IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立建機株式会社の特許一覧

<>
  • 特許-作業機械 図1
  • 特許-作業機械 図2
  • 特許-作業機械 図3
  • 特許-作業機械 図4
  • 特許-作業機械 図5
  • 特許-作業機械 図6
  • 特許-作業機械 図7
  • 特許-作業機械 図8
  • 特許-作業機械 図9A
  • 特許-作業機械 図9B
  • 特許-作業機械 図9C
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-06-07
(45)【発行日】2024-06-17
(54)【発明の名称】作業機械
(51)【国際特許分類】
   E02F 9/26 20060101AFI20240610BHJP
   E02F 9/00 20060101ALI20240610BHJP
   G01C 21/28 20060101ALI20240610BHJP
   G01S 19/53 20100101ALI20240610BHJP
   G01S 19/43 20100101ALI20240610BHJP
【FI】
E02F9/26
E02F9/00 Z
G01C21/28
G01S19/53
G01S19/43
【請求項の数】 8
(21)【出願番号】P 2020218339
(22)【出願日】2020-12-28
(65)【公開番号】P2022103603
(43)【公開日】2022-07-08
【審査請求日】2023-10-17
(73)【特許権者】
【識別番号】000005522
【氏名又は名称】日立建機株式会社
(74)【代理人】
【識別番号】110001829
【氏名又は名称】弁理士法人開知
(72)【発明者】
【氏名】小竹 伸一
(72)【発明者】
【氏名】泉 枝穂
(72)【発明者】
【氏名】李 惠貞
【審査官】五十幡 直子
(56)【参考文献】
【文献】特開2020-144014(JP,A)
【文献】特開2015-072252(JP,A)
【文献】特開2020-200597(JP,A)
【文献】特開2021-195803(JP,A)
【文献】特許第7039746(JP,B1)
(58)【調査した分野】(Int.Cl.,DB名)
E02F 9/00-9/28
G01C 21/28
G01S 19/53
G01S 19/43
(57)【特許請求の範囲】
【請求項1】
旋回体と、
前記旋回体に取り付けられ複数のフロント部材が連結された作業装置と、
複数の測位衛星が発信する信号を受信する第1アンテナ及び第2アンテナと、
前記複数のフロント部材の姿勢情報をそれぞれ取得する複数の第1姿勢センサと、
前記旋回体の姿勢情報を取得する第2姿勢センサと、
前記第1アンテナ及び前記第2アンテナで受信された前記複数の測位衛星の信号に基づいて、前記第1アンテナから前記第2アンテナへの基線ベクトル演算し、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢情報に基づいて前記作業装置の姿勢を演算し、前記第2姿勢センサで取得された姿勢情報と前記基線ベクトルとに基づいて前記作業装置の方位を演算するコントローラとを備えた作業機械において、
前記コントローラには、複数のマスク領域データが記憶されており、
前記複数のマスク領域データには、それぞれ、前記作業装置の姿勢及び方位が対応付けられており、
前記複数のマスク領域データのそれぞれに対応付けられた前記作業装置の姿勢及び方位は、前記作業装置の姿勢及び方位を変数とする多次元座標系に設定されており、
前記コントローラは、
前記多次元座標系において、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢情報に基づいて演算された前記作業装置の姿勢と、前記第2姿勢センサで取得された姿勢情報と前記基線ベクトルに基づいて演算された前記作業装置の方位とに、距離が近い姿勢と方位とが対応付けられた2以上の所定数のマスク領域データを前記複数のマスク領域データの中から選択し、
前記第1アンテナで受信された前記複数の測位衛星の信号のうち、前記所定数のマスク領域データのそれぞれに従って選択した測位衛星から発信された信号に基づいて、前記第1アンテナの第1の位置を前記所定数演算し、
前記多次元座標系において、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢情報に基づいて演算された前記作業装置の姿勢と、前記第2姿勢センサで取得された姿勢情報と前記基線ベクトルに基づいて演算された前記作業装置の方位との位置から前記所定数のマスク領域データに対応付けられた前記作業装置の姿勢及び方位のそれぞれの位置までの距離を前記所定数演算し、
前記所定数の前記第1アンテナの第1の位置と、前記所定数の距離とに基づいて、前記第1アンテナの第2の位置を演算し、
前記第1アンテナの第2の位置と、前記第2姿勢センサで取得された姿勢情報とに基づいて、前記作業装置の位置を演算する
ことを特徴とする作業機械。
【請求項2】
請求項1の作業機械において、
前記コントローラは、前記所定数の前記第1アンテナの第1の位置のそれぞれに前記所定数の距離に基づく重み付けを行うことで前記第1アンテナの第2の位置を演算する
ことを特徴とする作業機械。
【請求項3】
請求項1の作業機械において、
前記複数のマスク領域データには、それぞれ、前記複数のフロント部材の姿勢と、前記作業装置の方位とが対応付けられている
ことを特徴とする作業機械。
【請求項4】
請求項3の作業機械において、
前記複数のフロント部材にはブームが含まれており、
前記複数のマスク領域データには、それぞれ、前記ブームの姿勢及び前記作業装置の方位を示す互いに異なる1組の値が対応付けられており、
前記複数のマスク領域データは、それぞれに対応付けられた前記1組の値に前記ブームの姿勢及び前記作業装置の方位を定めたときに、前記複数のフロント部材から前記ブームを除いたフロント部材が取り得る全ての姿勢において、前記ブームを除いたフロント部材が前記第1アンテナの上空を遮蔽する領域に基づいて決定されている
ことを特徴とする作業機械。
【請求項5】
請求項4の作業機械において、
前記複数のマスク領域データに対応付けられた前記ブームの姿勢及び前記作業装置の方位は、前記ブームの角度及び前記作業装置の方位の2つを変数とする二次元座標系に設定されており、
前記コントローラは、
前記複数の第1姿勢センサのうち前記ブームに取り付けられた姿勢センサで取得された姿勢情報と前記第2姿勢センサで取得された姿勢情報とに基づいて前記ブームの角度を演算し、
前記複数のマスク領域データに対応付けられた前記ブームの角度及び前記作業装置の方位のうち、前記二次元座標系において、前記複数の第1姿勢センサのうち前記ブームに取り付けられた姿勢センサで取得された姿勢情報と前記第2姿勢センサで取得された姿勢情報とに基づいて演算された前記ブームの角度と、前記第2姿勢センサで取得された姿勢情報と前記基線ベクトルとに基づいて演算された前記作業装置の方位とからの距離が近いものを前記所定数選択し、
前記第1アンテナで受信された前記複数の測位衛星の信号のうち前記所定数のマスク領域データのそれぞれに従って選択した測位衛星から発信された信号に基づいて、前記第1アンテナの第1の位置を前記所定数演算し、
前記二次元座標系において、前記複数の第1姿勢センサのうち前記ブームに取り付けられた姿勢センサで取得された姿勢情報と前記第2姿勢センサで取得された姿勢情報とに基づいて演算された前記ブームの角度と、前記第2姿勢センサで取得された姿勢情報と前記基線ベクトルとに基づいて演算された前記作業装置の方位との位置から、前記所定数のマスク領域データに対応付けられた前記ブームの角度及び前記作業装置の方位のそれぞれの位置までの距離を前記所定数演算し、
前記所定数の前記第1アンテナの第1の位置のそれぞれに前記所定数の距離に基づく重み付けを行うことで前記第1アンテナの第2の位置を演算する
ことを特徴とする作業機械。
【請求項6】
請求項5の作業機械において、
前記所定数は4であることを特徴とする作業機械。
【請求項7】
請求項1の作業機械において、
基準局から送信されるGNSS補正データを受信するための無線機をさらに備え、
前記コントローラは、前記第1アンテナ及び前記第2アンテナで受信された前記複数の測位衛星の信号のうち前記コントローラに記憶された前記複数のマスク領域データに従って選択した測位衛星から発信された信号と、前記GNSS補正データとに基づいて、前記第1アンテナの第1の位置と、前記基線ベクトルとを演算することを特徴とする作業機械。
【請求項8】
請求項1の作業機械において、
前記複数のマスク領域データに対応付けられた前記複数のフロント部材のそれぞれの姿勢と前記作業装置の方位とは、前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位の合計n個を変数とするn次元座標系に設定されており、
前記コントローラは、
前記第1アンテナの第1の位置及び前記基線ベクトルと、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢情報とに基づいて、前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位を演算し、
前記複数のマスク領域データに対応付けられた前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位のうち、前記n次元座標系において、前記第1アンテナの第1の位置及び前記基線ベクトルと、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢とに基づいて演算された前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位からの距離が近いものを前記所定数選択し、
