IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ トヨタ自動車株式会社の特許一覧

特許7396308走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法
<>
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図1
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図2
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図3
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図4
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図5
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図6
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図7
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図8
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図9
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図10
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図11
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図12
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図13
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図14
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図15
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図16
  • 特許-走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法 図17
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-04
(45)【発行日】2023-12-12
(54)【発明の名称】走行軌跡推定システム、走行軌跡推定プログラム、及び走行軌跡推定方法
(51)【国際特許分類】
   G01C 21/28 20060101AFI20231205BHJP
   G08G 1/16 20060101ALI20231205BHJP
   B60W 50/14 20200101ALI20231205BHJP
   B60W 60/00 20200101ALI20231205BHJP
【FI】
G01C21/28
G08G1/16 D
B60W50/14
B60W60/00
【請求項の数】 12
(21)【出願番号】P 2021012304
(22)【出願日】2021-01-28
(65)【公開番号】P2022115635
(43)【公開日】2022-08-09
【審査請求日】2022-06-17
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】110003199
【氏名又は名称】弁理士法人高田・高橋国際特許事務所
(72)【発明者】
【氏名】阿部 真之
(72)【発明者】
【氏名】河内 太一
(72)【発明者】
【氏名】上門 和彦
【審査官】佐々木 佳祐
(56)【参考文献】
【文献】特開2019-219204(JP,A)
【文献】特開2019-027995(JP,A)
【文献】特開2020-008376(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01C 21/00-25/00
G08G 1/00-99/00
B60W 10/00-10/30
B60W 30/00-60/00
(57)【特許請求の範囲】
【請求項1】
車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを格納する1又は複数の記憶装置と、
前記走行実績情報及び前記特徴物位置情報に基づいて、前記車両の走行軌跡を推定する走行軌跡推定処理を実行する1又は複数のプロセッサと
を備え、
前記走行実績情報は、
前記車両に搭載された内界センサによって検出された前記車両の走行状態あるいは位置を含む車両走行情報と、
前記車両に搭載された外界センサによって認識された前記特徴物の情報を含む外界認識情報と
を含み、
前記走行軌跡推定処理は、前記車両の位置である車両位置を推定する車両位置推定処理を含み、
対象車両位置は、対象時刻における前記車両位置であり、
第1基準車両位置は、前記対象時刻よりも前の第1基準時刻における前記車両位置であり、
第2基準車両位置は、前記対象時刻よりも後の第2基準時刻における前記車両位置であり、
第1車両移動量は、前記第1基準時刻と前記対象時刻との間の前記車両の移動量であり、
第2車両移動量は、前記第2基準時刻と前記対象時刻との間の前記車両の移動量であり、
前記車両位置推定処理は、
前記車両走行情報に基づいて、前記第1車両移動量と前記第2車両移動量を取得する処理と、
前記外界認識情報に基づいて、前記対象時刻において認識された前記特徴物の相対位置を取得する処理と、
前記第1基準車両位置、前記第1車両移動量、前記第2基準車両位置、及び前記第2車両移動量に基づいて、前記対象車両位置を内界推定車両位置として算出する処理と、
前記特徴物位置情報で示される前記特徴物の前記設置位置と前記対象時刻における前記特徴物の前記相対位置に基づいて、前記対象車両位置を外界推定車両位置として算出する処理と、
前記内界推定車両位置と前記外界推定車両位置とを組み合わせて前記対象車両位置を推定する処理と
を含み、
前記1又は複数のプロセッサは、
連続する複数の時刻の各々を前記対象時刻として設定して前記車両位置推定処理を実行することによって、前記複数の時刻のそれぞれにおける複数の対象車両位置を推定し、
推定された前記複数の対象車両位置の集合を前記車両の前記走行軌跡として決定する
走行軌跡推定システム。
【請求項2】
請求項1に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、前記複数の時刻を並列的に前記対象時刻として設定して前記車両位置推定処理を実行することによって、前記複数の時刻のそれぞれにおける前記複数の対象車両位置を一括して推定する
走行軌跡推定システム。
【請求項3】
請求項2に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、前回の前記車両位置推定処理によって推定された前記対象車両位置を今回の前記車両位置推定処理における前記第1基準車両位置及び前記第2基準車両位置として設定することによって、前記車両位置推定処理を繰り返し実行する
走行軌跡推定システム。
【請求項4】
請求項3に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、前回の前記車両位置推定処理において推定された前記複数の対象車両位置と今回の前記車両位置推定処理において推定された前記複数の対象車両位置との間の変化量が閾値未満になるまで、前記車両位置推定処理を繰り返し実行する
走行軌跡推定システム。
【請求項5】
請求項1乃至4のいずれか一項に記載の走行軌跡推定システムであって、
キャリブレーションパラメータは、前記車両に固定された車両座標系における前記外界センサの設置位置及び設置方向を示し、
前記1又は複数のプロセッサは、前記特徴物の前記設置位置、前記対象時刻における前記特徴物の前記相対位置、及び前記キャリブレーションパラメータに基づいて、前記外界推定車両位置を算出し、
前記車両位置推定処理において、前記1又は複数のプロセッサは、前記キャリブレーションパラメータも変数として設定し、前記複数の対象車両位置と共に前記キャリブレーションパラメータも推定する
走行軌跡推定システム。
【請求項6】
請求項1乃至5のいずれか一項に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、更に、
前記推定された走行軌跡が走行車線とは関係ない蛇行を含む場合、あるいは、前記推定された走行軌跡が所定の曲率閾値を超える異常曲率を有する場合、警告を前記走行軌跡推定システムのオペレータあるいは前記車両のユーザに出力する
走行軌跡推定システム。
【請求項7】
請求項1乃至5のいずれか一項に記載の走行軌跡推定システムであって、
前記車両は、目標軌跡に追従するように走行する軌跡追従制御を行い、
前記1又は複数のプロセッサは、更に、
