルスルホニウムノナフルオロメタンスルホナート:1質量部、トリブチルアミン:2質量部、及びPGMEA:92質量部を配合して調製したものを用いた。
式(11)の化合物を調製するために、2-メチル-2-メタクリロイルオキシアダマンタン4.15g、メタクリロイルオキシ-γ-ブチロラクトン3.00g、3-ヒドロキシ-1-アダマンチルメタクリレート2.08g、アゾビスイソブチロニトリル0.38gを、テトラヒドロフラン80mLに溶解させて反応溶液とした。この反応溶液を、窒素雰囲気下、反応温度を63℃に保持して、22時間重合させた後、反応溶液を400mLのn-ヘキサン中に滴下した。このようにして得られる生成樹脂を凝固精製させ、生成した白色粉末をろ過し、減圧下40℃で一晩乾燥させて、式(11)の化合物を得た。
【0538】
【化143】
【0539】
前記式(11)中、40、40、20とあるのは、各構成単位のモル比率を示すものであり、ブロック共重合体を示すものではない。
【0540】
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層を露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、ポジ型のレジストパターンを得た。
【0541】
得られた55nmL/S(1:1)及び80nmL/S(1:1)のレジストパターンの形状及び欠陥を観察した結果を、表8に示す。
【0542】
[比較例2B]
下層膜の形成を行わないこと以外は、実施例3Bと同様にして、フォトレジスト層をSiO基板上に直接形成し、ポジ型のレジストパターンを得た。結果を表8に示す。
【0543】
【表8】
【0544】
表7から明らかなように、本実施形態の化合物であるSBiP-1Bを用いた実施例1B及び2Bでは、溶解度及びエッチング耐性のいずれの点でも良好であることが確認された。一方、CR-1(フェノール変性ジメチルナフタレンホルムアルデヒド樹脂)を用いた比較例1Bでは、エッチング耐性が不良であった。
また、実施例3B及び4Bでは、現像後のレジストパターン形状が良好であり、欠陥も見られないことが確認された。実施例3B及び4Bでは、下層膜の形成を省略した比較例2Bに比して、解像性及び感度ともに有意に優れていることが確認された。
現像後のレジストパターン形状の相違から、実施例3B及び4Bにおいて用いたリソグラフィー用下層膜形成材料は、レジスト材料との密着性がよいことが示された。
【0545】
[実施例5B及び6B]
実施例1B及び2Bのリソグラフィー用下層膜形成材料の溶液を膜厚300nmのSiO基板上に塗布して、240℃で60秒間、さらに400℃で120秒間ベークすることにより、膜厚80nmの下層膜を形成した。この下層膜上に、珪素含有中間層材料を塗布し、200℃で60秒間ベークすることにより、膜厚35nmの中間層膜を形成した。さらに、この中間層膜上に、前記ArF用レジスト溶液を塗布し、130℃で60秒間ベークすることにより、膜厚150nmのフォトレジスト層を形成した。なお、珪素含有中間層材料としては、特開2007-226170号公報<合成例1>に記載の珪素原子含有ポリマーを用いた。
次いで、電子線描画装置(エリオニクス社製;ELS-7500,50keV)を用いて、フォトレジスト層をマスク露光し、115℃で90秒間ベーク(PEB)し、2.38質量%テトラメチルアンモニウムヒドロキシド(TMAH)水溶液で60秒間現像することにより、55nmL/S(1:1)のポジ型のレジストパターンを得た。
その後、サムコインターナショナル社製 RIE-10NRを用いて、得られたレジストパターンをマスクにして珪素含有中間層膜(SOG)のドライエッチング加工を行い、続いて、得られた珪素含有中間層膜パターンをマスクにした下層膜のドライエッチング加工と、得られた下層膜パターンをマスクにしたSiO基板のドライエッチング加工とを順次行った。
【0546】
各々のエッチング条件は、下記に示すとおりである。
レジストパターンのレジスト中間層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:1min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:8:2(sccm)
レジスト中間膜パターンのレジスト下層膜へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:CF4ガス流量:O2ガス流量=50:5:5(sccm)
レジスト下層膜パターンのSiO基板へのエッチング条件
出力:50W
圧力:20Pa
時間:2min
エッチングガス
Arガス流量:C12ガス流量:Cガス流量:O2ガス流量
