IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アイディール パワー インコーポレイテッドの特許一覧

特表2023-554608双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム
<>
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図1
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図2
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図3
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図4
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図5
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図6
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図7
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図8
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図9
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図10
  • 特表-双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】公表特許公報(A)
(11)【公表番号】
(43)【公表日】2023-12-28
(54)【発明の名称】双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステム
(51)【国際特許分類】
   H02M 1/08 20060101AFI20231221BHJP
   H01L 21/331 20060101ALI20231221BHJP
【FI】
H02M1/08 A
H01L29/72 Z
【審査請求】有
【予備審査請求】未請求
(21)【出願番号】P 2023534612
(86)(22)【出願日】2021-11-30
(85)【翻訳文提出日】2023-06-07
(86)【国際出願番号】 US2021061078
(87)【国際公開番号】W WO2022125323
(87)【国際公開日】2022-06-16
(31)【優先権主張番号】63/123,704
(32)【優先日】2020-12-10
(33)【優先権主張国・地域又は機関】US
(81)【指定国・地域】
(71)【出願人】
【識別番号】515358931
【氏名又は名称】アイディール パワー インコーポレイテッド
(74)【代理人】
【識別番号】100107766
【弁理士】
【氏名又は名称】伊東 忠重
(74)【代理人】
【識別番号】100070150
【弁理士】
【氏名又は名称】伊東 忠彦
(74)【代理人】
【識別番号】100135079
【弁理士】
【氏名又は名称】宮崎 修
(72)【発明者】
【氏名】モハブ,アリレザ
(72)【発明者】
【氏名】ブルダール,ダニエル
(72)【発明者】
【氏名】ユー,ルイヤン
(72)【発明者】
【氏名】ウッド,ジョン
【テーマコード(参考)】
5F003
5H740
【Fターム(参考)】
5F003BB09
5F003BC09
5F003BE09
5F003BJ04
5F003BN04
5H740BA11
5H740BC01
5H740BC02
5H740HH05
5H740JA01
5H740JB01
5H740KK10
5H740MM01
(57)【要約】
双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる。一例は、第1の負荷電流を、パワーモジュールの上部端子からトランジスタの上部コレクタ-エミッタに、そしてトランジスタを通して、そしてパワーモジュールの下部コレクタ-エミッタから下部端子へと導通させ、次いで、第1の遮断信号のアサートに応答して、下部メインFETを開くことによって、下部コレクタ-エミッタから下部端子への第1の負荷電流を遮断し、それにより、トランジスタの下部ベースを介して下部端子へと第1のシャットオフ電流を転流させ、そして、トランジスタによって上部端子から下部端子への電流を阻止する、ことを有する方法である。
【特許請求の範囲】
【請求項1】
双方向ダブルベースバイポーラ接合トランジスタを有するパワーモジュールを動作させる方法であって、
第1の負荷電流を、前記パワーモジュールの上部端子から前記トランジスタの上部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記パワーモジュールの下部コレクタ-エミッタから下部端子へと導通させ、次いで、第1の遮断信号のアサートに応答して、
下部メインFETを開くことによって、前記下部コレクタ-エミッタから前記下部端子への前記第1の負荷電流を遮断し、それにより、前記トランジスタの下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、そして、
前記トランジスタによって前記上部端子から前記下部端子への電流を阻止する、
ことを有する方法。
【請求項2】
前記第1の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記下部メインFETを用いて前記第1の負荷電流を遮断することを有し、
電流を阻止することは更に、前記上部端子と前記下部端子とにわたる印加電圧が600ボルト以上で阻止することを有する、
請求項1に記載の方法。