前記第1アンテナで受信された前記複数の測位衛星の信号のうち前記所定数のマスク領域データのそれぞれに従って選択した測位衛星から発信された信号に基づいて、前記第1アンテナの第1の位置を前記所定数演算し、
前記n次元座標系において、前記第1アンテナの第1の位置及び前記基線ベクトルと、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢とに基づいて演算された前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位の位置から前記所定数のマスク領域データに対応付けられた前記複数のフロント部材のそれぞれの角度及び前記作業装置の方位のそれぞれの位置までの距離を前記所定数演算し、
前記所定数の前記第1アンテナの第1の位置のそれぞれに前記所定数の距離に基づく重み付けを行うことで前記第1アンテナの第2の位置を演算する
ことを特徴とする作業機械。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は多関節型の作業装置とGNSS受信機を備える作業機械に関する。
【背景技術】
【0002】
油圧ショベルを含む作業機械には、作業機械の位置及び方位を演算するために2つのGNSSアンテナ(メインアンテナ及びサブアンテナ)とGNSS受信機を備えたものがある。作業機械の位置及び方位は作業機械が備える作業装置の位置の演算などに利用される。
【0003】
例えば特許文献1には、一対のアンテナを支持するための一対のアンテナ支持部を備え、前記一対のアンテナ支持部は、上面視において、上部旋回体の旋回中心から車幅の1/4以上離れ、かつ、機械室上に形成される通路と当該通路に連なる階段とのうち旋回中心から最も離れたものよりも旋回中心の近くに配置されている油圧ショベルが開示されている。
【0004】
油圧ショベルは市街地や急斜面付近で作業する場合があるため、建造物や地表面がGNSSアンテナよりも高い場所に位置することがある。そのためGNSSアンテナ上空の視界が遮蔽されるおそれがある。アンテナ上空の遮蔽は、GNSS衛星からGNSSアンテナに到達する電波を妨げ、測位精度の低下を招くおそれがあるため望ましくない。
【0005】
そこで、特許文献2には、GPS受信機の周囲の電波障害物の配置などに基づいて定めたGPS衛星の選択規則を表すマスク情報(選択規則情報)を所定地域毎に記憶するデータベースから、GPS信号の受信地域に対応するマスク情報を取得し、その取得したマスク情報に従って、天空を航行する複数のGPS衛星の中から、捕捉対象とするGPS衛星を選択するGPS受信機の制御装置が開示されている。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2014/076761号
【文献】特開2004-184121号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、特許文献2で提案されているGPS受信機の制御装置を一般的な油圧ショベルに適用する場合、以下のような課題が生ずる。
【0008】
例えば油圧ショベルでは、下部走行体を停止させたまま上部旋回体や作業装置を動作させることによって種々の施工作業を実施する。また、高い仕上げ精度が求められる施工面に対しては、一回の掘削量を少なくして繰り返し掘削動作を行うことで最終施工面(目標施工面)まで少しずつ掘り進むといった手法により仕上げ精度の向上を図ることが行われる。かかる動作においては、アンテナ上空の同じ位置が作業装置によって短時間に繰り返し遮蔽されることで、当該位置に存在する衛星が繰り返し測位に使用できなくなる状況が発生する。このような状況においては、特許文献2に見られるように上空視界を有限数の領域に分割して設定されるマスクを想定すると、作業状況によっては作業装置による遮蔽を表現するマスク領域が短時間のうちに頻繁に変化するおそれがある。マスク領域が短時間に頻繁に変化すると、それに伴って測位結果が短時間に大きく変化して測位精度の悪化を引き起こす場合がある。
【0009】
例えば図2に示すように、油圧ショベル1が備える作業装置6の姿勢が第1姿勢20(例えばブームを最大に上げた姿勢)である時に設定されるマスク領域を第1マスク領域27とし、作業装置6の姿勢が第2姿勢21(第1姿勢からブームを下げた姿勢)である時に設定されるマスク領域を第2マスク領域24とする。図2の右側の図には、この時に測位に用いることが可能な衛星配置26を示している。衛星配置26のうち測位への寄与度が特に高い衛星26aが、領域25(作業装置の姿勢が第1姿勢20の時にはマスクされ、第2姿勢21の時にはマスクされない領域)に位置していたとする。この場合、作業装置が第1姿勢20と第2姿勢21を繰り返すときに、衛星26aはマスク領域の変化に応じて可視・不可視が頻繁に変化し、ひいては衛星26aの測位への使用・不使用が頻繁に切り替わることとなる。かかるマスク領域の頻繁な変更は測位に用いる衛星グループの組み合わせを短時間に変化させ得るため、測位結果が短時間に大きく変化して測位精度の悪化を引き起こす場合がある。
【0010】
なお、マスク領域を特許文献2において提案されているような「上空視界を有限数の領域に分割したマスク」ではなく、図3に示すように「実際に上空を遮蔽している物体の射影形状を正確に反映したマスク(32)」に変更した場合について触れる。作業装置6の姿勢が第1姿勢20(例えばブームを最大に上げた姿勢)である時に設定されるマスク領域を第1マスク領域37とし、作業装置6の姿勢が第2姿勢21(第1姿勢からブームを下げた姿勢)である時に設定されるマスク領域を第2マスク領域34とする。また、先の図と同様に衛星26aが、領域35(作業装置の姿勢が第1姿勢20の時にはマスクされ、第2姿勢21の時にはマスクされない領域)に位置していたとする。しかし、このようにマスク領域を変更しても状況改善は見込まれない。なぜなら上記において問題となっているのは「作業装置によりアンテナの上空の同じ領域が短時間に繰り返し遮蔽されることによって、その領域に位置する衛星の測位への使用・不使用が短時間に切り替わる」点である。そのため、作業装置6が最大の遮蔽範囲を与える状況でのみ遮蔽される衛星26aを測位に使用せざるを得ない場合には、測位に用いる衛星グループの組み合わせが短時間に変化することになり、測位精度の悪化を引き起こすおそれがある。
【0011】
本発明の目的は、作業装置の姿勢変化に応じてマスク領域を変更しても、それに伴う測位結果の変化を抑制できる作業機械を提供することにある。
【課題を解決するための手段】
【0012】
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、旋回体と、前記旋回体に取り付けられ複数のフロント部材が連結された作業装置と、複数の測位衛星が発信する信号を受信する第1アンテナ及び第2アンテナと、前記複数のフロント部材の姿勢情報をそれぞれ取得する複数の第1姿勢センサと、前記旋回体の姿勢情報を取得する第2姿勢センサと、前記第1アンテナ及び前記第2アンテナで受信された前記複数の測位衛星の信号に基づいて、前記第1アンテナから前記第2アンテナへの基線ベクトルとを演算し、前記複数の第1姿勢センサ及び前記第2姿勢センサで取得された姿勢情報に基づいて前記作業装置の姿勢を演算し、前記第2姿勢センサで取得された姿勢情報と演算した前記基線ベクトルとに基づいて前記作業装置の方位を演算するコントローラとを備えた作業機械において、前記コントローラには、複数のマスク領域データが記憶されており、前記複数のマスク領域データには、それぞれ、前記作業装置の姿勢及び方位が対応付けられており、前記複数のマスク領域データのそれぞれに対応付けられた前記作業装置の姿勢及び方位は、前記作業装置の姿勢及び方位を変数とする多次元座標系に設定されており、前記コントローラは、前記多次元座標系において、前記複数のマスク領域データの中から、演算した前記作業装置の姿勢及び方位と距離が近い姿勢と方位が対応付けられた2以上の所定数のマスク領域データを選択し、前記第1アンテナで受信された前記複数の測位衛星の信号のうち、選択された前記所定数のマスク領域データのそれぞれに従って選択した測位衛星から発信された信号に基づいて、前記第1アンテナの第1の位置を前記所定数演算し、前記多次元座標系において、演算した前記作業装置の姿勢及び方位の位置から前記所定数のマスク領域データに対応付けられた前記作業装置の姿勢及び方位のそれぞれの位置までの距離を前記所定数演算し、演算した前記所定数の前記第1アンテナの第1の位置と、演算した前記所定数の距離とに基づいて、前記第1アンテナの第2の位置を演算し、演算した前記第1アンテナの第2の位置と、前記第2姿勢センサで取得された姿勢とに基づいて、前記作業装置の位置を演算する。
【発明の効果】
【0013】
本発明によれば、作業装置の姿勢変化に応じてマスク領域を変更しても、それに伴う測位結果の変化を抑制できる。
【図面の簡単な説明】
【0014】
図1】本発明の実施形態に係る油圧ショベルの側面図。
図2】フロント作業装置の姿勢に応じて、設定されるマスク領域が変更される点を説明する図。
図3】フロント作業装置の姿勢に応じて、設定されるマスク領域が変更される点を説明する他の図。
図4図1の油圧ショベルに搭載された車載コントローラ及びGNSS受信機の機能ブロック図。
図5図4におけるメインアンテナ可用衛星判定部214とメインアンテナ位置演算部217の詳細図。
図6】ブーム角と方位角の2つを変数とする二次元座標系上において、ブーム角の範囲をα個の角度値でα-1個の領域に等分割しつつ、方位角の範囲をβ個の角度値でβ-1個の領域に等分割して作成した格子の一例を示す図。
図7】メインアンテナ50Aのマスク領域としてDB213に記録されているα×β個のマスク領域のうち3つのマスク領域の一例を示す図。
