IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

特許7598984統合温度制御を有するモノリシックモジュラーマイクロ波源
<>
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図1
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図2
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図3
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図4A
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図4B
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図5A
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図5B
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図5C
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図6
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図7
  • 特許-統合温度制御を有するモノリシックモジュラーマイクロ波源 図8
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-12-04
(45)【発行日】2024-12-12
(54)【発明の名称】統合温度制御を有するモノリシックモジュラーマイクロ波源
(51)【国際特許分類】
   H05H 1/46 20060101AFI20241205BHJP
【FI】
H05H1/46 B
【請求項の数】 15
【外国語出願】
(21)【出願番号】P 2023130535
(22)【出願日】2023-08-09
(62)【分割の表示】P 2022518722の分割
【原出願日】2020-09-16
(65)【公開番号】P2023166392
(43)【公開日】2023-11-21
【審査請求日】2023-09-15
(31)【優先権主張番号】16/586,548
(32)【優先日】2019-09-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】カルドゥッチ, ジェームズ
(72)【発明者】
【氏名】フォベル, リチャード シー.
(72)【発明者】
【氏名】エリザガ, ラリー ディー.
(72)【発明者】
【氏名】ロドリゲス, シルバースト
(72)【発明者】
【氏名】チョア, タイ チョン
(72)【発明者】
【氏名】クラウス, フィリップ アレン
【審査官】右▲高▼ 孝幸
(56)【参考文献】
【文献】特開2019-106290(JP,A)
【文献】特表2008-508744(JP,A)
【文献】特表2007-522647(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/32
H05H 1/46
(57)【特許請求の範囲】
【請求項1】
第1の表面と、前記第1の表面とは反対側の第2の表面とを有する導電性本体と、
前記第1の表面と前記第2の表面との間の前記導電性本体の厚さを通る複数の開口と、
前記導電性本体の前記第1の表面の中へのチャネルと、
前記チャネルの上の複数のカバーであって各カバーが、
前記カバーの上の、前記第1の表面から離れる方向に延びる第1のステムであって、前記第1のステムが前記チャネルの中に開口し、前記第1のステムが前記カバーの端部にある、第1のステムと、
前記カバーの上の、前記第1の表面から離れる方向に延びる第2のステムであって、前記第2のステムが、前記チャネルの中に開口する、第2のステムと、
を有する、前記チャネルの上の複数のカバーと、
を備える、ハウジング。
【請求項2】
前記チャネルが、前記複数の開口のうちの少なくとも1つを囲む、請求項1に記載のハウジング。
【請求項3】
前記開口の各々の直径が、約15mm以上である、請求項1に記載のハウジング。
【請求項4】
前記導電性本体の前記第1の表面の上の蓋板
をさらに備える、請求項1に記載のハウジング。
【請求項5】
前記蓋板が、
前記蓋板の厚さを通る第1の孔と、
前記蓋板の厚さを通る第2の孔と
を備える、請求項4に記載のハウジング。
【請求項6】
前記第1のステムが、前記第1の孔を通って延び、前記第2のステムが、前記第2の孔を通って延びる、請求項5に記載のハウジング。
【請求項7】
前記蓋板が、
加熱エレメント
を備える、請求項4に記載のハウジング。
【請求項8】
前記加熱エレメントが、前記導電性本体から反対側に向く前記蓋板の第1の表面の中へのトレンチ内に埋められた、請求項7に記載のハウジング。
【請求項9】
複数のチャネルをさらに備え、
前記複数のカバーの各カバーが、前記複数のチャネルのうちの異なる1つの上にある、請求項1に記載のハウジング。
【請求項10】
モノリシックソースアレイであって、
第1の表面と第2の表面とを有する誘電体板と、
前記誘電体板の前記第1の表面から外に延びる複数の突出部と
を備える、モノリシックソースアレイと、
ハウジングであって、
第3の表面と第4の表面とを有する導電性本体と、
前記導電性本体を通る複数の開口であって、前記突出部の各々が、前記開口のうちの異なる1つの中にある、複数の開口と、
前記第3の表面の中へのチャネルと、
