IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社日立ハイテクノロジーズの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-30
(45)【発行日】2024-05-10
(54)【発明の名称】検査システム
(51)【国際特許分類】
   H01J 37/22 20060101AFI20240501BHJP
   H01J 37/20 20060101ALI20240501BHJP
   H01L 21/66 20060101ALI20240501BHJP
【FI】
H01J37/22 502F
H01J37/20 F
H01J37/20 H
H01L21/66 C
H01L21/66 J
【請求項の数】 14
(21)【出願番号】P 2023509887
(86)(22)【出願日】2021-03-29
(86)【国際出願番号】 JP2021013189
(87)【国際公開番号】W WO2022208572
(87)【国際公開日】2022-10-06
【審査請求日】2023-07-10
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール弁理士法人
(72)【発明者】
【氏名】中村 洋平
(72)【発明者】
【氏名】武田 直子
(72)【発明者】
【氏名】津野 夏規
(72)【発明者】
【氏名】高田 哲
(72)【発明者】
【氏名】君塚 平太
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開2018-137160(JP,A)
【文献】特開2007-53035(JP,A)
【文献】国際公開第2011/058950(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37
(57)【特許請求の範囲】
【請求項1】
荷電粒子線装置とコンピュータシステムとを備え、試料の電気特性を検査する検査システムであって、
前記試料には複数の検査領域が設定されており、前記検査領域に含まれる複数の特定の検査パタンのそれぞれに対して検査点が設定されており、
前記荷電粒子線装置は、
パルス荷電粒子線を前記試料に照射する荷電粒子光学系と、
前記パルス荷電粒子線が前記試料に照射されることにより放出される二次荷電粒子を検出し、検出した二次荷電粒子量に応じた二次荷電粒子信号を出力する検出系と、
複数のパルス条件で前記パルス荷電粒子線を前記試料に照射するよう前記荷電粒子光学系を制御する制御部とを備え、
前記コンピュータシステムは、
前記検査領域に含まれる複数の前記検査点ごとの、前記複数のパルス条件で前記パルス荷電粒子線を前記検査パタンに照射して得られた、前記複数のパルス条件に対応する前記検査パタンからの二次荷電粒子信号を示す測定データに基づき、前記複数のパルス条件に対応する前記検査領域に含まれる前記検査パタンからの二次荷電粒子信号を示す判定用データを求め、
前記判定用データと基準データとの誤差が所定の閾値以上である場合には、前記制御部に対して前記検査領域の帯電を除去する除電シーケンスの実行を指示し、
前記基準データは、前記複数のパルス条件で前記パルス荷電粒子線を基準パタンに照射して得られた、前記複数のパルス条件に対応する前記基準パタンからの前記二次荷電粒子信号を示すデータであり、
前記基準パタンは、前記検査パタンと同じ電気特性を有し、前記試料の放電時定数にしたがって放出されない電荷に起因する初期帯電が無視できるパタンである検査システム。
【請求項2】
請求項1において、
前記複数のパルス条件は、前記荷電粒子光学系が前記パルス荷電粒子線を前記試料に照射していない遮断時間が異なる条件である、または、前記荷電粒子光学系が前記パルス荷電粒子線を前記試料に照射してから前記検出系のサンプリングタイミングまでの充電時間が異なる条件である検査システム。
【請求項3】
請求項1において、
前記荷電粒子線装置は、光を前記試料に照射する光学系を備え、
前記荷電粒子線装置の前記制御部は、前記コンピュータシステムから前記除電シーケンスの実行の指示を受けて、所定の光照射条件にて前記光を前記検査領域の光照射領域に照射するよう前記光学系を制御する検査システム。
【請求項4】
請求項3において、
前記光照射領域は、前記検査パタンまたは前記検査パタンに関連する関連パタンの少なくともいずれかを含んで設定される検査システム。
【請求項5】
請求項1において、
前記荷電粒子線装置の前記制御部は、前記コンピュータシステムから前記除電シーケンスの実行の指示を受けて、所定の荷電粒子線照射条件で前記検査領域の帯電制御領域を荷電粒子線で走査するよう前記荷電粒子光学系を制御し、
前記帯電制御領域は、前記検査領域を含んで設定される検査システム。
【請求項6】
請求項1において、
前記コンピュータシステムは、
前記除電シーケンスを所定の回数実行しても、前記判定用データと前記基準データとの誤差が所定の閾値以上である場合には、当該検査領域の検査結果をエラーとして出力する検査システム。
【請求項7】
請求項1において、
前記コンピュータシステムは、
前記判定用データと前記基準データとの誤差が所定の閾値未満である場合には、前記検査点ごとの前記測定データに基づき、当該検査領域の検査結果として前記検査点における前記検査パタンの電気特性を推定する検査システム。
【請求項8】
請求項7において、
前記コンピュータシステムは、
