(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-01-06
(45)【発行日】2025-01-15
(54)【発明の名称】リチウムイオン二次電池用正極活物質の製造装置及び製造方法
(51)【国際特許分類】
H01M 4/525 20100101AFI20250107BHJP
H01M 4/505 20100101ALI20250107BHJP
【FI】
H01M4/525
H01M4/505
(21)【出願番号】P 2021203631
(22)【出願日】2021-12-15
【審査請求日】2023-10-18
(73)【特許権者】
【識別番号】000003207
【氏名又は名称】トヨタ自動車株式会社
(74)【代理人】
【識別番号】100129838
【氏名又は名称】山本 典輝
(74)【代理人】
【識別番号】100101203
【氏名又は名称】山下 昭彦
(74)【代理人】
【識別番号】100104499
【氏名又は名称】岸本 達人
(72)【発明者】
【氏名】横山 友宏
【審査官】窪田 陸人
(56)【参考文献】
【文献】特開2023-074931(JP,A)
【文献】特開2011-112288(JP,A)
【文献】特開平10-297923(JP,A)
【文献】特開2010-033918(JP,A)
【文献】特開2020-194634(JP,A)
【文献】特開2020-126763(JP,A)
【文献】特開平11-139829(JP,A)
【文献】特表2014-506723(JP,A)
【文献】特開2017-101826(JP,A)
【文献】国際公開第2021/116819(WO,A1)
【文献】中国特許出願公開第105783507(CN,A)
【文献】中国特許出願公開第111299321(CN,A)
【文献】独国特許出願公開第102016226300(DE,A1)
【文献】米国特許第03163201(US,A)
【文献】米国特許第05069427(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 4/00-4/62
F27B 9/00-9/40
B29C 35/06
(57)【特許請求の範囲】
【請求項1】
ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む金属化合物とリチウム化合物とを含む正極活物質材料を搬送する搬送手段と、
前記正極活物質材料を加熱する加熱部と、を備え、
前記加熱部は熱伝導により前記正極活物質材料を加熱する加熱手段を少なくとも1つ有し、
前記搬送手段は前記正極活物質を搬送する搬送部材を有し、
前記加熱手段は加熱ローラーであ
り、前記搬送部材を介して前記正極活物質材料を加熱し、
前記搬送部材は幅方向の端部に正極活物質材料保持部を有している、
リチウムイオン二次電池用正極活物質の製造装置。
【請求項2】
ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む金属化合物とリチウム化合物とを含む正極活物質材料を搬送する搬送手段と、
前記正極活物質材料を加熱する加熱部と、を備え、
前記加熱部は熱伝導により前記正極活物質材料を加熱する加熱手段を少なくとも1つ有し、
前記搬送手段は前記正極活物質を搬送する搬送部材を有し、
前記加熱手段は前記搬送部材を介して前記正極活物質材料を加熱し、
前記搬送部材は幅方向の端部に正極活物質材料保持部を有しており、
前記加熱手段が複数の加熱ローラーであり、
前記正極活物質材料の一方の面を加熱する前記加熱ローラーと前記正極活物質材料の他方の面を加熱する前記加熱ローラーとが搬送方向の上流側から下流側に向かって交互に配置されており、
隣接する加熱ローラーのそれぞれが正極活物質材料を挟み込むように対向して配置されている、
リチウムイオン二次電池用正極活物質の製造装置。
【請求項3】
前記加熱ローラーの抱き角が180°超360°以下である、請求項
1又は
2に記載の製造装置。
【請求項4】
前記加熱部は前記正極活物質材料を700℃以上1000℃以下に加熱する、請求項1~
3のいずれか1項に記載の製造装置。
【請求項5】
前記加熱部は酸化雰囲気下で前記正極活物質材料を加熱する、請求項1~
4のいずれか1項に記載の製造装置。
【請求項6】
前記搬送部材は多孔耐熱性部材からなる、請求項1~
5のいずれか1項に記載の製造装置。
【請求項7】
前記加熱部よりも搬送方向の上流側に前記正極活物質材料をシート状に成形する成形手段を備える、請求項1~
6のいずれか1項に記載の製造装置。
【請求項8】
前記加熱部により得られた正極活物質を回収する回収部を備える、請求項1~
7のいずれか1項に記載の製造装置。
【請求項9】
ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む金属化合物とリチウム化合物とを混合し、正極活物質材料を得る正極活物質材料作製工程と、
前記正極活物質材料を加熱する加熱工程と、を備え、
前記加熱工程は熱伝導により前記正極活物質材料を加熱し、
前記加熱工程において、前記正極活物質材料は搬送部材によって搬送されており、該搬送部材を介して前記正極活物質材料が加熱されており、
前記搬送部材は幅方向の端部に正極活物質材料保持部を有しており、
前記加熱工程は前記正極活物質材料を搬送しながら加熱する、
リチウムイオン二次電池用正極活物質の製造方法。
【請求項10】
前記加熱工程は、前記正極活物質材料の両面の加熱と前記正極活物質材料の一方の面の加熱とを交互に行う、請求項
9に記載の製造方法。
【請求項11】
加熱工程において、抱き角が180°超360°以下である加熱ローラーを用いて、正極活物質材料を加熱する、請求項
9又は
10に記載の製造方法。
【請求項12】
前記加熱工程は前記正極活物質材料を700℃以上1000℃以下に加熱する、請求項
9~
11のいずれか1項に記載の製造方法。
【請求項13】
前記加熱工程は酸化雰囲気下で前記正極活物質材料を加熱する、請求項
9~
12のいずれか1項に記載の製造方法。
【請求項14】
前記搬送部材は多孔耐熱性部材からなる、請求項
9~
13のいずれか1項に記載の製造方法。
【請求項15】
前記加熱工程より前に前記正極活物質材料をシート状に成形する成形工程を備える、請求項
9~
14のいずれか1項に記載の製造方法。
【請求項16】
前記加熱工程により得られた正極活物質を回収する回収工程を備える、請求項
9~
15のいずれか1項に記載の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願はリチウムイオン二次電池用正極活物質の製造装置及び製造方法に関する。
【背景技術】
【0002】
リチウムイオン二次電池はラップトップパソコンや携帯端末等の電源及び車両駆動用電源などに広く用いられている。そのため、リチウム二次電池の生産性の向上が求められており、リチウム二次電池に用いられる正極活物質の生産性の向上も求められている。
【0003】
一般的なリチウムイオン二次電池用の正極活物質の製造方法は次のとおりである。まず、前駆体となるニッケル等を含む金属水酸化物とリチウム化合物(例えば、水酸化リチウムや炭酸リチウム等)とを混合し正極活物質材料を得る。次に、正極活物質材料を仮焼し、正極活物質材料を酸化させる。具体的には、金属水酸化物を金属酸化物に、リチウム化合物を酸化リチウムに酸化する。続いて、仮焼した正極活物質材料を所定の匣鉢に充填し、焼成する。焼成により、正極活物質材料内の金属酸化物と酸化リチウムとが反応し、正極活物質であるリチウム金属酸化物が得られる。そして、得られた正極活物質は回収され、リチウムイオン二次電池に利用される。このような正極活物質の製造方法は、例えば特許文献1~3に開示されている。
【0004】