前記チャネルの上のカバーであって、前記カバーが、第1のステムと第2のステムとを備え、前記第1のステムが前記カバーの端部にある、カバーと
を備える、ハウジングと
を備える、アセンブリ。
【請求項11】
前記ハウジングの上の蓋板をさらに備え、前記蓋板が、
第1の孔および第2の孔であって、前記第1のステムが、前記第1の孔を通過し、前記第2のステムが、前記第2の孔を通過する、第1の孔および第2の孔と、
加熱エレメントであって、前記加熱エレメントが、前記ハウジングから反対側に向く前記蓋板の表面の中へのトレンチ内にある、加熱エレメントと
を備える、請求項10に記載のアセンブリ。
【請求項12】
前記導電性本体の前記第3の表面の中への複数のチャネル
をさらに備える、請求項10に記載のアセンブリ。
【請求項13】
前記蓋板中の複数の加熱エレメント
をさらに備える、請求項11に記載のアセンブリ。
【請求項14】
前記誘電体板の前記第1の表面と、前記導電性本体の前記第4の表面との間の熱インターフェース材料
をさらに備える、請求項10に記載のアセンブリ。
【請求項15】
複数のモノポールアンテナであって、各モノポールアンテナが、前記突出部のうちの異なる1つの軸心における異なる孔内にある、複数のモノポールアンテナ
をさらに備える、請求項10に記載のアセンブリ。
【発明の詳細な説明】
【技術分野】
【0001】
関連出願の相互参照
本出願は、その内容全体が参照により本明細書に組み込まれている、2019年9月27日に出願された、米国非仮出願第16/586,548号の優先権を主張する。
【0002】
実施形態は、半導体製造の分野に関し、特に、高周波源のための統合温度制御を有するモノリシックソースアレイに関する。
【背景技術】
【0003】
高周波プラズマ源には、誘電体板中の開口を通過するアプリケータを含むものがある。誘電体板を通る開口は、アプリケータ(たとえば、誘電体キャビティ共振器)がプラズマ環境に曝露されることを可能にする。しかしながら、プラズマは、アプリケータを取り囲む空間中の誘電体板中の開口においても生成されることが示されている。これは、処理チャンバ内でプラズマ非均一性を生成する可能性を有する。その上、プラズマ環境にアプリケータを曝露することは、アプリケータのより急速な劣化につながり得る。
【0004】
いくつかの実施形態では、アプリケータは、誘電体板の上に、または誘電体板の中への(しかし誘電体板を貫かない)キャビティ内に位置決めされる。そのような構成は、チャンバの内部との低減された結合を有し、それゆえ、最適なプラズマ生成を提供しない。高周波電磁放射線の、チャンバの内部との結合は、部分的には、高周波電磁放射線がそれにわたって伝搬する必要がある、誘電体板とアプリケータとの間の追加のインターフェースにより減少される。加えて、各アプリケータにおける、および異なる処理ツールにわたるインターフェース(たとえば、アプリケータの位置決め、アプリケータおよび/または誘電体板の表面粗さ、誘電体板に対するアプリケータの角度など)の変動は、プラズマ非均一性を生じ得る。
【0005】
とりわけ、アプリケータが、誘電体板とは個別の構成要素であるとき、(単一の処理チャンバ内の、および/または異なる処理チャンバにわたる(たとえば、チャンバマッチング))プラズマ非均一性は、より起こりやすい。たとえば、個別の構成要素の場合、小さい変動(たとえば、組立、機械加工公差などの変動)は、チャンバ内の処理状況に悪影響を及ぼすプラズマ非均一性を生じることがある。
【発明の概要】
【0006】
本明細書で開示される実施形態は、ソースアセンブリのためのハウジングを含む。一実施形態では、ハウジングは、第1の表面と、第1の表面とは反対側の第2の表面とを有する導電性本体と、第1の表面と第2の表面との間の導電性本体の厚さを通る複数の開口とを備える。一実施形態では、ハウジングは、導電性本体の第1の表面の中へのチャネルと、チャネルの上のカバーとをさらに備える。一実施形態では、カバーの上の第1のステムは、第1の表面から離れる方向に延び、カバーの上の第2のステムは、第1の表面から離れる方向に延びる。一実施形態では、第1のステムおよび第2のステムは、チャネルの中に開口する。
【0007】
実施形態は、処理ツールのためのアセンブリをも含み得る。一実施形態では、アセンブリは、モノリシックソースアレイとハウジングとを備える。一実施形態では、モノリシックソースアレイは、第1の表面と第2の表面とを有する誘電体板と、誘電体板の第1の表面から外に延びる複数の突出部とを備える。一実施形態では、ハウジングは、第3の表面と第4の表面とを有する導電性本体と、導電性本体を通る複数の開口とを備える。一実施形態では、突出部の各々は、開口のうちの異なる1つの中にある。ハウジングは、第3の表面の中へのチャネルと、チャネルの上のカバーであって、カバーが、第1のステムと第2のステムとを備える、カバーとをも備え得る。
【0008】
本明細書で開示される実施形態は、処理ツールをも備え得る。一実施形態では、処理ツールは、チャンバと、チャンバとインターフェースするアセンブリとを備える。一実施形態では、アセンブリは、モノリシックソースアレイと、モノリシックソースアレイの上および周りのハウジングとを備える。一実施形態では、ハウジングは、カバーによって密封されたチャネルを備える。
【図面の簡単な説明】
【0009】
図1】一実施形態による、複数のアプリケータを備えるモノリシックソースアレイを有するモジュラー高周波放出源を備える処理ツールの概略図である。
図2】一実施形態による、モジュラー高周波放出モジュールのブロック図である。
図3】一実施形態による、アセンブリの分解斜視図である。
図4A】一実施形態による、埋込み加熱エレメントを有する蓋板の平面図である。