前記検査領域の検査結果に、前記検査点における前記検査パタンの電気特性を推定するために用いた前記測定データを取得したときの前記判定用データと前記基準データとの誤差を含めて出力する検査システム。
【請求項9】
請求項1において、
前記コンピュータシステムは、
前記判定用データを、前記検査領域における前記検査点ごとの前記測定データの平均値として算出する検査システム。
【請求項10】
荷電粒子線装置とコンピュータシステムとを備え、試料の電気特性を検査する検査システムであって、
前記試料には複数の検査領域が設定されており、前記検査領域に含まれる複数の特定の検査パタンのそれぞれに対して検査点が設定されており、
前記荷電粒子線装置は、
パルス荷電粒子線を前記試料に照射する荷電粒子光学系と、
前記パルス荷電粒子線が前記試料に照射されることにより放出される二次荷電粒子を検出し、検出した二次荷電粒子量に応じた二次荷電粒子信号を出力する検出系と、
複数のパルス条件で前記パルス荷電粒子線を前記試料に照射するよう前記荷電粒子光学系を制御する制御部とを備え、
前記コンピュータシステムは、
前記検査パタンと同じ電気特性を有し、前記試料の放電時定数にしたがって放出されない電荷に起因する初期帯電が無視できる基準パタンに、前記複数のパルス条件で前記パルス荷電粒子線を照射して得られた、前記複数のパルス条件に対応する前記基準パタンからの二次荷電粒子信号を示す基準データに整合するよう、前記基準パタンの帯電を表現する等価回路ネットリストの電気特性パラメータを調整して基準モデルを作成し、
前記基準モデルに前記初期帯電を表す素子を追加した帯電モデルについて、初期帯電量を変数として、前記複数のパルス条件に対応する前記基準パタンからの二次荷電粒子信号をシミュレーションして初期帯電データベースとして保存し、
前記検査領域に含まれる複数の前記検査点ごとの、前記複数のパルス条件で前記パルス荷電粒子線を前記検査パタンに照射して得られた、前記複数のパルス条件に対応する前記検査パタンからの二次荷電粒子信号を示す測定データに基づき、前記複数のパルス条件に対応する前記検査領域に含まれる前記検査パタンからの二次荷電粒子信号を示す判定用データを求め、
前記判定用データと前記初期帯電データベースとを参照して、前記検査領域の初期帯電量を推定する検査システム。
【請求項11】
請求項10において、
前記コンピュータシステムは、
前記検査パタンの帯電を表現する等価回路ネットリストに前記初期帯電量を表す素子を追加した検査モデルについて、前記検査モデルの電気特性パラメータを変数として、前記複数のパルス条件に対応する前記検査パタンからの前記二次荷電粒子信号をシミュレーションし、
前記検査点ごとの前記測定データと前記検査モデルについてのシミュレーション結果とを参照して、前記検査点における前記検査パタンの電気特性を推定する検査システム。
【請求項12】
請求項10において、
前記基準モデルは、前記基準パタンの帯電を表現する等価回路ネットリストに対して、前記パルス条件が反映され、前記試料に入射される電荷量を表すパルス荷電粒子線モデルと、前記試料から放出される電荷量を表す二次荷電粒子放出モデルとが接続されたモデルである検査システム。
【請求項13】
請求項10において、
前記帯電モデルにおいて、前記初期帯電を表す素子は、前記基準パタンの等価容量を示す第1の容量と接続される第2の容量であり、前記第1の容量と前記第2の容量との間に、前記初期帯電量に応じた電荷が保持されている検査システム。
【請求項14】
請求項10において、
前記帯電モデルにおいて、前記初期帯電を表す素子は、前記初期帯電量に応じたバイアス電圧を発生させる電圧源である検査システム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線を用いて試料の電気特性を推定する検査システムに関する。
【背景技術】
【0002】
電子顕微鏡を用いた試料解析法の1つに、電子ビームを試料に照射することによって得られる二次電子等の検出に基づいて、電位コントラスト像を形成し、当該電位コントラスト像の解析に基づいて、試料上に形成された素子の電気特性を評価する手法が知られている。
【0003】
特許文献1には、電位コントラストから電気抵抗値を算出し、欠陥を判別する方法が開示されている。特許文献2にはパルス化された電子ビームの照射インターバルに応じた電位コントラストの過渡応答を利用して容量値を算出し、欠陥を判別する方法が開示されている。
【先行技術文献】
【特許文献】
【0004】
【文献】特開2003-100823号公報
【文献】特開2016-100153号公報
【文献】特開平11-111599号公報
【文献】特開2013-33739号公報
【文献】特開2003-151483号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
半導体のインライン検査においては、工程中のプラズマ処理等によりウェハに局所的な帯電が発生することがある。ウェハ表面の絶縁膜や材料界面等にトラップされた電荷は容易に放電されない。特許文献2には電子線照射のインターバル時間に対するデバイスの帯電変化量と帯電によって発生する電位コントラスト像を利用してデバイスの検査を行う手法が開示されているが、ウェハ内に初期帯電が存在するとデバイスの特性による帯電の変化に初期帯電が重畳してしまい、検査精度が劣化または検査が不可能となる。ウェハ上の帯電測定技術として特許文献3に開示されているように表面電位系を用いて測定する手法があるが、特定の領域を測定するには空間分解能が不足する点が課題となる。また、ウェハの帯電制御技術として特許文献4に開示されているような帯電制御電極を用いる手法や、特許文献5に開示されているような紫外光の照射により表面電位を安定化させる技術があるが、ウェハの帯電が適切に除電されていることを評価する手段がないことが課題である。