図8】姿勢統合部223から入力した実際のブームの角度と上部旋回体の方位角(IMU方位)の組み合わせが(θ,φ)のときに、これに対応する点S(θ,φ)を図6の格子上にプロットして拡大表示した図。
図9A】本実施形態に係る車載コントローラ40及びGNSS受信機51で実行されるフロント作業装置6の位置および方位の演算処理の一例をフローチャートでまとめた図。
図9B】本実施形態に係る車載コントローラ40及びGNSS受信機51で実行されるフロント作業装置6の位置および方位の演算処理の一例をフローチャートでまとめた図。
図9C】本実施形態に係る車載コントローラ40及びGNSS受信機51で実行されるフロント作業装置6の位置および方位の演算処理の一例をフローチャートでまとめた図。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について図面を用いて説明する。以下の実施の形態は、作業機械としてクローラ式の油圧ショベルに本発明を適用したものであり、バケット先端と施工目標面の位置関係を運転室内のモニタに表示するマシンガイダンス機能と、バケット先端が施工目標面を超えないように作業装置の動作(すなわちフロント部材を駆動するアクチュエータの動作)に制限をかけるマシンコントロール機能とを有している。なお、各図において同じ部分には同じ符号を付し、重複した説明は適宜省略するものとする。
【0016】
<対象機械>
図1は本発明の実施形態に係る油圧ショベル1及びGNSS基準局8の側面図である。この図に示す油圧ショベル1は、クローラ式の走行体(下部走行体)2と、走行体2の上部に旋回可能に取り付けられた旋回体(上部旋回体)3と、一端(基端)が旋回体3の前方に取り付けられ複数のフロント部材6A、6B、6Cを連結してなるフロント作業装置(単に「作業装置」と称することもある)6とを備えている。図中の符号30は地面を表す。
【0017】
フロント作業装置6は、一端が旋回体3に連結されたブーム6Aと、一端がブーム6Aの他端に連結されたアーム6Bと、一端がアーム6Bの他端に連結されたバケット6Cとを有しており、これら各フロント部材6A、6B、6Cは、それぞれ上下方向に回動するように構成されている。
【0018】
また、各フロント部材6A、6B、6Cの回動を行う駆動アクチュエータとして、ブームシリンダ11A、アームシリンダ11B、バケットシリンダ11Cが備えられている。旋回体3は図示しない旋回モータによって旋回中心軸Oを中心に旋回駆動される。
【0019】
ブーム6A、アーム6B及びバケット6Cは、フロント作業装置6を含む共通の平面上で動作し、以下ではこの平面を動作平面と称することがある。つまり動作平面とは、ブーム6A、アーム6B及びバケット6Cの回動軸に直交する平面であり、例えばブーム6A、アーム6B及びバケット6Cの幅方向の中心(すなわち各フロント部材6A、6B、6Cの回動軸の中心)に設定できる。本実施形態では、ブーム6A、アーム6B及びバケット6Cの幅方向の中心を通過する面を動作平面とする。
【0020】
<姿勢センサ>
油圧ショベル1には、フロント作業装置6と旋回体3の姿勢を検出するための複数の姿勢センサ75A、75B、75C、23が備えられている。本実施形態では各姿勢センサに、角度(または角速度)と加速度を検出可能な慣性計測装置(IMU:Inertial Measurement Unit)を用いている。これら姿勢センサのうち、ブーム6Aにはブーム姿勢センサ75Aが、アーム6Bにはアーム姿勢センサ75Bが、バケット6Cにはバケット姿勢センサ75Cが取り付けられている。また、旋回体3には旋回体姿勢センサ23が取り付けられており、それにより旋回体3の傾斜角度(ピッチ角及びロール角)、旋回速度及び旋回角度を計測できる。姿勢センサ75A、75B、75C、23の出力(検出信号)は、接続線を介して車載コントローラ40に入力されている。なお、フロント作業装置6の姿勢センサとしては、各フロント部材の回動角度を検出する角度センサを用いても良い。本稿では、フロント作業装置6の3つの姿勢センサ75A、75B、75Cを第1姿勢センサ、旋回体3の姿勢センサ23を第2姿勢センサと称することがある。
【0021】
旋回体3には、オペレータによって操作される操作装置(図示せず)、バケット6Cと施工目標面の位置関係等が表示されるモニタ60が設けられた運転席4と、複数の測位衛星(GNSS衛星)が発信する衛星信号を受信するための2つのGNSSアンテナ50A,50B(メインアンテナ50A,サブアンテナ50Bと称することもある)と、基準局8から送信されるGNSS補正データ301(図4参照)を受信するための無線機7と、2つのGNSSアンテナ50A、50Bのうち少なくとも1つのGNSSアンテナの地理座標系(グローバル座標系)における位置座標と、2つのGNSSアンテナ50A、50B間の方位(すなわち旋回体3の方位)とを演算するGNSS受信機51と、GNSS受信機51で演算された位置及び方位と、複数の姿勢センサ75A、75B、75C、23の検出信号とに基づいて、フロント作業装置6上の所望の位置座標を演算するコンピュータである車載コントローラ40とが備えられている。なお、本実施形態では2つのGNSSアンテナ50A、50Bの位置及び旋回体3の方位角を1つのGNSS受信機で演算する構成を採っているが、2つのGNSSアンテナ50A、50Bのそれぞれに対応する2つのGNSS受信機51,51を搭載する構成を採っても良い。
【0022】
<GNSS基準局>
油圧ショベル1の無線機7に対してGNSS補正データを無線送信するGNSS基準局8について説明する。地理座標系における座標位置が既知であるGNSS基準局8には、複数の測位衛星(GNSS衛星)から衛星信号を受信するためのGNSSアンテナ80と、GNSSアンテナ80で受信された衛星信号に基づいてGNSSアンテナ80の地理座標系における位置座標を演算するGNSS受信機81と、GNSSアンテナ80で受信された複数の衛星信号に基づいて無線機7に無線送信するためのGNSS補正データ301(図4参照)を生成する基準局コントローラ82と、基準局コントローラ82で生成されたGNSS補正データを無線機7に送信する無線機87が備えられている。GNSS基準局アンテナ80に接続したGNSS受信機81は、基準局コントローラ82を経由して無線機87よりGNSS補正データを無線送信する。無線機7で受信されたGNSS補正データをGNSS受信機51での測位に利用するとセンチメートル級の高精度な測位が可能となる。
【0023】
<GNSSアンテナ50の配置>
2つのGNSSアンテナ50A、50Bは、それぞれマスト(アンテナ支持部材)52a、52bを介して上部旋回体3に固定されている。これら2つのGNSSアンテナ50A,50Bは、上部旋回体3の位置と方位とを計測するという目的を実現可能な限りにおいて、設置位置を問わない。
【0024】
2本のマスト52a、52bはそれぞれ上部旋回体3の上方でGNSSアンテナ50A、50Bを支持するためのポール状の支持部材である。本実施形態の2本のマスト52a、52bは、GNSSアンテナ50A、50Bと同様に設置位置を問わない。図1に示した例では、各マスト52a、52bの基端は上部旋回体3の上面に固定されており、各マスト52a、52bは当該基端から略垂直に伸びている。そして各マスト52a、52bの先端には、中心部が軸方向に膨らんだ略円盤状の外形を有するGNSSアンテナ50A、50Bが取り付けられており、各マスト52a、52bは自身の中心軸心が各GNSSアンテナ50A、50Bの中心軸心を通過するように各アンテナ50A、50Bを支持している。なお、GNSSアンテナ50A、50Bの支持部材は、ポール状のマスト52a、52bに限らず、種々の形状の支持部材による支持が可能である。
【0025】
<GNSS受信機51>
GNSS受信機51は、2つのGNSSアンテナ50A、50Bで受信される複数の衛星信号と、無線機7で受信されたGNSS補正データとに基づいて、2つのGNSSアンテナ50A、50Bのうち少なくとも1つのGNSSアンテナ(例えば、GNSSアンテナ50B)の地理座標系(グローバル座標系)における位置座標と、メインアンテナ50Aからサブアンテナ50Bに向かうベクトル(基線ベクトル)の地理座標系(グローバル座標系)における方位とを演算する。旋回体3における2つのGNSSアンテナ50A,50Bの取り付け位置は既知であるため、基線ベクトルからは旋回体3(フロント作業装置6)の方位が演算できる。
【0026】
複数の測位衛星からは送信時刻情報を含んだ電磁波(衛星信号)が送信されている。GNSS受信機51は、各GNSS衛星からの電磁波の受信時刻とその電磁波に含まれた送信時刻とから到達時間差を演算し、その到達時間差を基に各GNSS衛星とGNSSアンテナ50A、50B、80との距離を推測してGNSSアンテナ50A、50B、80の位置を算出する。GNSS衛星は精巧な時計を搭載しており、各衛星からの電磁波を復調して得られる到達時間差に電磁波の速度を乗算することにより各GNSS衛星とGNSSアンテナ間の距離が算出される。
【0027】
算出した各GNSS衛星と各GNSSアンテナとの距離には誤差が含まれ得る。この誤差は、GNSS衛星とGNSSアンテナ間に存在する電離層や水蒸気によって発生する電磁波の速度変化が方位や仰角が異なる各GNSS衛星の位置毎に異なることや、各GNSS衛星より電磁波で送られる軌道情報が実際の位置と若干異なることや、各GNSS衛星間の時計情報に若干の誤差があること等の要因により発生する。
【0028】
このような誤差はRTK-GNSS(リアルタイムキネマティックGNSS)を利用することで低減できる。例えば、油圧ショベル1の近くに(数km以内)設置した絶対位置が既知の基準局GNSSアンテナ80の測位とGNSS補正データの演算を基準局GNSS受信機81で行い、その補正データを無線機87にてショベル1の受信機51に送信する。そして2つのGNSSアンテナ50A(50B)、80間の絶対位置ではなく相対位置(ベクトル)を測定することで誤差を低減することができる。
