(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-06
(45)【発行日】2024-06-14
(54)【発明の名称】ガラスレンズ成形装置
(51)【国際特許分類】
C03B 11/00 20060101AFI20240607BHJP
G02B 3/00 20060101ALI20240607BHJP
【FI】
C03B11/00 E
G02B3/00 Z
(21)【出願番号】P 2020188711
(22)【出願日】2020-11-12
【審査請求日】2023-10-03
(73)【特許権者】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100106518
【氏名又は名称】松谷 道子
(74)【代理人】
【識別番号】100132241
【氏名又は名称】岡部 博史
(74)【代理人】
【識別番号】100113170
【氏名又は名称】稲葉 和久
(72)【発明者】
【氏名】高橋 正行
(72)【発明者】
【氏名】中嶋 有斗
(72)【発明者】
【氏名】藤井 慶太郎
【審査官】三村 潤一郎
(56)【参考文献】
【文献】特開2003-246630(JP,A)
【文献】特開2007-119307(JP,A)
【文献】特開平10-029826(JP,A)
【文献】特開平08-208243(JP,A)
【文献】特開2003-342023(JP,A)
【文献】特開平05-339013(JP,A)
【文献】特開2010-265155(JP,A)
【文献】特開平04-342429(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C03B 11/00 - 11/16
G02B 3/00 - 3/14
(57)【特許請求の範囲】
【請求項1】
金型を用いて、ガラス素材のプレス成形によるガラスレンズ成形装置であって、
ガラス素材を挟持する一対の金型と、
前記一対の金型に挟持されている前記ガラス素材を加熱する加熱機構と、
前記一対の金型のうちの一方の金型を他方の金型に向かって、プレス成形方向の駆動軸に沿って移動させてプレスする駆動機構と、
前記ガラス素材のプレス成形工程において生じる荷重を検出する荷重検知装置と、
前記荷重検知装置によって検出された前記荷重に基づき、前記プレス成形工程において、前記駆動軸と直交する平面における前記ガラス素材に作用する荷重中心の座標を算出する荷重中心算出部と、
を備える、
ガラスレンズ成形装置。
【請求項2】
前記荷重検知装置は、少なくとも3つの荷重センサを含み、
前記荷重センサは、
前記駆動軸と直交する同一の平面内に、前記駆動軸を中心に軸対称に配置され、それぞれが前記ガラス素材のプレス成形工程において、前記駆動軸方向に生じる荷重を検出する、
請求項1に記載のガラスレンズ成形装置。
【請求項3】
前記荷重検知装置は、前記駆動軸方向及び前記駆動軸と直交する平面内における直交する2軸のそれぞれの方向における荷重を検出し、
前記荷重中心算出部は、検出された互いに直交する前記3つの軸方向の荷重に基づき、前記直交する2軸まわりのモーメントを算出することによって前記荷重中心の座標を算出する、
請求項1又は2に記載のガラスレンズ成形装置。
【請求項4】
非対称変形判定部を更に備え、
前記非対称変形判定部は、
前記荷重中心算出部により算出された前記荷重中心の座標に対応する位置と前記駆動軸の中心位置との差を、所定の基準値と比較することによって、成形されたガラスレンズに非対称な変形による品質異常が生じたか否かを判定する、
請求項1から3のいずれか1項に記載のガラスレンズ成形装置。
【請求項5】
表示部を更に備え、
前記表示部は、前記非対称変形判定部により判定された、成形されたガラスレンズに非対称な変形による品質異常が生じたか否かを表示する、請求項4に記載のガラスレンズ成形装置。
【請求項6】
表示部を備え、
前記表示部は、
前記ガラス素材のプレス成形工程において、前記荷重中心算出部により算出された前記荷重中心の座標を表示する、
請求項1から4のいずれか1項に記載のガラスレンズ成形装置。
【請求項7】
前記表示部は、
前記荷重中心の座標が複数回算出された場合に、算出された複数の前記荷重中心の座標の変化を表示する、
請求項6に記載のガラスレンズ成形装置。
【請求項8】
成形偏芯量判定部と温度差算出部とを更に備え、
前記成形偏芯量判定部は、前記荷重中心算出部により算出された前記荷重中心の座標に対応する位置と前記駆動軸の中心位置との差を、前記プレス成形においてガラス素材に生じた成形偏芯量として判定し、
前記温度差算出部は、前記成形偏芯量があった場合に、予め記憶された前記成形偏芯量と前記加熱機構による加熱の温度差との関連性データに基づいて、前記荷重中心の座標に対応する位置と前記駆動軸の中心位置との温度差を算出する、
請求項1から7のいずれか1項に記載のガラスレンズ成形装置。
【請求項9】
前記加熱機構は、
独立して加熱温度調整可能な少なくとも2つの加熱素子と、前記加熱素子の出力を調整する加熱制御部とを含み、
前記加熱制御部は、
前記ガラス素材のプレス成形工程において、前記温度差が算出された場合に、
前記温度差を解消するように前記加熱温度調整可能な加熱素子の出力を調整する、
請求項8に記載のガラスレンズ成形装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ガラス成形装置に関し、具体的には、光学素子を代表するレンズなどのガラス製品を、金型を用いた成形技術により量産するガラスレンズ成形装置に関するものである。