前記推定された走行軌跡と前記目標軌跡との間の誤差を算出し、
前記誤差が警告条件を満たす場合、警告を前記走行軌跡推定システムのオペレータあるいは前記車両のユーザに出力する
走行軌跡推定システム。
【請求項8】
請求項1乃至5のいずれか一項に記載の走行軌跡推定システムであって、
前記車両は、走行中に、前記車両走行情報、前記外界認識情報、及び前記特徴物位置情報に基づいて前記車両位置を推定するローカライズ処理を実行し、
前記1又は複数のプロセッサは、更に、
前記推定された走行軌跡と前記ローカライズ処理によって推定された前記車両位置との間の誤差を算出し、
前記誤差が警告条件を満たす場合、警告を前記走行軌跡推定システムのオペレータあるいは前記車両のユーザに出力する
走行軌跡推定システム。
【請求項9】
請求項1乃至5のいずれか一項に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、更に、
前記外界認識情報を用いることなく、前記車両走行情報に基づいて、前記複数の時刻のそれぞれにおける複数の車両位置を比較車両位置として算出し、
前記推定された走行軌跡と前記比較車両位置との間の誤差を算出し、
前記誤差が警告条件を満たす場合、警告を前記走行軌跡推定システムのオペレータあるいは前記車両のユーザに出力する
走行軌跡推定システム。
【請求項10】
請求項5に記載の走行軌跡推定システムであって、
前記1又は複数のプロセッサは、更に、
推定された前記キャリブレーションパラメータと前記キャリブレーションパラメータの設定値との間の誤差を算出し、
前記誤差が警告条件を満たす場合、警告を前記走行軌跡推定システムのオペレータあるいは前記車両のユーザに出力する
走行軌跡推定システム。
【請求項11】
コンピュータにより実行される走行軌跡推定プログラムであって、
前記走行軌跡推定プログラムは、前記コンピュータによって実行されることにより、
車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを取得する情報取得処理と、
前記走行実績情報と前記特徴物位置情報に基づいて、前記車両の走行軌跡を推定する走行軌跡推定処理と
を前記コンピュータに実行させ、
前記走行実績情報は、
前記車両に搭載された内界センサによって検出された前記車両の走行状態あるいは位置を含む車両走行情報と、
前記車両に搭載された外界センサによって認識された前記特徴物の情報を含む外界認識情報と
を含み、
前記走行軌跡推定処理は、前記車両の位置である車両位置を推定する車両位置推定処理を含み、
対象車両位置は、対象時刻における前記車両位置であり、
第1基準車両位置は、前記対象時刻よりも前の第1基準時刻における前記車両位置であり、
第2基準車両位置は、前記対象時刻よりも後の第2基準時刻における前記車両位置であり、
第1車両移動量は、前記第1基準時刻と前記対象時刻との間の前記車両の移動量であり、
第2車両移動量は、前記第2基準時刻と前記対象時刻との間の前記車両の移動量であり、
前記車両位置推定処理は、
前記車両走行情報に基づいて、前記第1車両移動量と前記第2車両移動量を取得する処理と、
前記外界認識情報に基づいて、前記対象時刻において認識された前記特徴物の相対位置を取得する処理と、
前記第1基準車両位置、前記第1車両移動量、前記第2基準車両位置、及び前記第2車両移動量に基づいて、前記対象車両位置を内界推定車両位置として算出する処理と、
前記特徴物位置情報で示される前記特徴物の前記設置位置と前記対象時刻における前記特徴物の前記相対位置に基づいて、前記対象車両位置を外界推定車両位置として算出する処理と、
前記内界推定車両位置と前記外界推定車両位置とを組み合わせて前記対象車両位置を推定する処理と
を含み、
前記走行軌跡推定処理は、
連続する複数の時刻の各々を前記対象時刻として設定して前記車両位置推定処理を実行することによって、前記複数の時刻のそれぞれにおける複数の対象車両位置を推定する処理と、
推定された前記複数の対象車両位置の集合を前記車両の前記走行軌跡として決定する処理と
を含む
走行軌跡推定プログラム。
【請求項12】
1又は複数のプロセッサが、車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを取得する情報取得処理と、
前記1又は複数のプロセッサが、前記走行実績情報と前記特徴物位置情報に基づいて、前記車両の走行軌跡を推定する走行軌跡推定処理と
を含み、
前記走行実績情報は、
前記車両に搭載された内界センサによって検出された前記車両の走行状態あるいは位置を含む車両走行情報と、
前記車両に搭載された外界センサによって認識された前記特徴物の情報を含む外界認識情報と
を含み、
前記走行軌跡推定処理は、前記車両の位置である車両位置を推定する車両位置推定処理を含み、
対象車両位置は、対象時刻における前記車両位置であり、
第1基準車両位置は、前記対象時刻よりも前の第1基準時刻における前記車両位置であり、
第2基準車両位置は、前記対象時刻よりも後の第2基準時刻における前記車両位置であり、
第1車両移動量は、前記第1基準時刻と前記対象時刻との間の前記車両の移動量であり、
第2車両移動量は、前記第2基準時刻と前記対象時刻との間の前記車両の移動量であり、
前記車両位置推定処理は、
前記車両走行情報に基づいて、前記第1車両移動量と前記第2車両移動量を取得する処理と、
前記外界認識情報に基づいて、前記対象時刻において認識された前記特徴物の相対位置を取得する処理と、
前記第1基準車両位置、前記第1車両移動量、前記第2基準車両位置、及び前記第2車両移動量に基づいて、前記対象車両位置を内界推定車両位置として算出する処理と、
前記特徴物位置情報で示される前記特徴物の前記設置位置と前記対象時刻における前記特徴物の前記相対位置に基づいて、前記対象車両位置を外界推定車両位置として算出する処理と、
前記内界推定車両位置と前記外界推定車両位置とを組み合わせて前記対象車両位置を推定する処理と
を含み、
前記走行軌跡推定処理は、
連続する複数の時刻の各々を前記対象時刻として設定して前記車両位置推定処理を実行することによって、前記複数の時刻のそれぞれにおける複数の対象車両位置を推定する処理と、
推定された前記複数の対象車両位置の集合を前記車両の前記走行軌跡として決定する処理と
を含む
走行軌跡推定方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、車両の走行軌跡を推定する技術に関する。
【背景技術】
【0002】
走行中の車両が自己位置を推定する「ローカライズ処理(自己位置推定処理,Localization)」が知られている(特許文献1等)。ローカライズ処理では、車輪速や操舵角といった走行状態を検出する内界センサと、車両の周囲の特徴物を認識する外界センサとが用いられる。内界センサによる検出結果に基づいて推定される車両位置と外界センサによる認識結果に基づいて推定される車両位置とを組み合わせることによって、最終的な車両位置が決定される。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2019-139400号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
車両の実際の走行軌跡を高精度に推定することは有用である。例えば、実際の走行軌跡とローカライズ処理によって推定された車両位置とを比較することによって、ローカライズ処理の精度を評価したり、センサ異常を検出したりすることができる。
【0005】
本開示の1つの目的は、車両の走行軌跡を高精度に推定することができる技術を提供することにある。
【課題を解決するための手段】
【0006】
本開示の第1の観点は、走行軌跡推定システムに関連する。
走行軌跡推定システムは、
車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを格納する1又は複数の記憶装置と、
走行実績情報及び特徴物位置情報に基づいて、車両の走行軌跡を推定する走行軌跡推定処理を実行する1又は複数のプロセッサと
を備える。
走行実績情報は、
車両に搭載された内界センサによって検出された車両の走行状態あるいは位置を含む車両走行情報と、
車両に搭載された外界センサによって認識された特徴物の情報を含む外界認識情報と
を含む。
走行軌跡推定処理は、車両の位置である車両位置を推定する車両位置推定処理を含む。
対象車両位置は、対象時刻における車両位置である。
第1基準車両位置は、対象時刻よりも前の第1基準時刻における車両位置である。
第2基準車両位置は、対象時刻よりも後の第2基準時刻における車両位置である。
第1車両移動量は、第1基準時刻と対象時刻との間の車両の移動量である。
第2車両移動量は、第2基準時刻と対象時刻との間の車両の移動量である。
車両位置推定処理は、
車両走行情報に基づいて、第1車両移動量と第2車両移動量を取得する処理と、
外界認識情報に基づいて、対象時刻において認識された特徴物の相対位置を取得する処理と、
第1基準車両位置、第1車両移動量、第2基準車両位置、及び第2車両移動量に基づいて、対象車両位置を内界推定車両位置として算出する処理と、