【請求項3】
前記上部端子から前記下部端子への電流を阻止することの後に、
第2の負荷電流を、前記パワーモジュールの前記下部端子から前記トランジスタの前記下部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記上部コレクタ-エミッタから前記上部端子へと導通させ、次いで、第2の遮断信号のアサートに応答して、
上部メインFETを開くことによって、前記上部コレクタ-エミッタから前記上部端子への前記第2の負荷電流を遮断し、それにより、上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、そして、
前記トランジスタによって前記下部端子から前記上部端子への電流を阻止する、
ことを更に有する請求項1に記載の方法。
【請求項4】
前記第2の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記上部メインFETを用いて前記第2の負荷電流を遮断することを有し、
前記下部端子から前記上部端子への電流を阻止することは更に、前記下部端子と前記上部端子とにわたる印加電圧が600ボルト以上で阻止することを有する、
請求項3に記載の方法。
【請求項5】
スイッチアセンブリであって、
上部端子、下部端子、及び上部制御入力と、
上部ベース、上部コレクタ-エミッタ、下部ベース、及び下部コレクタ-エミッタを画成したトランジスタと、
前記上部端子に結合された第1のリード、前記上部コレクタ-エミッタに結合された第2のリード、及びゲートを画成した上部メインFETと、
前記下部コレクタ-エミッタに結合された第1のリード、前記下部端子に結合された第2のリード、及びゲートを画成した下部メインFETと、
前記上部制御入力、前記上部メインFETの前記ゲート、及び前記下部メインFETの前記ゲートに結合されたコントローラであり、前記上部端子と前記下部端子とにわたる第1の印加電圧に対して、当該コントローラは、
前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させることで、前記上部端子から前記下部端子に第1の負荷電流が流れるようにし、
前記上部制御入力のデアサートを検知し、前記上部制御入力のデアサートに応答して、
前記下部メインFETの前記ゲートをデアサートして前記第1の負荷電流を遮断し、それにより、前記下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、
前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成する、
ように構成される、コントローラと、
を有するスイッチアセンブリ。
【請求項6】
前記トランジスタのブレイクダウン電圧は600ボルト以上であり、前記下部メインFETのブレイクダウン電圧は100ボルト以下である、請求項5に記載のスイッチアセンブリ。
【請求項7】
前記トランジスタのブレイクダウン電圧は約1200ボルトであり、前記下部メインFETのブレイクダウン電圧は80ボルト以下である、請求項5に記載のスイッチアセンブリ。
【請求項8】
当該スイッチアセンブリは更に、
前記上部ベースに結合された第1のリードと、前記上部端子に結合された第2のリードと、ゲートとを有する上部ベースFETであり、前記第1の負荷電流が前記上部端子から前記下部端子に流れる期間の間、当該上部ベースFETは導通する、上部ベースFET、
を有し、
前記コントローラが、前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記上部ベースFETの前記ゲートをデアサートして前記上部ベースを電気的にフローティングにするように構成される、
請求項5に記載のスイッチアセンブリ。
【請求項9】
当該スイッチアセンブリは更に、
前記コントローラに結合された下部制御入力、
を有し、
前記上部端子と前記下部端子とにわたる、前記第1の印加電圧とは逆の極性と持つ第2の印加電圧に対して、前記コントローラは、
前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させることで、前記下部端子から前記上部端子に第2の負荷電流が流れるようにし、
前記下部制御入力のデアサートを検知し、前記下部制御入力のデアサートに応答して、
前記上部メインFETの前記ゲートをデアサートして前記第2の負荷電流を遮断し、それにより、前記上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、
前記下部端子から前記上部端子への電流フローを阻止するように前記トランジスタを構成する、
ように構成される、
請求項5に記載のスイッチアセンブリ。
【請求項10】
当該スイッチアセンブリは更に、
前記下部ベースに結合された第1のリードと、前記下部端子に結合された第2のリードと、ゲートとを有する下部ベースFETであり、前記第2の負荷電流が前記下部端子から前記上部端子に流れる期間の間、当該下部ベースFETは導通する、下部ベースFET、
を有し、
前記コントローラが、前記下部コレクタ-エミッタから前記上部コレクタ-エミッタへの電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記下部ベースFETの前記ゲートをデアサートして前記下部ベースを電気的にフローティングにするように構成される、
請求項9に記載のスイッチアセンブリ。
【請求項11】
前記トランジスタのブレイクダウン電圧は600ボルト以上であり、前記下部メインFETのブレイクダウン電圧は100ボルト以下である、請求項9に記載のスイッチアセンブリ。
【請求項12】
双方向ダブルベースバイポーラ接合トランジスタを動作させる方法であって
