(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-06
(45)【発行日】2024-06-14
(54)【発明の名称】非水電解質二次電池
(51)【国際特許分類】
H01M 10/0567 20100101AFI20240607BHJP
H01M 10/052 20100101ALI20240607BHJP
H01M 10/0568 20100101ALI20240607BHJP
H01M 4/38 20060101ALI20240607BHJP
H01M 4/36 20060101ALI20240607BHJP
【FI】
H01M10/0567
H01M10/052
H01M10/0568
H01M4/38 Z
H01M4/36 A
(21)【出願番号】P 2020563050
(86)(22)【出願日】2019-12-11
(86)【国際出願番号】 JP2019048581
(87)【国際公開番号】W WO2020137560
(87)【国際公開日】2020-07-02
【審査請求日】2022-10-07
(31)【優先権主張番号】P 2018246658
(32)【優先日】2018-12-28
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】110002745
【氏名又は名称】弁理士法人河崎特許事務所
(72)【発明者】
【氏名】藤友 千咲希
(72)【発明者】
【氏名】西谷 仁志
(72)【発明者】
【氏名】坂本 純一
(72)【発明者】
【氏名】出口 正樹
【審査官】冨士 美香
(56)【参考文献】
【文献】特開2002-042868(JP,A)
【文献】特開2009-117372(JP,A)
【文献】国際公開第2016/136180(WO,A1)
【文献】特開2006-004813(JP,A)
【文献】特開2011-049114(JP,A)
【文献】特開2012-079593(JP,A)
【文献】特開2012-023059(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/0567
H01M 10/052
H01M 10/0568
H01M 4/38
H01M 4/36
(57)【特許請求の範囲】
【請求項1】
正極と、負極と、非水電解質と、を備え、
前記負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質を含み、
前記負極活物質は、シリケート相と、前記シリケート相内に分散しているシリコン粒子と、を含む複合材料を含み、
前記シリケート相は、アルカリ金属およびアルカリ土類金属の少なくとも一方を含み、
前記複合材料中の前記シリコン粒子の含有量は、40質量%超、80質量%以下であり、
前記非水電解質は、複素環内に炭素-炭素不飽和結合を有するスルトン化合物を含み、
前記非水電解質中の前記スルトン化合物の含有量は、0.1質量%以上、2質量%以下であ
り、
前記スルトン化合物は、1,3-プロペンスルトンである、非水電解質二次電池。
【請求項2】
前記非水電解質中の前記スルトン化合物の含有量は、0.2質量%以上、1質量%以下である、請求項1に記載の非水電解質二次電池。
【請求項3】
前記シリケート相は、リチウムと、ケイ素と、酸素と、を含む酸化物相であり、
前記シリケート相における前記ケイ素に対する前記酸素の原子比:O/Siは、2超4未満である、請求項1または2に記載の非水電解質二次電池。
【請求項4】
前記シリケート相の組成は、式:Li
2zSiO
2+zで表され、
前記式中のzは、0<z<2の関係を満たす、請求項3に記載の非水電解質二次電池。
【請求項5】
前記複合材料中の前記シリコン粒子の含有量は、55質量%以上、80質量%以下である、請求項1~4のいずれか1項に記載の非水電解質二次電池。
【請求項6】
前記非水電解質は、非水溶媒と、前記非水溶媒に溶解したリチウム塩と、を含み
前記リチウム塩は、LiN(SO
2F)
2およびLiPF
6の少なくとも一方を含む、請求項1~
5のいずれか1項に記載の非水電解質二次電池。
【請求項7】
前記複合材料が、前記シリケート相内に分散している金属化合物(リチウム化合物および酸化ケイ素を除く)を、前記シリケート相と前記シリコン粒子の合計質量に対して、0.01質量%以上含む場合を除く、請求項1~
6のいずれか1項に記載の非水電解質二次電池。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、非水電解質二次電池に関する。
【背景技術】
【0002】
近年、非水電解質二次電池、特にリチウムイオン二次電池は、高電圧かつ高エネルギー密度を有するため、小型民生用途、電力貯蔵装置および電気自動車の電源として期待されている。電池の高エネルギー密度化が求められる中、理論容量密度の高い負極活物質として、リチウムと合金化するケイ素(シリコン)を含む材料の利用が期待されている。
【0003】
特許文献1では、負極活物質に、Li2uSiO2+u(0<u<2)で表されるリチウムシリケート相と、リチウムシリケート相内に分散しているシリコン粒子と、を含む複合材料を用いた非水電解質二次電池が提案されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【0005】
ところで、電子機器等の更なる高性能化に伴い、その電源として期待される非水電解質二次電池について、更なる高容量化が求められている。特許文献1に記載の複合材料を負極活物質に用いる場合、更なる高容量化の手法として、複合材料に含まれるシリコン粒子量を増やすことが考えられる。
【0006】
しかし、複合材料に含まれるシリコン粒子量を増やすと、充放電に伴う複合材料の膨張収縮の度合いが大きくなり、複合材料の粒子割れが生じ易くなる。複合材料の膨張収縮や粒子割れに伴い複合材料の表面に形成された被膜が破壊され、複合材料の活性な表面が露出し、非水溶媒が当該表面と接触して分解し易くなる。非水溶媒の分解により非水電解質が劣化し、サイクル特性が低下することがある。また、非水溶媒の分解に伴い発生するガス量が増大することがある。
【0007】
以上に鑑み、本発明の一側面は、正極と、負極と、非水電解質と、を備え、前記負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質を含み、前記負極活物質は、シリケート相と、前記シリケート相内に分散しているシリコン粒子と、を含む複合材料を含み、前記シリケート相は、アルカリ金属およびアルカリ土類金属の少なくとも一方を含み、前記複合材料中の前記シリコン粒子の含有量は、40質量%超、80質量%以下であり、前記非水電解質は、スルトン化合物を含み、前記非水電解質中の前記スルトン化合物の含有量は、2質量%以下である、非水電解質二次電池に関する。