=50:4:3:1(sccm)
【0547】
[評価]
前記のようにして得られたパターン断面(エッチング後のSiO基板の形状)を、(株)日立製作所製電子顕微鏡(S-4800)を用いて観察したところ、本実施形態の下層膜を用いた実施例では、多層レジスト加工におけるエッチング後のSiO基板の形状は矩形であり、欠陥も認められず良好であることが確認された。
【0548】
[実施例7B及び8B]
実施例1B及び2Bのリソグラフィー用下層膜形成材料と同組成の光学部品形成組成物溶液を膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの光学部品形成膜を形成した。
次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、550nmの波長における屈折率及び400nmの波長における透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。
[屈折率の評価基準]
A:屈折率が1.65以上
C:屈折率が1.65未満
[透明性の評価基準]
A:吸光定数が0.03未満
C:吸光定数が0.03以上
その結果、実施例7B及び8Bのいずれも屈折率A、透明性Aであり、光学部品形成組成物として有用であることが確認された。
【0549】
[実施例9B及び比較例3B]
前述式(SBiP-1B)又は下記式(BiP-C2)で表される化合物をPGMEAに溶解して5%溶液とした。次に、膜厚300nmのSiO基板上に塗布して、260℃で300秒間ベークすることにより、膜厚100nmの膜を形成した。
次いで、ジェー・エー・ウーラム・ジャパン社製 真空紫外域多入射角分光エリプソメーター(VUV-VASE)を用いて、550nmの波長における屈折率及び400nmの波長における透明性試験を行い、以下の基準に従って屈折率及び透明性を評価した。
[屈折率の評価基準]
A:屈折率が1.65以上
C:屈折率が1.65未満
[透明性の評価基準]
A:吸光定数が0.03未満
C:吸光定数が0.03以上
その結果、前述式(SBiP-1B)で表される化合物を用いた場合はいずれも屈折率A、透明性Aであったが、前述式(BiP-C2)で表される化合物を用いた場合は、屈折率A、透明性Cであった。式(SBiP-1B)で表される化合物はタイ着色性に優れるあることが確認された。
【0550】
【化144】
【0551】
上述したとおり、本発明は、上記実施形態及び実施例に限定されるものではなく、その要旨を逸脱しない範囲内において適宜変更を加えることが可能である。
【0552】
本実施形態の化合物及び樹脂は、安全溶媒に対する溶解性が高く、耐熱性及びエッチング耐性が良好であり、本実施形態のレジスト組成物は良好なレジストパターン形状を与える。
【0553】
また、湿式プロセスが適用可能であり、耐熱性及びエッチング耐性に優れるフォトレジスト下層膜を形成するために有用な化合物、樹脂及びリソグラフィー用膜形成組成物を実現することができる。そして、このリソグラフィー用膜形成組成物は、耐熱性が高く、溶媒溶解性も高い、特定構造を有する化合物又は樹脂を用いているため、高温ベーク時の膜の劣化が抑制され、酸素プラズマエッチング等に対するエッチング耐性にも優れたレジスト及び下層膜を形成することができる。さらには、下層膜を形成した場合、レジスト層との密着性にも優れるので、優れたレジストパターンを形成することができる。
【0554】
さらには屈折率が高く、また低温から高温処理によって着色が抑制されることから、各種光学部品形成組成物としても有用である。
【0555】
したがって、本発明は、例えば、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板、電気機器・電子機器・産業機器等に搭載されるプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤、半導体用のコーティング剤、半導体用のレジスト用樹脂、下層膜形成用樹脂、フィルム状、シート状で使われる他、プラスチックレンズ(プリズムレンズ、レンチキュラーレンズ、マイクロレンズ、フレネルレンズ、視野角制御レンズ、コントラスト向上レンズ等)、位相差フィルム、電磁波シールド用フィルム、プリズム、光ファイバー、フレキシブルプリント配線用ソルダーレジスト、メッキレジスト、多層プリント配線板用層間絶縁膜、感光性光導波路等の光学部品等において、広く且つ有効に利用可能である。
【産業上の利用可能性】
【0556】
本発明は、リソグラフィー用レジスト、リソグラフィー用下層膜及び多層レジスト用下層膜及び光学部品の分野における産業上利用可能性を有する。