【背景技術】
【0002】
従来のガラスレンズ成形装置としては、加熱により軟化したガラスを、金型を用いてプレス成形する装置において、プレス軸のチルトの発生を検知するために、可動軸(もしくは、固定軸)上に、3軸荷重検出装置を設けたものがある(例えば、特許文献1参照)。
【0003】
図13に示す特許文献1に記載された従来のガラスレンズ成形装置の構成図において、互いに対をなす金型101,102が用いられる。ガラス素材(図示しない)は、下型102に挿入され、上型101と接近した状態でヒータ部となる赤外線ランプ107により加熱し、ガラス素材が所定の温度に達した軟化状態で、更に可動軸106を上昇することで、上型101と下型102によりプレスされ、金型形状をガラスに転写することで、所望するガラスレンズ形状となる。その後、赤外線ランプ107の出力を調整して降温し、ガラスを固化させてから、下型102を下方に駆動し、成形されたガラスレンズを取り出し、一連のガラス成形プロセスが完了する。
【0004】
近年のガラスレンズにおいては、高性能化やレンズ枚数削減を目的に非球面形状が採用されることが多い。特に非球面形状が採用されたレンズは、光軸が非球面側の1本しか無く、ガラス成形のプロセスにおいて、対向に配置された金型にチルトが生じると、光学性能が得られないという問題が顕著となる。
【0005】
そこで、特許文献1に記載されたガラスレンズ成形装置において、3軸荷重検出装置を設けることによって、上型101と下型102との軸にチルトが生じた場合、生じた加工抵抗Fx、Fyを検出し、検知結果を制御装置116により演算される。算出された値をフィードバック信号として用いて、金型の成形面に生じたチルトを解消する方向に軸姿勢制御ユニット114を駆動する。その結果、上下の軸の間でのチルトの発生が防止され、上下の金型の間の平行度を確保することができる。
【先行技術文献】
【特許文献】
【0006】
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、前記従来のガラスレンズ成形装置の構成では、対向に配置された金型の間の平行度の異常のみを測定するため、ガラス素材のプレス成形において生じ得る非対称な変形の異常を検出することができなかった。その結果、成形完了後において、非対称な変形によるひずみが原因でレンズ面の形状不良が生じるという課題を有している。ガラスレンズ成形の不具合を一層抑えるという観点において、従来の構成は未だ改善の余地がある。
【0008】
本発明は、前記従来の課題を解決するものであって、ガラスレンズ成形中の非対称な変形による品質良否を判定することが可能となるガラスレンズ成形装置を提供することを目的とする。
【課題を解決するための手段】
【0009】
上記目的を達成するために、本開示に係るガラスレンズ成形装置は、金型を用いて、ガラス素材のプレス成形によるガラスレンズ成形装置であって、ガラス素材を挟持する一対の金型と、一対の金型に挟持されているガラス素材を加熱する加熱機構と、一対の金型のうちの一方の金型を他方の金型に向かって、プレス成形方向の駆動軸に沿って移動させてプレスする駆動機構と、ガラス素材のプレス成形工程において生じる荷重を検出する荷重検知装置と、荷重検知装置によって検出された荷重に基づき、プレス成形工程において、駆動軸と直交する平面におけるガラス素材に作用する荷重中心の座標を算出する荷重中心算出部と、を備える。
【発明の効果】
【0010】
本開示のガラスレンズ成形装置によれば、ガラスレンズ成形中の非対称な変形による品質良否を判定することができる。
【図面の簡単な説明】
【0011】
【
図1】本開示の実施の形態に係る非対称な変形を検出するガラスレンズ成形装置を示す部分正面断面図である。
【
図2】
図1のガラスレンズ成形装置の成形部によるプレス成形を示す断面図である。
【
図3】一般にプレス成形後のガラス素材の外周面の様態を示す図である。
【
図4】プレス成形中の非対称な変形の発生の様子を示す図である。
【
図5】本開示の実施の形態に係るガラスレンズ成形装置おける荷重検知装置の荷重センサの平面配置の一構成例を示す図である。
【
図6】荷重検知装置の荷重センサの平面配置の別の構成例を示す図である。
【
図7】本開示の実施の形態に係るガラスレンズ成形装置100によるプレス成形においてガラス素材の初期重心位置を示す図である。
【
図8】本開示の実施の形態に係るガラスレンズ成形装置によるプレス成形において、ガラス素材の荷重中心の位置変化を示す図である。
【
図9】プレス成形において、ガラス素材の成形偏芯量とヒータブロックによる加熱に生じた温度差との関連性を示す図である。
【
図10】
図1のガラスレンズ成形装置における演算装置の一構成例を示すブロック図である。
【
図11】
図10の演算装置のプログラムのフローチャートである。
【
図12】
図11の演算装置の表示部による荷重中心の座標及びガラスレンズの成形品質の判定結果を表示する一例を示す図である。
【
図13】本開示の実施の形態に係る加熱制御を行うガラスレンズ成形装置を示す部分正面断面図である。
【
図14】
図13のガラスレンズ成形装置における演算装置の一構成例を示すブロック図である。
【
図15】
図14の演算装置のプログラムのフローチャートである。
【
図16】従来のガラスレンズ成形装置の構成を示す図である。
【発明を実施するための形態】
【0012】