【0008】
本発明によれば、非水電解質二次電池において、高容量化と、電池保存時のガス発生の抑制およびサイクル特性の向上と、を両立することができる。
【図面の簡単な説明】
【0009】
【
図1】本発明の一実施形態に係る非水電解質二次電池の一部を切欠いた概略斜視図である。
【発明を実施するための形態】
【0010】
本発明の実施形態に係る非水電解質二次電池は、正極と、負極と、非水電解質と、を備え、負極は、電気化学的にリチウムを吸蔵および放出可能な負極活物質を含み、負極活物質は、シリケート相と、シリケート相内に分散しているシリコン粒子と、を含む複合材料を含む。シリケート相は、アルカリ金属およびアルカリ土類金属の少なくとも一方を含む。複合材料中のシリコン粒子の含有量は、40質量%超、80質量%以下である。非水電解質は、スルトン化合物を含み、非水電解質中のスルトン化合物の含有量は、2質量%以下である。
【0011】
シリコン粒子の含有量が40質量%超である高容量の複合材料を備える電池において、特定量のスルトン化合物を含む非水電解質を用いることにより、高容量化と、電池保存時のガス発生の抑制およびサイクル特性の向上とを、同時に実現することができる。
【0012】
スルトン化合物は、複合材料の表面に良質な被膜(SEI:Solid Electrolyte Interface)を形成する。スルトン化合物由来の被膜は、優れた耐久性(強度)を有するとともに、複合材料の膨張収縮に対する追従性(柔軟性)にも優れている。このため、充放電時の複合材料の膨張収縮や粒子割れに伴う被膜の破壊が抑制される。
【0013】
負極活物質に高容量の複合材料を用いた非水電解質二次電池において、非水電解質にスルトン化合物を含ませると、被膜の耐久性や追従性が特異的に向上する。その要因として、主に以下の(a)~(c)が考えられる。
【0014】
(a)シリケート相はアルカリ性を有するため、複合材料の表面でスルトン化合物の分解反応が促進され、密で均一な被膜が形成され易い。(b)シリケート相がアルカリ性を有するため、スルトン化合物由来の被膜と、複合材料(シリケート相)との間において、強い相互作用が働き易い。(c)スルトン化合物は、還元電位が比較的高いため、複合材料の表面にスルトン化合物由来の被膜が優先的に形成され易い。
【0015】
上記のように被膜の破壊が抑制されることにより、複合材料の活性な表面の露出が抑制される。これにより、非水溶媒と複合材料の活性な表面との接触による非水溶媒の分解が抑制され、非水溶媒の分解に伴うサイクル特性の低下およびガス発生が抑制される。
【0016】
良質な被膜形成の観点から、非水電解質は、スルトン化合物とともに、ビニレンカーボネート(VC)やフルオロエチレンカーボネート(FEC)(以下、VC等と称する。)を含んでもよい。
【0017】
一般に、VC等の一部は、初期の被膜形成に利用され、残留したVC等は、充放電の繰り返しに伴い破壊された被膜の修復に利用される。しかし、高容量の複合材料を用いる場合、複合材料の膨張収縮による被膜の破壊が起こり易くなり、被膜の修復に利用されるVC等の量が増えて、ガス発生量が増大し、サイクル特性が低下することがある。
【0018】
これに対して、本発明では、非水電解質にスルトン化合物を含ませる。スルトン化合物は、VC等よりも還元電位が高いため、スルトン化合物由来の被膜が優先的に形成される。VC等に由来する被膜は、主に、スルトン化合物由来の被膜の上に形成され、被膜の一部として機能し得る。スルトン化合物由来の被膜は破壊され難いため、残留したVC等による被膜の修復が抑制され、被膜の修復に伴うガス発生が抑制され、サイクル特性の低下が抑制される。
【0019】
スルトン化合物は、環状スルホン酸エステルである。スルトン化合物は、環内に炭素-炭素不飽和結合を有する化合物(以下、不飽和スルトン化合物と称する。)でもよい。不飽和結合の存在により被膜の耐久性等が更に向上する。
【0020】
スルトン化合物としては、例えば、以下の一般式(1)で表される化合物が挙げられる。
【0021】
【0022】
一般式(1)のR1~R6は、それぞれ独立して、水素原子または置換基である。置換基は、ハロゲン原子、炭化水素基、ヒドロキシル基、アミノ基、エステル基等を含む。
【0023】
炭化水素基は、アルキル基およびアルケニル基等を含む。アルキル基およびアルケニル基は、直鎖状でもよく、分岐鎖状でもよい。アルキル基は、メチル基、エチル基、n-プロピル基、イソプロピル基等を含む。アルケニル基は、ビニル基、1-プロぺニル基、2-プロぺニル基等を含む。炭化水素基の水素原子の少なくとも1つは、ハロゲン原子に置換されていてもよい。
【0024】
非水電解質の良好な粘性確保および溶解性向上の観点から、炭化水素基は、炭素原子数が1~5のアルキル基が好ましく、炭素原子数が1~3のアルキル基がより好ましい。
【0025】
一般式(1)中のnは、R5およびR6を有するメチレン基の繰り返し数を示す。nは、1~3の整数である。nが2または3の場合、各メチレン基が有するR5およびR6は、互いに同じであってもよく、異なっていてもよい。
【0026】
一般式(1)で表される化合物としては、具体的には、1,3-プロパンスルトン(PS)、1,4-ブタンスルトン、1,5-ペンタンスルトン、2-フルオロ-1,3-プロパンスルトン、2-フルオロ-1,4-ブタンスルトン、2-フルオロ-1,5-ペンタンスルトン等が挙げられる。シリケート相との相互作用が特に大きい観点から、中でも、PSが好ましい。
【0027】
また、スルトン化合物としては、例えば、以下の一般式(2)で表される化合物(不飽和スルトン化合物)が挙げられる。
【0028】
【0029】
一般式(2)中のR1、R4、R5およびR6、ならびにnは、一般式(1)中のR1、R4、R5およびR6、ならびにnと同様である。
【0030】
一般式(2)で表される化合物としては、具体的には、1,3-プロペンスルトン(PRS)、1,4-ブテンスルトン、1,5-ペンテンスルトン、2-フルオロ-1,3-プロペンスルトン、2-フルオロ-1,4-ブテンスルトン、2-フルオロ-1,5-ペンテンスルトン等が挙げられる。シリケート相との相互作用が特に大きい観点から、中でも、PRSが好ましい。
【0031】
非水電解質中のスルトン化合物の含有量(非水電解質全体に対する質量割合)は、2質量%以下である。非水電解質中のスルトン化合物の含有量が2質量%超である場合、被膜が過剰に形成され、反応抵抗が増大し、サイクル特性が低下することがある。非水電解質中のスルトン化合物の含有量は、例えば、ガスクロマトグラフィー質量分析(GCMS)により求められる。