図4B】一実施形態による、ラインB-B’に沿った図4A中の蓋板の断面図である。
図5A】一実施形態による、ハウジングの分解斜視図である。
図5B】一実施形態による、アセンブリの一部分の斜視図である。
図5C】一実施形態による、ラインC-C’に沿った図5B中のアセンブリの断面図である。
図6】一実施形態による、アセンブリの断面図である。
図7】一実施形態による、統合温度制御を備えるアセンブリを有する処理ツールの断面図である。
図8】一実施形態による、高周波プラズマツールと連携して使用され得る例示的なコンピュータシステムのブロック図である。
【発明を実施するための形態】
【0010】
本明細書で説明されるシステムは、高周波源のための統合温度制御を有するモノリシックソースアレイを含む。以下の説明では、実施形態の完全な理解を提供するために、多数の具体的な詳細が記載される。実施形態はこれらの具体的な詳細なしに実践され得ることが、当業者には明らかであろう。他の事例では、よく知られている態様は、実施形態を不必要に不明瞭にしないために、詳細には説明されない。その上、添付の図面中に示されている様々な実施形態は、例示的表現であり、必ずしも一定の縮尺で描画されているとは限らないことを理解されたい。
【0011】
上述のように、個別のアプリケータを有する高周波プラズマ源は、チャンバ内のプラズマ非均一性を、およびチャンバの中への高周波電磁放射線の非最適注入を生じ得る。プラズマにおける非均一性は、組立問題、製造公差、劣化など、異なる理由のために起こり得る。チャンバの中への高周波電磁放射線の非最適注入は、(部分的には)アプリケータと誘電体板との間のインターフェースから生じ得る。
【0012】
したがって、本明細書で開示される実施形態は、モノリシックソースアレイを含む。一実施形態では、モノリシックソースアレイは、誘電体板と、誘電体板の表面から上向きに延びる複数の突出部とを備える。とりわけ、突出部および誘電体板は、モノリシック部分を形成する。すなわち、突出部および誘電体板は、材料の単一のブロックから作製される。突出部は、アプリケータとして使用されるのに好適な寸法を有する。たとえば、モノポールアンテナを収容する、突出部の中への孔が、作製され得る。突出部は、それゆえ、誘電体キャビティ共振器として機能し得る。
【0013】
モノリシック部分としてソースアレイを実装することは、数個の優位性を有する。1つの利点は、タイトな機械加工公差が、部品の間の高度の均一性を提供するために維持され得ることである。個別のアプリケータが、組立を必要とするのに対して、モノリシックソースアレイは、起こり得る組立ばらつきを回避する。加えて、モノリシックソースアレイの使用は、アプリケータと誘電体板との間の物理的インターフェースがもはやないので、チャンバの中への高周波電磁放射線の改善された注入を提供する。
【0014】
モノリシックソースアレイは、チャンバ中の改善されたプラズマ均一性をも提供する。とりわけ、プラズマに曝露される誘電体板の表面は、アプリケータを収容するための間隙を含まない。その上、突出部と誘電体板との間に物理的インターフェースがないことは、誘電体板中で広がる横方向の電界を改善する。
【0015】
多くの適用例の場合、ワークピースの温度均一性は、プラズマ均一性に加えて別の要件である。十分な温度制御がなければ、処理結果は、仕様を満たすことが可能でないことがある。いくつかの適用例の場合、プラズマ源の表面は、2つの表面を分離する小さい間隙(たとえば、約5cm以下)のみをもってワークピースの直接上にある。そのような小さい間隙は、ワークピースからソースへの、またはソースからワークピースへの熱伝達(換言すれば、放射および対流)を促進する。ソースの表面における均一な温度を提供する能力は、それゆえ、非常に有益である。温度均一性は、いくつかの例を挙げれば、原子層堆積(ALD)、化学気相堆積(CVD)、およびプラズマ処理など、いくらかの処理動作にとってとりわけ重要である。
【0016】
したがって、本明細書で開示される実施形態は、統合温度制御を有するモノリシックソースアレイを含む。いくつかの実施形態では、モノリシックソースアレイの突出部を取り囲むハウジングは、ハウジングの導電性本体を通って熱流体をルーティングするための複数のチャネルを備える。実施形態は、埋込みヒータをも含み得る。よって、モノリシックソースアレイの温度は、増加または減少され得る。
【0017】
次に図1を参照すると、一実施形態による、プラズマ処理ツール100の断面図が示されている。いくつかの実施形態では、処理ツール100は、プラズマを利用する任意のタイプの処理動作に好適な処理ツールであり得る。たとえば、処理ツール100は、プラズマ化学気相堆積(PECVD)、プラズマ原子層堆積(PEALD)、エッチおよび選択的除去プロセス、ならびにプラズマ洗浄のために使用される処理ツールであり得る。追加の実施形態は、プラズマの生成を伴わない高周波電磁放射線(たとえば、マイクロ波加熱など)を利用する処理ツール100を含み得る。本明細書で使用される、「高周波」電磁放射線は、無線周波数放射線、超短波放射線、極超短波放射線、およびマイクロ波放射線を含む。「高周波」は、0.1MHzと300GHzとの間の周波数を指すことがある。
【0018】
概して、実施形態は、チャンバ178を含む処理ツール100を含む。処理ツール100において、チャンバ178は真空チャンバであり得る。真空チャンバは、所望の真空を提供するためにチャンバからガスを取り除くためのポンプ(図示せず)を含み得る。追加の実施形態は、チャンバ178の中に処理ガスを提供するための1つまたは複数のガスライン170と、チャンバ178から副産物を取り除くための排気ライン172とを含むチャンバ178を含み得る。示されていないが、ガスはまた、基板174の上で処理ガスを均等に分配するための(たとえば、シャワーヘッドとしての)モノリシックソースアレイ150を通ってチャンバ178の中に注入され得ることを諒解されたい。