特徴物位置情報で示される特徴物の設置位置と対象時刻における特徴物の相対位置に基づいて、対象車両位置を外界推定車両位置として算出する処理と、
内界推定車両位置と外界推定車両位置とを組み合わせて対象車両位置を推定する処理と
を含む。
1又は複数のプロセッサは、連続する複数の時刻の各々を対象時刻として設定して車両位置推定処理を実行することによって、複数の時刻のそれぞれにおける複数の対象車両位置を推定する。
そして、1又は複数のプロセッサは、推定された複数の対象車両位置の集合を車両の走行軌跡として決定する。
【0007】
本開示の第2の観点は、コンピュータにより実行される走行軌跡推定プログラムに関連する。
走行軌跡推定プログラムは、コンピュータによって実行されることにより、
車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを取得する情報取得処理と、
走行実績情報と特徴物位置情報に基づいて、車両の走行軌跡を推定する走行軌跡推定処理と
をコンピュータに実行させる。
走行実績情報は、
車両に搭載された内界センサによって検出された車両の走行状態あるいは位置を含む車両走行情報と、
車両に搭載された外界センサによって認識された特徴物の情報を含む外界認識情報と
を含む。
走行軌跡推定処理は、車両の位置である車両位置を推定する車両位置推定処理を含む。
対象車両位置は、対象時刻における車両位置である。
第1基準車両位置は、対象時刻よりも前の第1基準時刻における車両位置である。
第2基準車両位置は、対象時刻よりも後の第2基準時刻における車両位置である。
第1車両移動量は、第1基準時刻と対象時刻との間の車両の移動量である。
第2車両移動量は、第2基準時刻と対象時刻との間の車両の移動量である。
車両位置推定処理は、
車両走行情報に基づいて、第1車両移動量と第2車両移動量を取得する処理と、
外界認識情報に基づいて、対象時刻において認識された特徴物の相対位置を取得する処理と、
第1基準車両位置、第1車両移動量、第2基準車両位置、及び第2車両移動量に基づいて、対象車両位置を内界推定車両位置として算出する処理と、
特徴物位置情報で示される特徴物の設置位置と対象時刻における特徴物の相対位置に基づいて、対象車両位置を外界推定車両位置として算出する処理と、
内界推定車両位置と外界推定車両位置とを組み合わせて対象車両位置を推定する処理と
を含む。
走行軌跡推定処理は、
連続する複数の時刻の各々を対象時刻として設定して車両位置推定処理を実行することによって、複数の時刻のそれぞれにおける複数の対象車両位置を推定する処理と、
推定された複数の対象車両位置の集合を車両の走行軌跡として決定する処理と
を含む。
【0008】
本開示の第3の観点は、走行軌跡推定方法に関連する。
走行軌跡推定方法は、
車両の過去の走行実績を示す走行実績情報と、特徴物の設置位置を示す特徴物位置情報とを取得する情報取得処理と、
走行実績情報と特徴物位置情報に基づいて、車両の走行軌跡を推定する走行軌跡推定処理と
を含む。
走行実績情報は、
車両に搭載された内界センサによって検出された車両の走行状態あるいは位置を含む車両走行情報と、
車両に搭載された外界センサによって認識された特徴物の情報を含む外界認識情報と
を含む。
走行軌跡推定処理は、車両の位置である車両位置を推定する車両位置推定処理を含む。
対象車両位置は、対象時刻における車両位置である。
第1基準車両位置は、対象時刻よりも前の第1基準時刻における車両位置である。
第2基準車両位置は、対象時刻よりも後の第2基準時刻における車両位置である。
第1車両移動量は、第1基準時刻と対象時刻との間の車両の移動量である。
第2車両移動量は、第2基準時刻と対象時刻との間の車両の移動量である。
車両位置推定処理は、
車両走行情報に基づいて、第1車両移動量と第2車両移動量を取得する処理と、
外界認識情報に基づいて、対象時刻において認識された特徴物の相対位置を取得する処理と、
第1基準車両位置、第1車両移動量、第2基準車両位置、及び第2車両移動量に基づいて、対象車両位置を内界推定車両位置として算出する処理と、
特徴物位置情報で示される特徴物の設置位置と対象時刻における特徴物の相対位置に基づいて、対象車両位置を外界推定車両位置として算出する処理と、
内界推定車両位置と外界推定車両位置とを組み合わせて対象車両位置を推定する処理と
を含む。
走行軌跡推定処理は、
連続する複数の時刻の各々を対象時刻として設定して車両位置推定処理を実行することによって、複数の時刻のそれぞれにおける複数の対象車両位置を推定する処理と、
推定された複数の対象車両位置の集合を車両の走行軌跡として決定する処理と
を含む。
【発明の効果】
【0009】
本開示によれば、車両の過去の走行実績を示す走行実績情報に基づいて車両位置推定処理が実行され、複数の時刻のそれぞれにおける車両位置、すなわち、車両の走行軌跡が推定される。車両位置推定処理では、対象時刻よりも前の時刻だけでなく、対象時刻よりも後の時刻も基準時刻として用いられる。すなわち、一般的なローカライズ処理と比較して、制約条件が増える。従って、走行軌跡の推定精度が向上する。
【図面の簡単な説明】
【0010】
図1】本開示の実施の形態に係る車両制御システムと走行軌跡推定システムの概要を説明するための概念図である。
図2】車両走行中に実施される一般的なローカライズ処理を説明するための概念図である。
図3】車両走行中に実施される一般的なローカライズ処理を説明するための概念図である。
図4】車両走行中に実施される一般的なローカライズ処理を説明するための概念図である。
図5】本開示の実施の形態に係る車両位置推定処理を説明するための概念図である。
図6】本開示の実施の形態に係る車両位置推定処理を説明するための概念図である。
図7】本開示の実施の形態に係る車両位置推定処理を説明するための概念図である。
図8】本開示の実施の形態に係るキャリブレーションパラメータの異常を説明するための概念図である。
図9】本開示の実施の形態に係る車両制御システムの構成例を示すブロック図である。
図10】本開示の実施の形態に係る走行軌跡推定システムの構成例を示すブロック図である。
図11】本開示の実施の形態に係る走行軌跡推定システムによる処理を説明するためのブロック図である。
図12】本開示の実施の形態に係る走行軌跡推定システムによる処理を示すフローチャートである。
図13】本開示の実施の形態に係る走行軌跡推定処理(ステップS200)を示すフローチャートである。
図14】本開示の実施の形態に係る走行軌跡評価処理(ステップS300)の第3の例を説明するための概念図である。
図15】本開示の実施の形態に係る判定処理(ステップS350)の例を説明するための概念図である。
図16】本開示の実施の形態に係る走行軌跡評価処理(ステップS300)の第4の例を説明するための概念図である。
図17】本開示の実施の形態に係る走行軌跡評価処理(ステップS300)の第5の例を説明するための概念図である。
【発明を実施するための形態】
【0011】
添付図面を参照して、本開示の実施の形態を説明する。
【0012】
1.概要
図1は、本実施の形態に係る車両制御システム10と走行軌跡推定システム100の概要を説明するための概念図である。
【0013】
車両制御システム10は、車両1の走行を制御する「車両走行制御」を実行する。典型的には、車両制御システム10は、車両1に搭載されている。あるいは、車両制御システム10の少なくとも一部は、車両1の外部の外部装置に配置され、リモートで車両1を制御してもよい。つまり、車両制御システム10は、車両1と外部装置とに分散的に配置されてもよい。
【0014】
車両走行制御の例としては、自動運転制御、運転支援制御、等が挙げられる。自動運転制御は、車両1の自動運転を制御する。運転支援制御としては、リスク回避制御、車線維持制御(LKA: Lane Keep Assist)、等が挙げられる。リスク回避制御は、車両1と物体との衝突リスクを低減するために操舵制御と減速制御のうち少なくとも一方を行う。車線維持制御は、車両1を走行車線に沿って走行させる。このような車両走行制御では、例えば、車両制御システム10によって車両1の目標軌跡(目標トラジェクトリ)TRtが生成される。目標軌跡TRtは、車両1の目標位置の集合である。例えば、目標軌跡TRtは、車線の中心位置に沿うように生成される。目標位置毎に目標速度が設定されてもよい。そして、車両制御システム10は、車両1が目標軌跡TRtに追従するように車両走行制御を実行する。このような車両走行制御は、「軌跡追従制御」とも呼ばれる。
【0015】
軌跡追従制御に代表される車両走行制御においては、車両1の位置である「車両位置」が用いられる。車両走行制御の精度を確保するためには、車両位置の精度が重要である。そのため、車両制御システム10は、車両位置を高精度に推定する「ローカライズ処理(Localization)」を行う。ローカライズ処理では、車両1に搭載されているセンサ20が用いられる。ローカライズ処理の詳細は後述される。
【0016】