本開示の第1態様によれば、金型を用いて、ガラス素材のプレス成形によるガラスレンズ成形装置であって、ガラス素材を挟持する一対の金型と、一対の金型に挟持されているガラス素材を加熱する加熱機構と、一対の金型のうちの一方の金型を他方の金型に向かって、プレス成形方向の駆動軸に沿って移動させてプレスする駆動機構と、ガラス素材のプレス成形工程において生じる荷重を検出する荷重検知装置と、荷重検知装置によって検出された荷重に基づき、プレス成形工程において、駆動軸と直交する平面におけるガラス素材に作用する荷重中心の座標を算出する荷重中心算出部と、を備える、ガラスレンズ成形装置を提供する。
【0013】
本開示の第2態様によれば、荷重検知装置は、少なくとも3つの荷重センサを含み、荷重センサは、駆動軸と直交する同一の平面内に、駆動軸を中心に軸対称に配置され、それぞれがガラス素材のプレス成形工程において、駆動軸方向に生じる荷重を検出する、第1態様に記載のガラスレンズ成形装置を提供する。
【0014】
本開示の第3態様によれば、荷重検知装置は、駆動軸方向及び駆動軸と直交する平面内における直交する2軸のそれぞれの方向における荷重を検出し、荷重中心算出部は、検出された互いに直交する3つの軸方向の荷重に基づき、直交する2軸まわりのモーメントを算出することによって荷重中心の座標を算出する、第1態様又は第2態様に記載のガラスレンズ成形装置を提供する。
【0015】
本開示の第4態様によれば、非対称変形判定部を更に備え、非対称変形判定部は、荷重中心算出部により算出された荷重中心の座標に対応する位置と駆動軸の中心位置との差を、所定の基準値と比較することによって、成形されたガラスレンズに非対称な変形による品質異常が生じたか否かを判定する、第1から第3態様のいずれか1つに記載のガラスレンズ成形装置を提供する。
【0016】
本開示の第5態様によれば、表示部を更に備え、表示部は、非対称変形判定部により判定された、成形されたガラスレンズに非対称な変形による品質異常が生じたか否かを表示する、第4態様に記載のガラスレンズ成形装置を提供する。
【0017】
本開示の第6態様によれば、表示部を備え、表示部は、ガラス素材のプレス成形工程において、荷重中心算出部により算出された荷重中心の座標を表示する、第1から第4態様のいずれか1つに記載のガラスレンズ成形装置を提供する。
【0018】
本開示の第7態様によれば、表示部は、荷重中心の座標が複数回算出された場合に、算出された複数の荷重中心の座標の変化を表示する、第6態様に記載のガラスレンズ成形装置を提供する。
【0019】
本開示の第8態様によれば、成形偏芯量判定部と温度差算出部とを更に備え、成形偏芯量判定部は、荷重中心算出部により算出された荷重中心の座標に対応する位置と駆動軸の中心位置との差を、プレス成形においてガラス素材に生じた成形偏芯量として判定し、温度差算出部は、成形偏芯量があった場合に、予め記憶された成形偏芯量と加熱機構による加熱の温度差との関連性データに基づいて、荷重中心の座標に対応する位置と駆動軸の中心位置との温度差を算出する、第1から第7態様のいずれか1つに記載のガラスレンズ成形装置を提供する。
【0020】
本開示の第9態様によれば、加熱機構は、独立して加熱温度調整可能な少なくとも2つの加熱素子と、加熱素子の出力を調整する加熱制御部とを含み、加熱制御部は、ガラス素材のプレス成形工程において、温度差が算出された場合に、温度差を解消するように加熱温度調整可能な加熱素子の出力を調整する、第8態様に記載のガラスレンズ成形装置を提供する。
【0021】
以下、本開示の実施形態について、図面を参照して説明する。なお、以下に説明する実施の形態は、いずれも本開示の好ましい一具体例を示すものである。したがって、以下の実施形態において示される、数値、形状、材料、構成要素、構成要素の配置位置、および接続形態などは、本開示に係る一具体例であって、本開示を限定するものではない。よって、以下の実施形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、本開示の効果を奏する範囲を逸脱しない範囲で、適宜変更は可能である。更に、他の実施形態との組合せも可能である。
【0022】
なお、各図面は、模式図を示すものであり、必ずしも厳密に図示されたものではない。また、各図面において、実質的に同一の構成について、同一の符号を付しており、重複する説明は省略または簡略化する。
【0023】
《実施の形態》
<本開示の実施の形態に係るガラスレンズ成形装置の構成>
図1は、本開示の実施の形態に係る非対称な変形を検出するガラスレンズ成形装置100を示す部分正面断面図である。
図1に示す非対称な変形を検出するガラスレンズ成形装置100は、成形部10と、荷重検知装置20と、演算装置30とを備えている。先ず、成形部10を構成する構成部材について説明する。
【0024】
図1に示すように、成形部10において、ガラス素材5が溶融軟化した状態で示されている。成形部10に用いられるガラスレンズ成形用の金型は、対向に配置された下型(下パンチ)3と上型(上パンチ)2を含み、スリーブ4に保持されている。ヒータブロック7は、上型2と下型3とそれぞれ接するように設置され、ヒータブロック7の内部には複数の加熱素子6が挿入されている。
【0025】
加熱素子6の熱を、成形部10の全体に伝わらないようにするため、上下のヒータブロック7の金型の対向側には、それぞれ断熱板8が配置されている。上型2の上方には成形部10のプレス駆動軸が設置され(図示せず)、下型3の下方には、ヒータブロック7と断熱板8とを介して、荷重検知装置20の荷重センサ21が設置されている(荷重検知装置20については後述で説明する)。
