(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2025-02-17
(45)【発行日】2025-02-26
(54)【発明の名称】搬送流体中の現在のグルコース濃度を測定する方法
(51)【国際特許分類】
A61B 5/145 20060101AFI20250218BHJP
【FI】
A61B5/145
(21)【出願番号】P 2021560082
(86)(22)【出願日】2020-04-09
(86)【国際出願番号】 DE2020200027
(87)【国際公開番号】W WO2020211910
(87)【国際公開日】2020-10-22
【審査請求日】2023-03-16
(31)【優先権主張番号】102019205430.7
(32)【優先日】2019-04-15
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】517276701
【氏名又は名称】アイセンス ゲーエムベーハー
【氏名又は名称原語表記】EYESENSE GMBH
(74)【代理人】
【識別番号】110002343
【氏名又は名称】弁理士法人 東和国際特許事務所
(72)【発明者】
【氏名】クルーゼ、 テレサ
(72)【発明者】
【氏名】グライヘン、 クヌート
(72)【発明者】
【氏名】ミュラー、 アヒム
(72)【発明者】
【氏名】クリヴァネク、 ローラント
【審査官】遠藤 直恵
(56)【参考文献】
【文献】特表2020-518340(JP,A)
【文献】米国特許出願公開第2011/0237917(US,A1)
【文献】国際公開第2019/055237(WO,A1)
【文献】国際公開第2018/204568(WO,A1)
【文献】米国特許出願公開第2013/0079613(US,A1)
【文献】Stephan Schaller,Robust PBPK/PD-Based Model Predictive Control of Blood Glucose,IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2016年07月,VOL. 63, NO. 7,1492-1504,https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7315018
(58)【調査した分野】(Int.Cl.,DB名)
A61B 5/06-5/22
(57)【特許請求の範囲】
【請求項1】
生物体の搬送流体中の現在のグルコース濃度を連続的に測定する方法において、
a)センサ装置を用いて前記搬送流体の周辺組織における組織中グルコース濃度の一連の計測値を検出するステップであって、前記一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、ステップと、
b)前記検出された一連の計測値を用いてセンサモデルに基づく前記組織中グルコース濃度を算出するステップであって、前記センサモデルにより、前記センサ装置の計測値が、計測雑音を考慮に入れつつ前記組織中グルコース濃度と相関付けられる、ステップと、
c)状態遷移モデルを提供するステップであって、前記状態遷移モデルにより、前記搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ前記算出された組織中グルコース濃度と相関付けられる、ステップと、
d)前記提供された状態遷移モデルと前記算出された組織中グルコース濃度とに基づいて、現在の前記グルコース濃度を算出するステップと、を備え、
少なくとも
ステップd)が、少なくとも1つの移動ホライズン推定法を用いて実行され、前記移動ホライズン推定法が、ステップd)における現在の前記グルコース濃度を算出するために実行され、それ以前に算出されたグルコース濃度と少なくとも1つのそれ以前の組織中グルコース濃度とに適用される、測定する方法。
【請求項2】
前記センサモデルが、計測値および組織中グルコース濃度の線形関数または非線形関数の形式で提供される、請求項1に記載の測定する方法。
【請求項3】
現在の前記グルコース濃度を算出するための前記移動ホライズン推定法における、ホライズンの値が、10以下で選択される、請求項1または請求項2に記載の測定する方法。
【請求項4】
前記計測雑音の分散および/または前記プロセス雑音の分散が、少なくとも一定の時間間隔で
推定される、請求項1~請求項3のいずれか1項に記載の測定する方法。
【請求項5】
前記計測雑音および/または前記プロセス雑音の推定を計算するために、部分的にのみ用いられた計測値が、一時的に保存されてよく、一時的に保存されることなく、かつ、必要とされる計測値が、前記保存された値を用いて補間されてよい、請求項4に記載の測定する方法。
【請求項6】
前記計測値の数が、前記移動ホライズン推定法における
ホライズンの値よりも大きく、選択される、請求項3または請求項4に記載の測定する方法。
【請求項7】
前記計測雑音の分散および/または前記プロセス雑音の分散が、前記移動ホライズン推定法のホライズンの和の値と前記計測雑音および/または前記プロセス雑音の推定を計算するための計測値の数とに基づいて一定の時間間隔で調整される、請求項4に記載の測定する方法。
【請求項8】
算出された値は、フィルタ関数により、フィルタ処理され、前記フィルタ関数により、前記センサ装置の誤差
が抑えられる、請求項1~請求項7のいずれか1項に記載の測定する方法。
【請求項9】
前記センサ装置のエラーを求めるために、現在の組織中グルコース濃度の増加の勾配および/または前記現在の組織中グルコース濃度が推定される、請求項8に記載の測定する方法。
【請求項10】
予め設定可能な低閾値未満、および/または、予め設定可能な高閾値超である、算出された値が、前記フィルタ関数により
削除される、請求項8または請求項9に記載の測定する方法。
【請求項11】
前記センサ装置の計測値の校正が、ステップd)の後に行われる、請求項1~請求項10のいずれか1項に記載の測定する方法。
【請求項12】
前記状態遷移モデルが、前記搬送流体から周辺組織へのグルコースの拡散プロセスの時間依存性モデリングに関する拡散モデルを含み、かつ/または、前記センサモデルのセンサモデルパラメータおよび/または前記状態遷移モデルの状態遷移パラメータが、少なくとも一定の時間間隔で推定および/または更新される、請求項1~請求項11のいずれか1項に記載の測定する方法。
【請求項13】
生物体の搬送流体中の現在のグルコース濃度を連続的に測定する、請求項1~請求項12のいずれか1項に記載の測定する方法を実行する装置において、
光ファイバプローブにより、前記搬送流体の周辺組織中の蛍光計測用のセンサ装置であって、前記搬送流体の周辺組織における組織中グルコース濃度の時間的に離間した少なくとも2つの計測値を含む一連の計測値を検出するように構成されたセンサ装置と、