その一方で、車両1の実際の走行軌跡TRaを高精度に取得することは有用である。例えば、実際の走行軌跡TRaと目標軌跡TRtとを比較することによって、軌跡追従制御の性能を評価することができる。他の例として、実際の走行軌跡TRaとローカライズ処理によって推定された車両位置とを比較することによって、ローカライズ処理の精度を評価したり、センサ20の異常を検出したりすることができる。
【0017】
そこで、本実施の形態は、車両1の走行軌跡を高精度に推定するための技術を提案する。
【0018】
本実施の形態に係る走行軌跡推定システム100は、車両1の過去の走行軌跡を高精度に推定する。より詳細には、走行軌跡推定システム100は、車両1の過去の走行実績(走行ログ)を示す走行実績情報TRECを取得する。そして、走行軌跡推定システム100は、走行実績情報TRECに基づいて、車両1の過去の走行軌跡を推定する「走行軌跡推定処理」を実行する。走行軌跡情報TRAJは、走行軌跡推定処理によって推定される「推定走行軌跡TRe」を示す。後述されるように、本実施の形態により得られる推定走行軌跡TReは、実際の走行軌跡TRaを高精度に再現する。
【0019】
また、本実施の形態に係る走行軌跡推定システム100は、走行軌跡情報TRAJ(推定走行軌跡TRe)を解析する機能を有していてもよい。例えば、走行軌跡推定システム100は、推定走行軌跡TReと目標軌跡TRtとを比較することによって、軌跡追従制御の性能を評価することができる。他の例として、走行軌跡推定システム100は、推定走行軌跡TReとローカライズ処理によって推定された車両位置とを比較することによって、ローカライズ処理の精度を評価したり、センサ20の異常を検出したりすることができる。
【0020】
尚、走行軌跡推定システム100の少なくとも一部が車両制御システム10に含まれていてもよい。
【0021】
以下、本実施の形態に係る走行軌跡推定処理について更に詳しく説明する。
【0022】
2.ローカライズ処理
本実施の形態に係る走行軌跡推定処理の理解を促進するために、まず、車両1の走行中に実施される一般的なローカライズ処理について説明する。図2図4は、一般的なローカライズ処理を説明するための概念図である。
【0023】
ローカライズ処理では、車両1に搭載されているセンサ20が用いられる。図2に示されるように、センサ20は、内界センサ21と外界センサ22を含んでいる。内界センサ21は、車両1の走行状態あるいは位置を検出する。内界センサ21の例としては、車輪速センサ、操舵角センサ、ヨーレートセンサ、IMU(Inertial Measurement Unit)、GPS(Global Positioning System)センサ、等が挙げられる。外界センサ22は、車両1の周囲の状況を認識する。外界センサ22としては、LIDAR(Laser Imaging Detection and Ranging)、カメラ、レーダ、等が挙げられる。
【0024】
車両座標系は、車両1に固定され、車両1の移動と共に変化する相対座標系である。車両1における車両座標系の原点Oの位置は任意である。キャリブレーションパラメータEは、車両座標系における外界センサ22の設置位置及び設置方向を示す。つまり、キャリブレーションパラメータEは、原点Oに対する外界センサ22の並進回転移動量(回転行列+平行移動量)を表す。
【0025】
車両位置Pは、絶対座標系における車両1の絶対位置である。車両位置Pは、絶対座標系における車両座標系の原点Oの位置であると言うこともできる。絶対座標系は、例えば、緯度と経度により規定される。
【0026】
車両1の走行中、ローカライズ処理は、車両位置Pを一定サイクル毎に推定する。便宜上、推定対象の時刻t及び車両位置Pを、それぞれ、「対象時刻t」及び「対象車両位置P」と呼ぶ。対象時刻tにおける対象車両位置Pを推定するために、一つ前の時刻tk-1における車両位置Pk-1が用いられる。便宜上、一つ前の時刻tk-1及び車両位置Pk-1を、それぞれ、「基準時刻tk-1」及び「基準車両位置Pk-1」と呼ぶ。
【0027】
車両移動量Tk-1,kは、基準時刻tk-1と対象時刻tとの間の車両1の移動量(並進回転移動量)である。車両移動量Tk-1,kは、内界センサ21による検出結果に基づいて算出可能である。例えば、車両移動量Tk-1,kは、基準時刻tk-1と対象時刻tとの間の期間において検出された車輪速及び操舵角の履歴に基づいて算出可能である。他の例として、車両移動量Tk-1,kは、GPSセンサによって検出される車両1の大まかな位置及び方位から算出されてもよい。
【0028】
また、外界センサ22を用いることにより、車両1の周囲に存在する1以上の特徴物jを認識することができる。典型的には、特徴物jは、静止物体である。特徴物jとしては、白線、ポール、電信柱、標識、看板、等が例示される。絶対座標系における特徴物jの絶対位置Fは、既知であるとする。例えば、特徴物jの絶対位置Fは、地図情報に登録されている。その一方で、時刻tにおける外界センサ22による認識結果に基づいて、外界センサ22に対する特徴物jの相対位置Rj,kが算出される。すなわち、時刻tにおける1以上の特徴物jの各々の相対位置Rj,kが算出される。
【0029】
図3は、対象時刻tにおける「内界推定車両位置PI」及び「外界推定車両位置POj,k」を説明するための概念図である。内界推定車両位置PIは、基準時刻tk-1における基準車両位置Pk-1と内界センサ21により得られる車両移動量Tk-1,kから算出(推定)される対象車両位置Pである。つまり、内界推定車両位置PIは、基準車両位置Pk-1と車両移動量Tk-1,kの関数で表される。一方、外界推定車両位置POj,kは、特徴物jの絶対位置F、外界センサ22に対する特徴物jの相対位置Rj,k、及びキャリブレーションパラメータEから算出(推定)される対象車両位置Pである。つまり、外界推定車両位置POj,kは、特徴物jの絶対位置Fと相対位置Rj,k及びキャリブレーションパラメータEの関数で表される。
【0030】
内界推定車両位置PIと1以上の特徴物jに関する外界推定車両位置POj,kとは必ずしも一致しない。よって、内界推定車両位置PIと1以上の特徴物jに関する外界推定車両位置POj,kとを組み合わせることによって、対象時刻tにおける対象車両位置Pが決定される。例えば、1以上の特徴物jに関する外界推定車両位置POj,kに最も整合するように内界推定車両位置PIを補正することによって、対象車両位置Pが決定される。言い換えれば、内界推定車両位置PIと外界推定車両位置POj,kに基づく評価関数を用いることによって、対象車両位置Pが最適化される。尚、評価関数や最適化の手法は、周知であり、本実施の形態では特に限定されない。
【0031】
推定された対象車両位置Pは、次の時刻tk+1における基準車両位置として用いられる。
【0032】
以上の処理が繰り返されることにより、図4に示されるように、車両1の走行中に車両位置Pがシーケンシャルに推定される。内界推定車両位置PIと1以上の特徴物jに関する外界推定車両位置POj,kとを組み合わせることにより、例えばGPSセンサにより検出される大まかな車両位置よりも高精度な車両位置Pが得られる。
【0033】
3.走行軌跡推定処理
次に、本実施の形態に係る走行軌跡推定システム100による走行軌跡推定処理について説明する。
【0034】
3-1.コンセプト
走行軌跡推定処理は、車両1の過去の走行軌跡を推定する。車両1の過去の走行軌跡は、過去の連続する複数の時刻t~tのそれぞれにおける車両位置P~Pの集合で与えられる。ここで、nは、2以上の整数である。走行軌跡推定処理は、過去の連続する複数の時刻t~tのそれぞれにおける車両位置P~Pを推定する処理を含む。この処理を、上述の一般的なローカライズ処理と区別するため、以下「車両位置推定処理」と呼ぶ。
【0035】
車両位置推定処理は、車両1の過去の走行実績(走行ログ)を示す「走行実績情報TREC」に基づいて行われる。走行実績情報TRECは、「車両走行情報」と「外界認識情報」を含んでいる。車両走行情報は、車両1に搭載された内界センサ21による検出結果を示す情報である。具体的には、車両走行情報は、車両1の車輪速、操舵角、ヨーレートといった走行状態、あるいは、GPSセンサによって検出される大まかな車両位置を含む。一方、外界認識情報は、車両1に搭載された外界センサ22による認識結果を示す情報である。具体的には、外界認識情報は、外界センサ22によって認識された特徴物jの情報を含む。外界認識情報は、外界センサ22に対する特徴物jの相対位置Rj,kを含んでいてもよい。
【0036】
図5図7は、本実施の形態に係る車両位置推定処理を説明するための概念図である。上述のローカライズ処理の場合と同様に、対象時刻tにおける対象車両位置Pは、基準時刻における基準車両位置に基づいて推定される。但し、基準時刻として、対象時刻tよりも前の時刻tk-1だけでなく、対象時刻tよりも後の時刻tk+1も用いられる。過去の走行実績情報TRECが利用可能であるため、対象時刻tよりも前の情報だけでなく、対象時刻tよりも後の情報も利用可能なのである。
【0037】