【0026】
なお、
図1において、上型2及び下型3は、それぞれがヒータブロック7と接するように示しているが、これは伝熱方式の様子を示したためであり、必要に応じて離れることもできる。また、加熱方式は、誘導加熱やランプ加熱等であってもよい。
【0027】
また、成形装置として必須の加圧部、金型を移動させるための駆動部、ガラスを溶融軟化するために必要な加熱・温度計測部を含んだ加熱装置、及びそれらを制御して生産プロセスを実行する制御装置は、一般のガラスレンズ成形装置として当然の機能であり、本開示においてその方式を特段に限定するものではないため、説明を省略している。また、ガラスレンズ成形工程において、一般的に600℃前後の温度域を使用することから窒素雰囲気、または真空等の雰囲気制御が設けられている。それらについても生産方式や装置の特徴に合わせて適宜採用される構成であるため、本開示では特段に規定しないものとする。
【0028】
<本開示の実施の形態に係るガラスレンズ成形装置のプレス成形工程>
以下に、
図2を参照して本開示の実施の形態に係る非対称な変形を検出するガラスレンズ成形装置100の成形部10の動作について説明する。
図2は、
図1のガラスレンズ成形装置100の成形部10によるプレス成形を示す断面図である。
【0029】
図2(a)は、プレス成形が開始する前の状態を示す。レンズとなるガラス素材5aは、プレスが開始される前に、上型2と下型3とが離れている状態で、挿入され、下型3と上型2との間に挟持されている。加熱素子6は、制御装置(図示せず)により所定の温度となるように制御される。所定の温度、または所定の時間が経過した時点で、上型2が駆動部(図示せず)によって駆動され、駆動軸11に沿ってプレス方向Pに移動し、プレスが開始される。これによって、上型2と下型3との間で、溶融軟化したガラス素材5aがプレス成形される。
【0030】
図2(b)に、プレス成形が完了した状態を示す。ガラス素材5aは溶融軟化した状態でプレスされ、レンズ面形状を有する5bに成形されている。
図2に示すプレス成形において、レンズ面形状のみが形成され、レンズの外周面は同時に成形されない。プレス成形が完了した後、加熱素子6が降温され、レンズ面形状を有するガラス素材5bは、固化してから金型より取り出され、所定の直径となるように芯取り加工を経てレンズの外周面が成形され、完成したガラスレンズとなる。
【0031】
<プレス成形における非対称な変形の発生>
図3は、一般にプレス成形後のガラス素材5bの外周面の様態を示す図である。プレス成形後の芯取り加工において、芯取り予定線5c1に沿って外周面が加工される。完成したガラスレンズが鏡筒に組付けられるとき、レンズの外周面が保持されるため、レンズの外周面の中心が光軸と一致していない場合、十分に光学性能が発揮できなくなる。したがって、
図3(a)に示すように、プレス成形後のガラス素材の外周面5b1が軸対称に成形され、芯取り予定線5c1と同芯状となっていることが望ましい。一方、
図3(b)に示すように、プレス成形後のガラス素材の外周面5b2は、非対称な変形が生じている。このような変形により、芯取り予定線5c2と同芯状とはならず、レンズの光学性能が影響される。
【0032】
プレス成形において非対称な変形が生じる原因について、第一は、プレス成形開始する前に、ガラス素材が金型の中央部に置かれておらず、偏った位置に置かれていたことが考えられる。この場合、ガラスの軟化点に達し所定のプレス力で変形が開始したとしても、ガラスは変形容易な方向、即ち上型と下型の隙間の広い方向に広がるため、一様に広がらないことにより非対称な変形が発生する。
【0033】
第二は、金型面の温度分布が不均一な場合にある。具体的には、ガラスが溶融軟化の状態となる温度はガラス転移点(Tg)よりも高いために、温度がわずかでも異なるとガラスの粘性は大きく変化する。したがって、ヒータブロックと金型との接触面に温度の不均一が生じると、より高い温度に加熱された部位のガラスの粘性が急激に低下し、粘性の低い側に変形が容易に広がる。その結果、ガラス素材は一様に広がらないため、非対称な変形が発生する。
【0034】
いずれかの原因によって非対称な変形が発生した場合、プレス成形後のガラスが非回転対称ひずみを有するため、完成したレンズは十分な精度に達成できず、品質不良が生じる。
【0035】
次に、
図4を参照して、プレス成形中に非対称な変形が発生したときのガラス素材の変化について検討する。
【0036】
図4は、プレス成形中の非対称な変形の発生の様子を示す図である。
図4(a)において、上型2と下型3との間にガラス素材5cが挟持されている。このとき、仮にガラス素材5cが上型2と下型3との中央に設置されている。すなわち、ガラス素材5cの重心12aが駆動軸11上にある。ガラス素材5cが挟持された状態で加熱装置(図示せず)によりガラス成形温度に達した後、駆動部(図示せず)によって上型2が駆動軸11に沿って下降し、プレス成形が開始される。
【0037】
図4(b)は、プレス成形中に非対称な変形が発生せず、レンズが軸対称に成形された状態を示している。このとき、プレス成形中のガラス素材5dは、駆動軸11を中心に、m1及びm2方向に均等に押し広げられている。この場合、プレス成形中のガラス素材5dは、重心が移動することなく、プレス方向Pにおける荷重中心12bが駆動軸11上にある。
【0038】