前記状態遷移モデルを提供するように構成された提供装置であって、前記状態遷移モデルにより、前記搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ前記算出された組織中グルコース濃度と相関付けられ、かつ、センサモデルを提供するように構成され、前記センサモデルにより、前記センサ装置の計測値が、計測雑音を考慮に入れつつ前記組織中グルコース濃度と相関付けられる提供装置と、
前記検出された一連の計測値を用いて前記センサモデルに基づく前記組織中グルコース濃度を算出し、前記提供された状態遷移モデルと前記算出された組織中グルコース濃度とに基づいて、移動ホライズン推定法を用いて、現在の前記グルコース濃度を算出するように構成された推定装置と、
を備える、装置。
【請求項14】
生物体の搬送流体中の現在のグルコース濃度を連続的に測定する、請求項1~請求項12のいずれか1項に記載の測定する方法を実行する推定装置において、
前記搬送流体の周辺組織における組織中グルコース濃度の一連の計測値を検出するセンサ装置であって、前記一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、センサ装置を接続する少なくとも1つのインタフェースと、
前記状態遷移モデルを保存する少なくとも1つのメモリであって、前記搬送流体中の少なくとも1つのグルコース濃度が、前記状態遷移モデルにより、少なくとも1つのプロセス雑音値を考慮に入れつつ前記組織中グルコース濃度と相関付けられ、かつ、センサモデルを保存する、前記少なくとも1つのメモリであって、前記センサモデルにより、前記センサ装置の計測値が、少なくとも1つの計測雑音値を考慮に入れつつ前記組織中グルコース濃度と相関付けられる、少なくとも1つのメモリと、
前記検出された一連の計測値を用いて、前記センサモデルに基づいて、前記組織中グルコース濃度を算出し、かつ、前記保存された状態遷移モデルと前記算出された組織中グルコース濃度とに基づいて少なくとも1つの移動ホライズン推定法を用いて、現在の前記グルコース濃度を算出するように構成された演算装置と、
を備える、推定装置。
【請求項15】
コンピュータ上で実行される場合、
生物体の搬送流体中の現在のグルコース濃度を連続的に測定する方法を実行させる命令を記憶する、請求項1~請求項12のいずれか1項に記載の測定する方法を実行する非一時的な機械可読媒体において、
a)前記センサ装置を用いて、前記搬送流体の周辺組織における、組織中グルコース濃度の一連の計測値を検出するステップであって、前記一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、ステップと、
b)検出された前記一連の計測値を用いて、センサモデルに基づいて、前記組織中グルコース濃度を算出するステップであって、前記センサモデルにより、前記センサ装置の計測値が、計測雑音を考慮に入れつつ前記組織中グルコース濃度と相関付けられるステップと、
c)前記状態遷移モデルを提供するステップであって、前記状態遷移モデルにより、前記搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ前記算出された組織中グルコース濃度と相関付けられるステップと、
d)前記提供された状態遷移モデルと前記算出された組織中グルコース濃度とに基づいて、現在の前記グルコース濃度を算出するステップと、を備え、
少なくともステップd)が、少なくとも1つの移動ホライズン推定法を用いて実行される、非一時的な機械可読媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する方法に関する。
【0002】
また、本発明は、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する装置に関する。
【0003】
また、本発明は、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する推定装置に関する。
【0004】
また、本発明は、コンピュータ上で実行される場合、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する方法を実行させる命令を記憶する非一時的な機械可読媒体に関する。
【0005】
本発明は、搬送流体中の現在のグルコース濃度を測定する任意の方法に一般に適用できるが、本発明は、生物体の血液中グルコース濃度に関して説明される。
【背景技術】
【0006】
生物体、特に、人体における血液中グルコース濃度BGを測定するための、CGM(continuous glucose monitoring)とも称される持続グルコースモニタリングシステムが知られている。
一般に、CGMシステムにおいて、間質組織中グルコース濃度(interstitial tissue glucose concenration)IGは、自動で、例えば、1~5分ごとに測定される。
特に、糖尿病患者がCGMシステムから恩恵を受けるのは、患者が自分自身により手動で1日4~10回血液中グルコース濃度を測定する、自己監視法とも称されるセルフモニタリング法と比較して、測定を大幅により頻繁に行うことができるからである。
これにより、自動推定と患者への警告信号が患者の就寝中にも可能になり、患者の危機的な健康状態を防ぐ助けとなる。
【0007】
一方で、周知のCGMシステムは、電気化学的方式に基づく。
このようなCGMシステムは、例えば、特許文献1に記載されている。
また、グルコース濃度に依存する蛍光が用いられる光学式CGMシステムは、例えば、特許文献2から知られており、参照により本明細書に組み込まれる。
両タイプのCGMシステムは、間質組織中グルコース濃度を測定する。
【0008】
また、組織中グルコース濃度または間質液中グルコース(IG)濃度は、血液中グルコース濃度(以下、BGと略される)とは、乖離する。
非特許文献1に記載されているように、血液中グルコース濃度への大きな影響の後、例えば、食物もしくは栄養素の摂取、または、インスリンの注入によって、大きく乖離する。
非特許文献2に記載されているように、この乖離は、血液周辺組織での拡散プロセスにより生じ、その結果、IG濃度は、時間遅延し、減衰された状態で、BG濃度に後続する。
【先行技術文献】
【特許文献】
【0009】
【文献】国際公開第2006/017358 A1
【文献】独国特許出願公開第10 2015 101 847 B4
【非特許文献】
【0010】
【文献】Basu, Ananda et al. “Time lag of Glucose from intravascular to interstitial compartment in humans.” (Diabetes(2013): DB-131132)