正極活物質材料を仮焼する工程では、例えばロータリーキルンなどの焼成装置が用いたられる。ロータリーキルンは酸化雰囲気下で正極活物質材料を撹拌しながら加熱することが可能な装置であり、正極活物質材料の酸化を促進することができる。正極活物質材料を仮焼する理由は、金属水酸化物及びリチウム化合物の酸化反応が吸熱反応であるため、焼成工程において、吸熱反応によって正極活物質材料に温度ムラが生じることを防止するためである。
【0005】
正極活物質材料を焼成する工程では、例えばローラーハースキルンなどの焼成装置が用いられる。ローラーハースキルンは仮焼工程よりも高温で正極活物質材料を加熱することが可能であり、正極活物質材料内の金属酸化物と酸化リチウムとを反応させることにより、正極活物質を製造することができる。また、正極活物質材料を匣鉢に充填する際に、高密度化するために圧力を加えてもよい。正極活物質材料を高密度化することにより、正極活物質材料内の金属酸化物と酸化リチウムとの接触面積が増加し、焼成を促進することができる。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2020-113429号公報
【文献】特開2019-175694号公報
【文献】特開2020-198195号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ロータリーキルンは金属水酸化物及び/又はリチウム化合物を酸化するための装置であるため、ロータリーキルン内に積極的に空気又は酸素が送り込まれ、酸化雰囲気にする必要がある。しかし、積極的に空気又は酸素をロータリーキルン内に送り込む必要があることから、生産コストが大きくなる。
【0008】
ローラーハースキルンは仮焼された正極活物質材料を焼成するための装置であり、均一に加熱するために正極活物質材料を匣鉢に充填する必要がある。しかし、装置内の熱風の流れ方によって正極活物質材料に温度ムラが生じやすい。正極活物質材料に温度ムラが生じた状態で短時間加熱を行うと、製造される正極活物質の結晶性にばらつきが生じる。従って、ローラーハースキルンを用いて正極活物質を製造する場合、温度ムラを抑制するために正極活物質材料を長時間加熱することを要するが、そうすると生産コストが増加する。また、長時間加熱を要するため、設備が大型化しやすい。
【0009】
そこで、本願の目的は、生産性を向上することができるリチウムイオン二次電池用正極活物質の製造装置及び製造方法を提供することである。
【課題を解決するための手段】
【0010】
本開示は上記課題を解決するための一つの態様として、ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む金属化合物とリチウム化合物とを含む正極活物質材料を搬送する搬送手段と、正極活物質材料を加熱する加熱部と、を備え、加熱部は熱伝導により正極活物質材料を加熱する加熱手段を少なくとも1つ有し、搬送手段は正極活物質を搬送する搬送部材を有し、加熱手段は搬送部材を介して正極活物質材料を加熱し、搬送部材は幅方向の端部に正極活物質材料保持部を有している、リチウムイオン二次電池用正極活物質の製造装置を提供する。
【0011】
上記製造装置において、加熱手段が加熱ローラーであってもよい。また、上記製造装置において、加熱手段が複数の加熱ローラーであり、正極活物質材料の一方の面を加熱する加熱ローラーと正極活物質材料の他方の面を加熱する加熱ローラーとが搬送方向の上流側から下流側に向かって交互に配置されており、隣接する加熱ローラーのそれぞれが正極活物質材料を挟み込むように対向して配置されている態様であってもよい。さらに、加熱ローラーの抱き角が180°超360°以下であってもよい。
【0012】
上記製造装置において、加熱部は正極活物質材料を700℃以上1000℃以下に加熱してもよい。また、加熱部は酸化雰囲気下で正極活物質材料を加熱してもよい。
【0013】
上記製造装置において、搬送部材は多孔耐熱性部材からなっていてもよい。
【0014】
上記製造装置において、加熱部よりも搬送方向の上流側に正極活物質材料をシート状に成形する成形手段を備えていてもよい。また、上記製造装置において、加熱部により得られた正極活物質を回収する回収部を備えていてもよい。
【0015】
本開示は上記課題を解決するための一つの態様として、ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む金属化合物とリチウム化合物とを混合し、正極活物質材料を得る正極活物質材料作製工程と、正極活物質材料を加熱する加熱工程と、を備え、加熱工程は熱伝導により正極活物質材料を加熱し、加熱工程において、正極活物質材料は搬送部材によって搬送されており、該搬送部材を介して正極活物質材料が加熱されており、搬送部材は幅方向の端部に正極活物質材料保持部を有している、リチウムイオン二次電池用正極活物質の製造方法を提供する。
【0016】
上記製造方法において、加熱工程は正極活物質材料を搬送しながら加熱してもよい。また、上記製造方法において、加熱工程は、正極活物質材料の両面の加熱と正極活物質材料の一方の面の加熱とを交互に行ってもよい。さらに、上記製造方法の加熱工程において、抱き角が180°超360°以下である加熱ローラーを用いて、正極活物質材料を加熱してもよい。
【0017】
上記製造方法において、加熱工程は正極活物質材料を700℃以上1000℃以下に加熱してもよい。また、上記製造方法において、加熱工程は酸化雰囲気下で正極活物質材料を加熱してもよい。
【0018】
上記製造方法において、搬送部材は多孔耐熱性部材からなっていてもよい。
【0019】
上記製造方法において、加熱工程より前に正極活物質材料をシート状に成形する成形工程を備えていてもよい。また、上記製造方法において、加熱工程により得られた正極活物質を回収する回収工程を備えていてもよい。
【発明の効果】
【0020】
本開示によれば、正極活物質の製造生産性を向上することができる。
【図面の簡単な説明】
【0021】
【
図1】リチウムイオン二次電池用正極活物質の製造装置100の模式図である。
【
図2】搬送部材11の端部から正極活物質材料1が滑落する様子を表す幅方向断面図である。
【
図3】正極活物質材料保持部12aを備える搬送部材11の幅方向断面図である。
【
図4】正極活物質材料保持部12bを備える搬送部材11の幅方向断面図である。
【
図5】正極活物質材料保持部12cを備える搬送部材11の幅方向断面図である。
【
図6】正極活物質材料保持部12dを備える搬送部材11の幅方向断面図である。
【
図7】加熱ローラー31の抱き角xを説明するための図である。
【
図9】リチウムイオン二次電池用正極活物質の製造装置200の模式図である。
【
図10】加熱ローラー131の抱き角xを説明するための図である。
【
図11】加熱ローラー131及びタッチロール132の拡大図である。
【
図12】リチウムイオン二次電池用正極活物質の製造装置300の模式図である。
【
図13】リチウムイオン二次電池用正極活物質の製造方法1000のフローチャートである。
【
図14】リチウムイオン二次電池用正極活物質の製造方法2000のフローチャートである。
【
図15】リチウムイオン二次電池用正極活物質の製造方法3000のフローチャートである。
【発明を実施するための形態】
【0022】
1.リチウムイオン二次電池用正極活物質の製造装置
本開示のリチウムイオン二次電池用正極活物質の製造装置について、以下の第一実施形態~第三実施形態を参照しつつ説明する。
【0023】
[第一実施形態]
図1に、第一実施形態であるリチウムイオン二次電池用正極活物質の製造装置100(本明細書において「製造装置100」ということがある。)の模式図を示した。ここで、
図1の左右方向を搬送方向とし、上下方向を高さ方向とし、奥手前方向を幅方向とする。