【0019】
一実施形態では、基板174は、チャック176上で支持され得る。たとえば、チャック176は、静電チャックなど、任意の好適なチャックであり得る。チャック176は、処理中に基板174に温度制御を提供するために、冷却ラインおよび/またはヒータをも含み得る。本明細書で説明される高周波放出モジュールのモジュラー構成により、実施形態は、処理ツール100が任意のサイズの基板174を収容することを可能にする。たとえば、基板174は、半導体ウエハ(たとえば、200mm、300mm、450mm以上)であり得る。代替実施形態は、半導体ウエハ以外の基板174をも含む。たとえば、実施形態は、(たとえば、ディスプレイ技術のために)ガラス基板を処理するために構成された処理ツール100を含み得る。
【0020】
一実施形態によれば、処理ツール100は、モジュラー高周波放出源104を含む。モジュラー高周波放出源104は、高周波放出モジュール105のアレイを備え得る。一実施形態では、各高周波放出モジュール105は、発振器モジュール106、増幅モジュール130、およびアプリケータ142を含み得る。示されているように、アプリケータ142は、モノリシックソースアレイ150に統合されているものとして概略的に示されている。しかしながら、モノリシックソースアレイ150は、アプリケータ142の1つまたは複数の部分(たとえば、誘電体共振体)と、チャンバ178の内部に対向する誘電体板とを備えるモノリシック構造であり得ることを諒解されたい。
【0021】
一実施形態では、発振器モジュール106および増幅モジュール130は、固体電気部品である電気部品を備え得る。一実施形態では、複数の発振器モジュール106の各々は、異なる増幅モジュール130に通信可能に結合され得る。いくつかの実施形態では、発振器モジュール106と増幅モジュール130との間の1:1の比があり得る。たとえば、各発振器モジュール106は、単一の増幅モジュール130に電気的に結合され得る。一実施形態では、複数の発振器モジュール106は、インコヒーレント電磁放射線を生成し得る。したがって、チャンバ178中で誘起された電磁放射線は、望ましくない干渉縞を生じるという様式で相互作用しない。
【0022】
一実施形態では、各発振器モジュール106は、増幅モジュール130に伝えられる高周波電磁放射線を生成する。増幅モジュール130による処理の後に、電磁放射線は、アプリケータ142に伝えられる。一実施形態では、アプリケータ142は、各々、チャンバ178の中に電磁放射線を放出する。いくつかの実施形態では、アプリケータ142は、プラズマをもたらすために、チャンバ178中で処理ガスに電磁放射線を結合する。
【0023】
次に図2を参照すると、一実施形態による、固体高周波放出モジュール105の概略図が示されている。一実施形態では、高周波放出モジュール105は、発振器モジュール106を備える。発振器モジュール106は、所望の周波数において高周波電磁放射線をもたらすために、電圧制御発振器220に入力電圧を提供するための電圧制御回路210を含み得る。実施形態は、約1V DCと約10V DCとの間の入力電圧を含み得る。電圧制御発振器220は、それの発振周波数が入力電圧によって制御される電子発振器である。一実施形態によれば、電圧制御回路210からの入力電圧は、電圧制御発振器220が所望の周波数において発振することを生じる。一実施形態では、高周波電磁放射線は、約0.1MHzと約30MHzとの間の周波数を有し得る。一実施形態では、高周波電磁放射線は、約30MHzと約300MHzとの間の周波数を有し得る。一実施形態では、高周波電磁放射線は、約300MHzと約1GHzとの間の周波数を有し得る。一実施形態では、高周波電磁放射線は、約1GHzと約300GHzとの間の周波数を有し得る。
【0024】
一実施形態によれば、電磁放射線は、電圧制御発振器220から増幅モジュール130に伝えられる。増幅モジュール130は、ドライバ/前置増幅器234と、各々が電源239に結合された主電力増幅器236とを含み得る。一実施形態によれば、増幅モジュール130は、パルスモードで動作し得る。たとえば、増幅モジュール130は、1%と99%との間のデューティサイクルを有し得る。より詳細な実施形態では、増幅モジュール130は、約15%と約50%との間のデューティサイクルを有し得る。
【0025】
一実施形態では、電磁放射線は、増幅モジュール130によって処理された後に、熱遮蔽体249およびアプリケータ142に伝えられ得る。しかしながら、熱遮蔽体249に伝えられた電力の一部分は、出力インピーダンスの不整合により反射し戻され得る。したがって、いくつかの実施形態は、順方向電力283および反射電力282のレベルが、検知され、制御回路モジュール221にフィードバックされることを可能にする検出器モジュール281を含む。検出器モジュール281は、(たとえば、サーキュレータ238と熱遮蔽体249との間の)システムにおける1つまたは複数の異なるロケーションに配置され得ることを諒解されたい。一実施形態では、制御回路モジュール221は、順方向電力283および反射電力282を解釈し、発振器モジュール106に通信可能に結合された制御信号285のレベルと、増幅モジュール130に通信可能に結合された制御信号286のレベルとを決定する。一実施形態では、制御信号285は、増幅モジュール130に結合される高周波放射線を最適化するように発振器モジュール106を調節する。一実施形態では、制御信号286は、熱遮蔽体249を通ってアプリケータ142に結合される出力電力を最適化するように増幅モジュール130を調節する。一実施形態では、熱遮蔽体249におけるインピーダンス整合の調整に加えて、発振器モジュール106および増幅モジュール130のフィードバック制御は、反射電力のレベルが順方向電力の約5%未満であることを可能にし得る。いくつかの実施形態では、発振器モジュール106および増幅モジュール130のフィードバック制御は、反射電力のレベルが順方向電力の約2%未満であることを可能にし得る。