【文献】Rebrin, Kerstin et al. “Subcutaneous Glucose predicts plasma Glucose independent of insulin: implications for continuous monitoring” (American Journal of Physiology-Endocrinology and Metabolism 277.3 (1999): E561-E571)
【文献】Keenan, D. Barry et al. “Delays in minimally invasive continuous Glucose monitoring devices: a review of current technology.” (Journal of diabetes science and technology 3.5 (2009): 1207-1214)
【文献】Knobbe, Edward J. and Bruce Buckingham ”The extended Kalman filter for continuous Glukose monitoring.” (Diabetes technology & therapeutics 7.1 (2005):15-27)
【文献】Grace Wahba “Bayesian ‘Confidence Intervals’ for the Cross-Validated Smoothing Spline” (Journal of the Royal Statistical Society: Series B (Methodological) 45, (1983), 133-150)
【文献】Rios und Sahinidis “Derivative-free optimization: a review of algorithms and comparison of software implementations” (Journal of Global Optimization 56,3 (2013), 1247-1293)
【文献】Kuester, Nikolaus et al. “First Clinical Evaluation of a New Percutaneous Optical Fiber Glukose Sensor for Continuous Glukose Monitoring in Diabetes” (Journal of Diabetes Science and Technology 7, 1 (2014), 13-23)
【発明の概要】
【発明が解決しようとする課題】
【0011】
一方では、血液中のBG、他方では、周辺組織中のIGの、2つのグルコース濃度間における、上述のような減衰と時間遅延を理由として、血液中グルコース濃度の手動測定、例えば、指から一滴の血液を採取し、外部測定装置を用いてこの一滴の血液中のグルコース濃度を測定することにより行われるCGMシステムの較正により、著しい不正確さが生じる。
【0012】
しかし、CGMシステムの正確な較正を実現するためには、上述のような組織中グルコース濃度と血液中グルコース濃度との間の乖離を考慮するか、少なくとも推定する必要がある。
これを行うための様々な方法が知られている。
非特許文献3から、較正のために時間遅延したグルコース信号を用いることが知られている。
また、非特許文献4から、カルマンフィルタを用いて、血液と組織との間のグルコース拡散プロセスの減衰と時間遅延を補償することが知られている。
【課題を解決するための手段】
【0013】
したがって、本発明の目的は、さらなるパラメータと、より簡素な実装を検討するに際し、高フレキシブルであり、血液中グルコース濃度をさらに正確に測定する装置、および、その推定装置を提供することである。
本発明のさらなる目的は、代替的な方法、代替的な装置、および、その代替の推定装置を提供することである。
本発明のさらなる目的は、間質組織中グルコース濃度の測定に基づく、生物体における血液中グルコース濃度の測定が改善された方法、装置、および、その推定装置を提供することである。
【0014】
生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する方法において、
a)センサ装置を用いて、搬送流体の周辺組織における、組織中グルコース濃度の一連の計測値を検出するステップであって、一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、ステップと、
b)検出された一連の計測値を用いて、センサモデルに基づいて、組織中グルコース濃度を算出するステップであって、センサモデルにより、センサ装置の計測値が、計測雑音を考慮に入れつつ、組織中グルコース濃度と相関付けられる、ステップと、
c)状態遷移モデルを提供するステップであって、状態遷移モデルにより、搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ、算出された組織中グルコース濃度と相関付けられる、ステップと、
d)提供された状態遷移モデルと、算出された組織中グルコース濃度とに基づいて、現在のグルコース濃度を算出するステップと、を備え、
少なくともステップd)、特に、ステップb)~ステップd)が、少なくとも1つの移動ホライズン推定法を用いて実行される方法により、本発明は、上記課題を解決する。
【0015】
さらに、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する装置であって、請求項1~請求項12のいずれか1項に記載の方法を実行する装置において、
光ファイバプローブにより、搬送流体の周辺組織中の蛍光計測用のセンサ装置であって、搬送流体の周辺組織における組織中グルコース濃度の、時間的に離間した少なくとも2つの計測値を含む一連の計測値を検出するように構成されたセンサ装置と、
状態遷移モデルを提供するように構成された提供装置であって、状態遷移モデルにより、搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ、算出された組織中グルコース濃度と相関付けられ、かつ、センサモデルを提供するように構成された、上記提供装置であって、センサモデルにより、センサ装置の計測値が、計測雑音を考慮に入れつつ、組織中グルコース濃度と相関付けられる提供装置と、
検出された一連の計測値を用いて、センサモデルに基づく組織中グルコース濃度を算出し、提供された状態遷移モデルと算出された組織中グルコース濃度とに基づいて、移動ホライズン推定法を用いて、現在のグルコース濃度を算出するように構成された推定装置と、
を備える装置により、本発明は、上記課題を解決する。
【0016】