【0024】
図1に記載されている通り、製造装置100は、搬送手段10と、成形手段20と、加熱部30と、回収部40とを備えている。また、
図1には原料である正極活物質材料1と、生成物である正極活物質2とを記載している。
【0025】
<正極活物質材料1>
正極活物質材料1は金属化合物とリチウム化合物とを含むものである。また、リサイクル材などの既に劣化し、形状が砕けた正極活物質2が含まれていてもよい。劣化した正極活物質2が含まれていたとしても、加熱部30において均熱性高く焼成することができる。
【0026】
正極活物質材料1はこれらの材料を混合することにより得ることができる。混合方法は特に限定されず、公知の方法を採用することができる。例えば、乳鉢を用いて混合してもよく、ブレンダーを用いて混合してもよい。
【0027】
(金属化合物)
金属化合物はニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含むものである。また、金属化合物はニッケルを含んでもよく、ニッケル及びコバルトを含んでもよく、ニッケル、コバルト及びマンガンを含んでもよい。さらに、その他の金属元素を含んでいてもよい。例えば、金属化合物はさらにアルミニウムが含まれていてもよい。また、金属化合物はマンガンに代えてアルミニウムを含んでいてもよい。
【0028】
例えば、金属化合物は、各金属元素のモル比が、Ni:Co:Mn=x:y:z(x=1-y-z、0≦y<1、0≦z<1)であってもよく、Ni:Co:Al=x:y:z(x=1-y-z、0≦y<1、0≦z<1)であってもよい。
【0029】
金属化合物は金属水酸化物、金属酸化物、金属炭酸塩、及び金属過水酸化物でよい。これらの金属化合物は単独で用いられていてもよく、混合して用いられていてもよい。好ましくは、金属化合物は金属水酸化物又は金属酸化物である。
【0030】
金属水酸化物としては、ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む公知の金属水酸化物を用いることができる。例えば、NixCoyMnz(OH)2+α(x=1-y-z、0≦y<1、0≦z<1、0≦α<1)、及びNixCoyAlz(OH)2+α(x=1-y-z、0≦y<1、0≦z<1、0≦α<1)を挙げることができる。金属酸化物としては、ニッケル、コバルト、及びマンガンからなる群から選ばれる少なくとも1つの金属元素を含む公知の金属酸化物を用いることができる。例えばNixCoyMnz(O)2+α(x=1-y-z、0≦y<1、0≦z<1、-1≦α<0)、及びNixCoyAlz(O)2+α(x=1-y-z、0≦y<1、0≦z<1、-1≦α<0)を挙げることができる。
【0031】
金属化合物は公知の方法により作製することができる。以下に、金属水酸化物及び金属酸化物の作製方法の一例をそれぞれ示す。ただし、金属化合物の作製方法はこれに限定されない。
【0032】
例えば、金属水酸化物を作製する方法としては、晶析法が挙げられる。以下、晶析法により、金属水酸化物を作製する方法の一例を説明する。
【0033】
まず、Ni源、Co源、及びMn源(又はAl源)を水系溶媒(例えば、イオン交換水)に溶解させ、金属源溶液を調製する。金属源としては、各金属塩(すなわち、Ni塩、Co塩、及びMn塩(又はAl塩))を使用することができる。金属塩の種類は特に限定されず、塩酸塩、硫酸塩、硝酸塩、炭酸塩、水酸化物等の公知の金属塩を用いることができる。これらの金属源を水系溶媒に添加する順序は特に限定されない。また、各金属源の水溶液を別途作製し、これらを混合してもよい。金属源の割合は、所望の金属水酸化物が得られるように適宜調整する。
【0034】
次に、不活性ガス雰囲気下において、撹拌しながら、金属源溶液及びNH3水溶液をアルカリ水溶液に滴下する。アルカリ水溶液は水酸化ナトリウム水溶液等を用いることができる。アルカリ水溶液のpHは、例えば11~13に設定する。NH3水溶液は、例えば5g/L~15g/Lの範囲を維持しながら滴下する。アルカリ水溶液に金属源溶液及びNH3水溶液を滴下することにより、徐々に反応溶液のpHが低下するため、適宜アルカリ水溶液を滴下し、pHを所定の範囲に維持してもよい。
【0035】
そして、一定期間経過後、吸引濾過を行い、沈殿物を回収する。得られた沈殿物を水洗、乾燥することにより、金属水酸化物が得られる。沈殿物の水洗は複数回行ってもよい。沈殿物の乾燥は風乾でもよく、加熱乾燥してもよい。加熱乾燥は、例えば120~300℃で行うことができる。乾燥時間は、例えば6~18時間である。
【0036】
金属酸化物は、例えば金属水酸化物を酸化焙焼することにより作製することができる。酸化焙焼とは、酸化雰囲気下で金属水酸化物を加熱することである。加熱温度は金属水酸化物を金属酸化物に変換することができれば特に限定されないが、例えば700℃~800℃である。加熱時間は、金属水酸化物を金属酸化物に変換することができれば特に限定されないが、例えば0.5時間~3時間である。このような加熱はロータリーキルン等の焼成装置を用いて実施することができる。
【0037】
金属化合物の平均粒径は特に限定されないが、例えば1μm~1mmの範囲である。本明細書において、「平均粒径」とはレーザー回折・散乱法により取得した体積基準の粒度分布における積算値50%での粒子径であるメディアン径である。
【0038】
正極活物質材料における金属化合物の含有割合は、所望の正極活物質が得られるように適宜設定する。
【0039】
(リチウム化合物)
リチウム化合物はリチウムを含む化合物であれば特に限定されず、公知のリチウム化合物を用いることができる。例えば、酸化リチウム、水酸化リチウム、硝酸リチウム、炭酸リチウム等が挙げられる。水酸化リチウム、硝酸リチウム、炭酸リチウム等は酸化により酸化リチウムとなる。
【0040】
リチウム化合物の種類は金属化合物の種類に応じて適宜選択する。金属化合物の種類に応じて加熱温度(焼成温度)が異なるためである。例えば、金属化合物として、ニッケル、コバルト、及びマンガンを含む金属水酸化物又は金属酸化物を用いる場合、800℃程度の焼成温度が必要となるため、炭酸リチウムを選択することが好ましい。また、金属化合物として、ニッケル、コバルト、及びアルミニウムを含む金属水酸化物又は金属酸化物を用いる場合、500℃程度の焼成温度が必要となるため、水酸化リチウムを選択することが好ましい。
【0041】
正極活物質材料におけるリチウム化合物の含有割合は、所望の正極活物質が得られるように適宜設定する。
【0042】
(正極活物質材料1の形状)
正極活物質材料1の形状は特に限定されないが、シート状でよい。正極活物質材料1がシート状であることにより内部まで均一に加熱されやすくなる。その結果、加熱ムラが低減され、製造される正極活物質2の結晶性のばらつきも抑制される。また、正極活物質材料1の形状をシート状にすることにより、回収部40において、容易に解砕することができる。
【0043】
シート状の正極活物質材料1の厚みは特に限定されないが、例えば0.1mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、2mm以上であってもよく、50mm以下であってもよく、30mm以下であってもよく、30mm未満であってもよく、20mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。シート状の正極活物質材料1の厚みが厚すぎると均一に加熱され難くなり、薄すぎると生産性が低下する。
【0044】
正極活物質材料1は成形手段20及び/又は加熱ローラー31によってシート状に成形されていてもよいが、予めプレス成形等によりシート状に成形されていてもよい。ただし、予め正極活物質材料1をシート状に成形し、さらに成形手段20及び/又は加熱ローラー31によって正極活物質材料1を所定の厚さに成形してもよい。