【0026】
したがって、実施形態は、順方向電力の増加された割合が結合されて処理チャンバ178の中に入ることを可能にし、プラズマに結合される利用可能な電力を増加させる。その上、フィードバック制御を使用するインピーダンス同調は、一般的なスロット板アンテナにおけるインピーダンス同調より優れている。スロット板アンテナにおいて、インピーダンス同調は、アプリケータ中に形成された2つの誘電体スラグを移動させることを伴う。これは、アプリケータの複雑さを増加させる、アプリケータ中の2つの別個の構成要素の機械的な動きを伴う。その上、機械的な動きは、電圧制御発振器220によって提供され得る周波数の変化ほど正確ではないことがある。
【0027】
次に図3を参照すると、一実施形態による、アセンブリ370の分解斜視図が示されている。一実施形態では、アセンブリ370は、モノリシックソースアレイ350、ハウジング372、および蓋板376を備える。矢印によって指し示されているように、ハウジング372は、モノリシックソースアレイ350の上および周りに嵌合し、蓋板376は、ハウジング372をカバーする。図示されている実施形態では、アセンブリ370は、実質的に円形の形状を有するものとして示されている。しかしながら、アセンブリ370は、任意の所望の形状(たとえば、多角形、楕円形、くさび形など)を有し得ることを諒解されたい。
【0028】
一実施形態では、モノリシックソースアレイ350は、誘電体板360と、誘電体板360から上向きに延びる複数の突出部366とを備え得る。一実施形態では、誘電体板360および複数の突出部366は、モノリシック構造である。すなわち、突出部366の底部と誘電体板360との間に物理的インターフェースはない。本明細書で使用される、「物理的インターフェース」は、第2の個別の物体の第2の表面に接触する第1の個別の物体の第1の表面を指す。
【0029】
突出部366の各々は、処理チャンバ178の中に高周波電磁放射線を注入するために使用されるアプリケータ142の一部分である。とりわけ、突出部366は、アプリケータ142の誘電体キャビティ共振器として機能する。一実施形態では、モノリシックソースアレイ350は、誘電体材料を備える。たとえば、モノリシックソースアレイ350は、セラミック材料であり得る。一実施形態では、モノリシックソースアレイ350のために使用され得る1つの好適なセラミック材料は、Al2O3である。モノリシック構造は、材料の単一のブロックから作製され得る。他の一実施形態では、モノリシックソースアレイ350の大まかな形状が、成形プロセスを用いて形成され、その後、所望の寸法をもつ最終構造を提供するために機械加工され得る。たとえば、未加工状態機械加工および焼成が、モノリシックソースアレイ350の所望の形状を提供するために使用され得る。図示されている実施形態では、突出部366は、(誘電体板360に平行な平面に沿って見られたとき)円形断面を有するものとして示されている。しかしながら、突出部366は、多くの異なる断面を備え得ることを諒解されたい。たとえば、突出部366の断面は、中心対称である任意の形状を有し得る。
【0030】
一実施形態では、ハウジング372は、導電性本体373を備える。たとえば、導電性本体373は、アルミニウムなどであり得る。ハウジングは、複数の開口374を備える。開口374は、導電性本体373の厚さを完全に通過し得る。開口374は、突出部366を受け入れるようにサイズ決定され得る。たとえば、ハウジング372が、(矢印によって指し示されているように)モノリシックソースアレイ350に向かって変位されるにつれて、突出部366は、開口374の中に挿入される。一実施形態では、開口374は、約15mm以上である直径を有し得る。
【0031】
図示されている実施形態では、ハウジング372は、単一の導電性本体373として示されている。しかしながら、ハウジング372は、1つまたは複数の個別の導電性構成要素を備え得ることを諒解されたい。個別の構成要素は、個々に接地され得るか、または個別の構成要素は、単一の電気的な導電性本体373を形成するために、機械的にまたは任意の形式の金属ボンディングによって連結され得る。
【0032】
一実施形態では、蓋板376は、導電性本体379を備え得る。一実施形態では、導電性本体379は、ハウジング372の導電性本体373と同じ材料から形成される。たとえば、蓋板376は、アルミニウムを備え得る。一実施形態では、蓋板376は、任意の好適な締結機構を使用してハウジング372に固定され得る。たとえば、蓋板376は、ボルトなどを用いてハウジング372に固定され得る。いくつかの実施形態では、蓋板376およびハウジング372は、単一のモノリシック構造として実装されることもある。一実施形態では、蓋板376およびハウジングは、両方とも、処理ツールの動作中に電気的に接地される。
【0033】
