(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-31
(45)【発行日】2023-09-08
(54)【発明の名称】診断支援装置、機械学習装置、診断支援方法、機械学習方法および機械学習プログラム
(51)【国際特許分類】
A61B 5/055 20060101AFI20230901BHJP
G06T 7/00 20170101ALI20230901BHJP
G16H 50/20 20180101ALI20230901BHJP
【FI】
A61B5/055 380
G06T7/00 350B
G06T7/00 612
G16H50/20
(21)【出願番号】P 2019135296
(22)【出願日】2019-07-23
【審査請求日】2022-07-04
【新規性喪失の例外の表示】特許法第30条第2項適用 (その1) ウェブサイトの掲載日 2019年2月22日 ウェブサイトのアドレス http://www2.convention.co.jp/18jsrm/ http://www2.convention.co.jp/18jsrm/appli/ (その2) 開催日 2019年3月21日(木)~23日(土) 集会名、開催場所 第18回日本再生医療学会総会 神戸国際展示場(神戸市中央区港島中町6-11-1)
(73)【特許権者】
【識別番号】504177284
【氏名又は名称】国立大学法人滋賀医科大学
(73)【特許権者】
【識別番号】518267562
【氏名又は名称】株式会社ERISA
(74)【代理人】
【識別番号】110000796
【氏名又は名称】弁理士法人三枝国際特許事務所
(72)【発明者】
【氏名】椎野 顯彦
【審査官】下村 一石
(56)【参考文献】
【文献】特開2016-106940(JP,A)
【文献】米国特許出願公開第2016/0019693(US,A1)
【文献】特許第6483890(JP,B1)
【文献】特開2010-005054(JP,A)
【文献】OKADA, N., et al.,Abnormal asymmetries in subcortical brain volume in schizophrenia,Molecular Psychiatry,英国,Nature Publishing Group,2016年01月19日,Vol.21,pp.1460-1466
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/055
G01R 33/20-33/64
G06T 7/00
G16H 50/20
(57)【特許請求の範囲】
【請求項1】
複数の統合失調症の患者の脳画像、
複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果から作成された教師データに基づいて、
被験者が統合失調症であるか否かの判定を行うための判定アルゴリズムを学習する学習部を備える、機械学習装置
であって、
前記患者の脳画像、前記対照群の脳画像、および、前記患者ならびに前記対照群の診断結果に基づいて、前記教師データを作成する教師データ作成部をさらに備え、
前記教師データ作成部は、
前記脳画像を灰白質、白質、および髄液部分に分割する領域分割部と、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定部と、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算部と、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算部と、
を備え、
前記教師データは、前記複数の関心領域および前記z値を前記診断結果と対応付けることにより作成された、機械学習装置。
【請求項2】
請求項
1に記載の機械学習装置であって、
前記学習部はサポートベクターマシンで構成される、機械学習装置。
【請求項3】
請求項
1または
2に記載の機械学習装置であって、
前記脳画像はMRI画像である、機械学習装置。
【請求項4】
請求項1~3のいずれかに記載の機械学習装置によって機械学習された判定アルゴリズムに従って、被験者が統合失調症であるか否かの判定を行う判定部を備えた、診断支援装置
であって、
前記被験者から取得した脳画像を灰白質、白質、および髄液部分に分割する領域分割部と、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定部と、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算部と、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算部と、
をさらに備え、
前記判定部は、前記z値に基づいて前記判定を行う、診断支援装置。
【請求項5】
請求項
4に記載の診断支援装置であって、
前記領域分割部は、前記髄液部分から側脳室を分離する、診断支援装置。
【請求項6】
請求項
4または
5に記載の診断支援装置であって、
前記領域分割部は、脳梁と周囲白質との境界を、流体の表面張力と粘度のパラメーターにより決定することにより、前記周囲白質を分離する、診断支援装置。
【請求項7】
請求項
4~
6のいずれかに記載の診断支援装置であって、
前記領域分割部は、淡蒼球を前記灰白質として分離する、診断支援装置。
【請求項8】
請求項
7に記載の診断支援装置であって、
前記領域分割部は、前記淡蒼球を前記灰白質として分離するために、前記灰白質の分割時に大脳皮質、大脳基底核および視床を別々に扱う、診断支援装置。
【請求項9】
請求項
4~
8のいずれかに記載の診断支援装置であって、