第1基準時刻tk-1は、対象時刻tよりも前の基準時刻である。第1基準車両位置Pk-1は、第1基準時刻tk-1における基準車両位置である。第1車両移動量Tk-1,kは、第1基準時刻tk-1と対象時刻tとの間の車両1の移動量である。ローカライズ処理の場合と同様に、第1車両移動量Tk-1,kは、走行実績情報TRECに含まれる車両走行情報に基づいて算出される。
【0038】
第2基準時刻tk+1は、対象時刻tよりも後の基準時刻である。第2基準車両位置Pk+1は、第2基準時刻tk+1における基準車両位置である。第2車両移動量Tk,k+1は、第2基準時刻tk+1と対象時刻tとの間の車両1の移動量である。ローカライズ処理の場合と同様に、第2車両移動量Tk+1,kは、走行実績情報TRECに含まれる車両走行情報に基づいて算出される。
【0039】
図6は、対象時刻tにおける内界推定車両位置PI及び外界推定車両位置POj,kを説明するための概念図である。第1内界推定車両位置PIAは、第1基準時刻tk-1における第1基準車両位置Pk-1と第1車両移動量Tk-1,kから算出(推定)される対象車両位置Pである。一方、第2内界推定車両位置PIBは、第2基準時刻tk+1における第2基準車両位置Pk+1と第2車両移動量Tk,k+1から算出(推定)される対象車両位置Pである。内界推定車両位置PIは、第1内界推定車両位置PIAと第2内界推定車両位置PIBを組み合わせることにより算出される。例えば、内界推定車両位置PIは、第1内界推定車両位置PIAと第2内界推定車両位置PIBとの中間位置である。このように、内界推定車両位置PIは、第1基準車両位置Pk-1、第1車両移動量Tk-1,k、第2基準車両位置Pk+1、及び第2車両移動量Tk,k+1の関数で表される。
【0040】
外界推定車両位置POj,kは、上述のローカライズ処理の場合と同様である。つまり、外界推定車両位置POj,kは、特徴物jの絶対位置F、外界センサ22に対する特徴物jの相対位置Rj,k、及びキャリブレーションパラメータEから算出(推定)される対象車両位置Pである。外界推定車両位置POj,kは、走行実績情報TRECに含まれる外界認識情報に基づいて算出される。
【0041】
そして、上述のローカライズ処理の場合と同様に、内界推定車両位置PIと1以上の特徴物jに関する外界推定車両位置POj,kとを組み合わせることによって、対象時刻tにおける対象車両位置Pが決定される。例えば、1以上の特徴物jに関する外界推定車両位置POj,kに最も整合するように内界推定車両位置PIを補正することによって、対象車両位置Pが決定される。言い換えれば、内界推定車両位置PIと外界推定車両位置POj,kに基づく評価関数を用いることによって、対象車両位置Pが最適化される。
【0042】
図7は、車両位置Pの全体最適化を概念的に示している。車両位置推定処理の場合、過去の走行実績情報TRECが利用可能であり、複数の時刻t~tに対する車両移動量T1,2~Tn-1,nが全て判明している。従って、図7に示されるように、複数の時刻t~tを“並列的”に対象時刻tとして設定して車両位置推定処理を一括して実行することも可能である。すなわち、複数の時刻t~tのそれぞれにおける複数の対象車両位置P~Pを一括して最適化することも可能である。このような全体最適化は、図4で示されたシーケンシャルなローカライズ処理とは対照的である。
【0043】
複数の時刻t~tのそれぞれにおける車両位置P~Pの初期値は、走行実績情報TRECに含まれる車両走行情報から得られる。例えば、GPSセンサによって検出された大まかな車両位置P~Pが初期値として設定される。他の例として、GPSセンサによって検出された車両位置Pに車両移動量T1,2~Tn-1,nを加算していくことによって、車両位置P~Pの初期値が設定されてもよい。車両位置Pの代わりに別の車両位置Pが起点として用いられてもよい。
【0044】
走行軌跡推定システム100は、車両位置P~Pの初期値を設定した後、上述の車両位置推定処理を繰り返し実行する。前回の車両位置推定処理によって推定された複数の対象車両位置P~Pが、今回の車両位置推定処理における車両位置P~P(第1基準車両位置Pk-1や第2基準車両位置Pk+1)として設定される。その結果、車両位置推定処理が実行されるたびに、車両位置P~Pが更新されていく。車両位置推定処理が実行されるたびに車両位置P~Pは変化するが、その変化量は次第に小さくなる。これは「収束計算」と呼ばれる。車両位置P~Pが収束することは、車両位置P~Pの精度が向上していることを意味する。
【0045】
車両位置推定処理は、所定の条件が満たされるまで、有限回数繰り返し実行される。例えば、前回の車両位置推定処理において推定された複数の対象車両位置P~Pと今回の車両位置推定処理において推定された複数の対象車両位置P~Pとの間の変化量ΔPは、下記式(1)で表される。式(1)において、ΔP(i=1~n)は、前回の車両位置推定処理において推定された対象車両位置Pと今回の車両位置推定処理において推定された対象車両位置Pとの間の変化量である。この変化量ΔPが所定の閾値未満になるまで、車両位置推定処理が繰り返し実行される。
【0046】
【数1】
【0047】
このようにして推定された複数の時刻t~tのそれぞれにおける対象車両位置P~Pの集合が、「推定走行軌跡TRe」である。
【0048】
3-2.効果
以上に説明されたように、本実施の形態によれば、走行実績情報TRECに基づいて車両位置推定処理が実行され、時刻t~tのそれぞれにおける車両位置P~P、すなわち、推定走行軌跡TReが推定される。車両位置推定処理では、対象時刻tよりも前の時刻tk-1だけでなく、対象時刻tよりも後の時刻tk+1も基準時刻として用いられる。すなわち、一般的なローカライズ処理と比較して、制約条件が増える。従って、車両位置P~P、すなわち、推定走行軌跡TReの推定精度が向上する。
【0049】
また、本実施の形態によれば、車両位置推定処理を繰り返し実行することも可能である。車両位置推定処理が実行されるたびに、車両位置P~Pは更新され、その推定精度は向上していく。すなわち、車両位置推定処理を繰り返し実行することによって、推定走行軌跡TReの推定精度を更に向上させることが可能である。尚、上記の通り、制約条件が増えるため、車両位置P~Pは収束しやすい。
【0050】
更に、本実施の形態によれば、図7で示されたように、複数の時刻t~tを並列的に対象時刻tとして設定して車両位置推定処理を実行することも可能である。すなわち、複数の時刻t~tのそれぞれにおける複数の車両位置P~Pを一括して最適化することも可能である。このような全体最適化により、車両位置推定処理がより効率化され、また、車両位置P~Pの推定精度もより向上する。
【0051】
このように、本実施の形態によれば、実際の走行軌跡TRaを高精度に再現する推定走行軌跡TReを効率的に取得することが可能となる。
【0052】
3-3.キャリブレーションパラメータの推定
上述の通り、キャリブレーションパラメータEは、車両座標系における外界センサ22の設置位置及び設置方向を示す。外界センサ22が車両1に取り付けられるとき、キャリブレーションパラメータEが一意に決まる。上述のローカライズ処理においては、キャリブレーションパラメータEとして、予め登録された所定の設定値が用いられる。
【0053】
しかしながら、外界センサ22が車両1に取り付けられた後、外界センサ22の軸ズレ等が発生する可能性もある。外界センサ22の軸ズレ等が発生した場合、実際のキャリブレーションパラメータEは、所定の設定値から乖離する。言い換えれば、キャリブレーションパラメータEの設定値が実状を反映しなくなる。その場合、図8に示されるように、異なる時刻において同一の特徴物jが外界センサ22によって認識されていても、その同一の特徴物jが異なる絶対位置に存在するかのように見えてしまう。このことは、外界推定車両位置POj,kの精度の低下、ひいては、ローカライズ処理の精度の低下を招く。
【0054】
本実施の形態に係る車両位置推定処理によれば、最新のキャリブレーションパラメータEを推定することが可能である。具体的には、車両位置推定処理において、キャリブレーションパラメータEは、所定の設定値ではなく一つの変数として扱われる。そして、複数の対象車両位置P~Pと共にキャリブレーションパラメータEも同時に最適化(推定)される。車両位置推定処理が実行されるたびに、車両位置P~Pと共にキャリブレーションパラメータEの推定精度が向上していく。
【0055】
キャリブレーションパラメータEの所定の設定値が実際値から乖離している場合、その所定の設定値をそのまま用いることは、車両位置P~Pの推定精度の低下を招く。一方、キャリブレーションパラメータEを変数として設定し、車両位置P~Pと共にキャリブレーションパラメータEも推定することにより、車両位置P~Pの推定精度が更に向上する。
【0056】
また、キャリブレーションパラメータEの推定値を所定の設定値と比較することによって、キャリブレーションパラメータEの異常、すなわち、外界センサ22の軸ズレを検知することも可能である。外界センサ22の軸ズレを解消する、あるいは、キャリブレーションパラメータEの設定値を最新の推定値に更新することによって、ローカライズ処理の精度を回復させることも可能である。
【0057】