【0045】
<搬送手段10>
搬送手段10は正極活物質材料1を搬送するための部材である。
図1の通り、搬送手段10は、正極活物質材料1を搬送する搬送部材11を備えている。また、搬送部材11を駆動する駆動手段(不図示)を備えている。
【0046】
(搬送部材11)
搬送部材11は正極活物質材料1を搬送する部材(コンベア)である。搬送部材11はシート状の部材であり、駆動手段によって搬送方向の上流側から下流側に向かって駆動される。搬送部材11は正極活物質材料1を載せた状態で搬送するので、正極活物質材料1の下面に配置される必要がある。また、
図1に記載されているように、正極活物質材料1の上面にも配置されている。すなわち、正極活物質材料1は搬送部材11に挟まれた状態で搬送されている。
【0047】
後述するように、製造装置100は接触加熱により正極活物質材料1を加熱するものである。そのため、加熱ローラー31を直接接触させて正極活物質材料1を加熱してもよいが、そうすると加熱ローラー31に正極活物質材料1が付着し、生産性の低下につながる。そこで、製造装置100では、搬送部材11を介して加熱ローラー31を正極活物質材料1に接触させることで、加熱ローラー31に正極活物質材料1が付着することを抑制している。このような理由から、正極活物質材料1を搬送部材11で挟んで搬送する。
【0048】
搬送部材11は加熱ローラー31に接触するものであるため、加熱部30の加熱温度に耐性を有する部材(耐熱性部材)から構成される必要がある。例えば、耐熱性部材は900℃以上の耐熱性を有する必要がある。このような耐熱性部材としては、例えば石英ガラスクロスや、シリカ繊維クロスが挙げられる。
【0049】
ここで、金属水酸化物やリチウム水酸化物等の酸化により酸化物となる材料が正極活物質材料1に含まれている場合、正極活物質材料1の焼成を進行させるために外部から酸素を取り込む必要がある。また、正極活物質材料1は焼成により水(水蒸気)や二酸化炭素等のガスが発生する場合がある。そのため、正極活物質材料1の焼成はガス交換可能な環境であることが好ましい。そこで、搬送部材11は外部との効率的なガス交換が可能な多孔耐熱性部材からなっていてもよい。多孔耐熱性部材の孔径は、効率的なガス交換が可能であり、かつ、正極活物質材料1が外部に漏れない大きさであれば特に限定されない。例えば、多孔耐熱性部材が有する孔の孔径は20μm以下であってもよく、10μm以下であってもよく、5μm以下であってもよく、3μm以上であってもよく、1μm以上であってもよく、0.5μm以上であってもよい。多孔耐熱性部材が有する孔の孔径が大きすぎると正極活物質材料1が外部に漏れやすくなり、小さすぎると外部とのガス交換効率が低減する。このような多孔耐熱性部材としては、繊維状の耐熱性部材が挙げられる。例えば、石英ガラスクロス、シリカ繊維クロスが挙げられる。
【0050】
ここで、多孔耐熱性部材の孔径は繊維径と製品密度(単位:本/mm)とから求められるメッシュの目開きの対角線の長さである。
【0051】
搬送部材11は正極活物質材料1を搬送する役割を有するが、搬送中に正極活物質材料1が搬送部材11の端部から滑落することがある。後述するように、製造装置100は加熱ローラー31を用いて熱伝導(接触加熱)により正極活物質材料1を加熱している。この際に、対向する加熱ローラー31に挟まれることで、搬送部材11内の正極活物質材料1は上下方向に荷重を受ける。また、所定の抱き角で加熱ローラー31に接触しながら搬送されることにより、所定の張力が与えられることで、搬送部材11内の正極活物質材料1は上下方向に荷重を受ける。そうすると、正極活物質材料1は幅方向の外側に向かって移動し、搬送部材11の端部から滑落する問題がある。さらに、正極活物質材料1に含まれるリチウム化合物、特に炭酸リチウムは融点が低く、加熱により融解してゾル化(液状化)することがある。この場合、正極活物質材料1がさらに滑落しやすくなる。
【0052】
図2に搬送部材11の端部から正極活物質材料1が滑落する様子を表す幅方向断面図を示した。
図2は
図1のA-A断面に対応する。
図2に示した通り、加熱ローラー31からの圧力により、正極活物質材料1が幅方向の外側に向かってに移動し、搬送部材11の端部から滑落している。
【0053】
このような滑落を抑制するために、搬送部材11は幅方向の端部に正極活物質材料保持部を備えている。正極活物質材料保持部は搬送部材11の幅方向の端部の少なくとも一方に備えられていればよいが、正極活物質材料1の滑落をより抑制する観点から、搬送部材11の幅方向の両端部に備えられていてもよい。また、正極活物質材料保持部は正極活物質材料1を挟む搬送部材11のうち、何れか一方の搬送部材11に備えられていればよいが、正極活物質材料1の滑落をより抑制する観点から、両方の搬送部材11に備えられていてもよい。
図3~
図6に具体的態様である正極活物質材料保持部12a~12dをそれぞれ示した。
図3~
図6は
図1のA-A断面に対応する。
【0054】
図3は、正極活物質材料保持部12aを備える搬送部材11の幅方向断面図である。正極活物質材料保持部12aは、搬送部材11の端部が折り曲げられて形成される。
図3では、正極活物質材料保持部12aは、正極活物質材料1の上面及び下面に配置された搬送部材11の端部がそれぞれ折り曲げられて形成されている。
【0055】
1つの端部における正極活物質材料保持部12aの全体の厚みは特に限定されず、正極活物質材料1の厚みに応じて適宜設定できるが、正極活物質材料1の厚みよりも厚いことが好ましい。加熱ローラー31の圧力を端部に集中させ、正極活物質材料1に適用される圧力を軽減し、正極活物質材料1が幅方向の外側に向かって移動することを抑制するためである。例えば、1つの端部における正極活物質材料保持部12aの全体の厚みを、正極活物質材料1の厚みの110%以上200%以下に設定してよい。正極活物質保持部12aの厚みは搬送部材11の端部を折り曲げる回数によって適宜設定することができる。例えば、搬送部材11の端部を折り曲げる回数は、少なくとも1回でよい。
図3では、それぞれの端部を2回折り曲げている。
【0056】
搬送部材11は正極活物質材料保持部12aを有することにより、端部において正極活物質材料1を幅方向の内側に押し戻すことができ、正極活物質材料1の滑落を抑制することができる。また、端部における搬送部材11の密度が高くなるため、加熱ローラー31に接触した時に、幅方向中央よりも端部側に圧力が掛かり易くなり、正極活物質材料1の幅方向外側への移動が抑制され、さらに正極活物質材料1の滑落が抑制される。
【0057】
図4は、正極活物質材料保持部12bを備える搬送部材11の幅方向断面図である。正極活物質材料保持部12bは、搬送部材11の端部に耐熱性素材13が織り込まれることで形成される。
図3では、正極活物質材料保持部12bは、正極活物質材料1の上面及び下面に配置された搬送部材11の端部に耐熱性素材13bが織り込まれることにより形成されている。耐熱性素材13bとは、例えば石英ガラス、シリカ繊維を材料とする紐状のワイヤや、金属繊を束ねた紐上のワイヤである。
【0058】
1つの端部における正極活物質材料保持部12b全体の厚みは特に限定されず、正極活物質材料1の厚みに応じて適宜設定できるが、正極活物質材料1の厚みよりも厚いことが好ましい。加熱ローラー31の圧力を端部に集中させ、正極活物質材料1に適用される圧力を軽減し、正極活物質材料1が幅方向の外側に向かって移動することを抑制するためである。例えば、1つの端部における正極活物質材料保持部12bの全体の厚みを、正極活物質材料1の厚みの110%以上200%以下に設定してよい。また、搬送部材11の端部において、対向して配置される耐熱性素材13bが互いに噛み合うように配置する。これにより、正極活物質材料1の滑落をさらに抑制することができる。