【0032】
電池の初回充電前(もしくは電池に注液する前)において、非水電解質中のスルトン化合物の含有量は、0.1質量%以上、2質量%以下であればよく、0.2質量%以上、1質量%以下でもよい。非水電解質中のスルトン化合物の含有量が0.1質量%以上である場合、スルトン化合物由来の被膜が十分に形成されやすい。
【0033】
電池の充放電の過程で、スルトン化合物の少なくとも一部は還元分解し、被膜形成に利用される。よって、充放電後の電池(例えば充放電を数回行った初期の電池)では、非水電解質中のスルトン化合物の含有量は2質量%未満でもよい。非水電解質の調製時におけるスルトン化合物の含有量が1質量%以下である場合、例えば初回充電後の電池における非水電解質中のスルトン化合物の含有量は、例えば、50ppm以下である。電池から取り出された非水電解質に含まれるスルトン化合物の含有量は、検出限界に近い微量となっていてもよい。スルトン化合物の存在が確認できれば、それに応じた作用効果が認められる。
【0034】
非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。電位窓が広く、電気伝導度が高いという点で、リチウム塩は、LiN(SO2F)2(以下、LFSIと称する。)およびLiPF6の少なくとも一方を含むことが好ましい。LFSIは、複合材料の表面に良質な被膜を形成し易い。LFSI由来の被膜は抵抗が小さく、LFSIとスルトン化合物を併用することで、スルトン化合物単体で形成される被膜より抵抗の小さい混合被膜が形成される。また、LiPF6は、正極集電体等に不動態皮膜を適度に形成するため、正極集電体等の腐食が抑制され、電池信頼性が向上する。
【0035】
非水電解質中のLFSIの濃度は、0.1mol/L、以上1.0mol/L以下であることが好ましい。非水電解質中のLiPF6の濃度は、0.5mol/L以上、1.5mol/L以下であることが好ましい。非水電解質中のLFSIおよびLiPF6の合計濃度は、1mol/L以上、2mol/L以下であることが好ましい。上記範囲の濃度のLFSIおよびLiPF6を併用する場合、上記のLFSIおよびLiPF6による効果がバランス良く得られ、電池の初期の充放電効率が更に高められる。
【0036】
負極活物質は、少なくとも高容量の複合材料を含む。シリケート相に分散するシリコン粒子量の制御により更なる高容量化が可能となる。シリコン粒子がシリケート相内に分散しているため、充放電時の複合材料の膨張収縮が抑制される。よって、複合材料は、電池の高容量化およびサイクル特性の向上に対して有利である。
【0037】
シリケート相は、アルカリ金属(長周期型周期表の1族元素)およびアルカリ土類金属(長周期型周期表の2族元素)の少なくとも一方を含む。アルカリ金属は、リチウム(Li)、カリウム(K)、ナトリウム(Na)等を含む。アルカリ土類金属は、ベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)等を含む。中でも、不可逆容量が小さく、初期の充放電効率が高いことから、リチウムを含むシリケート相(以下、リチウムシリケート相とも称する。)が好ましい。すなわち、リチウムシリケート相と、リチウムシリケート相内に分散しているシリコン粒子とを含む複合材料(以下、LSXまたは負極材料LSXとも称する。)が好ましい。
【0038】
高容量化およびサイクル特性の向上のためには、複合材料中のシリコン粒子の含有量は、40質量%超、80質量%以下である必要がある。複合材料中のシリコン粒子の含有量が40質量%以下である場合、複合材料の容量が小さくなり、目的とする初期容量を得ることが困難になることがある。複合材料中のシリコン粒子の含有量が80質量%超である場合、充放電時の複合材料の膨張収縮の度合いが過剰に大きくなり、被膜が破壊され、サイクル特性が低下したり、ガス発生量が増大したりすることがある。
【0039】
高容量化の観点から、複合材料中のシリコン粒子の含有量は、好ましくは50質量%以上であり、より好ましくは55質量%以上である。この場合、リチウムイオンの拡散性が良好であり、優れた負荷特性を得易くなる。一方、サイクル特性の向上の観点からは、複合材料中のシリコン粒子の含有量は、好ましくは75質量%以下であり、より好ましくは70質量%以下である。この場合、シリケート相で覆われずに露出するシリコン粒子の表面が減少し、非水電解質とシリコン粒子との反応が抑制され易い。
【0040】
シリコン粒子の含有量は、Si-NMRにより測定することができる。以下、Si-NMRの望ましい測定条件を示す。
【0041】
測定装置:バリアン社製、固体核磁気共鳴スペクトル測定装置(INOVA‐400)
プローブ:Varian 7mm CPMAS-2
MAS:4.2kHz
MAS速度:4kHz
パルス:DD(45°パルス+シグナル取込時間1Hデカップル)
繰り返し時間:1200sec
観測幅:100kHz
観測中心:-100ppm付近
シグナル取込時間:0.05sec
積算回数:560
試料量:207.6mg
負極活物質は、更に、電気化学的にリチウムイオンを吸蔵および放出する炭素材料を含むことが好ましい。複合材料は、充放電に伴い膨張収縮するため、負極活物質に占めるその比率が大きくなると、充放電に伴い負極活物質の粒子同士の間または負極活物質と負極集電体との間での接触不良が生じることがある。一方、複合材料と炭素材料とを併用することで、シリコン粒子の高容量を負極に付与しながら優れたサイクル特性を得易くなる。
【0042】
高容量化の観点から、複合材料と炭素材料との合計に占める複合材料の割合は、例えば、0.5質量%超が好ましく、1質量%以上がより好ましく、2質量%以上が更に好ましい。サイクル特性の向上の観点から、複合材料と炭素材料との合計に占める複合材料の割合は、例えば、30質量%未満が好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましい。
【0043】
炭素材料としては、例えば、黒鉛、易黒鉛化炭素(ソフトカーボン)、難黒鉛化炭素(ハードカーボン)等が例示できる。中でも、充放電の安定性に優れ、不可逆容量も少ない黒鉛が好ましい。黒鉛とは、黒鉛型結晶構造を有する材料を意味し、例えば、天然黒鉛、人造黒鉛、黒鉛化メソフェーズカーボン粒子等が含まれる。炭素材料は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0044】
本発明の効果を損なわない範囲で、負極は、更に、SiOx(0<x<2)等の他の負極活物質を少量含んでもよい。SiOxは、SiO2相と、SiO2相内に分散しているシリコン粒子とを含む。SiOxの表面にも、スルトン化合物由来の被膜が形成され得る。ただし、SiOxの場合、SiO2相が中性であるため、複合材料の場合のような、耐久性等に優れた、密で均一な被膜は、得られ難い。