前記判定部は、シグモイド関数によりハイパー平面への距離から事後確率として前記判定を行う、診断支援装置。
【請求項10】
複数の統合失調症の患者の脳画像、複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果から作成された教師データに基づいて、被験者が統合失調症であるか否かの判定を行うための判定アルゴリズムを学習する機械学習方法であって、
前記患者の脳画像、前記対照群の脳画像、および、前記患者ならびに前記対照群の診断結果
に基づいて、前記教師データ
を作成する教師データ作成ステップと、
前記教師データに基づいて、前記判定アルゴリズムを学習する学習ステップ
とを備え
、
前記教師データ作成ステップは、
前記脳画像を灰白質、白質、および髄液部分に分割する領域分割ステップと、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定ステップと、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算ステップと、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算ステップと、
を備え、
前記教師データは、前記複数の関心領域および前記z値を前記診断結果と対応付けることにより作成された、機械学習方法。
【請求項11】
コンピュータが、
請求項10に記載の機械学習方法によって機械学習された判定アルゴリズムに従って、被験者が統合失調症であるか否かの判定を行う判定ステップを備えた、診断支援方法
であって、
前記被験者から取得した脳画像を灰白質、白質、および髄液部分に分割する領域分割ステップと、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定ステップと、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算ステップと、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算ステップと、
をさらに備え、
前記判定ステップでは、前記z値に基づいて前記判定を行う、診断支援方法。
【請求項12】
被験者が統合失調症であるか否かの判定を行うための判定アルゴリズムをコンピュータに学習させる機械学習プログラムであって、
請求項10に記載の機械学習方法の前記教師データ作成ステップと、前記学習ステップとを前記コンピュータに実行させる、機械学習プログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、被験者が統合失調症であるかを判定する技術に関し、特に、人工知能によって判定する技術に関する。
【背景技術】
【0002】
厚生労働省の発表によると、日本における統合失調症の患者数は79.5万人と推定されている。世界的には人口の0.7%が罹患していると言われ、発症は思春期から青年期の10歳代後半から20歳代にピークがある。現時点で発症原因は不明であるが、遺伝的要因を示唆するエビデンスがある。発症から薬物治療を開始するまでの期間が短いほど、予後が良いとされている。しかしながら、患者の2人に1人は病院を受診していない可能性があり、何らかの対策が必要とされている。
【0003】
症状は陽性症状と陰性症状に分けられる。陽性症状は幻覚や妄想が主体で、特に幻聴が特徴的とされる。陰性症状は感情鈍麻、自閉、意欲や能動性の低下、注意集中の障害などである。MRIによる脳の画像検査では、統合失調症患者には前頭葉や側頭葉の萎縮が疑われているが、個体差があり診断としての特徴性はないとされてきた。
【0004】
これに対し、非特許文献1には、MRI画像によって統合失調症の診断を支援する技術が開示されている。具体的には、T1強調画像において、Statistical parametric mapping(SPM)99を用いて前処理し、線形多変量解析により患者と健常者との違いをもっともよく表す灰白質分布パターンを抽出することが開示されている。
【先行技術文献】
【非特許文献】
【0005】
【文献】鈴木道雄、外4名、「構造MRIによる統合失調症の補助診断の可能性」、精神経誌、2012年、第114巻、第7号、p. 807-811
【発明の概要】
【発明が解決しようとする課題】
【0006】
淡蒼球の肥大化も統合失調症の特徴的な所見である。統合失調症では、幻聴などの陽性症状の存在が臨床診断上重要であるが、淡蒼球の肥大化はこうした陽性症状と何らかの関係があると推測される。
【0007】
一般に大脳皮質灰白質と大脳基底核や視床などの深部灰白質とでは同じ灰白質であっても信号値の分布が異なるため、非特許文献1で用いられているSPM99では、深部灰白質のセグメンテーションの範囲が小さくなる。さらにSPM99のテンプレート自身がSPM99でセグメンテーションされた灰白質の平均画像から作成されているため、SPM99のテンプレートは実際の大脳基底核や視床よりも小さくなっている。そのため、上記のように、統合失調症で肥大化が認められる淡蒼球は、灰白質であるにもかかわらず、白質として分離されてしまう。
【0008】
そのため、非特許文献1では、統合失調症で肥大化が特徴的に現れる淡蒼球に関しては評価しておらず、淡蒼球の肥大化が現れるタイプの統合失調症の場合は、高精度に診断することができない。
【0009】
本発明は、上記問題を解決するためになされたものであって、あらゆる統合失調症を高精度に判定することを課題とする。
【課題を解決するための手段】
【0010】
本発明は、次の態様を含む。
項1.
機械学習された判定アルゴリズムに従って、被験者が統合失調症であるか否かの判定を行う判定部を備えた、診断支援装置。
項2.