さらなる実施形態において、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する推定装置であって、請求項1~請求項12のいずれか1項に記載の方法を実行する推定装置において、
搬送流体の周辺組織における、組織中グルコース濃度の一連の計測値を検出するセンサ装置であって、一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、センサ装置を接続する、少なくとも1つのインタフェースと、
状態遷移モデルを保存する、少なくとも1つのメモリであって、搬送流体中の少なくとも1つのグルコース濃度が、状態遷移モデルにより、少なくとも1つのプロセス雑音値を考慮に入れつつ、組織中グルコース濃度と相関付けられ、かつ、センサモデルを保存する、上記少なくとも1つのメモリであって、センサモデルにより、センサ装置の計測値が、少なくとも1つの計測雑音値を考慮に入れつつ、組織中グルコース濃度と相関付けられる、少なくとも1つのメモリと、
検出された一連の計測値を用いて、センサモデルに基づいて、組織中グルコース濃度を算出し、かつ、保存された状態遷移モデルと、算出された組織中グルコース濃度とに基づいて、少なくとも1つの移動ホライズン推定法を用いて、現在のグルコース濃度を算出するように構成された演算装置と、
を備える推定装置により、本発明は、上記課題を解決する。
【0017】
さらなる実施形態において、コンピュータ上で実行される場合、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは連続的に、測定する方法を実行させる命令を記憶する、非一時的な機械可読媒体であって、請求項1~請求項12のいずれか1項に記載の方法を実行する非一時的な機械可読媒体において、
a)センサ装置を用いて、搬送流体の周辺組織における組織中グルコース濃度の一連の計測値を検出するステップであって、一連の計測値が、時間的に離間した少なくとも2つの計測値を含む、ステップと、
b)検出された一連の計測値を用いて、センサモデルに基づいて、組織中グルコース濃度を算出するステップであって、センサモデルにより、センサ装置の計測値が、計測雑音を考慮に入れつつ、組織中グルコース濃度と相関付けられる、ステップと、
c)状態遷移モデルを提供するステップであって、状態遷移モデルにより、搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ、算出された組織中グルコース濃度と相関付けられる、ステップと、
d)提供された状態遷移モデルと算出された組織中グルコース濃度とに基づいて、現在のグルコース濃度を算出するステップと、を備え、
少なくともステップd)、特に、ステップb)~ステップd)が、少なくとも1つの移動ホライズン推定法を用いて実行される非一時的な機械可読媒体により、本発明は、上記課題を解決する。
【0018】
すなわち、生物体における血液中グルコース濃度を測定する方法が提供される。
これは、以下の方法を含む。
最初の方法ステップにおいて、センサ装置により、生物体の組織における組織中グルコース濃度に関する、時間的に離間した少なくとも2つのセンサ計測値を含む、一連の計測が行われる。
さらなるステップにおいて、センサ計測値と組織中グルコース濃度との間の関係のセンサモデルが提供され、組織中グルコース濃度と血液中グルコース濃度との関係のモデルを含む、状態遷移モデルが提供され、さらなる方法ステップにおいて、センサ計測値に依存する、センサモデルと、状態遷移モデルとにより、生物体の血液中グルコース濃度の定量化が行われ、ここでは、移動ホライズン推定法を用いることが重要である。
【0019】
MHEと略される、移動ホライズン推定法は、時系列で存在する計測信号を推定するものとして知られる。
出願人の研究によると、従来用いられていた方法とは対照的に、移動ホライズン推定法を用いることで、推定の正確さの点と、モデル予測に関する柔軟性の点とにおいて、また、血液中グルコース濃度を検出する速度の点においても、血液中グルコース濃度を定量化するための、センサ計測値の推定にとって著しく有利であることが示されている。
移動ホライズン推定法により、現在の血液中グルコース濃度と、レトロスペクティブの血液中グルコース濃度が得られ、レトロスペクティブの血液中グルコース濃度は、少なくとも1つの過去の血液中グルコース濃度(計測値の推移(濃度の推移)における、それ以前に算出された血液中グルコース濃度)を考慮に入れつつ、算出される。
このようにして、レトロスペクティブの血液中グルコース濃度により、現在の血液中グルコース計測信号を、現在の血液中グルコース濃度のみの形で、より良好に再構築することが可能になる。
【0020】
ここでは、推定装置は、コンピュータ、集積回路、または、特に、例えば、行列のトレースを最適に計算するように構成されている、同様のものであってよい。
上記装置および/または推定装置は、独立のエネルギ源、例えば、バッテリ、または、同様のものを有する携帯型装置として構成されてよく、これにより効率的な動作が可能になる。
したがって、本発明の方法を実行する際のエネルギ消費が可能な限り低く維持され、その結果、バッテリを可能な限り長期間動作させることが可能になり、ユーザ体験が改善される。
このために、省エネルギプロセッサ、回路系統、回路、インタフェース、特に、無線インタフェース等が、用いられてよい。
この場合、本方法の実施は、そのパラメータに関して、基礎となる装置、例えば、推定装置にあわせて、下記のように、例えば、推定ホライズンおよび/または雑音ホライズンについて適応されてよく、その結果、一方では、十分な正確さ、他方では、長期間の実行時間が達成される。
【0021】
その結果、搬送流体中の、特に、血液中の現在のグルコース濃度の推定が、時間と計算資源の点で効率的に行われる。
また、所定のセンサモデルおよび/または状態遷移モデルの制限が除去されることから、既知の方法と比較して、柔軟性が著しく向上する。
さらに、現在のグルコース濃度の正確さが向上するだけでなく、同時に、それ以前のグルコース濃度も、同様に、改善される。
【0022】
本発明のさらなる特徴、有利な点、および、実施形態は、以下に記載されるか、本明細書において開示される。
【0023】
移動ホライズン推定法は、ステップd)における現在のグルコース濃度を算出するために実行され、それ以前に算出されたグルコース濃度と、少なくとも1つのそれ以前の組織中グルコース濃度とに適用される。
これにより、現在のグルコース濃度を、それ以前に測定されたグルコース濃度に基づいて、効率的に測定することが可能になる。
【0024】
さらなる実施形態において、センサモデルが、計測値および組織中グルコース濃度の、線形関数の形式で提供される。
これにより、一連の計測の計測値に基づいて、間質組織中グルコース濃度を効率的かつ高速で算出可能であると同時に、十分な正確さで算出可能である。
【0025】