次に図4Aおよび図4Bを参照すると、一実施形態による、蓋板476のより詳細な平面図および断面図がそれぞれ示されている。一実施形態では、蓋板476は、導電性本体479を備える。導電性本体479は、加熱エレメント419を収容するために、1つまたは複数のトレンチ416を備え得る。たとえば、加熱エレメント419は、抵抗加熱エレメントであり得る。加熱エレメント419は、カバー417によってカバーされ得る。一実施形態では、カバー417は、任意の好適な材料を備え得る。たとえば、カバー717は、硬質材料であり得る。一実施形態では、カバー717は、加熱エレメント417の上に施されたエポキシまたは接着剤であり得る。
【0034】
図示されている実施形態では、加熱エレメント419のペアが示されている。カバー417によってカバーされた第1の加熱エレメント419は、蓋板476の周辺部に近接しており、カバー417によってカバーされた第2の加熱エレメント419は、蓋板476の軸心に近接している。加熱エレメント419のペアは、アセンブリの外側領域および内側領域に温度制御を提供する。したがって、ワークピースの表面にわたる非均一性を補正するためのより正確な温度制御が可能である。ペアのまたはリング整形された加熱エレメントが示されているが、実施形態は、任意の構成にある任意の数の加熱エレメント419(たとえば、1つまたは複数)を含むことを諒解されたい。たとえば、加熱エレメント419は、蛇行パターン、螺旋パターン、または任意の他の好適なパターンで配列され得る。
【0035】
一実施形態では、蓋板476は、1つまたは複数の孔418を備え得る。孔418は、導電性本体479の厚さ全体を通過し得る。一実施形態では、孔418は、ハウジング中の熱流体チャネルから上向きに延びるステム(図示せず)を収容するように位置決めされる。ステムおよび熱流体チャネルは、以下でより詳細に説明される。一実施形態では、6つの孔418が示されている。6つの孔418は、3つの別個の熱流体チャネルを(換言すれば、各チャネルに入口および出口を提供するために)収容し得る。しかしながら、任意の数の孔418が、様々な数の熱流体チャネルループを収容するために使用され得ることを諒解されたい。
【0036】
次に図5Aを参照すると、一実施形態による、ハウジング572の分解斜視図が示されている。図示されている実施形態は、ハウジング572の第1の表面534を描いている。第1の表面534は、蓋板476に向かって対向する表面であり、第2の表面533は、モノリシックソースアレイに向かって対向する。示されているように、ハウジング572は、複数の開口574を有する導電性本体573を備える。図示では、導電性本体573は、1つの部分として示されており、複数のカバー531は、第1の表面534の中への(単に「チャネル」とも呼ばれる)熱流体チャネル530を図示するために、第1の表面534から離れて上に持ち上げられている。チャネル530は、導電性本体573の中に延びるが、導電性本体573の厚さを完全には通過しない。その上、開口574およびチャネル530は、互いに流体的に結合されないことを諒解されたい。すなわち、動作中に、熱流体は、チャネル530を通って流され、熱流体は、開口574を通過しないことがある。
【0037】
示されているように、チャネル530は、第1の端部535と第2の端部535とを有する。第1の端部535と第2の端部535との間のチャネル530の長さは、導電性本体573を通って開口574の間でルーティングされ得る。たとえば、チャネル530の各々は、開口574のうちの1つまたは複数を囲み得る。図示されている実施形態では、チャネル530は、開口574のペアを囲む。一実施形態では、チャネル530の各々は、実質的に同じ形状を有し得る。たとえば、図5A中の3つのチャネル530の各々は、形状が実質的に均一である。しかしながら、他の実施形態は、非均一な形状を有するチャネル530を含み得る。
【0038】
一実施形態では、カバー531は、第1のステム537と第2のステム537とを含み得る。第1のステム537は、チャネル530の第1の端部535の上に位置決めされ、第2のステム537は、チャネル530の第2の端部535の上に位置決めされる。ステム535は、チャネル530の中への/チャネル530の外への入口および出口を提供する。したがって、熱流体(たとえば、冷却剤など)は、ハウジング572の温度を調整するために、チャネル530を通って流され得る。一実施形態では、ステム535は、蓋板476中の孔418を通過する。
【0039】
次に図5Bを参照すると、一実施形態による、アセンブリ570の一部分の斜視図が示されている。図示されているアセンブリ570は、モノリシックソースアレイ550と、モノリシックソースアレイ550の上および周りのハウジング572とを備える。誘電体板560が、ハウジング572の下側にあり、突出部566が、ハウジング572を通って上向きに延びる。突出部566は、突出部566の軸心において孔565を含む。孔565は、モノポールアンテナ(図示せず)を収容するようにサイズ決定される。図5B中で、カバー531は、チャネル530の上に置かれている。一実施形態では、カバー531は、ハウジング572に溶接される。ステム537は、第1の表面534から離れる方向にカバー531から上向きに延びる。
【0040】
次に図5Cを参照すると、一実施形態による、ラインC-C’に沿った図5B中のアセンブリ570の断面図が示されている。断面図は、チャネル530およびカバー531をより明確に描いている。チャネル530は、ともに接続し、突出部566の周りにループを形成するために、断面の平面の中におよび断面の平面の外に延びる。一実施形態では、チャネル530は、第1の表面534の中に形成されるが、導電性本体573の厚さを完全には通って延びない。
【0041】