【0059】
搬送部材11は正極活物質材料保持部12bを有することにより、端部において正極活物質材料1を幅方向の内側に押し戻すことができ、正極活物質材料1の滑落を抑制することができる。また、端部における搬送部材11の強度が高くなるため、加熱ローラー31に接触した時に、幅方向中央よりも端部側に圧力が掛かり易くなり、正極活物質材料1の幅方向外側への移動が抑制され、さらに正極活物質材料1の滑落が抑制される。
【0060】
図5は、正極活物質材料保持部12cを備える搬送部材11の幅方向断面図である。正極活物質材料保持部12cは、搬送部材11の端部であって、対向する搬送部材11の間に配置されたガイド部材(コンベア)である。また、正極活物質材料保持部12cは搬送部材11の搬送方向に沿って配置される。
図5では、正極活物質材料保持部12cは、搬送部材11のそれぞれ端部であって、対向する搬送部材11の間に配置されている。正極活物質材料保持部12c(ガイド部材)は、例えばガラス繊維シート等の耐熱性部材である。
【0061】
正極活物質材料保持部12cの厚みは特に限定されず、正極活物質材料1の厚みに応じて適宜設定できるが、正極活物質材料1の厚みよりも厚いことが好ましい。加熱ローラー31の圧力を端部に集中させ、正極活物質材料1に適用される圧力を軽減し、正極活物質材料1が幅方向の外側に向かって移動することを抑制するためである。例えば、正極活物質材料保持部12cの厚みを、正極活物質材料1の厚みの110%以上200%以下に設定してよい。
【0062】
搬送部材11は正極活物質材料保持部12cを有することにより、端部において正極活物質材料1を幅方向の内側に押し戻すことができ、正極活物質材料1の滑落を抑制することができる。また、端部における搬送部材11の強度が高くなるため、加熱ローラー31に接触した時に、幅方向中央よりも端部側に圧力が掛かり易くなり、正極活物質材料1の幅方向外側への移動が抑制され、さらに正極活物質材料1の滑落が抑制される。
【0063】
図6は、正極活物質材料保持部12dを備える搬送部材11の幅方向断面図である。正極活物質材料保持部12dは、正極活物質材料1の上面及び下面に配置された搬送部材11の端部が窄まることで形成される。
図6では、正極活物質材料保持部12dは、搬送部材11のそれぞれの端部が窄まって、形成されている。搬送部材11が正極活物質材料保持部12dを備える場合、正極活物質保持部12dに対応する端部に突出部31dを備えた加熱ローラー31を用いる。
図6では、加熱ローラー31のそれぞれの端部に突出部31dが備えられている。
【0064】
1つの端部における突出部31dの全体の厚みは特に限定されず、正極活物質材料1の厚みに応じて適宜設定できるが、正極活物質材料1の厚みよりも厚いことが好ましい。加熱ローラー31の圧力を端部に集中させ、正極活物質材料1に適用される圧力を軽減し、正極活物質材料1が幅方向の外側に向かって移動することを抑制するためである。例えば、1つの端部における突出部31dの全体の厚みを、正極活物質材料1の厚みの110%以上200%以下に設定してよい。加熱ローラー31の両端部に突出部31dが備えられることにより、加熱ローラー31に所定の凹部が形成される。
図6に示した通り、凹部の内部において、正極活物質材料1が加熱される。従って、突出部31d及び凹部の幅は、正極活物質材料1の幅に応じて適宜設定する。
【0065】
このように、正極活物質材料保持部12dと凹部31dとの組み合わせにより、端部において正極活物質材料1を幅方向の内側に押し戻すことができ、正極活物質材料1の滑落を抑制することができる。また、加熱ローラー31の端部に圧力が掛かり易いため、正極活物質材料1の幅方向外側への移動が抑制され、さらに正極活物質材料1の滑落が抑制される。なお、正極活物質材料保持部12dは突出部31dによって形成されていてもよく、事前に搬送部材11の端部を窄ませることで形成してもよい。
【0066】
なお、
図6では、正極活物質材料1の上面及び下面側に配置された加熱ローラー31のそれぞれに突出部31dが備えられていたが、これに限定されず、突出部31dはいずれか一方の加熱ローラー31に備えられていればよい。この場合、突出部31dにより正極活物質材料保持部12dが、突出部31dを備えていない他方の加熱ローラー31側に押し付けられる。これにより、上述の効果を発揮する。
【0067】
以上、正極活物質材料保持部の具体例を示したが、正極活物質材料保持部の形態はこれに限定されず、正極活物質材料1の滑落を抑制することができる形態であればよい。また、搬送部材11が正極活物質材料保持部を有することにより、正極活物質材料1の滑落を抑制することができる。従って、装置100によれば、正極活物質2の製造生産性を向上することができる。
【0068】
<成形手段20>
成形手段20は正極活物質材料1をシート状に成形する部材である。
図1に記載されている通り、成形手段20は加熱部30よりも搬送方向の上流側に配置される。なお、製造装置100において、成形手段20は任意の部材である。上述したように、予め正極活物質材料2をシート状に成形してもよいためである。
【0069】
成形手段20としては、搬送される正極活物質材料1の粉体量を制御してシート状に成型する粉体量制御部材が挙げられる。例えば、
図1に記載されている粉体量制御ナイフである。また、正極活物質材料1をプレスしてシート状に成形する部材が挙げられる。
【0070】
成形手段20によって成形されたシート状の正極活物質材料1の厚みは特に限定されないが、例えば0.1mm以上であってもよく、0.5mm以上であってもよく、1mm以上であってもよく、2mm以上であってもよく、50mm以下であってもよく、30mm以下であってもよく、30mm未満であってもよく、20mm以下であってもよく、10mm以下であってもよく、5mm以下であってもよい。
【0071】
<加熱部30>
加熱部30は、正極活物質材料1を加熱(焼成)するものである。
図1に記載されている通り、加熱部30は矩形の筐体であり、内部に6つの加熱ローラー31(加熱手段)を備えている。
【0072】
加熱部30は正極活物質材料1を700℃以上に加熱してもよく、800℃以上に加熱してもよく、900℃以上に加熱してもよく、1100℃以下に加熱してもよく、1000℃以下に加熱してもよい。当業者であれば、正極活物質材料1を適切に焼成可能な温度に設定可能である。正極活物質材料1は、後述するように、加熱ローラー31に接触するにより加熱される。したがって、実際には、加熱ローラー31が所定の温度に加熱される。なお、加熱ローラー31の温度はそれぞれ同じでもよく、異なっていてもよい。例えば、搬送方向上流側に配置されている加熱ローラー31は酸化を目的として低い温度に設定されていてもよく、搬送方向下流側に配置されている加熱ローラー31は焼成を目的として高い温度に設定されていてもよい。
【0073】
加熱部30は酸化雰囲気下で正極活物質材料1を加熱してもよい。正極活物質材料1の酸化反応を促進するためである。内部を酸化雰囲気にするために、加熱部30は送風部(不図示)を備えている。送風部から加熱部の内部に空気又は酸素が供給されることにより、加熱部30を酸化雰囲気に保持することができる。また、加熱部30を負圧に保つように、空気又は酸素を供給し続けてもよい。送風部としては、公知のブロワー等を用いることができる。なお、正極活物質材料に酸化反応を伴う材料が含まれていない場合には、加熱部30において正極活物質材料1を酸化する必要がないため、加熱部30を酸化雰囲気としなくてもよい。
【0074】