項1に記載の診断支援装置であって、
前記被験者から取得した脳画像を灰白質、白質、および髄液部分に分割する領域分割部と、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定部と、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算部と、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算部と、
をさらに備え、
前記判定部は、前記z値に基づいて前記判定を行う、診断支援装置。
項3.
項2に記載の診断支援装置であって、
前記領域分割部は、前記髄液部分から側脳室を分離する、診断支援装置。
項4.
項2または3に記載の診断支援装置であって、
前記領域分割部は、脳梁と周囲白質との境界を、流体の表面張力と粘度のパラメーターにより決定することにより、前記周囲白質を分離する、診断支援装置。
項5.
項2~4のいずれかに記載の診断支援装置であって、
前記領域分割部は、淡蒼球を前記灰白質として分離する、診断支援装置。
項6.
項5に記載の診断支援装置であって、
前記領域分割部は、前記淡蒼球を前記灰白質として分離するために、前記灰白質の分割時に大脳皮質、大脳基底核および視床を別々に扱う、診断支援装置。
項7.
項2~6のいずれかに記載の診断支援装置であって、
前記判定部は、シグモイド関数によりハイパー平面への距離から事後確率として前記判定を行う、診断支援装置。
項8.
項1~7のいずれかに記載の判定アルゴリズムを学習する機械学習装置であって、
複数の統合失調症の患者の脳画像、複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果から作成された教師データに基づいて、前記判定アルゴリズムを学習する学習部を備える、機械学習装置。
項9.
項8に記載の機械学習装置であって、
前記学習部はサポートベクターマシンで構成される、機械学習装置。
項10.
項8または9に記載の機械学習装置であって、
前記脳画像はMRI画像である、機械学習装置。
項11.
項8~10のいずれかに記載の機械学習装置であって、
複数の統合失調症の患者の脳画像、複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果に基づいて、前記教師データを作成する教師データ作成部をさらに備える、機械学習装置。
項12.
項11に記載の機械学習装置であって、
前記教師データ作成部は、
前記患者から取得した脳画像を灰白質、白質、および髄液部分に分割する領域分割部と、
前記分割された各領域の少なくともいずれかに複数の関心領域を設定する関心領域設定部と、
各関心領域の体積について、各関心領域におけるt値およびp値を演算するt値およびp値演算部と、
前記t値およびp値に基づいて、各関心領域のz値を演算するz値演算部と、
を備え、
前記教師データは、前記診断結果と、前記z値とを含む、機械学習装置。
項13.
機械学習された判定アルゴリズムに従って、被験者が統合失調症であるか否かの判定を行う判定ステップを備えた、診断支援方法。
項14.
項13に記載の判定アルゴリズムを学習する機械学習方法であって、
複数の統合失調症の患者の脳画像、複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果から作成された教師データに基づいて、前記判定アルゴリズムを学習する学習ステップを備える、機械学習方法。
項15.
項13に記載の判定アルゴリズムをコンピュータに学習させる機械学習プログラムであって、
複数の統合失調症の患者の脳画像、複数の統合失調症ではない対照群の脳画像、および、前記患者ならびに前記対照群の診断結果に基づいて、前記判定アルゴリズムを学習する学習ステップを前記コンピュータに実行させる、機械学習プログラム。
【発明の効果】
【0011】
本発明によれば、あらゆる統合失調症を高精度に判定することができる。
【図面の簡単な説明】
【0012】
【
図1】本発明の一実施形態に係る判定システムの概略構成を示すブロック図である。
【
図2】本発明の一実施形態に係る機械学習装置の機能を示すブロック図である。
【
図3】本発明の一実施形態に係る機械学習方法の全体的な手順を示すフローチャートである。
【
図4】教師データ作成ステップの手順を示すフローチャートである。
【
図7】脳梁の3次元構造を求め、その境界を明確にした例の説明図である。
【
図8】本発明の一実施形態に係る診断支援装置の機能を示すブロック図である。
【
図9】本発明の一実施例による判定のROC曲線である。
【
図10】統合失調症患者の脳の形状解析結果である。
【
図11】統合失調症患者の脳の形状解析結果である。
【発明を実施するための形態】
【0013】