【0029】
無線機87より送信された補正データは、油圧ショベル1に搭載された無線機7で受信されGNSS受信機51に送信される。GNSS受信機51ではGNSSアンテナ50A(移動局)で受信した衛星信号と補正データより得た基準局GNSSアンテナ80の信号を比較演算することにより、基準局GNSSアンテナ80とGNSSアンテナ50A間の相対的な位置(方向と距離)を算出する。このとき、補正データとして基地局アンテナ80が受信した衛星からの衛星信号の搬送波位相情報を送信し、これを移動局アンテナ50Aが受信した衛星信号の搬送波位相情報とGNSS受信機51で比較演算する。これにより数cmオーダーの移動局アンテナ50Aの測位が可能となり、ほぼ一点に収束した高精度の相対測位が可能となる。さらに、前述した補正データのなかに基準局GNSSアンテナ80の位置情報を含めることで、移動局であるGNSSアンテナ50Aの絶対位置を求めることが可能となる。また、基準局GNSSアンテナ80とGNSSアンテナ50Aの距離が近距離(一般的に数km以内)の場合は、前述した誤差要因(電磁波の速度変化、各GNSS衛星間の時計情報誤差)をよく相殺することが可能となる。2つのGNSSアンテナ50A、50B間の方位や、もう1つのGNSSアンテナ50Bの位置についても同様に演算できる。GNSS受信機51はそれぞれのGNSSアンテナ50A、50Bの緯度、経度、ジオイド高さを含むNMEAフォーマットなどでGNSSアンテナ50A、50Bの測位結果を出力可能である。
【0030】
また、本実施形態では基準局GNSSアンテナ80から補正データを無線送信して上部旋回体3やフロント作業装置6の方向を演算するシステムについて説明したが、VRS(仮想基準点方式)や準天頂衛星等の補正データをネットワークで配信するサービスを用いても良い。
【0031】
<車載コントローラ>
図4図1の油圧ショベルに搭載された車載コントローラ40及びGNSS受信機51の機能ブロック図である。
【0032】
車載コントローラ40は、GNSS受信機51で演算された2つのGNSSアンテナ50A、50Bの位置と旋回体3の方位と、複数の姿勢センサ75A,75B,75C,23の検出信号に基づいて、フロント作業装置6を構成する各フロント部材6A,6B,6Cの位置座標及びフロント作業装置6の方位(上部旋回体3の方位)を演算するコンピュータである。
【0033】
車載コントローラ40は、演算処理装置(例えばCPU(図示せず))、記憶装置(例えば、ROM,RAM等の半導体メモリ(図示せず))、インタフェース(入出力装置(図示せず))を備えており、記憶装置内に予め保存されているプログラム(ソフトウェア)を演算処理装置で実行し、プログラム内で規定されているデータとインタフェースから入力されたデータに基づいて演算処理装置が演算処理を行い、インタフェースから外部に信号(演算結果)を出力する。なお、GNSS受信機51,81も車載コントローラ40と同種のハードウェアを備えることができる。また、記憶装置はコントローラ40から独立した装置としても良い。
【0034】
車載コントローラ40は、インタフェースを介して、GNSS受信機51、姿勢センサ75A,75B,75C,23,モニタ60(図4に示さず)、及び無線機7と接続されており、データの入出力が可能になっている。
【0035】
車載コントローラ40の記憶装置には、例えば、油圧ショベル1の施工対象である施工目標面の位置を定義した施工目標面データと、車体形状寸法データと、演算処理装置によって実行される各種プログラム等が記憶されている。
【0036】
車載コントローラ40は、記憶装置内に格納されたプログラムを実行することで、作業装置姿勢計測部116と、上部旋回体姿勢計測部115と、姿勢統合部223と、作業装置遮蔽領域マスクデータベース(DB)213と、三次元データ受信部216と、遮蔽物三次元データ記録部224と、メイン電波遮蔽領域設定部212と、サブ電波遮蔽領域設定部226と、メインアンテナ演算結果統合部220と、メインアンテナ位置精度評価部219と、作業機械位置・方位出力部221と、IMU方位精度評価部118と、作業機械方位精度評価部222と、基線ベクトル精度評価部218として機能する。
【0037】
これら各部の相互作用により発揮される機能の一部として、車載コントローラ40は、メインアンテナ50Aの位置及び基線ベクトルと、複数の姿勢センサ75A,75B,75C,23で取得された姿勢とに基づいて、フロント作業装置6の姿勢及び方位を演算し、フロント作業装置6の姿勢及び方位を変数とする多次元座標系において、複数のマスク領域データ(後述)の中から、演算したフロント作業装置6の姿勢及び方位と距離が近い姿勢と方位が対応付けられた2以上の所定数(例えば4つ)のマスク領域データを選択し、メインアンテナ50Aで受信された複数の測位衛星の信号のうち、選択された前記所定数のマスク領域データのそれぞれに従って選択した測位衛星から発信された信号に基づいて、メインアンテナ50Aの位置を前記所定数演算し、前記多次元座標系において、演算したフロント作業装置6の姿勢及び方位の位置(例えば、後述の点S(θ,φ)の位置)から前記所定数のマスク領域データに対応付けられたフロント作業装置6の姿勢及び方位のそれぞれの位置(例えば、後述の点S、S、S、Sの位置)までの距離(例えば、後述の|SS|、|SS|、|SS|、|SS|)を前記所定数演算し、演算した前記所定数のメインアンテナ50Aの第1の位置(例えば、後述のQA,QB,QC,QD)と、演算した前記所定数の距離(例えば、後述の|SS|、|SS|、|SS|、|SS|)とに基づいてメインアンテナ50Aの第2の位置を演算する。
【0038】
GNSS受信機51は、メインアンテナ概位置算出部201と、メインアンテナ可用衛星判定部214と、メインアンテナ位置演算部217と、基線ベクトル算出部225と、サブアンテナ可用衛星判定部215として機能する。
【0039】
図4において、基準局8から送信される補正データ301は、無線機7にて受信された後、GNSSアンテナ(メイン)50Aが受信した複数の測位衛星の電波と合わせて、受信機51内のメインアンテナ概位置算出部201及びメインアンテナ位置演算部217に送信され、それぞれでGNSSアンテナ(メイン)50Aの測位演算に用いられる。
【0040】
(上部旋回体姿勢計測部115)
上部旋回体姿勢計測部115は、上部旋回体3に搭載された姿勢センサ(IMU)23から出力される検出データに基づいて、上部旋回体3のロール角度、ピッチ角度、旋回角度、それらの角速度、方位角(IMU方位)を演算し、これらのデータを姿勢統合部223及びIMU方位精度評価部118に送信する。方位角(IMU方位)は、例えば、直近に演算された基線ベクトルと、姿勢センサ23の検出データとに基づいて演算できる。具体的には、方位角(IMU方位)は、直近に基線ベクトルから演算された上部旋回体3(フロント作業装置6)の方位角に対して、姿勢センサ23を利用して演算される上部旋回体3の旋回角の変化分を追加することで演算できる。
【0041】
(作業装置姿勢計測部116)
作業装置姿勢計測部116は、フロント作業装置6の各フロント部材6A,6B,6Cに取り付けられた姿勢センサ75A,75B,75Cの検出データに基づいて、フロント作業装置6の姿勢を演算し、姿勢統合部223に出力する。
【0042】
(姿勢統合部223)
姿勢統合部223は、上部旋回体姿勢計測部115で演算された上部旋回体3の姿勢(ロール角度及びピッチ角度)と、作業装置姿勢計測部116で演算された各フロント部材6A,6B,6Cの姿勢とに基づいて、例えば水平面に対する上部旋回体3及びフロント作業装置6の姿勢(各フロント部材6A,6B,6Cの姿勢を含む)を演算して出力する。また、姿勢統合部223は、上部旋回体姿勢計測部115で演算された上部旋回体3の方位角(IMU方位)を出力する。
【0043】
(作業装置遮蔽領域マスクDB213)
作業装置遮蔽領域マスクDB213には、上部旋回体3に設定された座標系(上部旋回体基準座標系)において、2つのGNSSアンテナ50A,50Bごとに複数の遮蔽領域(以下、マスク領域と称することがある)のデータ(マスク領域データ)が保存されている。マスク領域データは、各GNSSアンテナ50A,50Bで受信された複数の測位衛星の信号のうち測位に利用する測位衛星の信号を規定するものであり、測位に利用される信号はマスク領域データに従って選択される。また、マスク領域データはGNSSアンテナ50A,50Bごとに規定されている。各GNSSアンテナ50A,50Bの複数のマスク領域データのそれぞれには、作業装置6の姿勢(即ち、各フロント部材6A,6B,6Cの角度)および上部旋回体3の方位角が対応付けられており、作業装置6のフロント部材6A,6B,6Cが当該対応付けられた姿勢及び方位角のときに各GNSSアンテナ50A,50Bの上空を遮蔽し得る領域が予め規定されている。なお、同一のアンテナ50A,50Bについての複数のマスク領域データでは、それぞれに対応付けられている作業装置6の姿勢(即ち、各フロント部材6A,6B,6Cの角度)および上部旋回体3の方位角に重複はなく、互いに独立しているものとする。作業装置遮蔽領域マスクDB213は例えば車載コントローラ40の記憶装置内の記憶領域に格納できる。なお、車載コントローラ40と通信可能に接続された外部記憶装置(例えば、磁気記憶装置や半導体メモリ)内に作業装置遮蔽領域マスクDB213を格納しても良い。
【0044】
以下では、説明を簡単にするために、上部旋回体3のロール角とピッチ角は考慮しないものとし、上部旋回体3の方位角と、フロント作業装置6を構成する複数のフロント部材6A,6B,6Cのうち上部旋回体3に最も近いフロント部材(本実施形態ではブーム6A、以下、便宜上ブーム6Aとする)の角度との組み合わせごとにマスク領域を設定した場合を例に挙げて説明する。
【0045】