他の実施形態によると、センサモデルが、計測値および組織中グルコース濃度の、非線形関数の形式で提供される。
ここで、例えば、以下のセンサモデルが提供されてよく、yは、計測値、IGは、グルコース濃度、a、b、c、または、A、b、cは、センサパラメータを示す:
y=c-a*b/(IG+b)
【0026】
または、以下の非線形センサモデルが可能である:
y=(A*b+c*IG)/(IG+b)
【0027】
特に、結合親和性センサまたは光学センサを有する、センサ装置の場合、一連の計測の計測値に基づいて計算された、間質組織中グルコース濃度の正確さが、より高いことである。
【0028】
さらなる実施形態において、現在のグルコース濃度を算出するための移動ホライズン推定法における、ホライズンの値が、10以下で選択される。
これにより、一連の計測の計測値に基づいて、間質組織中グルコース濃度を効率的かつ高速で算出可能となり、十分な正確さで算出可能である。
【0029】
さらなる実施形態において、計測雑音および/またはプロセス雑音の分散が、特に、少なくとも一定の時間間隔で、推定される。
これにより、雑音値を簡単かつ迅速に算出可能になり、全体的に、現在のグルコース濃度を正確に測定可能になる。
【0030】
さらなる実施形態において、計測雑音の分散および/またはプロセス雑音の分散が、指数平滑化法を用いて推定されるか、特に、補間されるか、かつ/またはウエイト付けされる。
この場合、時間に依存して変化する、任意の雑音値が適応されるか、更新されてよく、これにより、現在のグルコース濃度測定の全体的な正確さがさらに改善される。
【0031】
さらなる実施形態において、計測雑音および/またはプロセス雑音の推定を計算するために、部分的にのみ用いられた計測値が、一時的に保存されてよく、一時的に保存されることなく、かつ、必要とされる計測値が、保存された計測値を用いて補間されてよい。
したがって、例えば、計測雑音値および/またはプロセス雑音値を算出するために、必要とされ、計算負荷の高い計測値を、少なくとも部分的に、一時的に保存でき、それらを、それ以後の測定に利用可能とすることができる。
これにより、全体的に、現在のグルコース濃度を測定するのに必要な計算量が、その正確さを著しく低下させることなく、低減される。
【0032】
さらなる実施形態において、計測値の数が、移動ホライズン推定法におけるホライズンの値よりも大きく、特に、少なくとも2倍以上、好ましくは、少なくとも5倍以上、大きく、選択される。
これにより、現在のグルコース濃度に関する、プロセス雑音および/または計測雑音の推定における正確さが、確保され、現在のグルコース濃度の測定、または、定量化の、全体的な正確さを改善する。
【0033】
さらなる実施形態において、計測雑音の分散および/またはプロセス雑音の分散が、移動ホライズン推定法のホライズンの和の値と、計測雑音および/またはプロセス雑音の推定を計算するための計測値の数とに基づいて、一定の時間間隔で調整される。
これにより、任意の時点において、雑音値を、一定の時間間隔で効率的に調整することが確実になり、一方では、現在のグルコース濃度の十分な正確さが達成され、他方では、現在のグルコース濃度の正確さの向上に寄与しないか、ほぼ寄与することがない、不要な調整または更新が防止される。
【0034】
さらなる実施形態において、算出された値は、フィルタ関数により、フィルタ処理され、フィルタ関数により、センサ装置の誤差、特に、計測誤差が抑えられる。
フィルタ関数により、誤計測、例えば、計測値における、センサエラーまたは外れ値を、簡単に除去することができ、すなわち、誤計測は、現在のグルコース濃度をさらに算出する際には考慮されない。
【0035】
さらなる実施形態において、フィルタ関数により、計測雑音値がウエイト付けされる。
これにより、計測雑音値の、過小評価および過大評価が防止される。
つまり、過小評価は、信号または計測値における非常に大きな誤差が生じ、また、過大評価により、一連の計測の計測値の推移が、過剰に平滑になる。
これにより、正確さが、全体的にさらに改善される。
【0036】
さらなる実施形態において、センサ装置のエラーを求めるために、現在の組織中グルコース濃度の増加の勾配および/または現在の組織中グルコース濃度が推定される。
その代替または追加として、このことは、搬送流体の現在のグルコース濃度、および/または、搬送流体の現在のグルコース濃度の増加の勾配を用いて行われてよい。
これにより、センサ装置のエラーが、簡単に、信頼性高く、効率的に求められる。
【0037】
さらなる実施形態において、予め設定可能な低閾値未満および/または予め設定可能な高閾値超である算出された値が、フィルタ関数により除去され、特に、低閾値および高閾値が、生理的限界値に対応し、好ましくは、低閾値が、10mg/dL~50mg/dLの値を示し、特に、30mg/dLを示し、高閾値が、100mg/dL~600mg/dLの値を示し、特に、450mg/dLを示す。
適切な閾値により、搬送流体中の、特に、血液中グルコース値と組織中グルコース値との両方を含む誤センサ計測値が、ウエイト行列、有利には、対角ウエイト行列を用いて、さらなる計算のために除去される。
ウエイト行列は、センサ装置の誤計測値が、因子0でウエイト付けされてよく、その他すべての計測値が、因子1でウエイト付けされる。
誤計測値、例えば、センサ計測値の外れ値は、搬送流体中の、特に、血液中の絶対グルコース濃度、および、その変化率またはその勾配により、定められる。
前者の場合、血液中グルコース濃度の生理的限界値が導入され、10mg/dL~600mg/dL、好ましくは、20mg/dL~500mg/dL、最も好ましくは、30mg/dL~450mg/dLの範囲の、血液中グルコース濃度が考えられる。
これらの範囲外の計測値は、誤センサ計測値として、因子0でウエイト付けされる。
搬送流体中の、特に、血液中のグルコース濃度の勾配、または、搬送流体中の、特に、血液中のグルコース濃度の変化率も、同様にして、定められてよく、その値は、生理的に現実的な変化率と比較されてよい。
したがって、搬送流体中の、特に、血液中のグルコース濃度の定量的変化率は、毎分0.1mg/dL~毎分15mg/dLの値、好ましくは、毎分0.5mg/dL~毎分10mg/dLの値、最も好ましくは、毎分1mg/dL~毎分3mg/dLの値である。
【0038】
さらなる実施形態において、センサ装置の計測値の校正が、ステップd)の後に、行われる。
これにより、校正されていない組織中グルコース濃度を用いることができ、このことは、移動ホライズン推定法が実行される前に、必ずしも校正が行われる必要がなく、さらに言うと、移動ホライズン推定法の後に、校正が同様に行われてよい、という有利な点を有する。
校正されていない組織中グルコース濃度を用いることのさらなる有利な点は、校正されていない組織中グルコース濃度が、セルフモニタリングによる血液中グルコース濃度に対して、より高い相関関係を示し、これにより、例えば、センサモデルのパラメータを、より簡単かつ精度よく、有利に定めることができる。