【0045】
[負極材料LSX]
以下、負極材料LSXについて更に詳述する。
【0046】
リチウムシリケート相内に分散しているシリコン粒子の結晶子サイズは、例えば10nm以上である。シリコン粒子は、ケイ素(Si)単体の粒子状の相を有する。シリコン粒子の結晶子サイズを10nm以上とする場合、シリコン粒子の表面積を小さく抑えることができるため、不可逆容量の生成を伴うシリコン粒子の劣化を生じ難い。シリコン粒子の結晶子サイズは、シリコン粒子のX線回折(XRD)パターンのSi(111)面に帰属される回析ピークの半値幅からシェラーの式により算出される。
【0047】
負極材料LSXは、構造安定性にも優れている。シリコン粒子は、リチウムシリケート相内に分散しているため、充放電に伴う負極材料LSXの膨張収縮が抑制されるためである。シリコン粒子自身の亀裂を抑制する観点から、シリコン粒子の平均粒径は、初回充電前において、500nm以下が好ましく、200nm以下がより好ましく、50nm以下が更に好ましい。初回充電後においては、シリコン粒子の平均粒径は、400nm以下が好ましく、100nm以下がより好ましい。シリコン粒子を微細化することにより、充放電時の体積変化が小さくなり、負極材料LSXの構造安定性が更に向上する。
【0048】
シリコン粒子の平均粒径は、負極材料LSXの断面SEM(走査型電子顕微鏡)写真を観察することにより測定される。具体的には、シリコン粒子の平均粒径は、任意の100個のシリコン粒子の最大径を平均して求められる。シリコン粒子は、複数の結晶子が寄り集まることにより形成されている。
【0049】
リチウムシリケート相は、リチウム(Li)と、ケイ素(Si)と、酸素(O)とを含む酸化物相である。リチウムシリケート相におけるSiに対するOの原子比:O/Siは、例えば、2超4未満である。O/Siが2超4未満(後述の式中のzが0<z<2)の場合、安定性やリチウムイオン伝導性の面で有利である。O/Siは、好ましくは2超3未満(後述の式中のzが0<z<1)である。リチウムシリケート相におけるSiに対するLiの原子比:Li/Siは、例えば、0超4未満である。リチウムシリケート相は、Li、SiおよびO以外に、鉄(Fe)、クロム(Cr)、ニッケル(Ni)、マンガン(Mn)、銅(Cu)、モリブデン(Mo)、亜鉛(Zn)、アルミニウム(Al)等の他の元素を微量含んでもよい。
【0050】
リチウムシリケート相は、式:Li2zSiO2+z(0<z<2)で表される組成を有し得る。安定性、作製容易性、リチウムイオン伝導性等の観点から、zは、0<z<1の関係を満たすことが好ましく、z=1/2がより好ましい。
【0051】
リチウムシリケート相は、SiOx中のSiO2相に比べ、リチウムと反応し得るサイトが少ない。よって、LSXはSiOxと比べて充放電に伴う不可逆容量を生じ難い。リチウムシリケート相内にシリコン粒子を分散させる場合、充放電の初期に、優れた充放電効率が得られる。また、シリコン粒子の含有量を任意に変化させることができるため、高容量の負極を設計することができる。
【0052】
リチウムシリケート相Li2zSiO2+zの組成は、例えば、以下の方法により分析することができる。
【0053】
まず、負極材料LSXの試料の質量を測定する。その後、以下のように、試料に含まれる炭素、リチウムおよび酸素の含有量を算出する。次に、試料の質量から炭素含有量を差し引き、残量に占めるリチウムおよび酸素含有量を算出し、リチウム(Li)と酸素(O)のモル比から2zと(2+z)の比が求められる。
【0054】
炭素含有量は、炭素・硫黄分析装置(例えば、株式会社堀場製作所製のEMIA-520型)を用いて測定する。磁性ボードに試料を測り取り、助燃剤を加え、1350℃に加熱された燃焼炉(キャリアガス:酸素)に挿入し、燃焼時に発生した二酸化炭素ガス量を赤外線吸収により検出する。検量線は、例えば、Bureau of Analysed Sampe.Ltd製の炭素鋼(炭素含有量0.49%)を用いて作成し、試料の炭素含有量を算出する(高周波誘導加熱炉燃焼-赤外線吸収法)。
【0055】
酸素含有量は、酸素・窒素・水素分析装置(例えば、株式会社堀場製作所製のEGMA-830型)を用いて測定する。Niカプセルに試料を入れ、フラックスとなるSnペレットおよびNiペレットとともに、電力5.75kWで加熱された炭素坩堝に投入し、放出される一酸化炭素ガスを検出する。検量線は、標準試料Y2O3を用いて作成し、試料の酸素含有量を算出する(不活性ガス融解-非分散型赤外線吸収法)。
【0056】
リチウム含有量は、熱フッ硝酸(熱したフッ化水素酸と硝酸の混酸)で試料を全溶解し、溶解残渣の炭素をろ過して除去後、得られたろ液を誘導結合プラズマ発光分光法(ICP-AES)で分析して測定する。市販されているリチウムの標準溶液を用いて検量線を作成し、試料のリチウム含有量を算出する。
【0057】
負極材料LSXの試料の質量から、炭素含有量、酸素含有量、リチウム含有量を差し引いた量がシリコン含有量である。このシリコン含有量には、シリコン粒子の形で存在するシリコンと、リチウムシリケートの形で存在するシリコンとの双方の寄与が含まれている。Si-NMR測定によりシリコン粒子の含有量が求められ、負極材料LSX中にリチウムシリケートの形で存在するシリコンの含有量が求まる。
【0058】
負極材料LSXは、平均粒径1~25μm、更には4~15μmの粒子状材料(以下、LSX粒子とも称する。)を形成していることが好ましい。上記粒径範囲では、充放電に伴う負極材料LSXの体積変化による応力を緩和し易く、良好なサイクル特性を得易くなる。LSX粒子の表面積も適度になり、非水電解質との副反応による容量低下も抑制される。
【0059】
LSX粒子の平均粒径とは、レーザー回折散乱法で測定される粒度分布において、体積積算値が50%となる粒径(体積平均粒径)を意味する。測定装置には、例えば、株式会社堀場製作所(HORIBA)製「LA-750」を用いることができる。
【0060】
LSX粒子は、その表面の少なくとも一部を被覆する導電性材料を具備することが好ましい。リチウムシリケート相は、電子伝導性に乏しいため、LSX粒子の導電性も低くなりがちである。導電性材料で表面を被覆することで、導電性を飛躍的に高めることができる。導電層は、実質上、LSX粒子の平均粒径に影響しない程度に薄いことが好ましい。
【0061】
次に、本発明の実施形態に係る非水電解質二次電池について詳述する。非水電解質二次電池は、例えば、以下のような負極と、正極と、非水電解質とを備える。
【0062】
[負極]