ブーム6Aが取りうる角度範囲(例えば、最小ブーム角から最大ブーム角までの範囲)を有限数の領域に分割する境界値となる有限個数の角度値(例えば、θ、θ、…、θα)が予め定められている。同じように、上部旋回体3が取りうる方位角範囲(例えば、最小方位角から最大方位角までの範囲)を有限数の領域に分割する境界値を示す有限個数の角度値(例えば、φ、φ、…、φβ)が予め定められている。図6は、ブーム角と方位角の2つを変数とする二次元座標系上において、ブーム角の範囲をα個の角度値でα-1個の領域に等分割しつつ、方位角の範囲をβ個の角度値でβ-1個の領域に等分割した場合の例である。θはブーム角範囲の最小値とし、θαはブーム角範囲の最大値とし、φは方位角範囲の最小値とし、φβは方位角範囲の最小値とする。この場合、α×β個の格子点が存在し、2つのGNSSアンテナ50A,50Bのそれぞれに対応する格子点の数のマスク領域が作業装置遮蔽領域マスクDB213に記録されている。すなわち、α×β×2個のマスク領域が作業装置遮蔽領域マスクDB213に記録されている。
【0046】
本実施形態では、ブーム6Aの角度(ブーム角)θと上部旋回体3の方位角φを上記2種の角度値(θ,φ(但し、mは1からαの自然数、nは1からβの自然数))から一つずつ選択し、ブーム6Aの角度を選択した角度値に固定したまま、複数のフロント部材6A,6B,6Cからブーム6Aを除いた残りのフロント部材6B,6Cがそれらの作動範囲においてメインアンテナ50A又はサブアンテナ50Bの上空視界を遮蔽し得る最大の領域をメインアンテナ50A又はサブアンテナ50Bの上空視界のマスク領域としている。この場合、ブーム6Aの角度と上部旋回体3の方位角の2点を有限個数の角度値から任意に1つずつ選択すると、選択されたブーム角と方位角の条件においてアンテナ上空視界を作業装置6が遮蔽しうる最大領域(最大遮蔽領域)が与えられる。このように定義される最大遮蔽領域を、各GNSSアンテナ50A,50Bについて、α個のブーム角度値(θ、θ、…、θα)とβ個の方位角度値(φ、φ、…、φβ)の全ての組み合わせ(合計α×β個)について測位に先立って求めておき、α×β個のマスク領域として作業装置遮蔽領域マスクDB213に記録しておく。各マスク領域には、他のマスク領域と異なるブーム角度θと方位角φが対応づけられることになる。
【0047】
図7はメインアンテナ50Aのマスク領域としてDB213に記録されているα×β個のマスク領域のうち3つのマスク領域の一例を示す図である。具体的には、ブーム角と方位角の組み合わせが、(θ1,φ1)、(θ1,φ2)、(θ2,φ1)のときの3つのマスク領域を示している。図の例ではメインアンテナ50Aを中心とする天空図にマスク領域(斜線を付した領域)を規定しており、各天空図において円の周方向が方位角を示し、円の半径方向が仰角を示す。なお、図6及び図7に示した例は一例に過ぎず、ブーム角と方位角の分割方法は不等間隔でも良く、何らかの関数を使って分割しても良い。
【0048】
(三次元データ保持・送信部102)
三次元データ保持・送信部102には、GNSSアンテナ50A,50Bを利用して衛星信号を受信する際に当該衛星信号の直接的な受信を阻害し得る油圧ショベル1の周囲に位置する障害物(例えば、地形や立体構造物)の三次元データ302が記憶されている。三次元データ保持・送信部102に記憶された障害物(遮蔽物とも称する)の三次元データ302は車載コントローラ40に出力される。三次元データ保持・送信部102としては、例えば、フラッシュメモリや記録メディア等の記憶装置(障害物三次元データ記憶装置)が利用可能であり、車載コントローラ40とデータ通信可能なサーバ上に搭載しても良い。三次元データ保持・送信部102は車載コントローラ40の外部に設置しても良いし、車載コントローラ40内の記憶装置内に記憶することで搭載しても良い(この場合、後述する三次元データ受信部216及び遮蔽物三次元データ記録部224は不要となる)。
【0049】
(三次元データ受信部216)
三次元データ受信部216は、三次元データ保持・送信部102から障害物の三次元データ302を受信する部分である。
【0050】
(遮蔽物三次元データ記録部224)
遮蔽物三次元データ記録部224は、車載コントローラ40の記憶装置内に割り当てられた記憶領域であり、三次元データ受信部216が受信した三次元データ302を保存する。遮蔽物三次元データ記録部224に記録された三次元データ302は、メインアンテナ可用衛星判定部214と、サブアンテナ可用衛星判定部215とに送信される。
【0051】
なお、油圧ショベル1の周囲に障害物が存在しない場合もあるため、三次元データ保持・送信部102、三次元データ受信部216および遮蔽物三次元データ記録部224は省略可能である。
【0052】
(メインアンテナ概位置算出部201)
メインアンテナ概位置算出部201は、無線機7が受信した補正データ301と、GNSSメインアンテナ50Aで受信された複数の衛星信号とに基づいて、フロント作業装置6や障害物に起因するマスク領域(遮蔽領域)を考慮しないメインアンテナ50Aの概算位置(概位置)を演算する。このメインアンテナ50Aの概算位置は、サブアンテナ用補正データとして利用されることがある。
【0053】
(メイン電波遮蔽領域設定部212)
メイン電波遮蔽領域設定部212は、メインアンテナ概位置算出部201で演算されたGNSSメインアンテナ50Aの概算位置と、姿勢統合部223から入力する上部旋回体3のロール角・ピッチ角・方位角(IMU方位)とに基づいて、メインアンテナ50Aの上空の衛星配置データを得る。
【0054】
また、メイン電波遮蔽領域設定部212は、姿勢統合部223から入力する実際の作業装置6の姿勢データ(各フロント部材6A,6B,6Cの角度データ)と上部旋回体3のロール角・ピッチ角・方位角(IMU方位)と、作業装置遮蔽領域マスクDB213に記憶されたメインアンテナ50A用の複数のマスク領域データの中から、実際の作業装置6の姿勢と上部旋回体3のロール角・ピッチ角・方位角(IMU方位)に類似する姿勢と方位角が対応付けられたマスク領域データを類似度が上位のものから所定数選択する。本実施形態の所定数は4であるがその他の数値でも良い。
【0055】
本実施形態の類似度の判定について図8を用いて説明する。本実施形態では、説明を簡略化するために、姿勢統合部223から入力したデータのうちブーム6Aの角度と上部旋回体3の方位角を類似度の判定に利用する。類似度の判定には図6の格子(つまり、ブーム角と上部旋回体方位角の2次元座標系)を利用する。図8は、姿勢統合部223から入力した実際のブーム6Aの角度と上部旋回体3の方位角(IMU方位)の組み合わせが(θ,φ)のときに、これに対応する点S(θ,φ)を図6の格子上にプロットして拡大表示した図である。本実施形態では、点Sからその周囲に位置する4つの格子点SA(θa,φa),SB(θb,φb),SC(θc,φc),SD(θd,φd)までの距離を基準にして類似度を判定し、当該距離が短い格子点ほど類似していると判定する。図8の例ではSA,SB,SC,SDの順番で距離が近く、この順番で類似度が高い。ところで、メインアンテナ可用衛星判定部214は、図5に示すように4つのメインアンテナ可用衛星判定部A214A,メインアンテナ可用衛星判定部B214B,メインアンテナ可用衛星判定部C214C,メインアンテナ可用衛星判定部D214Dを含んでいる。メイン電波遮蔽領域設定部212は、類似度が最も高い格子点SAに割り当てられているマスク領域データをメインアンテナ可用衛星判定部A214A(図5参照)に送信し、類似度が2番目に高い格子点SBに割り当てられているマスク領域データをメインアンテナ可用衛星判定部A214Bに送信し、類似度が3番目に高い格子点SCに割り当てられているマスク領域データをメインアンテナ可用衛星判定部A214Cに送信し、類似度が4番目に高い格子点SDに割り当てられているマスク領域データをメインアンテナ可用衛星判定部A214Dに送信する。つまり、4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dにはメイン電波遮蔽領域設定部212で選択された4つのマスク領域データ(フロント作業装置6によるマスク領域データ)のうち異なるマスク領域データが送信される。
【0056】
(メインアンテナ可用衛星判定部214)
4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dは、それぞれ、メイン電波遮蔽領域設定部212から得られるGNSSメインアンテナ50Aの概算位置および上部旋回体3の方位角(IMU方位)と、遮蔽物三次元データ記録部224から得られる障害物の三次元データとに基づいて、GNSSメインアンテナ50Aを基準とした障害物の位置を特定し、それによりGNSSメインアンテナ50Aの上空を障害物が遮蔽し得る領域のデータ(障害物によるマスク領域データ)を演算する。ただし、油圧ショベル1の周囲に障害物が存在しない場合には障害物によるマスク領域データの演算は省略可能である。また、障害物によるマスク領域データの算出に際して、上部旋回体3のロール角・ピッチ角も考慮しても良い。
【0057】
また、4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dは、それぞれ、メイン電波遮蔽領域設定部212から送信されるフロント作業装置6によるマスク領域データと、上記の障害物によるマスク領域データとを組合わせて例えば地理座標系(グローバル座標系)上にメイン合成マスク領域データを生成し、生成したメイン合成マスク領域データを4つのメインアンテナ位置演算部217のうち対応するものに出力する。なお、メインアンテナ可用衛星判定部214A,214B,214C,214Dは、それぞれメインアンテナ位置演算部217A,217B,217C,217Dに対応する(つまり末尾のアルファベットが同じもの同士が対応している)。メイン合成マスク領域データが規定する合成マスク領域を除いた領域に位置する測位衛星は、GNSSメインアンテナ50Aの電気的中心に電波が直接届く、又は、測位において信頼性に足る信号を発信している衛星(可用衛星)となる。