一実施形態では、ハウジング572は、誘電体板560の第1の表面561によって支持され得る。いくつかの実施形態では、熱インターフェース材料592は、誘電体板560の第1の表面561と、ハウジング572の第2の表面533とのインターフェースにおいて提供され得る。たとえば、熱インターフェース材料592は、熱ガスケットなどであり得る。熱インターフェース材料592の使用は、ハウジング572とモノリシックソースアレイ550との間の熱伝達を改善する。一実施形態では、熱インターフェース材料592は、単一の連続層であり得るか、または熱インターフェース材料592は、インターフェースにわたる複数の個別のパッドを備え得る。
【0042】
次に図6を参照すると、一実施形態による、アセンブリ670の断面図が示されている。図示されている実施形態は、モノリシックソースアレイ650、ハウジング672、および蓋板676を描いている。一実施形態では、ハウジング676は、誘電体板660によって支持され、突出部666をラップアラウンドする。ハウジング672の導電性本体673は、カバー631によって密封されたチャネル630を備える。蓋板676は、ハウジング672および突出部666の上に置かれる。一実施形態では、モノポールアンテナ668は、蓋板676を通過し、蓋板676の下側の突出部666の中への孔665の中に嵌合し得る。
【0043】
一実施形態では、ステム637は、蓋板676の導電性本体679を通過する。ステム637は、熱流体のソース(図示せず)に流体的に結合され得る。(図6の平面の外の)第2のステム637は、熱流体のための出口であり得る。一実施形態では、蓋板676は、1つまたは複数の加熱エレメント619を備え得る。たとえば、外側加熱エレメント619および内側加熱エレメント619は、導電性本体679の中へのトレンチ中に示されている。加熱エレメント619は、カバー617、617によってカバーされ得る。
【0044】
次に図7を参照すると、一実施形態による、アセンブリ770を含む処理ツール700の断面図が示されている。一実施形態では、処理ツールは、アセンブリ770によって密封されたチャンバ778を備える。たとえば、アセンブリ770は、チャンバ778の内部空間783に真空シールを提供するために、1つまたは複数のOリング781に対して静止し得る。他の一実施形態では、アセンブリ770は、チャンバ778とインターフェースし得る。すなわち、アセンブリ770は、チャンバ778を密封する蓋の一部分であり得る。一実施形態では、処理ツール700は、(ともに流体的に結合され得る)複数の処理空間を備え得、各処理空間は、異なるアセンブリ770を有する。一実施形態では、チャック779などは、ワークピース774(たとえば、ウエハ、基板など)を支持し得る。
【0045】
一実施形態では、チャンバ空間783は、プラズマ782をストライクするのに好適であり得る。すなわち、チャンバ778は、真空チャンバであり得る。
【0046】
一実施形態では、アセンブリ770は、上記で説明されたアセンブリ670に実質的に類似し得る。たとえば、アセンブリ770は、モノリシックソースアレイ750、ハウジング772、および蓋板776を備える。モノリシックソースアレイ750は、誘電体板760と、誘電体板760から上向きに延びる複数の突出部766とを備え得る。ハウジング772は、突出部766を受け入れるようにサイズ決定された開口を有し得る。一実施形態では、モノポールアンテナ768は、突出部766中の孔の中に延び得る。モノポールアンテナ768は、ハウジング772および突出部766の上の蓋板776を通過し得る。モノポールアンテナ768は、各々、電源(たとえば、高周波放出モジュール105)に電気的に結合される。
【0047】
一実施形態では、アセンブリ770は、統合温度制御システムを備え得る。いくつかの実施形態では、アセンブリ770は、冷却システムおよび/または加熱システムを含む。とりわけ、ワークピースに対向する誘電体板760の表面の温度は、アセンブリによって制御され得る。誘電体板760の温度を制御するための1つのやり方は、ハウジング772中のチャネル730に熱流体を流すことである。チャネル730は、入力ステム737と出力ステム737とを有し得る。ステム737は、蓋板776の厚さを通過し得る。一実施形態では、チャネル730は、カバー731によって密封され得る。
【0048】
一実施形態では、温度制御のための第2の手段は、加熱エレメント719を用いることである。一実施形態では、1つまたは複数の加熱エレメント719が、蓋板776中に埋め込まれ得る。加熱エレメント719は、カバー717によってカバーされ得る。図示されている実施形態では、ペアまたはリングの加熱エレメント719が示されているが、任意の数および構成の加熱エレメント719が使用され得る。
【0049】
次に図8を参照すると、一実施形態による、処理ツールの例示的なコンピュータシステム860のブロック図が図示されている。一実施形態では、コンピュータシステム860は、処理ツールに結合され、処理ツールにおける処理を制御する。コンピュータシステム860は、ローカルエリアネットワーク(LAN)、イントラネット、エクストラネット、またはインターネットにおいて他のマシンに接続(たとえば、ネットワーク化)され得る。コンピュータシステム860は、クライアントサーバネットワーク環境におけるサーバまたはクライアントマシンの能力内で、あるいはピアツーピア(または分散)ネットワーク環境におけるピアマシンとして動作し得る。コンピュータシステム860は、パーソナルコンピュータ(PC)、タブレットPC、セットトップボックス(STB)、パーソナルデジタルアシスタント(PDA)、セルラー電話、ウェブアプライアンス、サーバ、ネットワークルータ、スイッチまたはブリッジ、あるいはそのマシンによってとられるべきアクションを指定する(連続したまたはそれ以外の)命令のセットを実行することが可能な任意のマシンであり得る。さらに、単一のマシンのみがコンピュータシステム860のために図示されているが、「マシン」という用語は、本明細書で説明される方法論のうちのいずれか1つまたは複数を実行するために、命令の1つのセット(または複数のセット)を個々にまたは一緒に実行するマシン(たとえば、コンピュータ)の任意の集合を含むとも解釈されるべきである。