以下、本実施の形態に係る車両制御システム10及び走行軌跡推定システム100について更に詳しく説明する。
【0058】
4.車両制御システム
4-1.構成例
図9は、本実施の形態に係る車両制御システム10の構成例を示すブロック図である。車両制御システム10は、センサ20、通信装置30、走行装置40、及び制御装置50を備えている。
【0059】
センサ20は、内界センサ21と外界センサ22を含んでいる。内界センサ21は、車両1の走行状態あるいは位置を検出する。内界センサ21の例としては、車輪速センサ、操舵角センサ、加速度センサ、ヨーレートセンサ、GPSセンサ、等が挙げられる。外界センサ22は、車両1の周囲の状況を認識する。外界センサ22としては、LIDAR、カメラ、レーダ、等が挙げられる。
【0060】
通信装置30は、車両制御システム10の外部と通信を行う。例えば、通信装置30は、走行軌跡推定システム100と通信を行う。通信方式は、有線通信であってもよいし、無線通信であってもよい。
【0061】
走行装置40は、操舵装置、駆動装置、及び制動装置を含んでいる。操舵装置は、車輪を転舵する。例えば、操舵装置は、パワーステアリング(EPS: Electric Power Steering)装置を含んでいる。駆動装置は、駆動力を発生させる動力源である。駆動装置としては、エンジン、電動機、インホイールモータ、等が例示される。制動装置は、制動力を発生させる。
【0062】
制御装置50は、車両1を制御する。制御装置50は、1又は複数のプロセッサ51(以下、単にプロセッサ51と呼ぶ)と1又は複数の記憶装置52(以下、単に記憶装置52と呼ぶ)を含んでいる。プロセッサ51は、各種処理を実行する。例えば、プロセッサ51は、CPU(Central Processing Unit)を含んでいる。記憶装置52は、各種情報を格納する。記憶装置52としては、揮発性メモリ、不揮発性メモリ、HDD(Hard Disk Drive)、SSD(Solid State Drive)、等が例示される。プロセッサ51がコンピュータプログラムである制御プログラムを実行することにより、プロセッサ51(制御装置50)による各種処理が実現される。制御プログラムは、記憶装置52に格納されている、あるいは、コンピュータ読み取り可能な記録媒体に記録されている。制御装置50は、1又は複数のECU(Electronic Control Unit)を含んでいてもよい。制御装置50の一部は、車両1の外部の情報処理装置であってもよい。その場合、制御装置50の一部は、車両1と通信を行い、車両1をリモートで制御する。
【0063】
記憶装置52は、車両走行情報60、外界認識情報70、特徴物位置情報MAP、等を格納する。
【0064】
車両走行情報60は、内界センサ21によって検出される情報であり、車両1の走行状態あるいは位置を含む。車両1の走行状態の例としては、車輪速、操舵角、加速度、ヨーレート、等が挙げられる。また、ここでの車両1の位置は、GPSセンサによって得られる大まかな車両位置である。
【0065】
外界認識情報70は、外界センサ22によって認識される情報である。外界認識情報70は、車両1の周囲の物体に関する物体情報を含む。車両1の周囲の物体としては、歩行者、他車両(先行車両、駐車車両、等)、特徴物j、等が例示される。特に、外界認識情報70は、外界センサ22によって認識される特徴物jに関する物体情報を含む。特徴物jに関する物体情報は、外界センサ22に対する特徴物jの相対位置Rj,kを含んでいてもよい。
【0066】
特徴物位置情報MAPは、絶対座標系における特徴物jの設置位置(絶対位置F)を示す。典型的には、特徴物jは、静止物体である。特徴物jとしては、白線、ポール、電信柱、標識、看板、等が例示される。特徴物位置情報MAPは、予め作成される。特徴物位置情報MAPは、地図情報に含まれていてもよい。プロセッサ51は、地図データベースから、必要なエリアの地図情報を取得する。地図データベースは、車両1に搭載されている所定の記憶装置に格納されていてもよいし、車両1の外部の管理サーバに格納されていてもよい。
【0067】
4-2.ローカライズ処理
車両1の走行中、プロセッサ51は、車両位置Pを推定するローカライズ処理を行う。より詳細には、プロセッサ51は、車両走行情報60、外界認識情報70、及び特徴物位置情報MAPに基づいて、ローカライズ処理を行う(図2図4参照)。ローカライズ結果情報LOCは、ローカライズ処理によって推定される車両位置Pを示す。ローカライズ結果情報LOCは、記憶装置52に格納される。
【0068】
4-3.通信処理
プロセッサ51は、通信装置30を介して、走行軌跡推定システム100と通信を行う。例えば、通信装置30は、車両走行情報60と外界認識情報70を走行軌跡推定システム100に送信する。通信装置30は、ローカライズ結果情報LOCを走行軌跡推定システム100に送信してもよい。走行軌跡推定システム100への情報の送信は、車両1の走行中にリアルタイムに行われてもよいし、車両1の待機中に行われてもよい。
【0069】
4-4.車両走行制御
プロセッサ51は、車両1の走行を制御する車両走行制御を実行する。車両走行制御は、操舵制御、加速制御、及び減速制御を含む。プロセッサ51は、走行装置40(操舵装置、駆動装置、制動装置)を制御することによって車両走行制御を実行する。
【0070】
車両走行制御の例としては、自動運転制御、運転支援制御、等が挙げられる。自動運転制御は、車両1の自動運転を制御する。運転支援制御としては、リスク回避制御、車線維持制御(LKA: Lane Keep Assist)、等が挙げられる。リスク回避制御は、車両1と物体との衝突リスクを低減するために操舵制御と減速制御のうち少なくとも一方を行う。車線維持制御は、車両1を走行車線に沿って走行させる。
【0071】
典型的には、プロセッサ51は、車両1の目標軌跡(目標トラジェクトリ)TRtを生成する。目標軌跡TRtは、地図情報、ローカライズ結果情報LOC(車両位置)、外界認識情報70(物体情報)、等に基づいて生成される。例えば、目標軌跡TRtは、車線の中心位置に沿うように生成される。目標軌跡TRtは、車両1の目標位置の集合である。目標位置毎に目標速度が設定されてもよい。プロセッサ51は、車両1が目標軌跡TRtに追従するように車両走行制御(軌跡追従制御)を実行する。
【0072】
5.走行軌跡推定システム
5-1.構成例
図10は、本実施の形態に係る走行軌跡推定システム100の構成例を示すブロック図である。走行軌跡推定システム100は、通信装置110、入出力装置120、及び情報処理装置130を含んでいる。
【0073】
通信装置110は、外部との通信を行う。例えば、通信装置110は、車両1の車両制御システム10と通信を行う。通信方式は、有線通信であってもよいし、無線通信であってもよい。
【0074】
入出力装置120は、走行軌跡推定システム100のオペレータから情報を受け付け、また、オペレータに情報を提供するためのインタフェースである。入力装置としては、キーボード、マウス、タッチパネル、等が例示される。出力装置としては、表示装置、スピーカ、等が例示される。
【0075】
情報処理装置130は、各種情報処理を行う。情報処理装置130は、1又は複数のプロセッサ131(以下、単にプロセッサ131と呼ぶ)と1又は複数の記憶装置132(以下、単に記憶装置132と呼ぶ)を含んでいる。プロセッサ131は、各種処理を実行する。例えば、プロセッサ131は、CPUを含んでいる。記憶装置132は、各種情報を格納する。記憶装置132としては、揮発性記憶装置、不揮発性記憶装置、HDD、SSD、等が例示される。プロセッサ131がコンピュータプログラムである「走行軌跡推定プログラムPROG」を実行することによって、情報処理装置130の機能が実現される。走行軌跡推定プログラムPROGは、記憶装置132に格納される。走行軌跡推定プログラムPROGは、コンピュータ読み取り可能な記録媒体に記録されてもよい。走行軌跡推定プログラムPROGは、ネットワーク経由で提供されてもよい。
【0076】
記憶装置132は、走行実績情報TREC、特徴物位置情報MAP、走行軌跡情報TRAJ、比較対象情報COMP、等を格納する。
【0077】
走行実績情報TRECは、車両1の過去の走行実績を示す。走行実績情報TRECは、車両1の走行中に取得された上記の車両走行情報60及び外界認識情報70を含む。走行実績情報TRECは、更に、ローカライズ結果情報LOCを含んでいてもよい。プロセッサ131は、通信装置110を介して、車両制御システム10から走行実績情報TRECを受け取る。車両制御システム10から走行軌跡推定システム100への走行実績情報TRECの伝送は、車両1の走行中にリアルタイムに行われてもよいし、車両1の待機中に行われてもよい。
【0078】
特徴物位置情報MAPは、絶対座標系における特徴物jの設置位置(絶対位置F)を示す。この特徴物位置情報MAPは、車両制御システム10によるローカライズ処理において利用されるものと同様である。
【0079】
走行軌跡情報TRAJは、走行軌跡推定処理によって推定される推定走行軌跡TReを示す。推定走行軌跡TReは、実際の走行軌跡TRaを高精度に再現する。