【0058】
なお、前述の通りメインアンテナ可用衛星判定部A214A、メインアンテナ可用衛星判定部B214B、メインアンテナ可用衛星判定部C214C、メインアンテナ可用衛星判定部D214Dがメイン電波遮蔽領域設定部212から受信するマスク領域データはそれぞれ異なっているため、メインアンテナ位置演算部A217A、メインアンテナ位置演算部B217B、メインアンテナ位置演算部C217C、メインアンテナ位置演算部D217Dに出力されるメイン合成マスク領域データ(可用衛星データ)はそれぞれ異なり得る。
【0059】
(メインアンテナ位置演算部217)
メインアンテナ位置演算部217は、無線機7で受信された補正データ301と、GNSSメインアンテナ50Aで受信された衛星信号と、メインアンテナ可用衛星判定部214で生成されたメイン合成マスク領域データとに基づいて、メインアンテナ50Aの測位演算を行う。
【0060】
本実施形態のメインアンテナ位置演算部217は、図5に示すように、メインアンテナ位置演算部A217A、メインアンテナ位置演算部B217B、メインアンテナ位置演算部C217C、メインアンテナ位置演算部D217Dを内包する。これら4つの位置演算部217は、それぞれ独立してGNSSメインアンテナ50Aの測位演算を行う。例えば、メインアンテナ位置演算部A217Aは、GNSSメインアンテナ50Aで受信された複数の測位衛星の衛星信号のうち、測位衛星メインアンテナ可用衛星判定部A214Aから送信されるメイン合成マスク領域データが規定する選択規則に従って選択した測位衛星から発信された衛星信号と、補正データ301とに基づいて、メインアンテナ50Aの位置を演算し、その結果(測位結果QA)をメインアンテナ演算結果統合部220に出力する。メイン合成マスク領域データが規定する測位衛星の選択規則としては、例えば、メイン合成マスク領域データで規定されたマスク領域に存在する測位衛星をGNSSメインアンテナ50Aで衛星信号を受信した測位衛星から除き、残りの測位衛星を選択する規則がある。他のメインアンテナ位置演算部217B,217C,217Dでもこれと同様の処理が行われ、結果的に合計4つのメインアンテナ50Aの測位結果(測位結果QA,QB,QC,QD)がメインアンテナ演算結果統合部220に出力される。本稿ではメインアンテナ位置演算部217が演算する複数の測位結果QA,QB,QC,QDのそれぞれをメインアンテナ50Aの第1の位置と称することがある。
【0061】
(メインアンテナ演算結果統合部220)
メインアンテナ演算結果統合部220は、複数(4つ)のメインアンテナ位置演算部217A,217B,217C,217Dから出力される複数(4つ)の測位結果QA,QB,QC,QDに対して、メイン電波遮蔽領域設定部212で演算した類似度に基づく重み付けを行い、当該重み付け後の4つのメインアンテナ50Aの位置を単一のアンテナ位置に統合し、当該統合後のアンテナ位置をメインアンテナ50Aの位置(最終測位結果Q(t))としてメインアンテナ位置精度評価部219に出力する。本稿ではメインアンテナ演算結果統合部220が演算する最終測位結果Q(t)をメインアンテナ50Aの第2の位置と称することがある。
【0062】
ここで類似度に基づく重み付けの一例について説明する。下記式(1)は、実際のブーム角度及び上部旋回体方位角の組み合わせが図8に示したS(θ,φ)のとき、メインアンテナ位置演算部217で演算される4つのQA,QB,QC,QDに重み付けを行って、最終測位結果Q(t)に統合する場合に行う演算の一例である。下記式(1)において、|SS|は点Sから格子点Sまでの距離を示す(ただし、Xは、A,B,C,Dのいずれか)。式(1)の分母は、点Sから格子点Sまでの4つの距離の中から3つを選択する全ての組み合わせ(合計4つの組み合わせ)において、各組み合わせに含まれる3つの距離を乗算した値(例えば、|SS||SS||SS|)を全て加算した値になっている。分子は、4つの格子点から1つの格子点Sx(ただし、Xは、A,B,C,Dのいずれか)を除いた3つの格子点からSまでの距離と測位結果Qxと乗算し、その乗算値を4つ全ての測位結果について求め、その4つの乗算値を全て加算した値になっている。下記式(1)では、図8に示した座標系において、SとS、S、S、Sとの距離に応じて測位結果QA,QB,QC,QDに対して重みづけが行われ最終測位結果Q(t)が演算される。
【0063】
【数1】
【0064】
(メインアンテナ位置精度評価部219)
メインアンテナ位置精度評価部219は、メインアンテナ演算結果統合部220が出力するメインアンテナ50Aの位置データ(最終測位結果Q(t))が予め定められた精度を満たすかどうかを判定する部分であり、その判定結果とともにメインアンテナ50Aの位置データを作業機械位置・方位出力部221に出力する。
【0065】
(サブ電波遮蔽領域設定部226)
サブ電波遮蔽領域設定部226は、基線ベクトル算出部225で演算された基線ベクトルデータと、姿勢統合部223から入力する実際の作業装置6の姿勢データ(各フロント部材6A,6B,6Cの角度データ)と上部旋回体3の方位角(IMU方位)とに基づいて、作業装置遮蔽領域マスクDB213に記憶されたサブアンテナ50B用の複数のマスク領域データの中から、実際の作業装置6の姿勢と上部旋回体3の方位角(IMU方位)に最も類似する姿勢と方位角が対応付けられたマスク領域データ(フロント作業装置6によるマスク領域データ)を1つ選択する。このとき、上部旋回体3のロール角・ピッチ角も考慮して類似度を判定しても良い。
【0066】
本実施形態では、メイン電波遮蔽領域設定部212と同様に、サブ電波遮蔽領域設定部226は、実際のブーム角θと上部旋回体方位角φが規定する点Sの周囲に位置する4つの格子点SA(θa,φa),SB(θb,φb),SC(θc,φc),SD(θd,φd)のうち点Sからの距離が最も短い格子点(距離が最も近い格子点)を最も類似する姿勢と方位角と判定し(図8参照)、その姿勢と方位角が対応付けられたマスク領域データをサブアンテナ50Bのマスク領域(フロント作業装置6によるマスク領域データ)として設定する。
【0067】
(基線ベクトル算出部225)
基線ベクトル算出部225は、GNSSサブアンテナ50Bで受信された測位信号(電波)と、メインアンテナ概位置算出部201から出力されるサブアンテナ用補正データ(メインアンテナ50Aの概算位置)又はメインアンテナ演算結果統合部220から出力されるメインアンテナ位置(最終測位結果Q(t))と、サブアンテナ可用衛星判定部215から出力されるサブ合成マスク領域データ(後述)とに基づいて、基線ベクトルを演算する。基線ベクトルはメインアンテナ50Aからサブアンテナ50Bに向かうベクトルである。なお、メインアンテナ位置(最終測位結果Q(t))の入力がないときは、サブアンテナ用補正データ(メインアンテナ50Aの概算位置)を利用して基線ベクトルを演算できる。また、サブ合成マスク領域データの入力がないときはマスク領域(サブ合成マスク領域)を考慮することなく基線ベクトルを演算できる。
【0068】
(サブアンテナ可用衛星判定部215)
サブアンテナ可用衛星判定部215は、基線ベクトル算出部225で演算された基線ベクトルと、姿勢統合部223から入力される上部旋回体3の方位角(IMU方位)と、遮蔽物三次元データ記録部224から得られる障害物の三次元データとに基づいて、GNSSサブアンテナ50Bを基準とした障害物の位置を特定し、それによりGNSSサブアンテナ50Bの上空を障害物が遮蔽し得る領域のデータ(障害物によるマスク領域データ)を演算する。ただし、油圧ショベル1の周囲に障害物が存在しない場合には障害物によるマスク領域データの演算は省略可能である。また、障害物によるマスク領域データの算出に際して、上部旋回体3のロール角・ピッチ角も考慮しても良い。
【0069】
また、サブアンテナ可用衛星判定部215は、サブ電波遮蔽領域設定部226から送信されるフロント作業装置6によるマスク領域データと、上記の障害物によるマスク領域データとを組合わせて例えば地理座標系(グローバル座標系)上にサブ合成マスク領域データを生成し、生成したサブ合成マスク領域データを基線ベクトル算出部225に出力する。サブ合成マスク領域データが規定する合成マスク領域を除いた領域に位置する測位衛星は、GNSSサブアンテナ50Bの電気的中心に電波が直接届く、又は、測位において信頼性に足る信号を発信している衛星(可用衛星)となる。
【0070】
(基線ベクトル精度評価部218)
基線ベクトル精度評価部218は、基線ベクトル算出部225で演算される基線ベクトルの精度を評価する部分である。基線ベクトル精度評価部218は、基線ベクトル算出部225で演算された基線ベクトルに基づいて当該基線ベクトルの方位精度を算出し、基線ベクトルが規定する方位と基線ベクトルの精度を作業機械方位精度評価部222に送信する。
【0071】
(IMU方位精度評価部118)
IMU方位精度評価部118は、上部旋回体姿勢計測部115が出力するIMU方位の精度を評価する部分である。IMU方位精度評価部118は、車載コントローラ40が取得する下部走行体2の走行動作データ(下部走行体2の走行動作の有無)と、作業機械方位精度評価部222からフィードバック出力される基線ベクトルの方位ならびに精度とに基づいて、上部旋回体姿勢計測部115が出力するIMU方位の精度を算出し、IMUが出力する方位とその精度を作業機械方位精度評価部222に送信する。
【0072】
(作業機械方位精度評価部222)
作業機械方位精度評価部222は、基線ベクトル精度評価部218から出力される基線ベクトルの方位及び精度と、IMU方位精度評価部118から出力されるIMU方位及びその精度とを受信し、受信したこれらのデータに基づいて、基線ベクトルによる方位とIMU方位のうち上部旋回体3の方位(作業装置6の方位)を示す値として精度の高い方を選択して作業機械位置・方位出力部221に出力する。