以下、本発明の実施形態について添付図面を参照して説明する。なお、本発明は、下記の実施形態に限定されるものではない。
【0014】
(全体構成)
図1は、本実施形態に係る判定システム100の概略構成を示すブロック図である。判定システム100は、機械学習装置1および診断支援装置2を備えている。機械学習装置1は、被験者が統合失調症であるか否かの判定を行うための判定アルゴリズムを学習する。診断支援装置2は、機械学習装置1によって学習された判定アルゴリズムに従って、被験者が統合失調症であるか否かの判定を行う。機械学習装置1と診断支援装置2とは、別個の装置で実現してもよいし、機械学習装置1と診断支援装置2とを一つの装置で構成してもよい。
【0015】
以下、機械学習装置1および診断支援装置2の構成例について説明する。
【0016】
(機械学習装置)
図2は、本実施形態に係る機械学習装置1の機能を示すブロック図である。機械学習装置1は、例えば汎用のパーソナルコンピュータで構成することができ、ハードウェア構成として、CPU(図示せず)、主記憶装置(図示せず)、補助記憶装置11などを備えている。機械学習装置1では、CPUが補助記憶装置11に記憶された各種プログラムを主記憶装置に読み出して実行することにより、各種演算処理を実行する。補助記憶装置11は、例えばハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)で構成することができる。また、補助記憶装置11は、機械学習装置1に内蔵されてもよいし、機械学習装置1とは別体の外部記憶装置として設けてもよい。
【0017】
機械学習装置1は、被験者が統合失調症であるか否かの判定を行うための判定アルゴリズムD4を学習する機能を有している。この機能を実現するために、機械学習装置1は、機能ブロックとして、教師データ作成部12および学習部13を備えている。教師データ作成部12は、統合失調症の患者および統合失調症ではない対照群の脳画像D1および診断結果D2から教師データD3を作成する機能ブロックである。学習部13は、教師データD3に基づいて、判定アルゴリズムD4を学習する機能ブロックである。教師データ作成部12および学習部13は、補助記憶装置11に格納されている機械学習プログラムを実行することにより実現される。
【0018】
機械学習装置1は、診断情報データベースDBにアクセス可能となっている。診断情報データベースDBには、複数の統合失調症患者および対照群の脳画像D1、および、統合失調症患者ならびに対照群の診断結果D2が格納されている。本実施形態では、脳画像D1は3次元のMRI画像である。脳画像D1および診断結果D2は、統合失調症患者および対照群のそれぞれについて、統計的有意差の得られる一定数以上用意されていることが望ましい。診断情報データベースDBは、1つの医療機関が所有するものであってもよいし、複数の医療機関が共有するものであってもよい。
【0019】
教師データ作成部12は、教師データD3を作成するための機能ブロックとして、脳画像取得部121、領域分割部122、画像補正部123、関心領域設定部124、t値およびp値演算部125、体積演算部126、z値演算部127および診断結果取得部128を備えている。
【0020】
脳画像取得部121は、統合失調症患者および対照群の脳画像D1を診断情報データベースDBから取得する。領域分割部122~z値演算部127は、取得された脳画像D1に対して、脳領域に複数の関心領域(ROI)を設定し、各関心領域のz値を算出する等の演算処理を行う。領域分割部122~z値演算部127の各部の具体的な演算処理内容は、後述する。
【0021】
診断結果取得部128は、脳画像D1が取得された統合失調症患者および対照群の診断結果D2を、診断情報データベースDBから取得する。教師データ作成部12は、各統合失調症患者および各対照群について、各関心領域のz値と診断結果D2とを対応づけて教師データD3を作成し、補助記憶装置11に保存する。
【0022】
学習部13は、教師データD3に基づいて判定アルゴリズムD4を学習し、学習済みの判定アルゴリズムD4を補助記憶装置11に保存する。機械学習法は、特に限定されないが、本実施形態では、学習部13はサポートベクターマシンで構成される。
【0023】
(機械学習方法)
本実施形態に係る機械学習方法は、
図2に示す機械学習装置1を用いて実施される。
図3は、本実施形態に係る機械学習方法の全体的な手順を示すフローチャートである。
図4は、本実施形態に係る機械学習方法における教師データ作成ステップの手順を示すフローチャートである。
【0024】
図3に示すステップS1では、脳画像取得部121および診断結果取得部128が、診断情報データベースDBから、統合失調症患者および対照群の脳画像D1および診断結果D2をそれぞれ取得する。なお、一人分の脳画像D1および診断結果D2を取得してもよいし、一度に複数人分の脳画像D1および診断結果D2を取得してもよい。