【0006】
本発明は、このようなことを鑑みてなされたものであり、その目的の一つは試料の電気特性をウェハの初期帯電状況に関わらず高精度に推定可能な検査システムを提供することにある。
【課題を解決するための手段】
【0007】
本発明の一実施の態様である検査システムは、荷電粒子線装置とコンピュータシステムとを備え、試料の電気特性を検査する検査システムであって、試料には複数の検査領域が設定されており、検査領域に含まれる複数の特定の検査パタンのそれぞれに対して検査点が設定されており、
荷電粒子線装置は、パルス荷電粒子線を試料に照射する荷電粒子光学系と、パルス荷電粒子線が試料に照射されることにより放出される二次荷電粒子を検出し、検出した二次荷電粒子量に応じた二次荷電粒子信号を出力する検出系と、複数のパルス条件でパルス荷電粒子線を試料に照射するよう荷電粒子光学系を制御する制御部とを備え、
コンピュータシステムは、検査領域に含まれる複数の検査点ごとの、複数のパルス条件でパルス荷電粒子線を検査パタンに照射して得られた、複数のパルス条件に対応する検査パタンからの二次荷電粒子信号を示す測定データに基づき、複数のパルス条件に対応する検査領域に含まれる検査パタンからの二次荷電粒子信号を示す判定用データを求め、判定用データと基準データとの誤差が所定の閾値以上である場合には、制御部に対して検査領域の帯電を除去する除電シーケンスの実行を指示し、
基準データは、複数のパルス条件でパルス荷電粒子線を基準パタンに照射して得られた、複数のパルス条件に対応する基準パタンからの二次荷電粒子信号を示すデータであり、基準パタンは、検査パタンと同じ電気特性を有し、試料の放電時定数にしたがって放出されない電荷に起因する初期帯電が無視できるパタンである。
【発明の効果】
【0008】
試料の電気特性をウェハの初期帯電状況に関わらず高精度に推定可能な検査システムを提供する。
【0009】
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【図面の簡単な説明】
【0010】
図1】検査システムの一構成例を示す図である。
図2A】試料帯電の過渡応答について説明するための図である。
図2B】試料帯電の過渡応答について説明するための図である。
図3A】電子線の遮断時間(インターバル時間)を変えたときの二次電子信号量の変化を示す図である。
図3B】電子線の充電時間を変えたときの二次電子信号量の変化を示す図である。
図4】初期帯電の有無により得られる検査領域の画像の違いを説明する図である。
図5】実施例1のフローチャートである。
図6】実施例1のフローにより得られる検査データの一例である。
図7A】除電シーケンスについて説明するための図である。
図7B】除電シーケンスについて説明するための図である。
図7C】除電シーケンスについて説明するための図である。
図7D】除電シーケンスについて説明するための図である。
図8】除電シーケンスを設定するためのユーザインターフェースの一例である。
図9】検査領域の初期帯電状況を確認するためのユーザインターフェースの一例である。
図10】実施例2のフローチャートである。
図11A】基準モデルについて説明するための図である。
図11B】基準モデルについて説明するための図である。
図12A】帯電モデルについて説明するための図である。
図12B】帯電モデルについて説明するための図である。
図12C】帯電モデルについて説明するための図である。
図13】初期帯電データベースの一例である。
【発明を実施するための形態】
【0011】
図1に、検査システムの一構成例を示す。電子顕微鏡本体100は、その主要な構成として、電子光学系、ステージ機構系、制御系、検出系といった一般的な電子顕微鏡を構成する要素に加え、試料上に光を照射するための光照射系を有する。
【0012】
電子光学系は荷電粒子源となる電子銃101、ブランカ102、絞り103、偏向器104、対物レンズ105を含む。電子銃101から放出された電子はブランカ102と絞り103によりパルス化され、対物レンズ105によって試料106上に集束される。パルス電子線は、偏向器104によって試料106上を2次元的にスキャンされる。
【0013】
ステージ機構系はXYZ軸に移動可能なステージ107とステージ107上の試料台108を有し、試料106は試料台108上に設置される。図示されていないが、試料106に電圧を印加するためのリターディング電源が接続されていてもよい。ステージ107には、校正試料台121が設けられ、校正試料台121上には、校正試料120が設置される。
【0014】
光照射系は光源109、光路遮断機110、光路111を含む。光源109から射出された連続光またはパルス光は光路遮断機110によってゲーティングされることによって、試料106への照射が制御される。光源109からの光は、光路111により試料106上に集束される。光路111はミラー、レンズ、スプリッタ等の一般的な光学素子や光ファイバ等を含んで構成されていてもよい。
【0015】
制御部112は、電子光学系と接続されて、電子線の加速電圧、照射電流の制御や偏向位置の制御を行い、光照射系と接続されて、光の波長、強度の制御や集束位置の制御を行う。また、制御部112は、ブランカ102、光路遮断機110、検出器113に接続され、電子線のパルス化タイミング、光のON/OFFタイミング及び、二次電子のサンプリングタイミングを同期させる制御を行うよう、構成されている。