ここで、本明細書において、「酸化雰囲気」とは目的とする材料を酸化することができる雰囲気である。例えば、酸素を1%以上含むガス(例えば、空気又は酸素)を供給し満たされた空間内の雰囲気である。空間内の酸素濃度は、目的とする材料の酸化の進行速度に応じて適宜設定することができる。
【0075】
(加熱ローラー31)
加熱ローラー31(加熱手段)は熱伝導により正極活物質材料1を加熱する部材である。「熱伝導により正極活物質材料1を加熱する」とは、いわゆる接触加熱を意味する。また、加熱ローラー31は、搬送部材11を介して正極活物質材料1を加熱する。従って、加熱ローラー31の熱は搬送部材11に伝熱した後、正極活物質材料1に伝熱され、正極活物質材料1が加熱される。また、搬送部材11に加えて、さらに他の部材を介して、加熱ローラー31を正極活物質材料1に接触させて、正極活物質材料1を加熱してもよい。
【0076】
加熱ローラー31は接触加熱により正極活物質材料1を加熱するものであり、接触部位を効率よく加熱することができ、且つ、接触部位の均熱性も高いことが特徴である。従って、正極活物質材料1の焼成時間を低減することができるとともに、結晶性のばらつきも抑制することができる。また、接触加熱は均熱性が高いため、従来正極活物質を製造するためには仮焼工程及び焼成工程の2つの加熱工程を要していたが、製造装置100では1つの工程で正極活物質材料を焼成し、正極活物質を得ることができる。よって、製造装置100によれば、正極活物質の製造の生産性を向上することができる。また、加熱時間の短縮により、設備を小型化することもできる。
【0077】
加熱手段として加熱ローラー31を採用することにより、正極活物質材料1を搬送しながら加熱することができるため、正極活物質2の連続生産が可能となる。
【0078】
図1に記載されている通り、加熱部30は6つの加熱ローラー31を備えている。加熱ローラー31の配置態様および個数は特に限定されるものではないが、
図1に記載されている通り、正極活物質材料1の一方の面(例えば上面)を加熱する加熱ローラーと正極活物質材料1の他方の面(例えば下面)を加熱する加熱ローラーとを、搬送方向の上流から下流に向かって交互に配置してもよい。これにより、正極活物質材料1の両面を均等に加熱することができるため、正極活物質材料1の温度ムラを低減することができる。
【0079】
また、正極活物質材料1を挟み込みむように、隣接する加熱ローラー31を対向して配置してもよい。これにより、正極活物質材料1の両面を同時に加熱することができるため、加熱効率を向上させるとともに、温度ムラを低減することができる。また、隣接する加熱ローラー31を対向して配置することにより、圧力をかけて正極活物質材料1を加熱することができる。すなわち、正極活物質材料1をシート状に加熱成形することができる。対向する加熱ローラー31間の間隙を調整することにより、シート状の正極活物質材料1の厚みを調整することができる。例えば、対向する加熱ローラー31の間隙を搬送方向の上流側から下流側に向かって徐々に狭くしてもよい。これにより、正極活物質材料1を確実に挟むように加熱ローラー31を配置することができるため、正極活物質材料1の温度ムラが低減する。なお、加熱ローラー31は正極活物質材料1の成形を目的としていないため、加熱ローラー31間の間隙を厳密に調整しなくてもよい。
【0080】
図1では、隣接する加熱ローラーのそれぞれが対向するように配置されている。
図1から分かるように、最上流及び最下流の加熱ローラー31を除く加熱ローラー31には、それぞれ抱き角が設定されている。
図7に抱き角を説明するための図を示した。また、
図3に
図8の加熱ローラー31の拡大図を示した。
【0081】
「抱き角」とは、
図7、
図8に「x」で示したように、加熱ローラー31に正極活物質材料1(搬送路11)が接触してから剥離するまでの範囲から求められる加熱ローラー31の中心角である。
図7のように、加熱ローラー31に抱き角xを設定することにより、加熱ローラー31と正極活物質材料1との接触面積を増加させることができ、加熱効率を向上させることができる。また、正極活物質材料1を扱いて動かすことができるため、加熱ムラを低減するとともに、ガス交換を促進することができる。加熱ローラー31への正極活物質材料1の付着も抑制することができる。さらに、対向して配置される加熱ローラー31に挟み込まれる正極活物質材料1は両面から加熱されることにより焼成が進行する一方で、加熱ローラー31に挟みこまれてはいないが、一方の加熱ローラー31に接触している正極活物質材料1は接触面が加熱されつつ、加熱ローラー31に接触していない開放面からガス交換を行うことができるため、正極活物質材料1の焼成を促進することができる。従って、
図1、
図8のように加熱ローラー31を配置することにより、正極活物質材料1の両面の加熱(加熱成形)と正極活物質材料1の一方の面の加熱とを交互に行うことができ、これにより加熱と効率的なガス交換とが交互に行われ、焼成が促進される。
【0082】
加熱ローラー31の抱き角xは特に限定されないが、
図1の配置態様であれば、10°以上としてもよく、20°以上としてもよく、180°以下としてもよく、90°以下としてもよい。加熱ローラーの抱き角が10°未満であると、正極活物質材料1を扱いて動かすことが困難になる。一方で、加熱ローラー31の抱き角が180°を超えることによる不利益はない。加熱ローラー31の抱き角が180°を超えると、加熱ローラー31の鉛直方向付近の箇所において、搬送部材11の端部から正極活物質材料1が滑落しやすい懸念があるが、搬送部材11は正極活物質材料保持部を有することにより、このような滑落は抑制される。ただし、
図1の配置態様であれば、構造上の問題から加熱ローラー31の抱き角を180°以下に設定したほうがよい。加熱ローラー31の抱き角を180°を超える形態については、後述の第二実施形態において説明する。
【0083】
図8では、隣接する加熱ローラー31の中心を結ぶ直線が、抱き角をなす直線の一方と重なるように加熱ローラー31がそれぞれ配置されている。これにより、正極活物質材料1を加熱ローラー31に常に接触させることができ、加熱効率を向上させ、加熱時間を短くすることができる。
【0084】
なお、
図8では最上流及び最下流の加熱ローラー31以外の加熱ローラー31に抱き角が設定されているが、最上流及び最下流の加熱ローラー31に抱き角が設定されていてもよい。例えば、タッチロールを用いることにより最上流及び最下流の加熱ローラー31に抱き角を所望の値に設定することができる。
【0085】
加熱ローラー31の材料は特に限定されない。例えば、加熱ローラー31は1000℃以上の耐熱性を有する材料から構成されていてもよい。このような材料は、例えば、セラッミクス等の無機材料や、鉄等の金属材料が挙げられる。
【0086】
加熱ローラー31の回転方向は正転(搬送方向と同じ方向に回転)でもよく、逆転(搬送方向とは反対方向に回転)でもよい。加熱ローラー31の回転数は特に限定されるものではない。当業者は均熱性と経済性を両立する最適な回転方向及び回転数を適宜選択することができる。
【0087】
加熱ローラー31の表面は凹凸を有していてもよい。加熱ローラー31の表面が凹凸形状を有することにより、加熱ローラー31に接触した正極活物質材料1を扱いて動かすことができ、加熱ムラを低減するとともに、ガス交換を促進することができる。また、加熱ローラーへの正極活物質材料1の付着も抑制することができる。さらに、
図6(a)(b)に示した通り、正極活物質材料1の滑落を抑制するために、加熱ローラー31は所定の突出部31dを備えていてもよい。
【0088】
加熱ローラー31の幅方向の長さは特に限定さないが、例えば搬送部材11の幅方向の長さと同等の長さに設定してもよい。加熱ローラー31の直径は、加熱部30の大きさや正極活物質材料1を適切に加熱する観点から適宜設定する。
【0089】
<回収部40>