【0025】
ステップS2では、教師データ作成部12が、取得された脳画像D1および診断結果D2から教師データD3を作成する。
【0026】
図4は、教師データを作成するためのステップS2の具体的な処理手順を示すフローチャートである。ステップS2は、主にステップS21~S27を備えている。
【0027】
ステップS21では、領域分割部122が、取得された脳画像D1から脳以外の組織を分離除去し、さらに、脳以外の組織が分離除去された脳画像を、灰白質、白質および髄液部分に分割する。本実施形態では、領域分割部122は、SPMなど従来法による標準化により脳病変が無視されることを防ぐために、信号強度に依存した最尤法および事後確率法を用いて脳画像を分割する。これに伴い生じる白質病変の灰白質への混入を防ぐ目的で、FLAIR画像をセグメンテーションに導入するマルチチャンネルセグメンテーションの技術を可能にした。空間情報が低いFLAIR画像は3次元脳画像データにより高い空間情報に補完されたのち、白質病変のみを切り出し、被検者白質の平均信号値で穴埋め(置換)することにより、従来にない精度の分離が可能となっている。
【0028】
図5は、その効果を示すものである。
図5において、従来の方法では、灰白質の上部2か所で白い部分が混入し、白質ではやはり上部2か所で白質が欠損している。本実施形態の方法を用いることにより、従来にない精度での分離が可能となっている。
【0029】
その後、必要に応じて、脳画像の画質評価を行い、画質が一定レベル以下の場合、警告を表示する等の処理を行ってもよい。
【0030】
ステップS22では、画像補正部123が、ステップS21において分割された脳画像を補正する。本実施形態では、画像補正部123は、統合失調症患者および対照群の年齢、頭蓋骨内容積等に基づいて共変量調整を行い、必要に応じて、灰白質の解析時に灰白質の体積による補正を行う。
【0031】
ステップS23では、関心領域設定部124が、脳画像に含まれる脳領域に複数の関心領域を設定する。本実施形態では、関心領域設定部124は、灰白質を290ヶ所に分割し、分割した各領域を関心領域に設定する。
【0032】
髄液部分からは側脳室を分離する。通常の脳萎縮は脳表が中心方向に向かって縮まる(頭蓋骨と脳表に隙間ができる)が、白質病変があると、代償的に側脳室が拡大して内側から外側に向かって縮まる。このようなことがあるため、本実施形態では側脳室を分離する。この処置により側脳室と灰白質、白質との境界を精度よく決定することができ、これにより判別精度が向上する。
【0033】
本実施形態における側脳室分離の効果を
図6に示す。従来の方法で求めた3例と右下の本実施形態を比較すると、図中破線で区切って示すように、側脳室と白質との境界が精度よく得られている。これにより従来よりも精度のよい判別ができる。
【0034】
灰白質は、Automated Anatomical Labeling(AAL)116箇所、Brodmann118箇所、Loni Probabilistic Brain Atlas 40(LPBA40)56箇所の計290箇所を用いることにより分割できる。
【0035】
従来の方法では、脳梁はその矢状断での断面積でのみ大きさが評価できたが、本実施形態では、これを3次元評価する目的で、脳梁と周囲白質との境界の設定を流体の表面張力と粘度のパラメーターを調整することにより分割する。
【0036】
脳梁は皮質下の白質と境界なく連続しているため、その関心領域作成には特殊な手法が必要である。さらに具体的には、脳3次元画像において、脳梁の前頭部及び後頭部位置に、仮想流体を置き、仮想流体が、脳内で3次元的に拡がっていく状況をシミュレーションしてその境界を決定する。代表的には髄液に相当する水滴を想定し、その水滴がその表面張力と粘度に基づいて、自由に拡がっていく形状から脳梁の前頭部側及び後頭部側形状を求め、これにより脳梁と接する部分の灰白質と白質の形状を決定する。これにより実際には3次元的に微細な入り組んだ形状部分のある境界面を単純だが精度の高い方法で明確にすることができる。
【0037】
図7は、本実施形態の方法により、脳梁の3次元構造を求め、その境界を明確にした例である。これにより灰白質、白質との境界が明確となり、判別精度が向上する。境界面の確定により、その形状を確定した灰白質および白質について分割処理を行う。この処理を導入することにより、後述するt値、p値およびz値の精度を大幅に改善することができる。
【0038】
側脳室は、事前にMNI空間に用意したテンプレートを用いることにより分割できる。
【0039】