負極は、例えば、負極集電体と、負極集電体の表面に形成され、かつ負極活物質を含む負極合剤層とを具備する。負極合剤層は、負極合剤を分散媒に分散させた負極スラリーを、負極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。負極合剤層は、負極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
【0063】
負極合剤は、必須成分として、負極活物質である上記の複合材料(LSX等)を含み、任意成分として、結着剤、導電剤、増粘剤等を含むことができる。複合材料中のシリコン粒子は、多くのリチウムイオンを吸蔵できることから、負極の高容量化に寄与する。負極合剤は、負極活物質として、更に、電気化学的にリチウムイオンを吸蔵放出する炭素材料を含んでもよい。
【0064】
負極合剤における複合材料と炭素材料との合計に占める複合材料の割合は、例えば、0.5質量%以上が好ましく、1質量%以上がより好ましく、2質量%以上が更に好ましい。サイクル特性の向上の観点から、負極合剤における複合材料と炭素材料との合計に占める複合材料の割合は、例えば、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下が更に好ましい。
【0065】
負極集電体としては、無孔の導電性基板(金属箔等)、多孔性の導電性基板(メッシュ体、ネット体、パンチングシート等)が使用される。負極集電体の材質としては、ステンレス鋼、ニッケル、ニッケル合金、銅、銅合金等が例示できる。負極集電体の厚さは、特に限定されないが、負極の強度と軽量化とのバランスの観点から、1~50μmが好ましく、5~20μmがより望ましい。
【0066】
結着剤としては、樹脂材料、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)等のフッ素樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン樹脂;アラミド樹脂等のポリアミド樹脂;ポリイミド、ポリアミドイミド等のポリイミド樹脂;ポリアクリル酸、ポリアクリル酸メチル、エチレン-アクリル酸共重合体等のアクリル樹脂;ポリアクリロニトリル、ポリ酢酸ビニル等のビニル樹脂;ポリビニルピロリドン;ポリエーテルサルフォン;スチレン-ブタジエン共重合ゴム(SBR)等のゴム状材料等が例示できる。結着剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0067】
導電剤としては、例えば、アセチレンブラックやカーボンナノチューブ等のカーボン類;炭素繊維や金属繊維等の導電性繊維類;フッ化カーボン;アルミニウム等の金属粉末類;酸化亜鉛やチタン酸カリウム等の導電性ウィスカー類;酸化チタン等の導電性金属酸化物;フェニレン誘導体等の有機導電性材料等が例示できる。導電剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0068】
増粘剤としては、例えば、カルボキシメチルセルロース(CMC)およびその変性体(Na塩等の塩も含む)、メチルセルロース等のセルロース誘導体(セルロースエーテル等);ポリビニルアルコール等の酢酸ビニルユニットを有するポリマーのケン化物;ポリエーテル(ポリエチレンオキシド等のポリアルキレンオキサイド等)等が挙げられる。増粘剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0069】
分散媒としては、特に制限されないが、例えば、水、エタノール等のアルコール、テトラヒドロフラン等のエーテル、ジメチルホルムアミド等のアミド、N-メチル-2-ピロリドン(NMP)、またはこれらの混合溶媒等が例示できる。
【0070】
[正極]
正極は、例えば、正極集電体と、正極集電体の表面に形成された正極合剤層とを具備する。正極合剤層は、正極合剤を分散媒に分散させた正極スラリーを、正極集電体の表面に塗布し、乾燥させることにより形成できる。乾燥後の塗膜を、必要により圧延してもよい。正極合剤層は、正極集電体の一方の表面に形成してもよく、両方の表面に形成してもよい。
【0071】
正極合剤は、必須成分として、正極活物質を含み、任意成分として、結着剤、導電剤、増粘剤等を含むことができる。
【0072】
正極活物質としては、リチウム含有複合酸化物を用いることができる。例えば、LiaCoO2、LiaNiO2、LiaMnO2、LiaCobNi1-bO2、LiaCobM1-bOc、LiaNi1-bMbOc、LiaMn2O4、LiaMn2-bMbO4、LiMePO4、Li2MePO4Fが挙げられる。ここで、Mは、Na、Mg、Ca、Zn、Ga、Ge、Sn、Sc、Ti、V、Cr、Y、Zr、W、Mn、Fe、Co、Ni、Cu、Zn、Al、Cr、Pb、Sb、BiおよびBよりなる群から選択される少なくとも1種である。Meは、少なくとも遷移元素を含む(例えば、Mn、Fe、Co、Niよりなる群から選択される少なくとも1種を含む)。0≦a≦1.2、0≦b≦0.9、2.0≦c≦2.3である。なお、リチウムのモル比を示すa値は、放電状態の値であり、活物質作製直後の値に対応し、充放電により増減する。
【0073】
中でも、LiaNibM1-bO2(Mは、Mn、CoおよびAlよりなる群から選択された少なくとも1種であり、0<a≦1.2であり、0.3≦b≦1である。)で表されるリチウムニッケル複合酸化物が好ましい。高容量化の観点から、0.85≦b≦1を満たすことがより好ましい。結晶構造の安定性の観点からは、MとしてCoおよびAlを含むLiaNibCocAldO2(0<a≦1.2、0.85≦b<1、0<c<0.15、0<d≦0.1、b+c+d=1)が更に好ましい。
【0074】
結着剤および導電剤としては、負極について例示したものと同様のものが使用できる。導電剤としては、天然黒鉛、人造黒鉛等の黒鉛を用いてもよい。
【0075】
正極集電体の形状および厚みは、負極集電体に準じた形状および範囲からそれぞれ選択できる。正極集電体の材質としては、例えば、ステンレス鋼、アルミニウム、アルミニウム合金、チタン等が例示できる。
【0076】
[非水電解質]
非水電解質は、非水溶媒と、非水溶媒に溶解したリチウム塩と、を含む。
【0077】
非水電解質におけるリチウム塩の濃度は、例えば0.5mol/L以上、2mol/L以下が好ましい。リチウム塩濃度を上記範囲に制御することで、イオン伝導性に優れ、適度の粘性を有する非水電解質を得ることができる。ただし、リチウム塩濃度は上記に限定されない。
【0078】