【0073】
(作業機械位置・方位出力部221)
作業機械位置・方位出力部221は、メインアンテナ位置精度評価部219からの出力(メインアンテナ位置)と、作業機械方位精度評価部222からの出力(上部旋回体方位)とに基づいてフロント作業装置6の位置と方位を出力する。詳細な説明は省略するが、フロント作業装置6の位置と方位は、フロント作業装置6を制御する場合(目標施工面の上方にフロント作業装置6が保持されるように制御するマシンコントロール)や、フロント作業装置6と目標施工面の関係をモニタ60に表示する場合(マシンガイダンス)などに利用される。
【0074】
(フローチャート)
図9A図9B及び図9Cは、本実施形態に係る車載コントローラ40及びGNSS受信機51で実行されるフロント作業装置6の位置および方位の演算処理の一例をフローチャートでまとめた図である。メインアンテナ50Aの位置の演算は主にステップ801,802,803,804,805,806,820により行われ、フロント作業装置6の方位の演算(換言すると、IMU方位と基線ベクトルの方位のいずれかを利用してフロント作業装置6の方位を演算するか決定する処理)は主に残りのステップにより行われる。
【0075】
(メインアンテナ50Aの位置の演算処理)
まず、ステップ801において、車載コントローラ40は下部走行体2が停止しているかどうか判定する。下部走行体2が停止しているか否かは、例えば下部走行体2を駆動する油圧モータの動作がないことや当該油圧モータへの操作信号の出力がないことを検出すれば良い。NOの場合はステップ890に進み、車載コントローラ40によって車体停止判定の解除を行ったのちにステップ891に進み、当該時刻の測位処理を終了する(メインアンテナ50Aの位置とフロント作業装置6の方位の出力は行わない)。YESの場合はステップ802とステップ810(図9B)に進む。
【0076】
ステップ802において、作業装置姿勢計測部116は姿勢センサ75の出力値に基づいてフロント作業装置6の姿勢を演算し、上部旋回体姿勢計測部115は姿勢センサ(上部旋回体IMU)23の出力値と直近に演算された基線ベクトルとに基づいて上部旋回体3のIMU方位を演算する。姿勢統合部223は、作業装置姿勢計測部116から入力されるフロント作業装置6の姿勢と、上部旋回体姿勢計測部115から入力されるIMU方位とを組合わせて、メイン電波遮蔽領域設定部212、サブ電波遮蔽領域設定部226およびメインアンテナ演算結果統合部220に出力する。
【0077】
ステップS803において、メイン電波遮蔽領域設定部212は、作業装置遮蔽領域マスクDB213に記憶されているメインアンテナ50Aの複数のマスク領域データの中から、姿勢統合部223から入力される実際のブーム角及び上部旋回体方位角(IMU方位)に類似するブーム角及び上部旋回体方位角が割り当てられたマスク領域データ(フロント作業装置6によるマスク領域データ)を類似度が上位のものから4つ(所定数)選択して4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dに出力する。また、メイン電波遮蔽領域設定部212は、メインアンテナ概位置算出部201で演算されたメインアンテナ概算位置を4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dに出力する。
【0078】
4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dは、それぞれ、メインアンテナ50Aの概算位置および上部旋回体3の方位角(IMU方位)と、遮蔽物三次元データ記録部224から得られる障害物の三次元データとに基づいて、GNSSメインアンテナ50Aの上空を障害物が遮蔽し得る領域のデータ(障害物によるマスク領域データ)を演算する。さらに4つのメインアンテナ可用衛星判定部214A,214B,214C,214Dは、それぞれ、メイン電波遮蔽領域設定部212から送信されるフロント作業装置6による4つのマスク領域データのそれぞれに上記の障害物によるマスク領域データを組合わせて4つのメイン合成マスク領域データを生成し、生成した4つのメイン合成マスク領域データを4つのメインアンテナ位置演算部217A,217B,217C,217Dのうち対応するものに出力する。
【0079】
また、サブ電波遮蔽領域設定部226は、作業装置遮蔽領域マスクDB213に記憶されているサブアンテナ50Bの複数のマスク領域データの中から、姿勢統合部223から入力される実際のブーム角及び上部旋回体方位角に類似するブーム角及び上部旋回体方位角が割り当てられたマスク領域データ(フロント作業装置6によるマスク領域データ)を類似度が最上位のものを1つ選択してサブアンテナ可用衛星判定部215に出力する。
【0080】
サブアンテナ可用衛星判定部215は、基線ベクトルと、上部旋回体3の方位角(IMU方位)と、遮蔽物三次元データ記録部224から得られる障害物の三次元データとに基づいて、GNSSサブアンテナ50Bの上空を障害物が遮蔽し得る領域のデータ(障害物によるマスク領域データ)を演算する。ただし、油圧ショベル1の周囲に障害物が存在しない場合には障害物によるマスク領域データの演算は省略可能である。さらに、サブアンテナ可用衛星判定部215は、サブ電波遮蔽領域設定部226から送信されるフロント作業装置6によるマスク領域データと、上記の障害物によるマスク領域データとを組合わせてサブ合成マスク領域データを生成し、生成したサブ合成マスク領域データを基線ベクトル算出部225に出力する。
【0081】
上記のステップ803に係る各処理が完了したら、ステップ804およびステップ811に進む。
【0082】
ステップ804において、4つのメインアンテナ位置演算部217A,217B,217C,217Dは、それぞれ、メインアンテナ概位置算出部201から入力されるサブアンテナ用補正データと、GNSSメインアンテナ50Aで受信された衛星信号と、対応するメインアンテナ可用衛星判定部214から出力されたメイン合成マスク領域データとに基づいて、当該時刻におけるGNSSメインアンテナ50Aの位置(QA,QB,QC,QD)を演算し、メインアンテナ演算結果統合部220に送信する。4つ全てのメインアンテナ位置演算部217A,217B,217C,217Dにて測位結果QA,QB,QC,QDの送信が完了したらステップ805に進む。
【0083】
ステップ805において、メインアンテナ演算結果統合部220は、4つのメインアンテナ位置演算部217A,217B,217C,217Dにてメインアンテナ50Aの測位に用いられたマスク領域データ(フロント作業装置6によるマスク領域データ)に対応付けられたブーム角及び上部旋回体方位角と、姿勢統合部223から出力された実際のブーム角及び上部旋回体方位角との類似度(例えば2次元座標系における距離(|SS|、|SS|、|SS|、|SS|))に基づいて、各メインアンテナ位置演算部217A,217B,217C,217Dの測位結果QA,QB,QC,QDにそれぞれ重み付けを行って統合し、基線ベクトル算出部225及びメインアンテナ位置精度評価部219にメインアンテナ50Aの最終測位結果Q(t)を送信する。送信が完了したらステップ806に進む。
【0084】
ステップ806において、メインアンテナ位置精度評価部219は、メインアンテナ演算結果統合部220から送信される最終測位結果Q(t)の精度(メインアンテナ測位精度)が許容値を満足するかどうか判断し、その判断結果とともに最終測位結果Q(t)を作業機械位置・方位出力部221に送信する。送信が完了したらステップ820に進む。なお、メインアンテナ測位精度が許容値を満足するか否かは、例えば、最終測位結果Q(t)のバラツキ(例えば所定期間のバラツキ)が所定値以内(例えば1σ以内)に収まるか否かで判定できる。また、本実施形態では、以下に登場する各「精度」が「許容値」を満足するか否かについても同様にバラツキに基づいて判定するものとする。
【0085】
ステップ820において、メインアンテナ位置精度評価部219は、メインアンテナ演算結果統合部220から送信されたGNSSメインアンテナ50Aの測位精度が許容値を満たすか否かを判定する。許容値を満たす場合(YESの場合)はステップ821に進む。一方、許容値を満たさない場合(NOの場合)はステップ891に進み、当該時刻の測位処理を終了する(メインアンテナ50Aの位置とフロント作業装置6の方位の出力は行わない)
(フロント作業装置6(上部旋回体3)の方位の演算処理)
ステップ810において、IMU方位精度評価部118は、上部旋回体姿勢計測部115から送信されたIMU方位の精度が許容値を満足するかどうか判断し、その判断結果(合否結果)とともにIMU方位と精度とを作業機械方位精度評価部222に送信する。
【0086】
ステップ811において、基線ベクトル算出部225は、メインアンテナ概位置算出部201が出力したサブアンテナ用補正データと、サブアンテナ50Bで受信された測位信号と、直近に(例えば1制御周期前の処理(時刻T=t-1)で)メインアンテナ演算結果統合部220が算出したメインアンテナ位置(最終測位結果Q(t))と、そのときに(例えば1制御周期前の処理(時刻T=t-1))サブアンテナ可用衛星判定部215が出力したサブ合成マスク領域データとに基づいて、基線ベクトルを演算し、それを基線ベクトル精度評価部218に送信する。送信が完了したらステップ812に進む。
【0087】
ステップ812において、基線ベクトル精度評価部218は、基線ベクトル算出部225から送信された基線ベクトルの方位の精度が許容値を満足するかどうか判断し、その判断結果(合否結果)とともに基線ベクトルの方位とその精度を作業機械方位精度評価部222に送信する。
【0088】