さらに本実施形態では、淡蒼球を灰白質として分離しており、淡蒼球を灰白質として分離するために、灰白質の分割時に大脳皮質、大脳基底核および視床を別々に扱っている。[発明が解決しようとする課題]において述べたように、SPM99では、統合失調症で肥大化が特徴的に現れる淡蒼球は、灰白質であるにもかかわらず、白質として分離されてしまう。そこで、本実施形態では、事前確率のテンプレートにICBM152を用いるとともに、灰白質の分割時に大脳皮質、大脳基底核および視床を別々に扱っている。これにより、淡蒼球を灰白質として分離でき、深部灰白質のセグメンテーションの精度を改善させている。
【0040】
ステップS24では、t値およびp値演算部125が、各関心領域の体積について、各関心領域におけるt値およびp値を演算する。この目的のために、対照群として標準に用いられるIXI databaseを用いることができる。なお、t値およびp値は統計的検証に用いられる値である。
【0041】
具体的には、母集団における調べたい値(関心領域ごとの体積)が正規分布になる(調査の対象数が多い場合には正規分布すると推定される)場合、2つのグループ(健常者と認知症)の平均値の差に統計学的に有意な差があるかどうか調べるために、以下の数式によりt値を求める。
【0042】
【0043】
なお、自由度はn-1となる。
【0044】
また、p値は、上述の数式で得られたt値から、どのくらいの値のt値で境界を引けば統計学的に有意と言えるかどうかを示す値である。例えば、偽陽性(病気でないのに誤って病気と判定してしまうこと)の率を5%までに抑制する場合、p値は0.05となる。
【0045】
ステップS25では、体積演算部126が、各関心領域の体積を演算する。本実施形態では、体積演算部126は、テンソル変換時のヤコブ行列を利用して体積を計算する。
【0046】
ステップS26では、z値演算部127が、各関心領域におけるt値およびp値に基づいて、各関心領域におけるz値を演算する。これにより、脳画像D1から、複数の関心領域におけるz値が算出される。なお、z値はt値およびp値より求められる統計的検証のための値である。
【0047】
具体的には、z値は、健常者において、ある部位の関心領域の体積の分布を求め、これを正規分布に当てはめたのち、患者の同じ部位の関心領域の体積がこの正規分布のどの位置に相当するかを示す標準偏差を表す値である。正規分布になっている場合(平均=0、標準偏差=1)には、標準偏差値はz値として求まるが、本実施形態ではt検定をしているため、得られる値はt値となる。もし母集団が正規分布になっていれば、この値はほぼz値と同じ値になる。この場合のz値は、z検定した際のz値であり、標準偏差を表すz値を意味することになる。
【0048】
ステップS27では、複数の関心領域およびz値からなるデータを診断結果D2と対応付けることにより、教師データD3が作成される。
【0049】
以上のステップS21~S27により
図3に示すS2が終了する。作成された教師データD3は、補助記憶装置11に保存され、教師データD3が補助記憶装置11に十分蓄積されるまで(ステップS3においてYES)、ステップS1およびステップS2が繰り返される。
【0050】
続いて、ステップS4では、学習部13が補助記憶装置11に保存された教師データD3に基づいて、判定アルゴリズムD4を学習する。本実施形態では、学習部13は、RBF(radial basis function)カーネルを用いたサポートベクターマシン(SVM)によって学習を行う。この際、交差検証にleave-one-out法を用いて、RBFカーネルのγとマージンの境界を決める正則化係数の最適値を求め、これらを用いて、統合失調症患者と対照群との判別境界を求める。学習済みの判定アルゴリズムD4は、補助記憶装置11に保存される。
【0051】
(診断支援装置)
以下では、学習済みの判定アルゴリズムD4を用いて疾患の判定を行う形態について説明する。
【0052】
図8は、本実施形態に係る診断支援装置2の機能を示すブロック図である。診断支援装置2は、
図2に示す機械学習装置1と同様に、例えば汎用のパーソナルコンピュータで構成することができる。すなわち、診断支援装置2は、ハードウェア構成として、CPU(図示せず)、主記憶装置(図示せず)、補助記憶装置21などを備えている。診断支援装置2では、CPUが補助記憶装置21に記憶された各種プログラムを主記憶装置に読み出して実行することにより、各種演算処理を実行する。補助記憶装置21は、例えばハードディスクドライブ(HDD)やソリッドステートドライブ(SSD)で構成することができ、学習済みの判定アルゴリズムD4が記憶されている。また、補助記憶装置21は、診断支援装置2に内蔵されてもよいし、診断支援装置2とは別体の外部記憶装置として設けてもよい。
【0053】
診断支援装置2は、MRI装置3に接続されており、MRI装置3によって取得された統合失調症患者および対照群の被験者の脳画像が、診断支援装置2に送信される。なお、MRI装置3によって取得された患者の脳画像を一旦、記録媒体に保存し、当該記録媒体を介して脳画像を診断支援装置2に入力してもよい。