【0016】
計算装置114は、検出器113によって取得された二次電子信号をもとに画像の生成、欠陥の分類、電気特性の測定などを行い、入出力装置115へ出力する。入出力装置115はディスプレイ、キーボード、マウス、制御パネル状のスイッチ等で実装される。また、計算装置114は、制御部112に指示することにより、電子顕微鏡本体100に処理を実行させる。計算装置114は単体の情報処理装置であってもよいが、ネットワーク130を介して、他の計算装置131、データストレージ132に接続し、演算負荷を分散させてもよい。後述する実施例1、実施例2における計算装置114の処理は、計算装置114が実行してもよいし、計算装置114に接続される計算装置で実行してもよいし、諸データを計算装置114の記憶装置に格納してもよいし、外部のデータストレージ132に格納してもよい。ここでは、単体での計算装置、および演算負荷を分散して実行可能な複数の計算装置を総称して、コンピュータシステムと呼ぶ。
【0017】
さらに、試料が半導体ウェハである場合、荷電粒子線装置はウェハ搬送系を含んでもよい。この場合、ウェハを設置するウェハカセット116、ウェハを電子顕微鏡内部へ導入するウェハローダ117、ウェハを試料室119へ導入する前にウェハを設置する準備室118などが設けられる。
【0018】
図2A~Bを用いて電子線の照射による試料帯電の過渡応答について説明する。電子顕微鏡が試料上に一定の加速電圧を与えて電子線を照射すると、試料から二次電子が放出される。放出された二次電子を検出器によって検出し、電子線のスキャンと同期させることで二次電子像が形成される。ここで、試料に入射する電子線の電流、加速電圧、試料表面の材質、凹凸構造、あるいは表面の帯電等によって、試料から放出される二次電子の量は変化する。加速電圧によっては、試料から放出される二次電子の量が入射電子数より多い正帯電の状態や、逆に放出される二次電子の量が入射電子数より少ない負帯電の状態が発生する。以下の説明では、電子線の照射により正帯電が生じる状態の例で説明するが、負帯電が生じる状態であっても試料の表面電位の変化が異なるだけで、同様である。
【0019】
図2Aは、試料106の一例の断面図である。基板201上に絶縁膜202が形成され、その上に浮遊導体203が形成されている。絶縁膜202はたとえばSiOやSiなどである。このとき、浮遊導体203と基板201との間には、図に示すような等価抵抗R、等価容量Cが存在している。
【0020】
図2Aの試料にパルス電子線を照射したときの浮遊導体203の表面電位の変化を図2Bに示す。入射電子線が正帯電を生じさせる場合、パルス電子線の照射期間は試料の表面電位が増加する一方、パルス電子線の遮断期間は前述の等価抵抗Rと等価容量Cとの積から決定される放電時定数に従って、ウェハ基板へ電流が流れることによって、試料の表面電位は低下する。また、試料の表面電位が増加すると試料直上の電界が変化し電位障壁が発生することにより、一旦試料から放出された二次電子のうち、エネルギーの低い二次電子が再び試料に戻される。したがって、表面電位が高い程、検出器で検出される二次電子信号量は低下し、表面電位が低い程、検出器で検出される二次電子信号量は増大する。このような表面電位の変化によって画像に発生するコントラストを電位コントラストと呼ぶ。電位コントラストによって間接的に試料の帯電の変化をとらえることが可能である。
【0021】
図3Aを用いて、ウェハに初期帯電が存在した場合の検査に与える影響について説明する。図3Aには電子線の遮断時間(インターバル時間)ITを変えたときの二次電子信号量の変化を示している。試料上に初期帯電が存在しない場合、一次照射電子に対する二次電子信号量の比率は試料形状および、材料特性によって決定される値をとる。これを真の二次電子信号量S0とする。ここから一次電子線の照射を継続すると、電子線の照射条件が正帯電条件であった場合、電子線の照射時間経過とともに帯電量が増加することにより、二次電子信号は減少する。さらに照射を継続すると一次電子線の照射量と試料からの二次電子放出量が一致したところで、帯電の進行は停止し、二次電子信号量はそれ以降一定(飽和状態)となる。この値を図中ではSinfとしている。飽和状態から一定の遮断時間ITを経過した後、再度電子線を照射する。電子線の遮断期間中においては電子線の注入が行われないため、等価抵抗Rと等価容量Cとの積から決定される放電時定数に従って試料の表面電位は低下している。なお、図3Aにおいて二次電子放出量を検出するタイミング(サンプリングタイミング)を黒丸で示しており、図3Aの例では、サンプリングタイミングは、一次電子線の照射開始直後のタイミングに設定されている。
【0022】
ここで、試料の放電時定数に対して十分に短い遮断時間IT1経過後に再度電子線を照射すると、試料電荷は放電しきらず帯電が残留しているため、二次電子信号量S(IT1)は真の二次電子信号量S0よりも少ない値となる。遮断時間を延ばして二次電子信号量S(IT2),S(IT3)(ただし、IT1<IT2<IT3)を取得すると、遮断時間の増加とともに放電量が増加する。以上の計測により、二次電子信号の遮断時間応答曲線301が得られる。遮断時間応答曲線301の絶対値および変化率ΔSは、試料の電気特性である等価抵抗Rおよび等価容量Cの値を反映するため、この曲線を解析することにより間接的に試料の電気特性を推定することができる。