【0039】
さらなる実施形態において、状態遷移モデルが、搬送流体から周辺組織への、グルコースの拡散プロセスの、時間依存性モデリングに関する、拡散モデルを含む。
拡散モデルにより、拡散定数に基づいて、搬送流体中の、特に血液中のグルコース濃度と組織中グルコース濃度との間の、減衰および時間遅延の、単純かつ計算負荷のより低いモデリングが提供される。
【0040】
さらなる実施形態において、センサモデルのセンサモデルパラメータおよび/または状態遷移モデルの状態遷移パラメータが、少なくとも一定の時間間隔で推定および/または更新される。
これの有利な点は、全体的に、現在のグルコース濃度の測定の正確さが、これにより向上し、同様に、これらモデルのパラメータを、変化する状況または影響に合わせて、柔軟に調整することができることである。
【0041】
本発明の他の特徴および有利な点は、従属請求項、図面、および、それに対応する図の説明から、明らかになる。
【0042】
上記特徴、および以下に説明される特徴は、それぞれ記載される組み合わせで用いられてよいだけでなく、本発明の範囲から逸脱せずに、他の組み合わせ、または、それ自体のみで用いられもよい。
【0043】
本発明の構成および実施形態が、図面に示され、以下の記載においてさらに説明される。
式、仮説、および、問題を解決する方法などの、すべてのリモデリングステップは、本発明の範囲から逸脱せずに、個別に用いられてよい。
【図面の簡単な説明】
【0044】
【
図1】
図1は、本発明の1つの実施形態による方法のステップを示す。
【
図2】
図2は、本発明の1つの実施形態による方法のステップを示す。
【
図3】
図3は、本発明の1つの実施形態による方法と、既知の方法との比較を示す。
【発明を実施するための形態】
【0045】
図1は、プロセス雑音および計測雑音の分散が調整される、移動ホライズン推定法に基づく、血液中グルコース濃度を測定するためのステップを詳細に示す。
【0046】
初期フェーズT1では、以下に説明するステップS1~ステップS3による方法の初期化が行われる。
初期化の後、第2フェーズT2では、離散時間ステップにおいて、移動ホライズン推定法に基づいて、以下に説明されるステップS4~ステップS6と、判定ステップE1により、血液中グルコース濃度が算出される。
これと並行して、第3フェーズT3では、以下に説明されるステップV1~ステップV3を用いて、計測雑音およびプロセス雑音の調整が行われる。
【0047】
まず、個々のフェーズT1~T3とそのステップの詳細に入る前に、移動ホライズン推定法を実行するための原理を、以下に説明する。
以下で用いられる移動ホライズン推定法は、コスト関数を最小化することにより、状態を推定する方法であり、コスト関数が、n個の離散時間ステップの移動時間窓をかけて実行される。
ここで、離散時間系が定義される。
ここで、▲x
K▼は、状態変数のベクトル、▲y
K▼は、計測ベクトルである。
また、コスト関数は、時点kにおける、ホライズンnの計測雑音▲v
K▼およびプロセス雑音▲w
k▼の、ウエイト付けされたノルムを含む。
【0048】
これにより、最適化問題は、以下の形式をとる。
【数2】
プロセス分散および計測分散は、平均値0とは相関付けられない一方、必ずしもガウス分布ではない。
【0049】
血液と周辺組織との間の拡散プロセスのモデリングのために、以下の関係式が、予測される。
【数3】
ここで、i(t)は、組織中グルコース信号を示し、b(t)は、血液中グルコース信号を示し、τは、拡散プロセスの時定数を示す。
センサ信号は、計測y(t)を用いた、線形モデルとして予測される。
【0050】
しかし、例えば、f(ik)=(p1*ik)/(p0+ik)の形式の、非線形モデルを用いることも可能である。
【0051】
出力信号が、i(t)において、線形であるという予測のもと、理想的かつ校正された血液中グルコース信号x
b=p
0b(t)+p
1と、理想的かつ校正された組織中グルコース信号x
i=p
0i(t)+p
1とが、導入されてよい。
センサパラメータp
0およびp
1が、ゆっくりとしか変化しないというさらなる予測のもと、拡散は、校正されていない信号についても、妥当である。
【数4】
【0052】
この式が、時間ステップΔtにおいて、モデリングされ、血液中グルコース濃度x
bが、自己回帰モデルを用いて、モデリングされる場合、以下の離散的な状態空間表現となる。
【数5】
【0053】
上記の代替の非線形モデルとして、以下の状態空間表現が妥当であろう。
【0054】
以下において、上記線形センサモデルが、再び適用される。
だちに、血液中グルコース濃度を、線形モデルについて、以下により、算出することができる。
【数6】
【0055】
ここで、校正された、雑音を含まない血液中グルコース濃度
を最適化することにより、式(2)で形式化されている、移動ホライズン問題が解かれる。
以下、それ以前の状態変数、または、時点kにおける、センサ計測値N次元ベクトルの行列表記が用いられる。
【0056】
したがって、組織中グルコース信号は、以下のように表される。
【数7】
初期状態と、行列Aおよび行列Nは、以下のように定義される。
計測雑音v
k=(v
k-N+1|k,...,v
k|k)
Tは、以下により与えられる。
【数8】
また、プロセス雑音w
k=(w
k-N|k,...,w
k-1|k)
Tは、以下のように定義される。
【数9】
【0057】
この場合、線形センサモデルについての、移動ホライズン問題の形式化は、以下により与えられる。
【数10】
ここで、ウエイト行列Q
k=cov(w
k)およびウエイト行列R
k=cov(v
k)であり、プロセス雑音および計測雑音の共分散行列に対応する。
上述した、代替の非線形センサモデルについては、以下の最適化問題が与えられる。
この最適化問題は、一般に、直接法ではなく、反復法により、解かれる。
非線形モデルのセンサパラメータの算出または更新は、セルフモニタリング測定bg
i(t=t
i)に基づく。
【0058】
以下において、線形センサモデルが、再び適用される。
式(8)および式(9)を、線形モデルについての移動ホライズン問題に代入すると、以下の2次問題が得られる。
【数11】
これは、逆行列により、解くことができる。
【数12】
または、2次最適化問題の解を求める既知の方法を考慮して、解くことができる。
【0059】
初期状態z
kは、それ以前の推定ステップの解により、算出される。
【数13】
【0060】
k+Nを用いた初期化の場合、初期状態が、推定される必要がある。
よって、この場合、A
init=[BA]およびC
init=[DC]を用いつつ、B
initおよびD
initを零行列で置き換えることで、最適化問題を、書き換えることができる。