回収部40は加熱部30により得られた正極活物質2を回収する部材である。
図1のように、正極活物質2を搬送部材11で挟んで搬送する場合、回収部40において搬送部材を分離して、内部の正極活物質2を回収してもよい。このように搬送部材11を分離するために、所定のローラー41を適宜配置してもよい。また、回収された正極活物質2は解砕されてもよい。正極活物質2の解砕方法は特に限定されず、正極活物質2を回収後にハンマー等で解砕してもよい。また、正極活物質材料1がシート状である場合、得られる正極活物質2もシート状であるため容易に解砕可能である。例えば、
図1のように、正極活物質2を単に回収するだけで解砕する。
【0090】
搬送部材11に多孔耐熱部材を用いる場合、内部の空孔に正極活物質2が埋もれている場合がある。このような場合、搬送部材11を裏返した状態で振動を加えたり、正極活物質2と接触していない面から空気を吹き付けたりする(
図1の矢印)ことで、内部に埋もれた正極活物質2を回収でき、生産性を向上することができる。振動を加える装置は例えば振動ノッカーが挙げられる。空気を吹き付ける装置は、例えばエアブロワーが挙げられる。
【0091】
<正極活物質2>
製造装置100により得られる正極活物質2は、金属酸化物にリチウムが挿入された組成を有している。例えば、正極活物質2における各金属元素のモル比が、Li:Ni:Co:Mn=s:x:y:z(0.8≦s≦1.2、x=1-y-z、0≦y<1、0≦z<1)であってもよく、Li:Ni:Co:Al=s:x:y:z(0.8≦s≦1.2、x=1-y-z、0≦y<1、0≦z<1)であってもよい。また、正極活物質2の組成がLisNixCoyMnz(O)2+α(0.8≦s≦1.2、x=1-y-z、0≦y<1、0≦z<1、-0.5≦α<0.5)であってもよく、LisNixCoyAlz(O)2+α(0.8≦s≦1.2、x=1-y-z、0≦y<1、0≦z<1、-0.5≦α<0.5)であってもよい。
【0092】
また、正極活物質材料1は接触加熱により焼成されているため、得られる正極活物質2の結晶性のばらつきは抑制されている。結晶性のばらつきについては、XRDによる結晶子径測定により求められ、正極活物質2の電池評価結果と合わせて最適な結晶子径(単位:nm)の範囲を設定する。例えば、結晶子径の範囲はおよそ±200nmの範囲であってもよく、±100nmの範囲であってもよく、±50nmの範囲であってもよい。
【0093】
[第二実施形態]
次に、第二実施形態について説明する。
図9に第二実施形態であるリチウムイオン二次電池用正極活物質の製造装置200(本明細書において「製造装置200」ということがある。)の模式図を示した。製造装置200は製造装置100の加熱部30を加熱部130に変更したものである。具体的には、加熱ローラー31の抱き角xを180°超に変更したものである。加熱部130以外の構成は製造装置100と同様である。
【0094】
図9に示した通り、加熱部130は加熱部30と同様に、6つの加熱ローラー131を備えている。また、加熱部30の加熱ローラー31に比べて、加熱ローラー131の抱き角xは大きい。具体的には、加熱ローラー131の抱き角xが180°超360°以下である。
図10に加熱ローラー131の抱き角xを説明する図を示した。抱き角xの説明は上述したため、ここでは省略する。
【0095】
加熱ローラー131の抱き角xを180°超とすることにより、高さ方向に正極活物質材料1が搬送されることになるので、搬送中に正極活物質材料1の転動が促進され、均熱性が向上するとともにガス交換が促進される。これにより、生成物である正極活物質2の酸化ムラを抑制され、品質が向上する。また、加熱ローラー31と正極活物質材料1との接触時間を長くすることができるため、設備の小型化が可能である。
【0096】
加熱ローラー131の抱き角xを180°超とすることにより、抱き角xが180°以下の場合と比べて、高さ方向に正極活物質材料1が搬送される際に搬送部材11に強い張力が与えられ、搬送部材11内の正極活物質材料1は上下方向に荷重を受け、端部からの滑落が懸念される。しかしながら、搬送部材11は所定の正極活物質材料保持部を有しているので、このような滑落は抑制される。加熱ローラー131の抱き角xは210°以上としてもよく、240°以上としてもよく、270°以上としてもよく、300°以上としてもよく、360°未満としてもよく、350°以下としてもよく、330°以下としてもよい。
【0097】
また、加熱部130は加熱部30と異なりタッチロール132を備えている。タッチロール132は、隣接する加熱ローラー131の抱き角の設定に用いられる。タッチロール132は隣接する加熱ローラー31に対向する位置に配置されていてもよい。
図9では搬送方向の上流側及び下流側の加熱ローラー131に隣接した位置にそれぞれタッチロール132を備えている。なお、製造装置200において、タッチロール132は任意の部材である。また、タッチロール132の数は少なくとも1つでよい。さらに、タッチロール132の位置は特に限定されず、抱き角xを設定する加熱ローラー131に隣接する位置に配置されればよい。
【0098】
タッチロール32の材料は特に限定されない。例えば、加熱ローラー131の材料から適宜選択することができる。タッチロール132の幅方向の長さは特に限定さないが、例えば搬送部材11の幅方向の長さと同等の長さに設定してもよい。タッチロール132の直径は、加熱部130の大きさや加熱ローラー131の抱き角に基づいて、適宜設定することができる。
【0099】
抱き角xは加熱ローラー131及びタッチロール132の配置態様により設定することができる。
図11に加熱ローラー131及びタッチロール132の拡大図を示した。
図11では、所定の抱き角xとなるように隣接する加熱ローラー31のそれぞれが対向するように配置されている。このように配置されることにより、最上流及び最下流の加熱ローラー131を除き、加熱ローラー131の抱き角xを所望の値に設定することができる。また、搬送方向において、上流側及び下流側の加熱ローラー131に隣接する位置にタッチロール132が配置されている。これにより、最上流及び最下流の加熱ローラー131の抱き角を所望の値に設定することができる。さらに、
図11に示した通り、隣接する加熱ローラー131の中心を結ぶ直線が、抱き角をなす直線の一方と重なるように加熱ローラー131がそれぞれ配置されている。これにより、正極活物質材料1を加熱ローラー131に常に接触させることができ、加熱効率を向上させ、加熱時間を短くすることができる。
【0100】
[第三実施形態]
続いて、第三実施形態について説明する。
図12に第三実施形態であるリチウムイオン二次電池用正極活物質の製造装置300(本明細書において「製造装置300」ということがある。)の模式図を示した。製造装置300は製造装置100の加熱部30を加熱部230に変更したものである。具体的には、加熱ローラー31を板状加熱手段231に変更したものである。加熱部230以外の構成は製造装置100と同様である。
【0101】
板状加熱手段231は板状の加熱手段であり、
図12に記載されている通り、上下1対の板状加熱手段231が搬送方向に3列並んでいる。そして、板状加熱手段231を昇降させて、正極活物質材料1(搬送部材11)を挟み込むことで加熱する。この際、加圧成形してもよい。なお、加熱の際、搬送部材11は一時的に停止させることとなる。このように、加熱手段として板状加熱手段131を用いても、接触加熱を実現することができる。
【0102】
板状加熱手段231の材料は加熱ローラー31と同様の材料を使用できる。また、板状加熱手段231の大きさや面積等は適宜設定することができる。
【0103】
[補足]