【0050】
コンピュータシステム860は、命令を記憶した非一時的マシン可読媒体を有するコンピュータプログラム製品またはソフトウェア822を含み得、これは、実施形態によるプロセスを実施するようにコンピュータシステム860(または他の電子デバイス)をプログラムするために使用され得る。マシン可読媒体は、マシン(たとえば、コンピュータ)によって可読な形式で情報を記憶または送信するための任意の機構を含む。たとえば、マシン可読(たとえば、コンピュータ可読)媒体は、マシン(たとえば、コンピュータ)可読ストレージ媒体(たとえば、読取り専用メモリ(「ROM」)、ランダムアクセスメモリ(「RAM」)、磁気ディスクストレージ媒体、光ストレージ媒体、フラッシュメモリデバイスなど)、マシン(たとえば、コンピュータ)可読伝送媒体(電気的、光学的、音響的または他の形式の伝播信号(たとえば、赤外線信号、デジタル信号など))などを含む。
【0051】
一実施形態では、コンピュータシステム860は、バス830を介して互いと通信する、システムプロセッサ802、メインメモリ804(たとえば、読取り専用メモリ(ROM)、フラッシュメモリ、同期DRAM(SDRAM)またはランバスDRAM(RDRAM)などのダイナミックランダムアクセスメモリ(DRAM)など)、スタティックメモリ806(たとえば、フラッシュメモリ、スタティックランダムアクセスメモリ(SRAM)など)、および2次メモリ818(たとえば、データストレージデバイス)を含む。
【0052】
システムプロセッサ802は、マイクロシステムプロセッサ、中央処理ユニットなど、1つまたは複数の汎用処理デバイスを表す。より詳細には、システムプロセッサは、複合命令セットコンピューティング(CISC)マイクロシステムプロセッサ、縮小命令セットコンピューティング(RISC)マイクロシステムプロセッサ、超長命令語(VLIW)マイクロシステムプロセッサ、他の命令セットを実装するシステムプロセッサ、または命令セットの組合せを実装するシステムプロセッサであり得る。システムプロセッサ802はまた、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、デジタル信号システムプロセッサ(DSP)、ネットワークシステムプロセッサなど、1つまたは複数の専用処理デバイスであり得る。システムプロセッサ802は、本明細書で説明される動作を実施するための処理論理826を実行するように構成される。
【0053】
コンピュータシステム860は、他のデバイスまたはマシンと通信するためのシステムネットワークインターフェースデバイス808をさらに含み得る。コンピュータシステム860は、ビデオディスプレイユニット810(たとえば、液晶ディスプレイ(LCD)、発光ダイオードディスプレイ(LED)、または陰極線管(CRT))、英数字入力デバイス812(たとえば、キーボード)、カーソル制御デバイス814(たとえば、マウス)、および信号生成デバイス816(たとえば、スピーカー)をも含み得る。
【0054】
2次メモリ818は、本明細書で説明される方法論または機能のうちのいずれか1つまたは複数を具現する1つまたは複数の命令のセット(たとえば、ソフトウェア822)が記憶される、マシンアクセス可能ストレージ媒体831(またはより具体的には、コンピュータ可読ストレージ媒体)を含み得る。ソフトウェア822はまた、コンピュータシステム860によるそれの実行中に、完全にまたは少なくとも部分的にメインメモリ804内におよび/またはシステムプロセッサ802内に常駐し得、メインメモリ804およびシステムプロセッサ802はマシン可読ストレージ媒体をもなす。ソフトウェア822はさらに、システムネットワークインターフェースデバイス808を介してネットワーク820上で送信または受信され得る。一実施形態では、ネットワークインターフェースデバイス808は、RF結合、光結合、音響結合、または誘導性結合を使用して動作し得る。
【0055】
マシンアクセス可能ストレージ媒体831は、単一の媒体であるように例示的な実施形態において示されているが、「マシン可読ストレージ媒体」という用語は、1つまたは複数の命令のセットを記憶する、単一の媒体または複数の媒体(たとえば、集中または分散データベースならびに/あるいは関連付けられたキャッシュおよびサーバ)を含むと解釈されるべきである。「マシン可読ストレージ媒体」という用語は、マシンによる実行のための命令のセットを記憶または符号化することが可能であり、マシンが方法論のうちのいずれか1つまたは複数を実施することを引き起こす任意の媒体を含むとも解釈されるべきである。「マシン可読ストレージ媒体」という用語は、したがって、限定されないが、固体メモリ、ならびに光学および磁気媒体を含むと解釈されるべきである。
【0056】
上記の明細書では、具体的で例示的な実施形態が説明された。様々な変更が、以下の請求項の範囲から逸脱することなく実施形態になされ得ることは明白である。明細書および図面は、したがって、限定的な意味ではなく例示的な意味で顧慮されるべきである。
図1
図2
図3
図4A
図4B
図5A
図5B
図5C
図6
図7
図8