【0061】
この場合、変形された最適化問題の解は、以下の通りである。
【数14】
【0062】
いて、血液中グルコース濃度または信号を更新すると、以下が得られる。
【数15】
のみを含む。
【0063】
一般に、CGMシステムは、誤計測をもたらす可能性がある、機械的外乱に対して感度が高いことから、計測雑音を、ウエイト行列Wを用いてウエイト付けすることにより、そのような誤センサ計測を、考慮してよい。
【0064】
上述の式(11)および式(12)において、ウエイト付けされた、逆共分散行列が導入されてよい。
【数16】
これにより、最適化問題の解を、推定することができる。
ここで、誤計測値に対応する、ウエイト行列Wの対角成分は、0に設定される。
【数17】
【0065】
センサエラーまたは測定外れ値を検出するために、対応する組織中グルコース濃度における勾配と、現在のグルコース濃度とが、用いられてよい。
その代替または追加として、計測信号またはセンサ計測値に、高閾値または低閾値を適用してよく、低閾値および高閾値の外側に位置する計測値を、エラーとして分類してよい。
【0066】
一般に、これら2つのパラメータは、未知であり、推定される必要がある。
また、これらパラメータは、時間推移とともに変化する。
したがって、分散を調整または更新することで、直接的に変化が生じ、移動ホライズン推定法による推定の質が、改善されることになる。
その一方で、計測雑音が過小評価されると、非常に雑音の大きい計測信号となり、これにより、誤計測値となる。
他方、計測雑音が過大評価されるか、プロセス雑音が過小評価されると、時間遅延した推定となり、これにより、現在のグルコース濃度の測定の正確さが低減されることにもなる。
【0067】
以下において、計測雑音の計測雑音分散、および、プロセス雑音のプロセス雑音分散を予測する方法ついて説明する。
また、任意の場合において、簡単に分散を調整または更新する方法が、以下説明される。
【0068】
この方法の原理は、例えば、非特許文献5において説明されているように、あらゆる自由度が、あらゆる他の自由度と同等であることである。
【0069】
プロセス雑音w
j-1|kおよび計測雑音v
j|kが、長さn、j=k-n+1,...kのホライズンにおい
る場合、共分散行列R
kおよび共分散行列Q
kは、
に対応し、これにより、式(12)は、以下のように単純化される。
および
【0070】
次のステップにおいて、式(7)および式(12)が、計測雑音の定義式(8)およびプロセス雑音の定義式(9)に代入される。
【0071】
初期点z
kの分散が0である場合、共分散行列は、以下の形式をとる。
【数18】
【0072】
計測信号の分散行列は、計測雑音の共分散行列と、校正されておらず、雑音を含まない組織中グルコース信号の共分散行列と、からなるため、以下が得られる。
【数19】
【0073】
ここで、式(19)を、式(18)に代入し、逆行列を算出すると、以下のように、プロセス雑音の共分散および計測雑音の共分散が得られる。
【数20】
【数21】
【0074】
【0075】
この場合、計測雑音の分散は、以下の通りである。
ここで、s(γ
k)=tr(AH(γ
k))である。
【0076】
【0077】
計測雑音と同様にして、プロセス雑音の分散の一致推定値を計算することができる。
【数23】
【0078】
る。
値γ
kは、以下の式
フリー最適化法を用いて推定される。
【数24】
【0079】
び計測雑音が、平滑化因子ηを考慮しつつ、更新される。
【数25】
【0080】
雑音調整ホライズンの長さnは、推定ホライズンNと一致しなくてもよい。
推定ホライズンNが長くなると、計算負荷が増加するものの、推定の正確さは、わずかにしか改善されない。
分散の推定正確度とデータポイントの数とが、相関関係が強いため、雑音調整ホライズンnは、推定ホライズンNよりも大幅に大きく選択される。
【0081】
して、二乗プロセス誤差の和、または、対応する、二乗計測誤差の和
【数26】
を用いて、推定される。
【0082】
誤センサ計測値の場合、雑音分散は、更新されないが、それは、更新すると、プロセス
【0083】
s(γk)=tr(AH(γk))を推定可能とするためには、より高い計算負荷が必要とされる。
行列Aは、予め定義された、行列Aおよび行列Cと、γと、にのみ依存するため、γと、関連する比率範囲との表を作成し、γの現在の値について、sを算出するために、表の値を補間してよい。
したがって、コンピュータまたはタブレット上でも、満足のいく、十分に正確な推定を、短時間で、低い計算負荷で行うことが可能になる。
【0084】
要約すると、最初のステップS1において、行列Wを、初期化フェーズT1中に、式(17)から推定できる。
行列Wに基づいて、第2ステップS2において、プロセス分散および計測ノイズの分散の比率が、式(24)から推定される。
第3ステップS3において、初期値が、式(14)から推定される。
【0085】
推定された初期値に基づいて、初期フェーズT2中の第4ステップS4において、初期状態が、式(13)から算出され、初期状態を用いて、行列Wが、第5ステップS5において、ステップS1と同様に、式(17)から再び推定される。
第6ステップS6において、初期値が、式(12)から推定される。
その後、ステップE1において、時点kの、推定ホライズンNおよび雑音調整ホライズンnの和に対する比率が、1以上の整数であるか否かが判定される。
Noの場合、時間指数kを1だけ増加させ、次いで、ステップS4~ステップS6と、ステップE1を再び実行する。
その一方、Yesの場合、ステップV1~ステップV3を有する雑音調整T3を実行する。
雑音調整T3では、最初のステップV1において、二乗プロセス誤差の和または二乗計測誤差の和が、式(26)から算出される。
次に、これらを用いて、第2ステップV2において、計測雑音およびプロセス雑音の対応する分散が、式(22)および式(23)から算出され、そして、γの値が、式(25)から更新される。
その後、ステップS4~ステップS6と、ステップE1を再び実行する。
【0086】
推定された初期値に基づいて、初期フェーズT2中の第4ステップS4において、初期値が、式(13)から算出され、初期状態を用いて、行列Wが、第5ステップS5において、ステップS1と同様に、式(17)から再び推定される。
第6ステップS6において、初期値が、式(12)から算出される。
その後、ステップE1において、時点kの、推定ホライズンNおよび雑音調整ホライズンnの和に対する比率が、1以上の整数であるか否かが判定される。
Noの場合、時間指数kを1だけ増加させ、次いで、ステップS4~ステップS6と、ステップE1を再び実行する。
その一方、Yesの場合、ステップV1~ステップV3を有する雑音調整T3を実行する。