【0080】
比較対象情報COMPは、後述の走行軌跡評価処理において用いられる。比較対象情報COMPの例は後述される。
【0081】
5-2.走行軌跡推定システムによる処理
図11は、本実施の形態に係る走行軌跡推定システム100(プロセッサ131)による処理を説明するためのブロック図である。走行軌跡推定システム100は、機能ブロックとして、走行軌跡推定部200、走行軌跡評価部300、及び警告部400を含んでいる。これら機能ブロックは、プロセッサ131が走行軌跡推定プログラムPROGを実行することにより実現される。
【0082】
図12は、本実施の形態に係る走行軌跡推定システム100(プロセッサ131)による処理を示すフローチャートである。
【0083】
5-2-1.情報取得処理(ステップS100)
ステップS100において、走行軌跡推定部200は、走行実績情報TRECと特徴物位置情報MAPを取得する。
【0084】
5-2-2.走行軌跡推定処理(ステップS200)
ステップS200において、走行軌跡推定部200は、車両1の走行軌跡を推定する走行軌跡推定処理を実行する。より詳細には、走行軌跡推定部200は、走行実績情報TREC及び特徴物位置情報MAPに基づいて走行軌跡推定処理を行う。走行軌跡情報TRAJは、走行軌跡推定処理によって推定される推定走行軌跡TReを示す。
【0085】
図13は、本実施の形態に係る走行軌跡推定処理(ステップS200)を示すフローチャートである。
【0086】
ステップS210において、走行軌跡推定部200は、複数の時刻t~tのそれぞれにおける車両位置P~Pの初期設定を行う。より詳細には、走行軌跡推定部200は、走行実績情報TRECに含まれる車両走行情報60に基づいて、車両位置P~Pの初期値を設定する。例えば、GPSセンサによって検出された大まかな車両位置P~Pが初期値として設定される。他の例として、GPSセンサによって検出された車両位置Pに車両移動量T1,2~Tn-1,nを加算していくことによって、車両位置P~Pの初期値が設定されてもよい。車両位置Pの代わりに別の車両位置Pが起点として用いられてもよい。
【0087】
ステップS220において、走行軌跡推定部200は、走行実績情報TREC及び特徴物位置情報MAPに基づいて、車両位置P~Pを推定する車両位置推定処理を行う(図5図7参照)。
【0088】
より詳細には、ステップS221において、走行軌跡推定部200は、走行実績情報TRECに含まれる車両走行情報60に基づいて、第1車両移動量Tk-1,kと第2車両移動量Tk,k+1を取得する。また、走行軌跡推定部200は、走行実績情報TRECに含まれる外界認識情報70に基づいて、対象時刻tにおいて認識された特徴物jの相対位置Rj,kを取得する。
【0089】
ステップS222において、走行軌跡推定部200は、第1基準車両位置Pk-1、第1車両移動量Tk-1,k、第2基準車両位置Pk+1、及び第2車両移動量Tk,k+1に基づいて、内界推定車両位置PIを算出する。また、走行軌跡推定部200は、特徴物位置情報MAPで示される特徴物jの絶対位置F、特徴物jの相対位置Rj,k、及びキャリブレーションパラメータEに基づいて、外界推定車両位置POj,kを算出する。
【0090】
ステップS223において、走行軌跡推定部200は、内界推定車両位置PIと1以上の特徴物jに関する外界推定車両位置POj,kとを組み合わせることによって、対象時刻tにおける対象車両位置Pを推定する。このとき、走行軌跡推定部200は、複数の時刻t~tを並列的に対象時刻tとして設定し、複数の時刻t~tのそれぞれにおける複数の対象車両位置P~Pを一括して推定(最適化)してもよい(図7参照)。また、走行軌跡推定部200は、キャリブレーションパラメータEも変数として設定し、複数の対象車両位置P~Pと共にキャリブレーションパラメータEを推定してもよい(上述のセクション3-3参照)。
【0091】
ステップS230において、走行軌跡推定部200は、前回の車両位置推定処理において推定された複数の対象車両位置P~Pと今回の車両位置推定処理において推定された複数の対象車両位置P~Pとの間の変化量ΔPを算出する。変化量ΔPは、例えば、上記式(1)で表される。そして、走行軌跡推定部200は、変化量ΔPを所定の閾値と比較する。
【0092】
変化量ΔPが所定の閾値以上である場合(ステップS230;No)、処理は、ステップS240に進む。ステップS240において、車両位置P~Pが更新される。つまり、今回のステップS220において推定された複数の対象車両位置P~Pが、最新の車両位置P~P(第1基準車両位置Pk-1や第2基準車両位置Pk+1)として設定される。そして、処理は、ステップS220(車両位置推定処理)に戻る。
【0093】
変化量ΔPが所定の閾値未満になるまで、車両位置推定処理が繰り返し実行される。変化量ΔPが所定の閾値未満になると(ステップS230;Yes)、処理は、ステップS250に進む。ステップS250において、走行軌跡推定部200は、推定された複数の対象車両位置P~Pの集合を推定走行軌跡TReとして決定する。走行軌跡情報TRAJは、推定走行軌跡TReを示す。
【0094】
5-2-3.走行軌跡評価処理(ステップS300)
ステップS300において、走行軌跡評価部300は、走行軌跡情報TRAJで示される推定走行軌跡TReを評価する「走行軌跡評価処理」を実行する。ここで、走行軌跡評価部300は、必要に応じて比較対象情報COMPを用いる。走行軌跡評価処理の様々な例は後述される。
【0095】
ステップS350において、走行軌跡評価部300は、走行軌跡評価処理の結果が警告条件を満たすか否かを判定する。警告条件の様々な例は後述される。走行軌跡評価処理の結果が警告条件を満たさない場合(ステップS350;No)、今回の処理は終了する。一方、走行軌跡評価処理の結果が警告条件を満たす場合(ステップS350;Yes)、処理はステップS400に進む。
【0096】
5-2-4.警告処理(ステップS400)
ステップS400において、警告部400は、警告を出力する。例えば、警告部400は、入出力装置120の出力装置を用いて、走行軌跡推定システム100のオペレータに対して警告を出力する。他の例として、警告部400は、通信装置110を介して車両制御システム10と通信を行い、車両制御システム10を介して車両1のユーザに警告を出力してもよい。
【0097】
警告の内容としては様々な例が考えられる。例えば、警告は、走行軌跡評価処理において検知された異常の内容を示す。他の例として、警告は、車両1の自動運転の一時停止を要求してもよい。更に他の例として、警告は、車両1のセンサ20等の点検を要求してもよい。
【0098】
5-3.走行軌跡評価処理の様々な例
以下、本実施の形態に係る走行軌跡評価処理の様々な例について説明する。
【0099】
5-3-1.第1の例
第1の例において、走行軌跡評価部300は、推定走行軌跡TReが「蛇行」を含むか否かを判定する。ここで、蛇行とは、車両1が走行した走行車線が蛇行していないにも関わらず、推定走行軌跡TReが蛇行していることを意味する。車両1が走行した車線の形状は、地図情報から得られる。比較対象情報COMPは、地図情報で示される車線形状を含む。警告条件は、「推定走行軌跡TReが蛇行を含むこと」である。
【0100】
5-3-2.第2の例
第2の例において、走行軌跡評価部300は、推定走行軌跡TReが「異常曲率」を含むか否かを判定する。ここで、異常曲率とは、所定の曲率閾値を超える推定走行軌跡TReの曲率を意味する。比較対象情報COMPは、所定の曲率閾値を含む。警告条件は、「推定走行軌跡TReが異常曲率を含むこと」である。
【0101】
5-3-3.第3の例
図14は、走行軌跡評価処理(ステップS300)の第3の例を説明するための概念図である。第3の例において、走行軌跡評価部300は、車両制御システム10による軌跡追従制御の性能(精度)を評価する。
【0102】
具体的には、走行軌跡評価部300は、推定走行軌跡TReと目標軌跡TRt(理想経路)との間の誤差を算出する。つまり、比較対象情報COMPは、目標軌跡TRt(理想経路)を含む。推定走行軌跡TReと目標軌跡TRtとの間の誤差は、例えば、推定車両位置PEと目標軌跡TRtとの間の最短距離である。推定車両位置PEは、走行軌跡推定処理によって推定された時刻tにおける車両位置Pであり、走行軌跡情報TRAJから得られる。
【0103】
警告条件は、例えば、推定走行軌跡TReと目標軌跡TRtとの間の誤差が所定の閾値を超えることである。
【0104】
他の例として、過去の統計情報が考慮されてもよい。例えば、図15は、車両1が所定の周回コース上を走行する場合を示している。推定走行軌跡TReと目標軌跡TRtとの間の誤差が、周回コース上の位置毎に蓄積される。典型的には、軌跡追従制御が正常である期間の誤差が、周回コース上の位置毎に蓄積される。誤差平均値aveは、蓄積された誤差の分布の平均値であり、周回コース上の位置毎に算出される。
【0105】