【0054】
診断支援装置2は、被験者の脳画像に基づいて、被験者が統合失調症であるか否か判定を行う機能を有している。この機能を実現するために、診断支援装置2は、機能ブロックとして、画像処理部22および判定部23を備えている。
【0055】
画像処理部22は、外部から取得された脳画像に対して、脳領域に複数の関心領域を設定し、各関心領域のz値を算出する等の演算処理を行い、各関心領域のz値を判定部23に出力する。画像処理部22は、各関心領域のz値を生成するために、脳画像取得部221、領域分割部222、画像補正部223、関心領域設定部224、t値およびp値演算部225、体積演算部226およびz値演算部227を備えている。これらの機能ブロックは、
図2に示す教師データ作成部12の脳画像取得部121、領域分割部122、画像補正部123、関心領域設定部124、t値およびp値演算部125、体積演算部126およびz値演算部127とそれぞれ同一の機能を有している。
【0056】
被験者の脳画像は、脳画像取得部221によって取得される。その後、領域分割部222~z値演算部227の各部が、
図4に示すステップS21~S27の処理を行い、各関心領域のz値を生成する。
【0057】
判定部23は、判定アルゴリズムD4に従って、被験者が統合失調症であるか否か判定を行う。本実施形態では、判定部23は、画像処理部22が生成した各関心領域のz値に基づいて、被験者が統合失調症であるか否かの判定を行う。判定結果は、例えば、診断支援装置2に接続されたディスプレイ4に表示される。なお、診断支援装置2では、単に統合失調症であるか否かの判別を行うのではなく、例えば、どちらであるかの可能性をシグモイド関数により、ハイパー平面(初等幾何学における超平面、二次元の平面をそれ以外の次元へ一般化するもの)への距離から事後確率(0~1)として求めることができる。
【0058】
以上により、診断支援装置2は、判定アルゴリズムD4を用いて、被験者が統合失調症であるか否かの判定を行う。ここで、判定アルゴリズムD4は、機械学習装置1における機械学習によって得られたものであり、十分な量の教師データD3を用いて機械学習させることで、診断支援装置2の判定精度を高めることが可能となる。このように本実施形態では、人工知能を用いることにより、被験者が統合失調症であるか否かを高精度に判定することができる。
【0059】
[付記事項]
本発明は上記実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる形態も本発明の技術的範囲に含まれる。
【0060】
例えば、上記実施形態では、脳画像としてMRI画像を用いていたが、X線CT画像、SPECT画像、またはPET画像などを用いてもよい。さらには、Tensor-based morphometryを用いたMRI画像の経時的な変化を用いてもよい。
【0061】
また、上記実施形態では、機械学習装置1が教師データ作成部12および学習部13の両方を備えているが、教師データ作成部12および学習部13を別個の装置で実現する構成としてもよい。すなわち、機械学習装置1以外の装置において作成した教師データD3を機械学習装置1に入力し、機械学習装置1では、判定アルゴリズムD4の学習のみを行ってもよい。
【0062】
同様に、診断支援装置2の画像処理部22および判定部23を別個の装置で実現する構成としてもよい。この場合、診断支援装置2以外の装置において作成した各関心領域のz値を診断支援装置2に入力し、診断支援装置2では、判定アルゴリズムD4に基づく判定のみを行ってもよい。
【実施例】
【0063】
以下、本発明の実施例について説明するが、本発明は下記実施例に限定されない。
【0064】
本実施例では、
図2に示す診断情報データベースDBとして、統合失調症のMRIデータベースであるSchizConnectのデータベース(BrainGluSchi, COBRE NMorphCH, NUSDAST)を用いた。DSM IVで統合失調症と診断された者から、抑うつ症状または躁症状のエピソードが少なくとも1回認められる統合失調感情障害を除いたschizophorenia strictのうち、30歳以下で未治療である107例(平均年齢=23.4±3.2、男性77.6%)を統合失調症患者として抽出した。同様に、同じデータベースで30歳以下の健常者189例(平均年齢=23.24±3.7、男性60.8%)を対照群として抽出した。
【0065】