製造装置100、200、300において加熱手段(加熱ローラー、板状弾性部材)は複数用いられているが、本開示の製造装置はこれに限定されず、加熱手段を少なくとも1つ備えていればよい。正極活物質材料1を焼成するために必要な数だけ設置されていればよいためである。また、加熱手段の形状はロール状及び板状に限定されるものではなく、様々な形状の加熱手段を採用することができる。接触加熱を実現できる形状であればよいためである。また、第一実施形態及び第二実施形態によれば、加熱ローラーの抱き角xは限定されるものではなく、0°以上360°以下の範囲から適宜選択することができる。
【0104】
2.リチウムイオン二次電池用正極活物質の製造方法
本開示のリチウムイオン二次電池用正極活物質の製造方法について、以下の第一実施形態~第三実施形態を参照しつつ説明する。
【0105】
[第一実施形態]
本開示のリチウムイオン二次電池用正極活物質の製造方法について、第一実施形態であるリチウムイオン二次電池用正極活物質の製造方法(本明細書において「製造方法1000」ということがある。)を参照しつつ、説明する。
【0106】
図13に第一実施形態であるリチウムイオン二次電池用正極活物質の製造方法(本明細書において「製造方法1000」ということがある。)のフローチャートを示した。
図13に示した通り、製造方法1000は正極活物質材料作製工程S1と、成形工程S2と、加熱工程S3と、回収工程S4を備えている。なお、成形工程S2、加熱工程S3、回収工程S4は本開示の製造装置により実施することができる。
【0107】
<正極活物質材料作製工程S1>
正極活物質材料作製工程S1は、金属化合物とリチウム化合物とを混合し、正極活物質材料を得る工程である。ここで、金属化合物、リチウム化合物、及び正極活物質材料については上述したためここでは省略する。また、混合方法についても上述したためここでは省略する。
【0108】
<成形工程S2>
成形工程S2は任意の工程であり、加工工程S3よりも前に設けられる。成形工程S2は正極活物質材料をシート状に成形する工程である。正極活物質材料をシート状に成形する方法は特に限定されない。例えば、上述した成形方法を採用することができる。
【0109】
<加熱工程S3>
加熱工程S3は正極活物質材料を加熱(焼成)する工程である。具体的には、加熱工程S3は熱伝導により正極活物質材料を加熱する工程である。正極活物質材料を加熱する方法は上述したため、ここでは説明を省略する。
【0110】
<回収工程S4>
回収工程S4は加熱工程S3により得られた正極活物質を回収する工程である。正極活物質を回収する方法は特に限定されない。例えば、上述した回収方法を採用することができる。
【0111】
[第二実施形態]
次に、第二実施形態について説明する。
図14に、第二実施形態であるリチウムイオン二次電池用正極活物質の製造方法2000(本明細書において「製造方法2000」ということがある。)を示した。製造方法2000は製造方法1000に酸化焙焼工程S5を設けたものである。酸化焙焼工程S5は、正極活物質材料作製工程S1よりも前に設けられ、金属水酸化物を酸化雰囲気下で加熱する工程である。金属水酸化物の酸化焙焼方法は上述したため、ここでは省略する。酸化焙焼工程S5を設けることにより、金属酸化物を得ることができる。金属水酸化物の酸化は吸熱反応であるため、加熱工程S3において金属水酸化物を含む正極活物質材料を用いると温度ムラが生じる虞があるため、製造方法2000では酸化焙焼工程S5を設け、事前に金属水酸化物の酸化を行っている。ただし、加熱工程S3は接触加熱を採用しているため、金属水酸化物を含む正極活物質材料を用いたとしても、温度ムラが低減される。
【0112】
[第三実施形態]
続いて、第三実施形態について説明する。
図15に、第三実施形態であるリチウムイオン二次電池用正極活物質の製造方法3000(本明細書において「製造方法3000」ということがある。)を示した。製造方法3000は成形工程S2の前に仮焼工程S6を設けたものである。仮焼工程S6は正極活物質材料を酸化雰囲気下で加熱する工程である。仮焼工程S6により、金属水酸化物を金属酸化物に、リチウム水酸化物等のリチウム化合物を酸化リチウムに酸化することができる。このような酸化反応は吸熱反応であるため、仮焼工程S6によって正極活物質材料の酸化を完了させることで、加熱工程S3において正極活物質材料の温度ムラを低減し、かつ、短時間で焼成が可能となる。ただし、加熱工程S3は接触加熱を採用しているため、仮焼工程2を設けずとも、金属水酸化物等を含む正極活物質材料を適切に焼成し、正極活物質を得ることができる。
【0113】
仮焼工程S6の加熱温度は例えば700℃~800℃である。加熱時間は例えば0.5時間~3時間である。このような加熱はロータリーキルン等の焼成装置を用いて実施することができる。
【0114】
[補足]
本開示の製造方法において、酸化焙焼工程と仮焼工程とを組み合わせてもよい。
【0115】
3.効果
以上、本開示のリチウムイオン二次電池用正極活物質の製造装置及び製造方法について、各実施形態を用いて説明した。本開示は熱伝導により正極活物質材料を加熱する接触加熱を採用している。接触加熱は接触部位を効率よく加熱することができ、且つ、接触部位の温度ムラが小さい(均熱性が高い)ことが特徴である。従って、接触加熱を採用している本開示は正極活物質材料の焼成時間を低減することができるとともに、結晶性のばらつきも抑制することができる。また、本開示は従来とは異なり、1つの加熱部(加熱工程)で正極活物質材料を焼成し、正極活物質を得ることができる。よって、本開示によれば、正極活物質の製造の生産性を向上することができる。また、加熱時間の短縮により、設備を小型化することもできる。
【0116】
また、本開示は搬送部材の端部に所定の正極活物質材料保持部を備えており、これにより、正極活物質材料1の滑落を抑制することができる。従って、本開示によれば、正極活物質2の製造生産性をさらに向上することができる。
【実施例】
【0117】
以下に、実施例を用いて本開示についてさらに説明する。
【0118】
図9に倣って、製造装置を準備した。正極活物質材料としてニッケルコバルトマンガン酸と炭酸リチウムとの混合物を用意した。そして、正極活物質材料を搬送部材に載せて、加熱部により加熱し、正極活物質を作製した。この際、加熱ローラーの温度を950℃~1000℃に設定した。また、全ての加熱ローラーの抱き角を180°超に設定した。
【0119】
ここで、実施例では、
図3に倣って、端部を複数回折り曲げて形成された正極活物質材料保持部を有する搬送部材を用いた。比較例では、正極活物質材料保持部を有さない搬送部材を用いた。
【0120】
以上に基づいて、正極活物質の製造を実施例及び比較例の条件でそれぞれ5回実施し、正極活物質の回収率を評価した。正極活物質の回収率は、正極活物質材料が全て正極活物質となって回収された場合の正極活物質の重量を100%として算出した。その結果、比較例では正極活物質の回収率が58~67%程度であったが、実施例では正極活物質の回収率が98%~100%であった。この結果の違いは、正極活物質材料保持部により正極活物質材料の滑落が抑制されたためであると考えられる。
【産業上の利用可能性】
【0121】
本開示により製造される正極活物質は、非水系リチウムイオン二次電池、水系リチウムイオン二次電池、及び全固体リチウムイオン二次電池のいずれの正極にも用いることができる。
【符号の説明】
【0122】
1 正極活物質材料
2 正極活物質
10 搬送手段
11 搬送部材
12a、12b、12c、12d 正極活物質材料保持部
20 成形手段
30、130、230 加熱部
31、131 加熱ローラー(加熱手段)
31d 突出部
40 回収部
41 ローラー
132 タッチロール
231 板状加熱手段(加熱手段)
100、200、300 リチウムイオン二次電池用正極活物質の製造装置