【0023】
これに対して、試料表面の絶縁膜や材料界面等にトラップされたような電荷は、試料の放電時定数にしたがって放出されない。このように、通常の静置状態では容易に放電されない初期帯電が存在する場合、試料に一次電子線の照射を開始したとき帯電がすでに存在するため、二次電子信号S0’は真の二次電子信号量S0よりも小さくなる。また、充分な遮断時間(数十μs)を設けた後でも二次電子信号量は真の二次電子信号量S0まで戻ることはなく、二次電子信号量S0’にとどまる。この結果、初期帯電がある場合の二次電子信号の遮断時間応答曲線302は、初期帯電がない場合の遮断時間応答曲線302とは異なる形状を示す。したがって、遮断時間応答曲線を利用して試料の電気特性を推定、または欠陥を判別すると、初期帯電の有無と程度によって、判別結果の値が異なってしまうことが起こる。
【0024】
二次電子信号量の変化は、特定の検査領域に電子線を照射したときの検出器113からの信号波形から取得してもよいし、画像の輝度として取得してもよい。二次電子信号量の変化を画像の輝度から取得する場合には、計算装置114で実行される画像処理も検出系の処理に含めるものとする。図4には、検査対象ウェハ400に対して、初期帯電のない領域401に含まれる検査領域の画像411(模式図)と、初期帯電のある領域402に含まれる検査領域の画像412(模式図)とを示している。画像411、画像412に含まれる5×5に配列された丸印が検査パタンの像である。また、画像411、画像412として、それぞれ遮断時間を同様に変化させて取得した4枚の像を示している。
【0025】
初期帯電なしの場合、遮断時間が長くなるにつれて検査パタンの明度が増加するのに対し、初期帯電ありの場合には、遮断時間が長くなっても検査パタンの明度の増加量が少ない。二次電子信号を検査パタンの明度とし、遮断時間に対応させてプロットすることにより、遮断時間応答曲線421(初期帯電なし),422(初期帯電あり)を得ることができる。
【0026】
以上では説明を単純化するため、パルス電子線の照射時間を帯電が飽和する程度とし、遮断時間の開始タイミングで試料帯電が飽和状態にある例を示していたが、試料帯電が飽和する前の状態から遮断時間を開始したとしても、遮断時間の開始タイミングで常に試料帯電状態が同程度であれば、同様の議論が成り立つ。また、同じく説明を単純化するため、二次電子信号のサンプリングタイミングを一次電子線の照射開始直後、すなわち遮断時間直後の例を示したが、遮断時間終了からサンプリングタイミングまでに一定の遅延時間を設けたとしても同様の議論が成立する。
【0027】
以下では、図3Aに示した遮断時間(IT)を変化させて応答曲線を得る例に基づき、実施例を説明するが、試料の電気特性を推定するための応答曲線は遮断時間応答曲線には限られない。図3Bに充電時間(CT)を変化させて応答曲線を得る例を示す。充電時間は、一次電子線の照射開始から検出系のサンプリングタイミングまでの時間として定義できる。充電時間を変化させることによっても、同様に充電時間応答曲線311,312が得られる。遮断時間応答曲線は、試料帯電の放電時間を制御して得られる応答曲線であるのに対して、充電時間応答曲線は、試料帯電の充電時間を制御して得られる応答曲線である。いずれの場合であっても、同様に試料の電気特性についての情報が得られる。
【実施例1】
【0028】
図5は、図1に示した検査システムにおいて計算装置114が実行する、初期帯電を評価して除去する実施例1のフローチャートである。
【0029】
まず、ウェハ106内の基準パタンもしくは校正試料台121上の校正試料120上の基準パタンについて、複数のパルス条件(例えば、遮断時間ITi、iは整数)での二次電子信号を取得し、基準データS(ITi)とする(S501)。パルス条件以外の一次電子線照射条件(加速電圧、プローブ電流量など)は、検査パタンの検査に用いる条件と同じとする。ここで、基準パタンは検査パタンと同じ電気特性を有するパタンである。このため、基準パタンは検査パタンと表面構造は同一であるが、電気特性の違いが無視できる範囲であれば、断面構造が異なっていてもよい。後述する除電方法により初期帯電を除去した当該ウェハ上の検査パタンを基準パタンとしてもよいし、別のウェハから切り出され、初期帯電が放電されたチップを校正試料120とし、校正試料120上の検査パタンを基準パタンとしてもよい。初期帯電が完全に除去されていなくても、無視できる程度にまで小さくなっていればよい。基準データS(ITi)は、複数のパルス条件に対応する基準パタンからの二次電子信号を示すデータである。基準データS(ITi)を遮断時間ITでプロットすると、遮断時間応答曲線301が得られる。
【0030】
次にウェハ106内の検査領域へ移動し(S502)、検査領域内の各検査点における検査パタンについて、基準パタンと同じ複数のパルス条件での二次電子信号を取得する(S503)。ここで、検査領域内の検査パタンp(ただし、pは整数であり、検査点を示す)においてパルス照射条件ITiを用いて取得した二次電子信号を測定データS(p,ITi)とする。測定データS(p,ITi)は、複数のパルス条件に対応する、検査点pにおける検査パタンからの二次電子信号を示すデータである。検査領域内の検査パタンp(p=1,2…)において取得された二次電子信号S(1,ITi)、S(2,ITi)…の値を平均化して判定用データS(ITi)とする(S504)。なお、判定用データS(ITi)は、検査領域内の検査パタンpについて取得された測定データの代表値であり、算出方法は平均化に限定されるものではない。