ここで、最初のステップV1において、二乗プロセス誤差の和または二乗計測誤差の和が、式(26)から算出される。
次に、これらを用いて、第2ステップV2において、計測雑音およびプロセス雑音の対応する分散が、式(22)および式(23)から算出され、そして、γの値が、式(25)から更新される。
その後、ステップS4~ステップS6と、ステップE1を再び実行する。
【0087】
図2において、本発明の1つの実施形態による方法のステップが示される。
【0088】
詳細には、
図2は、生物体の搬送流体中の、特に、血液中の現在のグルコース濃度を、好ましくは、連続的に、測定する方法を示す。
【0089】
ステップa)において、センサ装置を用いて、搬送流体の周辺組織における組織中グルコース濃度の一連の計測値を検出し、一連の計測値が、時間的に離間した少なくとも2つの計測値を含む。
【0090】
さらなるステップb)において、検出された一連の計測値を用いて、センサモデルに基づいて、組織中グルコース濃度を算出し、センサモデルにより、センサ装置の計測値が、計測雑音を考慮に入れつつ、組織中グルコース濃度と相関付けられる。
【0091】
さらなるステップc)において、状態遷移モデルを提供し、状態遷移モデルにより、搬送流体中の少なくとも1つのグルコース濃度が、プロセス雑音を考慮に入れつつ、算出された組織中グルコース濃度と相関付けられる。
【0092】
さらなるステップd)において、提供された状態遷移モデルと算出された組織中グルコース濃度とに基づいて、現在の前記グルコース濃度を算出し、少なくともステップd)、特に、ステップb)~ステップd)が、少なくとも1つの移動ホライズン推定法を用いて、実行される。
【0093】
図3は、本発明の1つの実施形態による方法と、既知の方法との比較を示す。
【0094】
以下において、異なる血液中グルコース濃度推定方法の比較が説明され、その結果が、
図3に示されている。
詳細には、推定方法は、同一のセンサ装置、すなわち、ファイバセンサを用いて実行され、ファイバセンサは、非特許文献7から知られており、蛍光計測に基づいて、血液中グルコース濃度を検出し、サンプリングレートは、2分毎である。
本発明の1つの実施形態による、移動ホライズン推定法による、血液中グルコース濃度の推定を、ここでは、他の2つの推定方法、すなわち、カルマンフィルタKF、および、平滑化されたセンサ信号を用いる移動平均フィルタMAと比較する。
また、異なるパラメータが血液中グルコース濃度推定に与える影響を説明する。
ここで、データは、8人の1型糖尿病患者および8人の2型糖尿病患者から収集されたものであり、センサ装置の対応するCGMセンサが、28日間にわたって装着された。
1日目、7日目、15日目、および28日目に、イエロースプリングス・インストルメント(YSI)社の、2300STATプラス・グルコース・アナライザ(YSIライフサイエンシーズ社、イエロースプリングス、オハイオ州)を用いて、参照データが、10分毎に4時間にわたって、確かめられた。
【0095】
また、移動ホライズン推定法のホライズンは、N=10に設定され、雑音調整のホライズンは、n=50に設定された。
カルマンフィルタは、ここでは、式(5)に基づいている。
拡散定数、つまり、時定数τ=6分が、両方法それぞれに適用された。
よびカルマンフィルタにより生成され、移動平均法により平滑化された信号と比較され、この比較は、任意の時点における、臨床モニタリング中に計測された参照データとの、それらの一致に基づくものである。
3つの異なる推定方法を評価するため、3つの評価パラメータ、すなわち、平均絶対的相対的差異(MARD)、二乗平均平方根誤差(RMSE)、および、最大相対的絶対的差異(maxRAD)が、16人すべての患者の4回の測定について、用いられている。
【0096】
中央値を評価するため、次の表において、3つの評価パラメータの、25パーセンタイル(第1四分位数)および75パーセンタイル(第3四分位数)が、示される。
【0097】
【0098】
3つの評価パラメータについて、最良の結果が、移動ホライズン推定法により得られ、それに続くのがカルマンフィルタ信号KFであることが理解されよう。
移動平均法により平滑化され、フィルタ処理された組織中グルコース信号を示す、信号MAは、血液中グルコース濃度と組織中グルコース濃度との間の拡散プロセスを考慮に入れておらず、そのため、結果が不良である。
【0099】
センサ校正の影響を示すため、異なる校正方法が、以下に説明され、互いに比較される。
【0100】
結果を含んでおり、移動平均信号の結果と比較して、小さいパラメータを提供する。
g/dL、および、中央値maxRAD=14.2mg/dL)のみを含む。
【0101】
改善する。
正確さが向上するのは、時間遅延をより良好に考慮することに起因する。
血液中グルコース濃度の急激な変化、または、雑音による「オーバーシュート」も低減される。
【0102】
CGM信号を用いた、血液中グルコース濃度推定の正確さが、校正誤差に与える影響について、以下説明する。
このために、2点校正法が用いられる。
2つの参照計測値b
1およびb
2と、時間的にそれに対応する血液中グルコース濃度の結
【0103】
それぞれの参照の組み合わせと、それぞれの推定された、校正されていない血液中グルコース信号(MHE、pMHE、KF、および、MA)について、センサパラメータは、同定され、血液中グルコース濃度が算出される。
【0104】
【0105】
上の表2は、あらゆる可能な校正についてのMARD法とRMSE法とによる、中央値と四分位数を示している。
表2からは、MARD法とRMSE法について、pMHEにおいて、中央値が最小であり、四分位数間の差分が最小であることが見てとれる。
【0106】
まとめると、本発明の実施形態は、以下の有利な点および/または特徴を有する。
・拡散プロセスのモデリングと、過去の移動ホライズンの血糖値の推定(移動ホライズン推定法)とにより、時間遅延を補償。
・生理的範囲の限界値を設けることにより、外れ値に対するロバスト性を確保。
・問題の制御因子を適応的に定めることにより、計測雑音の適応的推定と状態雑音の適応的推定とが組み合わされる。
・ゆっくりと変化するモデルパラメータを適応させることが、さらに可能。
・効率的な実装により、限られた計算負荷を用いつつ高い正確度を確保。
・過去のホライズンの血糖値を、効率的に、時系列的に計算推定。
・モデルパラメータの適応。
・限定値の導入による、推定のロバスト性の向上。
・センサモデルに関する柔軟性、例えば、非線形センサモデルも用いることが可能。
・より低い計算負荷により、限られたバッテリ寿命を節約。
・生理的範囲の限界値を設けることにより、生理的に合理的な解決手段を保証。
・過去のホライズンを最適化することにより、校正用の血糖値推定を改善。
【0107】
本発明を、実施形態を用いて説明したが、本発明は、これらに限定されるものではなく、様々に変形されてよい。