図4(c)は、プレス成形中に非対称な変形が発生し、レンズが軸対称に成形されていない状態を示している。このとき、プレス成形中のガラス素材5eは、駆動軸11に対して一様に広がらず、広がりがm3方向よりもm4方向へ進むことによって、ガラス素材5eは、重心が移動し、プレス方向Pにおける荷重中心12cの位置が駆動軸11に対してΔdのズレが生じている。
【0039】
このように、プレス成形中に非対称な変形の発生に伴って、プレス時の荷重中心の移動が生じる。本開示は、後述するように、プレス時の荷重中心の移動を計測することで、成形されたガラスレンズの非対称な変形を測定し、成形品質を判定することができる。
【0040】
<本開示の実施の形態に係るガラスレンズ成形装置の荷重検知装置>
次に、荷重検知装置20の構成について説明する。
図1に示すように、荷重検知装置20は、荷重センサ21と増幅器22とを備えている。荷重センサ21は、成形部10の断熱板8の下方に設置され、プレス時の荷重を測定する。検出された荷重の値は、増幅器22によって増幅され、演算装置30に送信される。
【0041】
図5は、本開示の実施の形態に係るガラスレンズ成形装置100における荷重検知装置20の荷重センサ21の平面配置の一構成例を示す図である。
図5に示す荷重センサ21は、プレス方向(Z軸)のみの荷重を計測可能な1軸荷重センサを4つ(21a1,21a2,21a3,21a4)用いた構成例を示している。この構成は、安価な1軸荷重センサのみで構成できるので、実用的である。
図5に示すように、4つの1軸荷重センサ21a1~21a4は、それぞれ駆動軸と直交する平面内におけるX軸に対して±m、Y軸に対して±n離れた位置に設置している。このように、X-Y座標の原点Oに対して、荷重センサを対称的配置するのは、後述する荷重中心の座標を導出する計算を容易にするためであり、荷重センサを対称的配置しない場合は、荷重中心の座標の計算が煩雑となる。荷重中心の位置を導出する仮想面を、作用面F1とし、
図5に示すX-Y座標の平面とする。プレス成形中にプレス力が生じるとき、1軸荷重センサ21a1~21a4は、それぞれZ軸の荷重z1,z2,z3,z4を検出し、作用面F1におけるZ軸の荷重はz1~z4の合算値となる。
【0042】
4つの荷重センサ21a1~21a4が、それぞれZ軸の荷重z1~z4を示した場合、X-Y座標の原点Oを中心にX軸まわりのモーメントMxとY軸まわりのモーメントMyとは、それぞれ以下の式(1),(2)により算出される。
【0043】
(数1)
Mx=-m(z1+z2)+m(z3+z4) (1)
My=-n(z1+z4)+n(z2+z3) (2)
【0044】
作用面F1における荷重中心G1の座標(ax1,ay1)は、以下の式(3),(4)によって求めることができる。
【0045】
【0046】
成形部10の金型1の駆動軸11の中心位置が作用面F1のX-Y座標の原点Oに一致した場合、プレス成形が開始してからガラスが押し広げられた状態になるまで、成形後のガラス素材が
図3(a)の状態であるとき、荷重中心G1がX-Y座標の原点Oと一致し、式(3),(4)の算出結果は、a
x1=a
y1≒0となることが推定できる。一方、成形後のガラス素材が
図3(b)の状態であるとき、プレス成形中にガラス素材に非対称な変形が発生し、荷重中心G1がX-Y座標の原点Oから移動し、式(3),(4)による荷重中心G1の座標a
x1、a
y1の計算値はゼロにはならない。
【0047】
なお、
図5に示す荷重センサ21の構成例において、1軸荷重センサを4つ配置したが、荷重センサ21は3つ以上であれば、荷重中心の座標の算出が可能である。荷重センサ21を3つ使用する場合には、3つの荷重センサ21は、一直線上にない3箇所に配置すればよい。例えば、3つの荷重センサ21を、X-Y面における第1象限から第4象限までの4つの領域のうち3つの領域に、それぞれ配置することができる。
【0048】
また、
図5に示す荷重センサ21は、1軸荷重センサを使用したが、本開示はこれに限定されない。例えば、
図6に示す構成例も可能である。
図6は、荷重検知装置20の荷重センサ21の平面配置の別の構成例を示す図である。
図6に示す構成例において、1つの6軸荷重センサ21bが配置されている。6軸荷重センサによれば、全ての力の成分、すなわち、互いに直交する3軸X-Y-Z軸の並進力Fx,Fy,Fz、及びそれぞれの軸まわりのモーメントMx、My、Mzが同時に出力されるため、被測定体の荷重中心の座標がより容易に算出することができる。このような6軸荷重センサとしては、例えば、(株)テック技販製TL6F04などがある。
【0049】
6軸荷重センサ21bが、X-Y-Z軸の並進力Fx,Fy,Fz、及びそれぞれの軸まわりのモーメントMx、My、Mzを示し、6軸荷重センサ21bと作用面F2との垂直距離をazとした場合、作用面F2における荷重中心G2の座標(ax2,ay2)は、以下の式(5),(6)によって求めることができる。
【0050】
(数3)
ax2=-(My-Fx・az)/Fz (5)
ay2=(Mx+Fy・az)/Fz (6)
【0051】
4つの荷重センサを使用した場合と同様に、成形部10の金型1の駆動軸11の中心位置が作用面F2のX-Y座標の原点Oに一致した場合、プレス成形が開始してからガラスが押し広げられた状態になるまで、成形後のガラス素材が
図3(a)の状態であるとき、荷重中心G2がX-Y座標の原点Oと一致し、式(5),(6)の算出結果は、a
x2=a