【0031】
次に基準データS(ITi)と検査領域ごとに取得された判定用データS(ITi)との初期帯電誤差E(以下、誤差と呼ぶ)を計算する(S505)。誤差の計算方法の例として、次に示すような二乗誤差が使用できる。
【0032】
【数1】
【0033】
誤差Eの値が小さいほど、遮断時間ITiに関する遮断時間応答曲線Sと遮断時間応答曲線Sの類似性が高いとする。なお、誤差の計算方法は(数1)に限られず、二次電子信号量の最大値と最小値の差を使用した(数2)を用いることも可能である。
【0034】
【数2】
【0035】
ここで、ITmax、ITminはそれぞれ取りうる遮断時間ITiの値の最大値と最小値である。遮断時間応答曲線は単調増加関数であるので、このような計算方法によっても、同様に誤差Eの値が小さいほど基準データSと判定用データSとの類似性が高いと判定することが可能である。
【0036】
ステップS506では誤差Eがあらかじめ定めていた閾値以下であるかを判定し、閾値を超えていた場合には、制御部112に除電シーケンスを実行させる。なお、閾値が低すぎると除電シーケンスの実行回数が増加して検査スループットを低下させる要因となるため、閾値は検査で検出したい電気特性不良の程度にしたがって定めておく。
【0037】
除電シーケンスではあらかじめ除電シーケンスの実行回数が規定の最大値を超えていないことを確認し(S507)、規定値以内であった場合には除電シーケンスを実行する(S508)。除電シーケンス後は同じ検査領域の二次電子信号を取得するステップS503へ移行し、ステップS506で誤差Eが閾値以内になるまで繰り返す。誤差Eが閾値以下となった場合または、除電実行回数が規定の最大値を超えた場合、測定結果を記録して、当該検査領域への電子線照射を終了する(S509)。まだ、未検査の検査領域が残っている場合(S510でNo)には次の検査領域へ移動し(S502)、以降のステップを繰り返し実行する。すべての検査領域に対する電子線の照射と二次電子信号の取得が完了した場合(S510でYes)は、各検査点に対して、パルス条件(ここでは遮断時間IT)に依存した二次電子信号データ(測定データ)に基づき電気特性の推定を行う(S511)。
【0038】
電気特性の推定は、計算装置114が、例えば、遮断時間応答特性と対応する電気特性値(等価抵抗R、等価容量Cなど)、欠陥の分類を対応付けて保存したデータベースを参照することによって行える。遮断時間応答特性は、実測して得た遮断時間応答曲線であってもよいし、シミュレーションによって得た遮断時間応答曲線であってもよい。このとき、誤差Eが閾値を超えている検査点については、電気特性の推定エラーを出力する。
【0039】
図6図5のフローによって得られる検査データの一例である。各検査領域に対して、G1,G2などの領域番号が割り振られ、検査領域内の各検査点にはP1、P2などの検査点番号が割り振られている。さらに、各検査点番号において実行された複数のパルス条件(ここでは遮断時間)と、それぞれのパルス条件において測定した二次電子信号が対応付けられて保存されている。検査点ごとの測定データSから推定された電気特性指標(ここでは、等価抵抗R、等価容量C)が検査点ごとに保存される。また、検査領域ごとに計算された初期帯電誤差、除電実行回数も保存されている。除電シーケンスを規定の最大回数実行しても誤差Eが閾値以内に収まらなかった場合は、初期帯電の除去に失敗したことを初期帯電判定として記録し、電気特性指標にはエラーが出力される(検査領域G2の場合)。
【0040】
図6では、初期帯電の除電終了後の測定データのみを保存している例を示しているが、除電シーケンスの実行前後での測定データをすべて保存してもよい。また、除電実行前の測定データに基づき電気特性指標を推定し、そのときの誤差Eの値とともに保存していてもよい。誤差Eの値が保存されることによって、推定された電気特性指標の値の妥当性を判断することが可能になる。
【0041】
このように、図5のフローでは、初期帯電のない基準パタンに基づき得られた基準データに基づき、検査領域の帯電状況を評価し、検査領域に無視できない初期帯電が存在すると認められる場合には、初期帯電を除去する除電シーケンスを実行する。初期帯電の有無により、図4に示した遮断時間応答曲線421と遮断時間応答曲線422のように、乖離が発生する。除電シーケンスでは、試料中の固定電荷を励起することにより、試料表面の帯電を除去する。これにより、遮断時間応答曲線421と遮断時間応答曲線422との乖離が小さくなる。1回の除電シーケンスによる除電量が不足していた場合には、除電シーケンスを繰り返すことにより、許容範囲の帯電量にまで調整する。
【0042】
図7A~Dを用いて、除電シーケンスについて説明する。検査パタン701は例えば電極であり、検査領域702に含まれる25の検査パタン701のそれぞれに対して、検査点番号が割り振られている。図7Aは、検査領域702を含む光照射領域703に紫外光などの除電光を照射する例である。本例は検査領域内の絶縁膜界面や、PN接合等の界面に捕捉されている初期帯電を除去する場合などに用いる。
【0043】