非水溶媒(主溶媒)としては、例えば、環状炭酸エステル(後述の添加剤に用いられる不飽和環状炭酸エステルやフッ素原子を有する環状炭酸エステルを除く。)、鎖状炭酸エステル、環状カルボン酸エステル、鎖状カルボン酸エステル等が用いられる。環状炭酸エステルとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)等が挙げられる。鎖状炭酸エステルとしては、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)等が挙げられる。環状カルボン酸エステルとしては、γ-ブチロラクトン(GBL)、γ-バレロラクトン(GVL)等が挙げられる。鎖状カルボン酸エステルとしては、ギ酸メチル、ギ酸エチル、ギ酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル等が挙げられる。非水溶媒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0079】
リチウム塩としては、例えば、LiClO4、LiBF4、LiPF6、LiAlCl4、LiSbF6、LiSCN、LiCF3SO3、LiCF3CO2、LiAsF6、LiB10Cl10、低級脂肪族カルボン酸リチウム、LiCl、LiBr、LiI、ホウ酸塩類、イミド塩類等が挙げられる。ホウ酸塩類としては、ビス(1,2-ベンゼンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,3-ナフタレンジオレート(2-)-O,O’)ホウ酸リチウム、ビス(2,2’-ビフェニルジオレート(2-)-O,O’)ホウ酸リチウム、ビス(5-フルオロ-2-オレート-1-ベンゼンスルホン酸-O,O’)ほう酸リチウム等が挙げられる。イミド塩類としては、LFSI、ビストリフルオロメタンスルホン酸イミドリチウム(LiN(CF3SO2)2)、トリフルオロメタンスルホン酸ノナフルオロブタンスルホン酸イミドリチウム(LiN(CF3SO2)(C4F9SO2))、ビスペンタフルオロエタンスルホン酸イミドリチウム(LiN(C2F5SO2)2)等が挙げられる。これらの中でも、LiPF6およびLFSIの少なくとも一方が好ましい。リチウム塩は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0080】
非水電解質に、他の添加剤を更に含ませてもよい。他の添加剤は、炭素-炭素の不飽和結合を少なくとも1つ有する環状炭酸エステル(以下、不飽和環状炭酸エステルと称する。)、フッ素原子を有する環状炭酸エステル等を含む。不飽和環状炭酸エステルやフッ素原子を有する環状炭酸エステルは、LSX表面での良質な被膜形成に寄与し得る。ただし、スルトン化合物は、還元電位が高いため、添加剤よりも優先的に被膜を形成し得る。他の添加剤の添加量(非水電解質全体に対する質量割合)は、例えば、1質量%以上、10質量%以下である。
【0081】
不飽和環状炭酸エステルとしては、例えば、ビニレンカーボネート(VC)、ビニルエチレンカーボネート、ジビニルエチレンカーボネート等が挙げられる。フッ素原子を有する環状炭酸エステルとしては、例えば、フルオロエチレンカーボネート(FEC)等が挙げられる。他の添加剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
【0082】
[セパレータ]
通常、正極と負極との間には、セパレータを介在させることが望ましい。セパレータは、イオン透過度が高く、適度な機械的強度および絶縁性を備えている。セパレータとしては、微多孔薄膜、織布、不織布等を用いることができる。セパレータの材質としては、ポリプロピレン、ポリエチレン等のポリオレフィンが好ましい。
【0083】
非水電解質二次電池の構造の一例としては、正極および負極がセパレータを介して巻回されてなる電極群と、非水電解質とが外装体に収容された構造が挙げられる。或いは、巻回型の電極群の代わりに、正極および負極がセパレータを介して積層されてなる積層型の電極群等、他の形態の電極群が適用されてもよい。非水電解質二次電池は、例えば円筒型、角型、コイン型、ボタン型、ラミネート型等、いずれの形態であってもよい。
【0084】
図1は、本発明の一実施形態に係る角形の非水電解質二次電池の一部を切欠いた概略斜視図である。
【0085】
電池は、有底角形の電池ケース4と、電池ケース4内に収容された電極群1および非水電解質(図示せず)とを備えている。電極群1は、長尺帯状の負極と、長尺帯状の正極と、これらの間に介在し、かつ直接接触を防ぐセパレータとを有する。電極群1は、負極、正極、およびセパレータを、平板状の巻芯を中心にして捲回し、巻芯を抜き取ることにより形成される。
【0086】
負極の負極集電体には、負極リード3の一端が溶接等により取り付けられている。負極リード3の他端は、樹脂製の絶縁板(図示せず)を介して、封口板5に設けられた負極端子6に電気的に接続されている。負極端子6は、樹脂製のガスケット7により、封口板5から絶縁されている。正極の正極集電体には、正極リード2の一端が溶接等により取り付けられている。正極リード2の他端は、絶縁板を介して、封口板5の裏面に接続されている。すなわち、正極リード2は、正極端子を兼ねる電池ケース4に電気的に接続されている。絶縁板は、電極群1と封口板5とを隔離するとともに負極リード3と電池ケース4とを隔離している。封口板5の周縁は、電池ケース4の開口端部に嵌合しており、嵌合部はレーザー溶接されている。このようにして、電池ケース4の開口部は、封口板5で封口される。封口板5に設けられている非水電解質の注入孔は、封栓8により塞がれている。
【0087】
以下、本発明を実施例および比較例に基づいて具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0088】
<実施例1>
[負極材料LSXの調製]
二酸化ケイ素と炭酸リチウムとを原子比:Si/Liが1.05となるように混合し、混合物を950℃空気中で10時間焼成することにより、式:Li2Si2O5(z=0.5)で表わされるリチウムシリケートを得た。得られたリチウムシリケートは平均粒径10μmになるように粉砕した。
【0089】
平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、40:60の質量比で混合した。混合物を遊星ボールミル(フリッチュ社製、P-5)のポット(SUS製、容積:500mL)に充填し、ポットにSUS製ボール(直径20mm)を24個入れて蓋を閉め、不活性雰囲気中で、200rpmで混合物を50時間粉砕処理した。
【0090】
次に、不活性雰囲気中で粉末状の混合物を取り出し、不活性雰囲気中、ホットプレス機による圧力を印加した状態で、800℃で4時間焼成して、混合物の燒結体(負極材料LSX)を得た。