例えば、走行軌跡評価部300は、今回推定された推定走行軌跡TReと目標軌跡TRtとの間の誤差を、位置毎に誤差平均値aveと比較する。警告条件は、「今回の誤差が誤差平均値aveから一定値以上離れている位置が、周回コース上で一定割合以上存在すること」である。一定値として、蓄積された誤差の分布の3σが用いられてもよい。
【0106】
他の例として、位置毎の誤差平均値aveを周回コース全体にわたって平均した「全体誤差平均値ave_t」が用いられてもよい。この場合、走行軌跡評価部300は、今回推定された推定走行軌跡TReに関する誤差についても、周回コース全体にわたって平均値を求める。警告条件は、「今回の誤差の平均値が全体誤差平均値ave_tから一定値以上離れていること」である。
【0107】
軌跡追従制御の性能の低下は、走行装置40(特に操舵装置)の不調、及び/あるいは、ローカライズ処理の精度の低下に起因する。警告が出力された場合、オペレータあるいは車両1のユーザは、走行装置40やセンサ20の点検を検討することができる。
【0108】
5-3-4.第4の例
図16は、走行軌跡評価処理(ステップS300)の第4の例を説明するための概念図である。第4の例において、走行軌跡評価部300は、車両制御システム10によるローカライズ処理の精度を評価する。
【0109】
具体的には、走行軌跡評価部300は、推定走行軌跡TReとローカライズ処理によって推定された車両位置とを比較する。つまり、比較対象情報COMPは、ローカライズ結果情報LOCを含む。ローカライズ結果位置PLは、車両1の走行中にローカライズ処理によって推定された時刻tにおける車両位置Pであり、ローカライズ結果情報LOCから得られる。一方、推定車両位置PEは、走行軌跡推定処理によって推定された時刻tにおける車両位置Pであり、走行軌跡情報TRAJから得られる。走行軌跡評価部300は、推定車両位置PEとローカライズ結果位置PLとの間の誤差を算出する。図16に示されるように、推定車両位置PEとローカライズ結果位置PLとの間の誤差は、縦誤差と横誤差を含む。
【0110】
警告条件は、例えば、推定車両位置PEとローカライズ結果位置PLとの間の縦誤差及び横誤差の少なくとも一方が所定の閾値を超えることである。
【0111】
他の例として、図15で示されたような過去の統計情報が考慮されてもよい。この場合、統計情報は、縦誤差と横誤差の各々について蓄積される。統計情報に基づく警告条件は、上述の第3の例において説明されたものと同様である。
【0112】
ローカライズ処理の精度の低下は、センサ20(内界センサ21、外界センサ22)の異常、及び/あるいは、ローカライズアルゴリズムの不調に起因する。警告が出力された場合、オペレータあるいは車両1のユーザは、センサ20の点検やローカライズアルゴリズムの更新を検討することができる。
【0113】
5-3-5.第5の例
図17は、走行軌跡評価処理(ステップS300)の第5の例を説明するための概念図である。第5の例において、走行軌跡評価部300は、内界センサ21の精度を評価する。
【0114】
具体的には、走行軌跡評価部300は、外界認識情報70を用いることなく、車両走行情報60だけに基づいて、複数の時刻t~tのそれぞれにおける複数の車両位置P~Pを算出する。車両走行情報60だけから算出される車両位置P~Pを、便宜上、「比較車両位置PC~PC」と呼ぶ。比較車両位置PC~PCは、上述の走行軌跡推定処理における車両位置P~Pの初期値と同等である。例えば、比較車両位置PC~PCは、GPSセンサによって検出された大まかな車両位置である。他の例として、GPSセンサによって検出された車両位置Pに車両移動量T1,2~Tn-1,nを加算していくことによって、比較車両位置PC~PCが算出されてもよい。車両位置Pの代わりに別の車両位置Pが起点として用いられてもよい。
【0115】
そして、走行軌跡評価部300は、推定走行軌跡TReと比較車両位置PC~PCとを比較する。つまり、比較対象情報COMPは、車両走行情報60から算出される比較車両位置PC~PCを含む。推定車両位置PEは、走行軌跡推定処理によって推定された時刻tにおける車両位置Pであり、走行軌跡情報TRAJから得られる。走行軌跡評価部300は、推定車両位置PEと比較車両位置PCとの間の誤差を算出する。
【0116】
図17に示されるように、推定車両位置PEと比較車両位置PCとの間の誤差は、「車両移動量誤差」と「角度誤差」により規定されてもよい。推定車両移動量TEk-1,kは、推定車両位置PEk-1と推定車両位置PEとの間の車両移動量である。推定車両移動量TEk,k+1は、推定車両位置PEと推定車両位置PEk+1との間の車両移動量である。推定角度DEは、推定車両移動量TEk-1,kと推定車両移動量TEk,k+1のそれぞれを表すベクトル間の角度である。一方、比較車両移動量TCk-1,kは、比較車両位置PCk-1と比較車両位置PCとの間の車両移動量である。比較車両移動量TCk,k+1は、比較車両位置PCと比較車両位置PCk+1との間の車両移動量である。比較角度DCは、比較車両移動量TCk-1,kと比較車両移動量TCk,k+1のそれぞれを表すベクトル間の角度である。車両移動量誤差は、推定車両移動量TEk-1,kと比較車両移動量TCk-1,kとの間の誤差と、推定車両移動量TEk,k+1と比較車両移動量TCk,k+1との間の誤差を含む。角度誤差は、推定角度DEと比較角度DCとの間の誤差である。
【0117】
警告条件は、例えば、推定車両位置PEと比較車両位置PCとの間の誤差が所定の閾値を超えることである。例えば、警告条件は、車両移動量誤差と角度誤差のうち少なくとも一方が所定の閾値を超えることである。
【0118】
他の例として、図15で示されたような過去の統計情報が考慮されてもよい。この場合、統計情報は、車両移動量誤差と角度誤差の各々について蓄積される。統計情報に基づく警告条件は、上述の第3の例において説明されたものと同様である。
【0119】
警告が出力された場合、オペレータあるいは車両1のユーザは、内界センサ21に異常が発生したと判断し、内界センサ21の点検を検討することができる。
【0120】
5-3-6.第6の例
第6の例において、走行軌跡評価部300は、外界センサ22に関するキャリブレーションパラメータEを評価する。そのために、上述の走行軌跡推定処理では、キャリブレーションパラメータEも推定される(セクション3-3参照)。
【0121】
具体的には、走行軌跡評価部300は、キャリブレーションパラメータEの推定値を所定の設定値と比較する。つまり、比較対象情報COMPは、キャリブレーションパラメータEの所定の設定値である。走行軌跡評価部300は、キャリブレーションパラメータEの推定値と所定の設定値との間の誤差を算出する。警告条件は、例えば、キャリブレーションパラメータEの推定値と所定の設定値との間の誤差が所定の閾値を超えることである。
【0122】
警告が出力された場合、オペレータあるいは車両1のユーザは、キャリブレーションパラメータEに異常があると判断し、外界センサ22の設置状態の点検を検討することができる。外界センサ22の軸ズレが発生していた場合、その軸ズレが解消されるように外界センサ22の設置状態を修正することができる。あるいは、キャリブレーションパラメータEの設定値を最新の推定値に更新してもよい。これらの処置により、ローカライズ処理の精度を回復させることが可能となる。
【0123】
6.まとめ
本実施の形態によれば、走行実績情報TRECに基づく走行軌跡推定処理によって、車両1の走行軌跡を高精度に推定することが可能となる。
【0124】
また、本実施の形態によれば、推定走行軌跡TReを解析することによって、軌跡追従制御の性能、ローカライズ処理の精度、センサ20の精度、等を評価することが可能となる。これにより、走行装置40やセンサ20の異常を検知することが可能となる。ここで、走行装置40やセンサ20の異常を検知するために、特別な環境や特殊な装置は不要であることに留意されたい。本実施の形態に係る手法は、汎用的且つ低コストであると言える。
【0125】
本実施の形態は、自動運転車両に適用されてもよい。例えば、本実施の形態は、周回コースに沿って走行する自動運転バスに適用される。この場合、自動運転バスの運行前後あるいは運行中に、自動運転バスの走行軌跡の推定及び評価が自動的に行われる。本実施の形態を適用することによって、自動運転バスのセンサ20や走行装置40の異常をシステマティックに検知することが可能となる。
【符号の説明】
【0126】
1 車両
10 車両制御システム
20 センサ
21 内界センサ
22 外界センサ
30 通信装置
40 走行装置
50 制御装置
60 車両走行情報
70 外界認識情報
100 走行軌跡推定システム
110 通信装置
120 入出力装置
130 情報処理装置
131 プロセッサ
132 記憶装置
200 走行軌跡推定部
300 走行軌跡評価部
400 警告部
LOC ローカライズ結果情報
MAP 特徴物位置情報
TRa 実際の走行軌跡
TRe 推定走行軌跡
TRt 目標軌跡
COMP 比較対象情報
PROG 走行軌跡推定プログラム
TRAJ 走行軌跡情報
TREC 走行実績情報
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17