図7Bは検査パタン701を含む検査領域702とは別の領域にある関連パタン704を含む光照射領域703に除電光を照射する例である。本例は、例えば図7Cのような構造を有するデバイスの検査に有効である。図7Cのデバイスは、基板706上に形成された拡散層707、絶縁膜708、ゲート電極709を有するMOS構造であり、検査パタンである電極(検査パタン)701は拡散層707に、関連電極(関連パタン)704はゲート電極709に接続されているものとする。ゲート電極709に初期帯電があった場合、拡散層707からゲート直下を流れる電流量がゲート電極709に初期帯電がない場合と違った値となることにより、電極701に対して検査によって推定される抵抗値が変動することになる。そこで、関連電極(関連パタン)704に対して除電光を照射し、ゲート電極709の初期帯電を光照射により一定の状態に初期化することで、ゲート電圧起因による推定誤差を抑制することが可能になる。
【0044】
図7Dは検査領域702に対し、検査領域702を含み、検査領域702よりも広い帯電制御領域710に対して、電子線を照射する例である。加速電圧や照射電子線量によっては、電子線の照射領域を広げることで、より強い帯電が発生することを利用する。この例では広範囲の領域に電子線を照射することで、強度の帯電を発生させ、それによる電界を用いて検査領域702の内側にトラップされた電荷をリセットする。帯電制御領域710を走査するときの一次電子線の加速電圧や電流値などは、検査時に検査領域を走査する一次電子線の加速電圧や電流値などとは異なる値を設定してもよい。
【0045】
図8は除電シーケンスを設定するためのユーザインターフェースの一例を示したものである。誤差計算方法入力部801では、図5のステップS505において、基準データと判定用データとの初期帯電誤差Eを計算する方法をあらかじめ用意された複数の選択肢から指定する。初期帯電誤差閾値入力部802はステップS506における誤差Eに対する閾値を入力する。最大除電実行数入力部803はステップS507における除電シーケンスの最大実行数を入力する。除電シーケンス設定入力部804はステップS508における除電シーケンスにおける1または複数の動作の実行順序を指定する。それぞれの動作における動作条件は動作条件指定部805にて指定される。
【0046】
図8には1番目に電子線照射、2番目に光照射を設定した例が表示されている。動作条件指定部805aは電子線照射時の条件を設定する項目が表示されており、モード指定部806、加速電圧指定部807、プローブ電流指定部808、倍率指定部809、フレーム数指定部810などから構成される。フレーム数とは、電子線で帯電制御領域710を走査させる回数を示す。また、図7Dのように、除電時に広範囲へ電子線を照射するような場合は、倍率指定部809の値を調整することで実現される。動作条件指定部805bは光照射時の条件を設定する項目が表示されており、モード指定部806、波長指定部813、強度指定部814、照射時間指定部815、照射相対座標入力部816などから構成される。図7Aのように検査領域に除電光を照射する場合には、照射相対座標入力部816にX=0,Y=0を入力することで実現され、図7Bのように検査領域と除電領域とが異なる場合は、検査領域に対する除電領域の相対座標を照射相対座標入力部816へ入力することで実現される。モード指定部806にて電子線照射や光照射などを選択することで、除電シーケンス設定入力部804で設定される除電動作の組み合わせや実行の有無が決定される。
【0047】
図9は検査領域の初期帯電状況を確認するためのユーザインターフェースの一例である。初期帯電分布表示部901はウェハ内や区画内における各検査領域で計算された初期帯電誤差Eの値をカラーマップ表示したものであり、ウェハ内、区画内における初期帯電の状況が可視化される。初期帯電状況表示部902は初期帯電分布表示部901から選択された特定の検査領域において、測定された二次電子信号量(輝度)を表示し、基準値と比較可能に表示する。除電シーケンスが実行前後の輝度値が表示されており、除電シーケンスによってどの程度基準値に近づいたかどうかを確認できる。また、除電シーケンスの繰り返しにおいて想定外の挙動を示した場合の確認にも用いられる。
【実施例2】
【0048】
図10は、図1に示した検査システムにおいて計算装置114が実行する、初期帯電の測定結果を利用して電気特性の検査を行う実施例2のフローチャートである。
【0049】
まず、基準パタンについて、複数のパルス条件での二次電子信号を取得し、基準データとする(S1001)。ステップS1001の処理は実施例1のステップS501の処理と同じである。次に基準パタンの帯電を表現する等価回路ネットリストを用いたシミュレーション結果と基準データとが整合するように等価回路ネットリストの電気特性パラメータ(抵抗R・容量Cなど)を調整し、等価回路ネットリストと調整された電気特性パラメータセットとを基準モデルとする(S1002)。次に、初期帯電を表現する素子として、電圧源または電荷のチャージされた容量素子を基準モデルに追加して帯電モデルを作成する。帯電モデルの初期帯電電圧をパラメータとしてシミュレーションを行い、初期帯電量に対する二次電子信号量の遮断時間応答特性をデータベースとして作成・保存し、これを初期帯電データベースとする(S1003)。
【0050】
次にウェハ106内の検査領域へ移動し(S1004)、検査領域内の検査パタンについて、基準パタンと同じ複数のパルス条件での二次電子信号量を取得する(S1005)。検査領域内の検査パタンにおいて取得された二次電子信号量Sの値(測定データ)を平均化して判定用データSとする(S1006)。ステップS1004~ステップS1006の処理は、実施例1のステップS502~S504の処理と同じである。
【0051】