【0091】
その後、負極材料LSXを粉砕し、40μmのメッシュに通した後、得られたLSX粒子を石炭ピッチ(JFEケミカル株式会社製、MCP250)と混合し、混合物を不活性雰囲気で、800℃で焼成し、LSX粒子の表面を導電性炭素で被覆して導電層を形成した。導電層の被覆量は、LSX粒子と導電層との総質量に対して5質量%とした。その後、篩を用いて、導電層を有する平均粒径5μmのLSX粒子を得た。
【0092】
LSX粒子のXRD分析によりSi(111)面に帰属される回折ピークからシェラーの式で算出したシリコン粒子の結晶子サイズは15nmであった。
【0093】
リチウムシリケート相の組成を上記方法(高周波誘導加熱炉燃焼-赤外線吸収法、不活性ガス融解-非分散型赤外線吸収法、誘導結合プラズマ発光分光法(ICP-AES))により分析したところ、Si/Li比は1.0であり、Si-NMRにより測定されるLi2Si2O5の含有量は40質量%(シリコン粒子の含有量は60質量%)であった。
【0094】
[負極の作製]
導電層を有するLSX粒子と、黒鉛とを、5:95の質量比で混合し、負極活物質として用いた。負極活物質と、カルボキシメチルセルロースナトリウム(CMC-Na)と、スチレン-ブタジエンゴム(SBR)とを、97.5:1:1.5の質量比で混合し、水を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、負極スラリーを調製した。
【0095】
次に、銅箔の表面に1m2当りの負極合剤の質量が190gとなるように負極スラリーを塗布し、塗膜を乾燥させた後、圧延して、銅箔の両面に、密度1.5g/cm3の負極合剤層が形成された負極を作製した。
【0096】
[正極の作製]
リチウムニッケル複合酸化物(LiNi0.8Co0.18Al0.02O2)と、アセチレンブラックと、ポリフッ化ビニリデンとを、95:2.5:2.5の質量比で混合し、N-メチル-2-ピロリドン(NMP)を添加した後、混合機(プライミクス社製、T.K.ハイビスミックス)を用いて攪拌し、正極スラリーを調製した。次に、アルミニウム箔の表面に正極スラリーを塗布し、塗膜を乾燥させた後、圧延して、アルミニウム箔の両面に、密度3.6g/cm3の正極合剤層が形成された正極を作製した。
【0097】
[非水電解質の調製]
非水溶媒にリチウム塩を溶解させて非水電解質を調製した。非水溶媒には、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)と、エチルメチルカーボネート(EMC)との混合溶媒に、スルトン化合物、フルオロエチレンカーボネート(FEC)、およびビニレンカーボネート(VC)を加えたものを用いた。ECと、DMCと、EMCとの体積比は、10:80:10とした。非水電解質中のスルトン化合物の含有量(非水電解質全体に対する質量割合)は、1質量%とした。スルトン化合物には、1,3-プロペンスルトン(PRS)を用いた。非水電解質中のFECの含有量(非水電解質全体に対する質量割合)は、2質量%とした。非水電解質中のVCの含有量(非水電解質全体に対する質量割合)は、2質量%とした。リチウム塩には、LiPF6を用いた。非水電解質中のLiPF6の濃度は、1.2mol/Lとした。
【0098】
[非水電解質二次電池の作製]
各電極にタブをそれぞれ取り付け、タブが最外周部に位置するように、セパレータを介して正極および負極を渦巻き状に巻回することにより電極群を作製した。電極群をアルミニウムラミネートフィルム製の外装体内に挿入し、105℃で2時間真空乾燥した後、非水電解質を注入し、外装体の開口部を封止して、電池A1を得た。
【0099】
<実施例2>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は45質量%(シリコン粒子の含有量は55質量%)であった。
【0100】
上記以外、実施例1と同様の方法により、電池A2を作製した。
【0101】
<実施例3>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、20:80の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は20質量%(シリコン粒子の含有量は80質量%)であった。
【0102】
上記以外、実施例1と同様の方法により、電池A3を作製した。
【0103】
<実施例4>
負極の作製において、導電層を有するLSX粒子と、黒鉛とを、10:90の質量比で混合し、負極活物質として用いた以外、実施例1と同様の方法により、電池A4を作製した。
【0104】
<実施例5>
負極の作製において、導電層を有するLSX粒子と、黒鉛とを、15:85の質量比で混合し、負極活物質として用いた以外、実施例1と同様の方法により、電池A5を作製した。
【0105】
<実施例6>
非水電解質の調製において、非水電解質中のPRSの含有量を0.5質量%とした以外、実施例1と同様の方法により、電池A6を作製した。
【0106】
<実施例7>
非水電解質の調製において、リチウム塩には、LiPF6とLFSIとを用いた。非水電解質中のLiPF6の濃度は、1.0mol/Lとした。非水電解質中のLFSIの濃度は、0.2mol/Lとした。
【0107】
上記以外、実施例1と同様の方法により、電池A7を作製した。
【0108】
<実施例8>
非水電解質の調製において、リチウム塩には、LiPF6とLFSIとを用いた。非水電解質中のLiPF6の濃度は、0.6mol/Lとした。非水電解質中のLFSIの濃度は、0.6mol/Lとした。
【0109】
上記以外、実施例1と同様の方法により、電池A8を作製した。
【0110】
<参考例9>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は45質量%(シリコン粒子の含有量は55質量%)であった。
【0111】
非水電解質の調製において、非水電解質にスルトン化合物としてPRSの代わりに1,3-プロパンスルトン(PS)を1質量%含ませた。
【0112】
上記以外、実施例1と同様の方法により、電池A9を作製した。
【0113】
<実施例10>
非水電解質の調製において、非水電解質中のPRSの含有量を2質量%とした以外、実施例1と同様の方法により、電池A10を作製した。
【0114】
<実施例11>
非水電解質の調製において、非水電解質中のPRSの含有量を0.1質量%とした以外、実施例1と同様の方法により、電池A11を作製した。
【0115】