y2≒0となることが推定できる。一方、成形後のガラス素材が
図3(b)の状態であるとき、プレス成形中にガラス素材に非対称な変形が発生し、荷重中心G2がX-Y座標の原点Oから移動し、式(5),(6)による荷重中心G2の座標a
x2、a
y2の計算値はゼロにはならない。
【0052】
また、荷重検知装置20の荷重センサ21として、他の荷重計測が可能な検出器、例えば、X-Y-Z3軸の荷重計測が可能な検出器を4つ配置したフォースプレートを使用しても、同様に荷重中心の座標の算出が可能である。
【0053】
なお、
図1に示すように、荷重センサ21は、断熱板8の下方に配置されている。荷重センサは温度変化によってドリフトすることがあり、温度変化の少ないように工夫することが、より正確な荷重計測するうえで有効である。
図1において、ヒータブロック7とセンサ21が、相対的に薄い断熱材8を介して接しているが、荷重センサ21を高温や温度変化から守る目的で、複層の厚い断熱材を介して、離れて配置してもよい。
【0054】
<プレス成形におけるガラス素材の荷重中心の移動>
ガラスレンズのプレス成形中に、プレスの進行に伴って、
図4に示す非対称な変形が発生した場合、荷重中心はX-Y面内において移動することとなる。以下、
図7~9を参照して、プレス成形中にガラス素材の荷重中心の移動様態、及び当該移動の起因について述べる。
【0055】
図7は、本開示の実施の形態に係るガラスレンズ成形装置100によるプレス成形においてガラス素材の初期重心位置を示す図であって、
図8は、本開示の実施の形態に係るガラスレンズ成形装置によるプレス成形において、作用面におけるガラス素材の荷重中心の位置変化を示す図である。
【0056】
初期荷重中心の位置は、プレス成形が開始する前にガラス素材が設置されたときの初期重心位置によって変わる。
図7(a)に示すガラス素材5a1が、上型2と下型3との間に挟持され、ガラス素材5a1の重心A00は、金型1の駆動軸11上にある。この場合、ガラス素材5a1の初期荷重中心は、
図8に示す作用面におけるX-Y座標の原点Oに一致する。一方、
図7(b)に示すガラス素材5a2は、重心A01が金型1の駆動軸11に対してオフセットΔd0を有して挟持されている。この場合、ガラス素材5a2の初期荷重中心は、
図8に示す作用面におけるX-Y座標の原点Oから離れているA1となる。一般に、ガラス素材が球状の“ボール硝材”の場合、金型内へのガラス素材の設置又は金型の搬送等に伴って、ガラス素材の挟持された位置がズレる場合がある。その結果、
図7に示すように、ガラス素材の初期重心位置が金型の駆動軸に対してオフセットを有して設置された場合、
図8に示すように、プレス成形開始時にガラス素材の初期荷重中心の位置が、作用面におけるX-Y座標の原点から離れて存在する。
【0057】
図8に示すように、プレス成形開始時に作用面におけるガラス素材の初期荷重中心A1(
図8に示す■位置)が、プレス成形の進行に伴って軌跡Q1に沿って更にX-Y座標の原点Oから離れる方向に移動し、プレス成形完了時にX-Y座標の原点Oより最も遠く離れたA2(
図8に示す●位置)となっている。後述する様に、プレス成形完了時最終荷重中心A2とX-Y座標の原点Oとを結んだ直線A1A2とX軸となす角度をγとする。この角度γは、プレス成形中に、作用面(X-Y平面)において、プレスされたガラス素材の押し広がる方向を示す角度であり、プレス成形中にガラス素材の非対称な変形の進む方向を示している。
【0058】
プレス成形中に、ガラス素材の非対称な変形がγ方向に進む原因は、その方向の温度がわずかながらに高いからである。何故ならば、ガラス成形する温度は、ガラス転移点(Tg点)よりも高いので、わずかの温度差によって粘性が大きく異なるためである。そのため、少しでも上型2と下型3の成形面に温度ムラが生じた場合に、より温度の高い方がガラスの粘性が低くなるので、ガラスが温度の高い側に流れることとなる。即ち、
図8に示す荷重中心の移動は、
図1に示す成形部10のヒータブロック7と金型1との接触面にわずかながら生じた温度差により起因したものであり、その移動方向は、当該接触面のより温度分布の高い方向となる。
【0059】
プレス成形中にガラス素材の荷重中心位置の変化量とヒータブロックに生じた温度差との関連性について、
図9を参照して更に説明する。
図9は、プレス成形において、ガラス素材の成形偏芯量とヒータブロックによる加熱に生じた温度差との関連性を示す図である。
図10(a)は、非対称な変形が生じたガラス素材5b3の荷重中心の座標が導出された作用面における成形偏芯量δを示している。この作用面において、成形されるレンズの芯取り予定線を円L1とし、ガラス素材5b3の外周に外接する円を円L2としたとき、円L1の中心O1と円L2の中心O2との差を成形偏芯量δとする。
図10(b)には、プレス成形中に生じたガラス素材の成形偏芯量δと、
図1に示すヒータブロック7と金型1との接触面に生じた温度差との関係を示している。成形偏芯量δが大きく生じる場合、ヒータブロックによる加熱の温度差も大きくなる。この結果により、ヒータブロックによる加熱の温度差を解消させるように加熱温度を制御することによって、成形偏芯量を低減させ、ガラス素材の非対称な変形を改善することができると考えられる。しかしながら、ガラス素材の成形偏芯量とヒータブロックによる加熱に生じた温度差との関係は、成形するガラスの種類、レンズの形状やサイズ、ガラスレンズ成形装置の構成によって異なるため、加熱温度を制御することによって非対称な変形を改善するためには、成形するレンズの成形偏芯量δとヒータブロックによる加熱に生じた温度差との特有の関連性を明らかにし、マッピングデータを取得する必要がある。