次に判定用データSを初期帯電データベースと比較し、初期帯電量を求め、求めた初期帯電量を検査パタンの帯電を表現する等価回路ネットリストに反映し、検査モデルとする(S1007)。次に検査モデルにおける電気特性パラメータ(抵抗R・容量Cなど)を変数としてシミュレーションを行い(S1008)、検査点における測定データがシミュレーション結果と最もよく整合する電気特性パラメータを検査点における検査パタンの電気特性値の推定値とする(S1009)。これをすべての検査領域に対して繰り返し(S1010)、すべての検査領域に対する二次電子信号量の取得と電気特性の推定が完了した時点で検査を終了する。
【0052】
図11A~Bを用いて基準モデルについて説明する。図11Aに示すデバイスでは、基板1101上に絶縁膜1102を介して電極1103が形成されている。このとき電極1103が帯電したときのリーク電流を表す抵抗1104、容量1105が存在するとみなすことができ、図11Bに示すモデルで表現することが可能である。互いに並列接続された抵抗1104と容量1105に対し、パルス電子線モデル1106および二次電子放出モデル1107が接続されている。パルス電子線モデル1106は、設定された試料に照射するパルス条件(遮断時間を含む一次電子線の照射条件)において一次電子線から試料に入射される電荷量を表す。二次電子放出モデル1107は、表面電位に依存して試料から放出される電荷量を表す。ウェハに照射される複数のパルス条件をパルス電子線モデル1106に設定し、シミュレーションを行い、等価回路ネットリストにおいて、基準データとシミュレーション結果が整合するような抵抗1104の値、容量1105の値をそれぞれ、Rp,Cpとして定めたものが基準モデルである。
【0053】
一方、図12Aは、図11Aに示したデバイスにおいて、電極1103と絶縁膜1102との界面に初期帯電電荷1108がトラップされた様子を表す。この様子を反映した帯電モデルを図12B,Cに示す。図12Bは基準モデルの絶縁膜容量1005と電極1103との間に容量Cbを追加し、初期帯電を容量Cbと容量Cpの間には挟まれた電荷Qbとして表現するモデルである。図12Cは基準モデルに電圧源1110を追加し、初期帯電を模擬的に基板へバイアス電圧が印加されたとして表現するモデルである。これが帯電モデルであり、ステップS1003では帯電モデル内のQb、またはバイアス電圧Vbを変数として二次電子信号量のシミュレーションを行い、その結果を初期帯電データベースとして保存する。
【0054】
図13図12Bの帯電モデルを用いて作成した初期帯電データベースの一例を示すものである。初期帯電量Qb1,Qb2…に対し、それぞれパルス条件をIT1,IT2,IT3…としたときの二次電子信号(輝度)がSb(Qb1,IT1)、S(Qb1,IT2)…のように対応付けられて保存されている。
【0055】
ステップS1007ではこの中から判定用データに最も近い初期帯電量Qbを選択することにより、検査領域の初期帯電量Qbを推定する。検査領域の初期帯電量Qbの値が定められると、検査パタンの帯電を表現する等価回路ネットリストに初期帯電量を表す素子を追加した検査モデルについて、等価抵抗R、等価容量Cを変数としてシミュレーションを行い、各検査点について得られた二次電子信号量と比較したときに、最も近い二次電子信号を与える抵抗R、容量Cを検査点における検査パタンの抵抗・容量として求めることが可能である。
【0056】
以上のようにして、実施例2では複数のパルス条件から初期帯電量を推定し、各検査点における電気特性値を初期帯電の影響を考慮したシミュレーションを行うことで、測定時の初期帯電量によらず電気特性を推定することが可能となる。
【符号の説明】
【0057】
100:電子顕微鏡本体、101:電子銃(荷電粒子源)、102:ブランカ、103:絞り、104:偏向器、105:対物レンズ、106:試料、107:ステージ、108:試料台、109:光源、110:光路遮断機、111:光路、112:制御部、113:検出器、114,131:計算装置、115:入出力装置、116:ウェハカセット、117:ウェハローダ、118:準備室、119:試料室、120:校正試料、121:校正試料台、130:ネットワーク、132:データストレージ、201:基板、202:絶縁膜、203:浮遊導体、301,302、421,422:遮断時間応答曲線、311,312:充電時間応答曲線、400:検査対象ウェハ、401,402:領域、411,412:画像、701:検査パタン、702:検査領域、703:光照射領域、704:関連電極、706:基板、707:拡散層、708:絶縁膜、709:ゲート電極、710:帯電制御領域、801:誤差計算方法入力部、802:初期帯電誤差閾値入力部、803:最大除電実行数入力部、804:除電シーケンス設定入力部、805:動作条件指定部、806:モード指定部、807:加速電圧指定部、808:プローブ電流指定部、809:倍率指定部、810:フレーム数指定部、813:波長指定部、814:強度指定部、815:照射時間指定部、816:照射相対座標入力部、901:初期帯電分布表示部、902:初期帯電状況表示部、1101:基板、1102:絶縁膜、1103:電極、1104:抵抗、1105:容量、1106:パルス電子線モデル、1107:二次電子放出モデル、1108:初期帯電電荷、1110:電圧源。
図1
図2A
図2B
図3A
図3B
図4
図5
図6
図7A
図7B
図7C
図7D
図8
図9
図10
図11A
図11B
図12A
図12B
図12C
図13