ステップ810ならびにステップ812が完了したら、ステップ813において、作業機械方位精度評価部222は、IMU方位精度評価部118から送信されたIMU方位とその精度と、基線ベクトル精度評価部218から送信された基線ベクトルの方位とその精度とを受信する。
【0089】
ステップ813ならびにステップ820が完了したら、ステップ821において、作業機械方位精度評価部222は、ステップ813で受信した基線ベクトルの方位の精度が許容値を満たすか否かを判断する。許容値を満たす場合(YESの場合)はステップ822Aに進み、許容値を満たさない場合(NOの場合)はステップ822Bに進む。
【0090】
ステップ822Aにおいて、作業機械方位精度評価部222は、ステップ813で受信したIMU方位の精度が許容値を満たすか否かを判断する。許容値を満たす場合(YESの場合)はステップ823に進む。一方、許容値を満たさない場合(NOの場合)はステップ841に進み、ステップ805で取得されたGNSSメインアンテナ50Aの測位結果と、ステップ811で演算された基線ベクトルとに基づいてフロント作業装置6の位置と方位を算出し、当該時刻における測位処理を終了する。
【0091】
ステップ822Bにおいて、作業機械方位精度評価部222は、ステップ813で受信したIMU方位の精度が許容値を満たすか否かを判断する。許容値を満たす場合(YESの場合)はステップ840に進み、ステップ805で取得されたGNSSメインアンテナ50Aの測位結果と、上部旋回体姿勢計測部115で演算されたIMU方位の測位結果とに基づいてフロント作業装置6の位置と方位を算出し、当該時刻における測位処理を終了する。一方、許容値を満たさない場合(NOの場合)はステップ891に進み、当該時刻の測位処理を終了する(メインアンテナ50Aの位置とフロント作業装置6の方位の出力は行わない)。
【0092】
ステップ823において、作業機械方位精度評価部222は、IMU方位の精度が基線ベクトルの方位の精度より良いか否かを判断する。IMU方位の精度の方が良い場合(YESの場合)はステップ840に進み、ステップ805で取得されたGNSSメインアンテナ50Aの測位結果と、上部旋回体姿勢計測部115で演算されたIMU方位の測位結果とに基づいてフロント作業装置6の位置と方位を算出し、当該時刻における測位処理を終了する。一方、基線ベクトルの方位の精度の方が良い場合(NOの場合)はステップ841に進み、ステップ805で取得されたGNSSメインアンテナ50Aの測位結果と、ステップ811で演算された基線ベクトルとに基づいてフロント作業装置6の位置と方位を算出し、当該時刻における測位処理を終了する。
【0093】
(効果)
上記のように構成された本実施形態に係る油圧ショベルでは、ブーム角及び上部旋回体方位角の2つを変数とする二次元座標系において、実際のブーム6Aの角度と上部旋回体3の方位角(IMU方位角)に距離が近いブーム角及び上部旋回体方位角が対応付けられたマスク領域データを距離が近いものから4つ選択し、その4つのマスク領域データをそれぞれ利用してメインアンテナ50Aの4つの測位結果QA,QB,QC,QDを取得し、その4つの測位結果QA,QB,QC,QDに距離に即した重み付けをして最終的な測位結果Q(t)を得ることとした(上記式(1)参照)。このように重み付けを利用してメインアンテナ50Aの測位を行うと、フロント作業装置6の姿勢及び方位角の変化に応じてマスク領域データが切り替わっても、当該マスク領域データの切り替えが測位結果に与える影響を低減できるので、測位結果の変化を従前よりも抑制でき、姿勢及び方位角の変化に伴う測位精度の悪化を抑制できる。
【0094】
また、上記の実施形態では、基線ベクトルの方位とIMU方位の精度を比較し、基線ベクトルの方位の精度が良い場合にはメインアンテナ50Aの最終測位結果と基線ベクトルから上部旋回体3の方位を演算し、一方、IMU方位の精度が良い場合にはメインアンテナ50Aの最終測位結果とIMU方位から上部旋回体3の方位を演算することとした。そのため本実施形態によればメインアンテナ50Aの測位精度だけでなく上部旋回体方位の精度も向上できる。
【0095】
(その他)
上記では、ブーム角と上部旋回体方位角の2つの変数を作業装置遮蔽領域マスクDB213内の複数のマスク領域データに対応付けたが、アーム角、バケット角、上部旋回体のピッチ角、および上部旋回体のロール角のうち少なくとも1つの変数をさらにマスク領域データに対応付けて、メインアンテナ50A又はサブアンテナ50Bの測位演算に利用するマスク領域データを決定しても良い。この場合、メインアンテナ可用衛星判定部214およびメインアンテナ位置演算部217は変数の数だけ必要となることは言うまでもない。また、この場合の類似度の判定方法としては、例えば、n個の変数(ブーム角、上部旋回体方位角、アーム角など)の組によって空間上の点を規定できるn次元座標系(多次元座標系)において、実際の変数の組(姿勢統合部223で統合される数値の組み合わせ)を規定する点とマスク領域データに対応付けられた変数の組を規定する点との距離を演算し、当該距離が近いほど類似度が高いと判定するものがある。
【0096】
上記の例で作業装置遮蔽領域マスクDB213に記憶した複数のマスク領域データでは、ブーム6Aの角度を所定の角度値に固定したまま、残りのフロント部材6B,6Cがそれらの作動範囲においてメインアンテナ50A又はサブアンテナ50Bの上空視界を遮蔽し得る最大の領域を演算し、その演算結果に基づいてマスク領域を決定した。すなわち、ブーム6Aによる遮蔽領域は実際のブーム角が考慮されているが、その他のアーム6Bとバケット6Cによる遮蔽領域は実際の値を考慮していない。そこで、アーム6Bとバケット6Cについても実際の値を考慮してマスク領域を決定しても良い。
【0097】
測位結果の重み付けに利用した式(1)は一例に過ぎず、実際のフロント作業装置6の姿勢と方位と、測位に利用するマスク領域データに対応付けられたフロント作業装置6の姿勢と方位との類似度(例えば座標系上における2点間の距離)に基づく重み付けがなされる式であれば他の式でも構わない。
【0098】
図9A,9B,9Cのフローチャートでは、S820,S821,S822A,S822B,S823において、各演算値の精度とその許容値との比較や、演算値同士の精度の比較を行い、その結果に応じてフロント作業装置6の位置と方位(車体位置と方位)の演算プロセスを変更したが、これらの処理は省略しても良い。すなわち、各演算値の精度に関係無く、予め定められたプロセス(例えば図9CのS840とS841のいずれか一方)を利用してフロント作業装置6の位置と方位を演算しても良い。また、図9CのS840とS841では、フロント作業装置6の位置と方位のいずれか一方を演算するようにしても良い。また、図9A,9B,9Cの全体の処理の中からS801-S806,S890,S891のみを実行してメインアンテナ50Aの最終測位結果を演算してもよい。
【0099】
なお、本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。
【0100】
また、上記の車載コントローラ40および受信機51に係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の車載コントローラ40および受信機51に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで車載コントローラ40および受信機51の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。
【0101】
また、上記の各実施の形態の説明では、制御線や情報線は、当該実施の形態の説明に必要であると解されるものを示したが、必ずしも製品に係る全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えて良い。
【符号の説明】
【0102】
1…油圧ショベル(作業機械),2…走行体(下部走行体),3…旋回体(上部旋回体),4…運転席,6…フロント作業装置(作業装置),6A…ブーム,6B…アーム,6C…バケット,7…無線機,8…GNSS基準局,11A…ブームシリンダ,11B…アームシリンダ,11C…バケットシリンダ,23…姿勢センサ(IMU),24…第2マスク領域,27…第1マスク領域,34…第2マスク領域,37…第1マスク領域,40…車載コントローラ,50A…GNSSメインアンテナ,50B…GNSSサブアンテナ,51…GNSS受信機,52a…マスト(アンテナ支持部材),52b…マスト(アンテナ支持部材),60…モニタ,75A…ブーム姿勢センサ,75B…アーム姿勢センサ,75C…バケット姿勢センサ,80…基準局GNSSアンテナ,81…基準局GNSS受信機,82…基準局コントローラ,87…無線機,102…三次元データ保持・送信部,115…上部旋回体姿勢計測部,116…作業装置姿勢計測部,118…IMU方位精度評価部,201…メインアンテナ概位置算出部,212…メイン電波遮蔽領域設定部,213…作業装置遮蔽領域マスクデータベース(DB),214…メインアンテナ可用衛星判定部,214A…メインアンテナ可用衛星判定部A,214B…メインアンテナ可用衛星判定部B,214C…メインアンテナ可用衛星判定部C,214D…メインアンテナ可用衛星判定部D,215…サブアンテナ可用衛星判定部,217…メインアンテナ位置演算部,217A…メインアンテナ位置演算部A,217B…メインアンテナ位置演算部B,217C…メインアンテナ位置演算部C,217D…メインアンテナ位置演算部D,218…基線ベクトル精度評価部,219…メインアンテナ位置精度評価部,220…メインアンテナ演算結果統合部,221…作業機械位置・方位出力部,222…作業機械方位精度評価部,223…姿勢統合部,224…遮蔽物三次元データ記録部,225…基線ベクトル算出部,226…サブ電波遮蔽領域設定部,301…GNSS補正データ
図1
図2
図3
図4
図5
図6
図7
図8
図9A
図9B
図9C