【0060】
以上述べたように、プレス成形中に、ヒータブロックによる加熱に生じた温度差により、成形されるガラス素材の荷重中心が移動する。その結果、非対称な変形が発生し、ガラスレンズの品質不良の原因となる。本開示は、これに基づいて、プレス成形中のガラス素材の荷重中心の位置を算出することによって、非対称な変形の判定及び改善を図る。
【0061】
<本開示の実施の形態に係るガラスレンズ成形装置における非対称な変形の判定>
以下に、本開示に係るガラスレンズ成形装置100において、ガラス素材の荷重中心の算出による非対称な変形の判定について説明する。
【0062】
図10を参照して、本開示の実施の形態に係る演算装置30構成について説明する。
図10は、
図1のガラスレンズ成形装置100における演算装置30の一構成例を示すブロック図である。
【0063】
<演算装置30(コンピュータ装置)>
演算装置30は、例えば、コンピュータ装置である。このコンピュータ装置として、汎用的なコンピュータ装置を用いることができ、例えば、
図10に示すように、処理部31、記憶部32、表示部33を含む。なお、更に入力装置、記憶装置、インタフェース等を含んでもよい。演算装置30は、荷重検知装置20によって検出されたプレス成形中の荷重のデータに基づいて、演算処理を行うことができる。
【0064】
<処理部31>
処理部31は、例えば、中央処理演算子(CPU)、マイクロコンピュータ、又は、コンピュータで実行可能な命令を実行できる処理装置であればよい。
【0065】
<記憶部32>
記憶部32は、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
【0066】
記憶部32には、プログラム35を含む。なお、演算装置30がネットワークに接続されている場合には、必要に応じてプログラム35をネットワークからダウンロードしてもよい。
【0067】
<プログラム35>
プログラム35には、荷重中心算出部35aと、非対称変形判定部35bとを含むことができる。荷重中心算出部35aと、非対称変形判定部35bとは、実行時には、記憶部32から読み出されて処理部31にて実行される。荷重中心算出部35aと、非対称変形判定部35bとによって、プレス成形中にガラス素材の荷重中心の位置が算出され、更に荷重中心の移動に基づいて、非対称な変形の発生及び成形されたガラスレンズに品質異常が生じたか否かを判定することができる。
【0068】
<表示部>
表示部33は、例えば、処理部31によりプログラム35が実行され、得られた結果を表示することができる。
【0069】
図11を参照して、荷重中心の算出により、非対称な変形によるガラスレンズの成形品質の判定プログラムについて説明する。
図11は、
図10の演算装置30のプログラム35のフローチャートである。
図11に示すように、演算装置30のプログラム35は、以下の3つのステップからなる。荷重中心算出部35aは、ステップS11及びS12に対応し、非対称変形判定部35bは、ステップS13に対応する。
(1)荷重検知装置によって検出された荷重に基づいて、成形されているガラス素材の荷重中心の座標を算出する(S11)。
(2)次に、時系列に算出された荷重中心の座標により、プレス成形中の荷重中心の位置変化を算出する(S12)。
(3)次いで、荷重中心の座標が導出された作用面において、プレス成形完了時の荷重中心の位置と駆動軸の中心位置との差を、所定の基準値と比較することによって、成形されたガラスレンズに非対称な変形による品質異常が生じたか否かを判定する(S13)。
【0070】
図12は、
図11の演算装置30の表示部33による荷重中心の座標及びガラスレンズの成形品質の判定結果を表示する一例を示す図である。ガラスレンズのプレス成形毎に、成形開始時の初期荷重中心(
図12に示すB1,C1)、及び成形完了時のプレス後荷重中心(
図12に示すB2,C2)を表示することができる。また、プレス成形中の荷重中心の位置変化、例えば、初期荷重中心の位置からプレス後荷重中心の位置へ移動する軌跡Q1,Q2を表示してもよい。また、成形されたガラスレンズの成形品質の判定結果を示すため良品と不良品の領域分けを表示してもよい。
図12に示す荷重中心の座標が導出された作用面において、駆動軸の中心位置(X-Y軸の交点)から離れるほど不良品となり、円周Cの内側を「良品領域」R1、円周Cの外側を「不良領域」R2として区別して表示することも可能である。この良品と不良を線引きする円周Cは、生産するレンズの機種によって、変更することができる。なお、表示部33の表示によって、プレス成形中に時々刻々と変化する品質状況をリアルタイムに確認することもできる。
【0071】
<本開示の実施の形態に係るガラスレンズ成形装置における加熱制御>
続いて、
図13~15を参照して、本開示に係る加熱制御を行うガラスレンズ成形装置について説明する。
図13は、本開示の実施の形態に係る加熱制御を行うガラスレンズ成形装置100aを示す部分正面断面図である。
【0072】
図13に示すガラスレンズ成形装置100aにおいて、成形部10aは、加熱素子6aと加熱制御部40とを含む以外、
図1に示すガラスレンズ成形装置100の成形部10と同様の構成を有する。