<比較例1>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、60:40の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は60質量%(シリコン粒子の含有量は40質量%)であった。
【0116】
上記以外、実施例1と同様の方法により、電池B1を作製した。
【0117】
<比較例2>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、10:90の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は10質量%(シリコン粒子の含有量は90質量%)であった。
【0118】
上記以外、実施例1と同様の方法により、電池B2を作製した。
【0119】
<比較例3>
非水電解質の調製において、非水電解質にPRSを含ませない以外、実施例1と同様の方法により、電池B3を作製した。
【0120】
<比較例4>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、45:55の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は45質量%(シリコン粒子の含有量は55質量%)であった。
【0121】
非水電解質の調製において、非水電解質にPRSを含ませなかった。
【0122】
上記以外、実施例1と同様の方法により、電池B4を作製した。
【0123】
<比較例5>
負極材料LSXの調製において、平均粒径10μmのリチウムシリケート(Li2Si2O5)と、原料シリコン(3N、平均粒径10μm)とを、20:80の質量比で混合した。得られた導電層を有するLSX粒子について、Si-NMRにより測定されるLi2Si2O5の含有量は20質量%(シリコン粒子の含有量は80質量%)であった。
【0124】
非水電解質の調製において、非水電解質にPRSを含ませなかった。
【0125】
上記以外、実施例1と同様の方法により、電池B5を作製した。
【0126】
<比較例6>
非水電解質の調製において、非水電解質中のPRSの含有量を2.1質量%とした以外、実施例1と同様の方法により、電池A11を作製した。
【0127】
上記以外、実施例1と同様の方法により、電池B6を作製した。
【0128】
<比較例7>
負極の作製において、導電層を有するLSX粒子の代わりにSiO粒子(平均粒径10μm、x=1)を用いた。SiO粒子と黒鉛とを、5:95の質量比で混合し、負極活物質として用いた。
【0129】
上記以外、実施例1と同様の方法により、電池B7を作製した。
【0130】
上記で作製した各電池について、以下の方法で評価を行った。
【0131】
[評価1:初期容量]
作製後の各電池について、25℃の環境下で、0.3Itの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.015Itになるまで定電圧充電した。その後、0.3Itの電流で電圧が2.75Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。このときの放電容量を、初期容量として求めた。評価結果を表1に示す。
【0132】
なお、(1/X)Itは、電流を表し、(1/X)It(A)=定格容量(Ah)/X(h)であり、Xは定格容量分の電気を充電または放電するための時間を表す。例えば、0.5Itとは、X=2であり、電流値が定格容量(Ah)/2(h)であることを意味する。
【0133】
[評価2:サイクル容量維持率]
0.3Itの電流で電圧が4.2Vになるまで定電流充電を行い、その後、4.2Vの定電圧で電流が0.015Itになるまで定電圧充電した。その後、0.3Itの電流で電圧が2.75Vになるまで定電流放電を行った。充電と放電との間の休止期間は10分とした。充放電は25℃の環境下で行った。
【0134】
上記充放電の条件で充放電を繰り返した。1サイクル目の放電容量に対する50サイクル目の放電容量の割合(百分率)を、サイクル容量維持率として求めた。
【0135】
評価結果を表1に示す。
【0136】
[評価3:電池保存時のガス発生量]
上記評価1と同じ条件で充放電を5サイクル繰り返した後、更に、上記評価1と同じ条件で充電した。得られた充電状態の電池を、80℃の環境下で3日間保存し、保存中に電池内で発生したガス量を求めた。評価結果を表1に示す。
【0137】
【0138】
電池A1~A11では、LSX粒子表面にPRS由来の被膜が適度に形成されたため、サイクル容量維持率が高く、電池保存時のガス発生量が少なかった。
【0139】
また、電池A1について、上記評価1と同じ条件で充放電を1サイクル繰り返した後、更に、上記評価1と同じ条件で充電した。得られた充電状態の電池A1を分解し、非水電解質の成分をガスクロマトグラフィー質量分析法により分析した結果、電池A1における非水電解質中の残留PRS量は50ppmであった。
【0140】
電池B1では、PRS含有量が1質量%である非水電解質を用いたが、LSX粒子中のシリコン粒子の含有量が40質量%と小さいため、初期容量が低下した。
【0141】
電池B2では、PRS含有量が1質量%である非水電解質を用いたが、LSX粒子中のシリコン粒子の含有量が90質量%と大きいため、充放電時のLSX粒子の膨張収縮が非常に大きく、被膜がLSX粒子の膨張収縮に追従できずに破壊され、サイクル容量維持率が低下し、ガス発生量が増大した。
【0142】
電池B3~B5では、LSX粒子中のシリコン粒子の含有量が、55質量%以上、80質量%以下であるが、PRSを含まない非水電解質を用いたため、被膜が破壊され、サイクル容量維持率が低下し、ガス発生量が増大した。
【0143】
電池B6では、LSX粒子中のシリコン粒子の含有量が60質量%であるが、PRS含有量が2質量%超と大きい非水電解質を用いたため、LSX粒子表面にPRS由来の被膜が過剰に形成され、反応抵抗が増大し、サイクル容量維持率が低下した。
【0144】
電池B7では、PRS含有量が1質量%である非水電解質を用いたが、シリコン含有量が40質量%超であるLSX粒子の代わりにSiO粒子を用いたため、初期容量が低下した。SiO粒子中のSiO2相は中性であるため、SiO粒子の表面にPRS由来の被膜が密に均一に形成されず、被膜の耐久性等が不十分となり、サイクル容量維持率が低下し、ガス発生量が増大した。また、SiO粒子は、LSX粒子よりも不可逆容量が大きいため、サイクル容量維持率が低下した。
【産業上の利用可能性】
【0145】
本発明に係る非水電解質二次電池は、移動体通信機器、携帯電子機器等の主電源に有用である。
【符号の説明】
【0146】
1 電極群
2 正極リード
3 負極リード
4 電池ケース
5 封口板
6 負極端子
7 ガスケット
8 封栓