次に、統合失調症患者および対照群のMRI脳画像および診断結果を、上記実施形態に係る機械学習装置1に入力して教師データD3を作成し、教師データD3に基づいて判定アルゴリズムD4(SVM for schizophrenia)を学習させた。具体的には、統合失調症患者および対照群の脳の灰白質を290ヶ所に分割して、分割した各領域を関心領域に設定し、関心領域の体積情報をSVMで解析した。共変量には頭蓋内容積と年齢を用い、関心領域ごとに体積を計算した。カーネルにはRBFを用い、汎用性のための交差検証にはleave-one-out cross validationを用い、SVMのカーネルの二次計画法を解くために逐次最小問題最適化法を用いて、ハイパーパラメーターの最適値を求めた。診断スコア(schizophrenia score、SPS)は、高次元空間における分離境界面からの距離の分布から事後確率を、シグモイド関数を用いて0~1の範囲で表した。
【0066】
図9は、本実施例による判定のROC曲線である。ROC曲線下の面積(Area Under the Curve、AUC)は0.848であった。SPSのしきい値を0.4にしたときの正答率、感度、特異度はそれぞれ、79.4%、83.6%、72.0%であった。SPSで陽性とされた際に、実際に統合失調症である診断後オッズは13.1倍であった。
【0067】
また、
図9におけるRRは相対危険度(relative risk)の略であり、脳の萎縮や肥大化が起きている場合、症状として統合失調症をきたす危険性が2.93倍になることを意味している。
【0068】
なお本実施例では、統合失調症患者の脳の形状解析も行った。具体的には、出願人が開発したBAAD softwareを用いて、脳のMRI画像のVBM解析を実施した。その結果、
図10に示すように、前頭葉、前部帯状回、島回、側頭葉に萎縮が認められ、
図11に示すように、淡蒼球に肥大化が認められた。
【0069】
これまでに統合失調症の患者では、前頭葉、側頭葉、前部帯状回などの萎縮が指摘されていたが、脳の形状はもともと個体差が大きく懐疑的な意見も存在する。これに対し、VBM解析の結果は、統合失調症の患者には、治療前から特徴的な脳萎縮があることを示している。萎縮が認められた領域は、遂行、報酬予測、意思決定、共感、情動などに関与しており、統合失調症の陰性症状である感情鈍麻、自閉、意欲や能動性の低下、注意集中の障害などを説明し得る所見である。これらの領域には不可逆的な脳の萎縮が青年期ですでに始まっていることは明らかであり、早期に発見して治療介入をすることが極めて重要であることを示している。
【0070】
淡蒼球の肥大化は、統合失調症に特徴的な所見である。淡蒼球は視床下核と腹側線条体を介して間接的に視床を活性化しており、淡蒼球の肥大化は視床を長時間にわたり興奮させることになる。一次聴覚野の興奮はリアルな幻聴を引き起こすことが知られており、視床の易刺激性は、統合失調症の陽性症状に少なからず関連していると思われる。D2受容体を阻害すると、淡蒼球の神経細胞の興奮が抑制される。抗精神薬でD2受容体を阻害すると陽性症状が改善することも臨床的に確かめられている。
【0071】
コンピュータによる脳の形状解析は、数百に及ぶ特徴量を研究者に提供するが、このような大量の情報から汎用性の高い結論を導き出すことはヒトの能力を超えている。本発明は、この課題を人工知能によって解決するものである。特に、人工知能の機械学習アルゴリズムの1つであるSVMは、特徴量の数に合わせた超空間において識別境界を設定する技術であり、汎用性の高い判定アルゴリズムを導き出すことができる。よって、脳の萎縮のみが認められる統合失調症だけでなく、淡蒼球の肥大化が認められる統合失調症を含めたあらゆる統合失調症を高精度に判定することができる。
【0072】
本発明では、SVMで用いられるカーネルのうち、RBFカーネルを用いて識別境界を設定することが好ましい。設定にはハイパーパラメーターの調整が必要であり、RBFカーネルにおいては、ガウス関数の広がりを規制するハイパーパラメーターと汎用性(許容性)を規制するハイパーパラメーターが対象となる。
【0073】
前頭葉を中心とする脳萎縮は、神経細胞の脱落によるものであり、統合失調症における予後に大きな影響がある。本発明は、統合失調症の早期診断をするにあたり客観的なデータを提供するものであり、予後改善に役立つものである。
【符号の説明】
【0074】
1 機械学習装置
11 補助記憶装置
12 教師データ作成部
121 脳画像取得部
122 領域分割部
123 画像補正部
124 関心領域設定部
125 t値およびp値演算部
126 体積演算部
127 z値演算部
128 診断結果取得部
13 学習部
2 診断支援装置
21 補助記憶装置
22 画像処理部
221 脳画像取得部
222 領域分割部
223 画像補正部
224 関心領域設定部
225 t値およびp値演算部
226 体積演算部
227 z値演算部
23 判定部
3 MRI装置
4 ディスプレイ
D1 脳画像
D2 診断結果
D3 教師データ
D4 判定アルゴリズム
DB 診断情報データベース