図1に示すガラスレンズ成形装置100の成形部10と同様の構成については、詳細の説明を省略する。加熱制御部40は、演算装置30aの演算結果に基づいて、加熱素子6aの出力を調整することができる。加熱素子6aは、少なくとも2つ含み、それぞれが独立して加熱温度が調整可能な加熱素子である。
【0073】
図14は、
図13のガラスレンズ成形装置100aにおける演算装置30aの一構成例を示すブロック図である。演算装置30aは、
図10に示す演算装置30と同様に、処理部31と、記憶部32aと、表示部33とを含む。なお、更に入力装置、記憶装置、インタフェース等を含んでもよい。演算装置30は、荷重検知装置20によって検出されたプレス成形中の荷重のデータに基づいて、演算処理を行い、その結果を加熱制御部に送信することができる。演算装置30aの処理部31と表示部33とは、演算装置30と同様な構成を有するため、詳細の説明を省略する。以下、記憶部32aの構成について説明する。
【0074】
<記憶部32a>
記憶部32aは、例えば、ROM、EEPROM、RAM、フラッシュSSD、ハードディスク、USBメモリ、磁気ディスク、光ディスク、光磁気ディスク等の少なくとも一つであってもよい。
【0075】
記憶部32aには、プログラム36を含む。なお、演算装置30aがネットワークに接続されている場合には、必要に応じてプログラム36をネットワークからダウンロードしてもよい。
【0076】
<プログラム36>
プログラム36には、荷重中心算出部36aと、成形偏芯量判定部36bと、温度差算出部36cを含むことができる。荷重中心算出部36aと、非対称変形判定部36bと、温度差算出部36cは、実行時には、記憶部32aから読み出されて処理部31にて実行され、その結果が加熱制御部40に送信される。
【0077】
図15を参照して、ガラスレンズ成形装置100aにおける加熱制御を行うプログラム36について説明する。
図15は、
図14の演算装置30aのプログラム36のフローチャートである。
図15に示すように、演算装置30aのプログラム36は、以下の4つのステップからなる。荷重中心算出部36aは、ステップS21に対応し、非対称変形判定部36bは、ステップS22に対応し、温度差算出部36cは、ステップS23及びS24に対応する。
(1)荷重検知装置によって検出された荷重に基づいて、成形されているガラス素材の荷重中心の座標を算出する(S21)。
(2)次に、荷重中心の座標が導出された作用面において、算出された荷重中心の座標に対応する位置と駆動軸の中心位置との差を、成形されているガラス素材の成形偏芯量とし、当該成形偏芯量が生じたか否かを判定する(S22)。
(3)次いで、成形偏芯量が生じたと判定されたとき、予め記憶された成形偏芯量と加熱機構による加熱の温度差との関連性データに基づいて、ヒータブロック7と金型1との接触面において、荷重中心の座標に対応する位置と駆動軸の中心位置との温度差を算出する(S23)。
(4)次いで、算出された温度差を加熱制御部40に送信する(S24)。
【0078】
加熱制御部40は、演算装置30aにより算出された温度差の結果に基づいて、対応する加熱素子6aの出力を調整することができる。例えば、加熱温度の高い側に配置されている加熱素子6aの出力を下げることによって、ヒータブロック7と金型1との接触面に生じた温度差を解消し、プレス成形中にガラス素材の非対称な変形を改善することができる。
【0079】
なお、プレス成形工程は、成形されるレンズの形状により工程時間が全く異なる。
図13に示すガラスレンズ成形装置100aは、加熱温度を制御するため、レンズの成形に要する時間が長い方が制御容易であり、成形時間が短いレンズでは、難易度が高い。
【0080】
なお、以上述べた本開示の実施形態において、荷重センサ21を下型3の下方側に設置したが、本開示はこれに限定されない。例えば、上型2の上方側に設置しても同様に荷重を検出することができる。
【0081】
また、本発明は前記実施形態に限定されるものではなく、その他種々の態様で実施できる。例えば、上記記載において、回転対称のレンズ形状にのみ言及してきたが、異形レンズの成形においては、正常な良品の成形プロセスにおける荷重中心の移動を基準にして、成形する毎の荷重中心の差分値を演算することで同様に広範に適用することができる。
【0082】
本開示は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術に熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、本発明の請求の範囲内に含まれると理解されるべきである。
【産業上の利用可能性】
【0083】
本発明のガラスレンズ成形装置は、ガラスレンズ成形中の非対称な変形による品質良否を判定することが可能となり、更には高精度なガラスレンズの生産が可能となる。また、使用する温度域が大きく異なる樹脂レンズの成形においても同様に使用することができる。
【符号の説明】
【0084】
1 金型
2 上型
3 下型
4 スリーブ
5 ガラス素材
5a プレス成形前のガラス素材
5b プレス成形後のガラス素材
5c,5d,5e プレス成形中のガラス素材
6,6a 加熱素子
7 ヒータブロック
8 断熱板
10,10a 成形部
11 駆動軸
20 荷重検知装置
21 荷重センサ
21a1,21a2,21a3,21a4 1軸荷重センサ
21b 6軸荷重センサ
22 増幅器
30,30a 演算装置
31 演算部
32,32a 記憶部
33 表示部
35,36 プログラム
40 加熱制御部
100,100a ガラスレンズ成形装置