前記トランジスタの上部ベースに電流を供給し、且つ前記トランジスタの下部ベースを電気的にフローティングにすることによって、前記トランジスタを上部コレクタ-エミッタから下部コレクタ-エミッタへと導通させ、次いで、
前記上部ベースを電気的にフローティングにし、前記下部コレクタ-エミッタを電気的にフローティングにし、且つ前記トランジスタの前記下部ベースを通してシャットオフ電流を導くことによって、前記トランジスタを非導通にする、
ことを有する方法。
【請求項13】
前記下部コレクタ-エミッタを電気的にフローティングにすることは更に、前記下部コレクタ-エミッタに結合された第1のリードを持つ下部メイン電気制御式スイッチを非導通にすることを有する、請求項12に記載の方法。
【請求項14】
前記トランジスタを導通させることは更に、
上部端子と前記上部コレクタ-エミッタとの間に結合された上部メイン電気制御式スイッチを閉じることと、
下部端子と前記下部コレクタ-エミッタとの間に結合された下部メイン電気制御式スイッチを閉じることと、
を有する、請求項12に記載の方法。
【請求項15】
前記トランジスタを非導通にすることは更に、
前記上部メイン電気制御式スイッチを開くことと、
前記上部メイン電気制御式スイッチに付随するダイオードを通して前記上部コレクタ-エミッタに前記シャットオフ電流を導くことと、
前記下部メイン電気制御式スイッチを開くことによって、前記下部コレクタ-エミッタから前記下部ベースへと前記シャットオフ電流を転流させることと、
を有する、請求項14に記載の方法。
【請求項16】
前記下部ベースを通して前記シャットオフ電流を導くことは更に、前記下部ベースに結合された第1のリードを持つ電気制御式スイッチに付随するダイオードを通して電流を導くことを有する、請求項12に記載の方法。
【請求項17】
前記上部ベースに電流を供給することは更に、前記上部コレクタ-エミッタに印加されるコレクタ電圧とほぼ同じベース電圧で電流を供給することと、前記コレクタ電圧よりも高い前記ベース電圧で前記上部ベースに電流を供給することと、を有する群から選択される少なくとも1つを有する、請求項12に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
この出願は、2020年12月10日に出願された米国仮出願第63/123,704号の優先権を主張する。この仮出願を、あたかも以下に完全に複製されているかのように、ここに援用する。
【背景技術】
【0002】
双方向ダブルベースバイポーラ接合トランジスタ(以下、B-TRAN)は、バルク領域の第1の側のベース及びコレクタ-エミッタと、第1の側とは反対側のバルク領域の第2の側の別個の隔てられたベース及びコレクタ-エミッタと、を備えて構築される接合トランジスタである。外部ドライバによって適切に設定されるとき、電流が選択的にいずれかの方向にB-TRANを通って流れることができ、故に、B-TRANデバイスは双方向デバイスとみなされる。双方向性に基づき、コレクタ-エミッタがコレクタ(例えば、電流がB-TRANに流れ込む)とみなされるのか、それともエミッタ(例えば、電流がB-TRANから流れ出る)とみなされるのかは、印加される外部電圧の極性、及び故に、B-TRANを通る電流の方向に依存する。一例として、上部コレクタ-エミッタから下部コレクタ-エミッタへのする特定の方向にB-TRANデバイスを通る電流を考える。そのような状況において、上部コレクタ-エミッタがコレクタとして作用し、下部コレクタ-エミッタがエミッタとして作用する。
【発明の概要】
【0003】
少なくとも1つの例は、双方向ダブルベースバイポーラ接合トランジスタを有するパワーモジュールを動作させる方法であり、当該方法は、双方向ダブルベースバイポーラ接合トランジスタを有するパワーモジュールを動作させる方法であって、第1の負荷電流を、前記パワーモジュールの上部端子から前記トランジスタの上部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記パワーモジュールの下部コレクタ-エミッタから下部端子へと導通させ、次いで、第1の遮断信号のアサートに応答して、下部メインFETを開くことによって、前記下部コレクタ-エミッタから前記下部端子への前記第1の負荷電流を遮断し、それにより、前記トランジスタの下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、そして、前記トランジスタによって前記上部端子から前記下部端子への電流を阻止する、ことを有する。
【0004】
当該方法例において、前記第1の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記下部メインFETを用いて前記第1の負荷電流を遮断することを有することができ、電流を阻止することは更に、前記上部端子と前記下部端子とにわたる印加電圧が600ボルト以上で阻止することを有することができる。
【0005】
当該方法例は、前記上部端子から前記下部端子への電流を阻止することの後に、第2の負荷電流を、前記パワーモジュールの前記下部端子から前記トランジスタの前記下部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記上部コレクタ-エミッタから前記上部端子へと導通させ、次いで、第2の遮断信号のアサートに応答して、上部メインFETを開くことによって、前記上部コレクタ-エミッタから前記上部端子への前記第2の負荷電流を遮断し、それにより、前記上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、そして、前記トランジスタによって前記下部端子から前記上部端子への電流を阻止する、ことを有し得る。当該方法例において、前記第2の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記上部メインFETを用いて前記第2の負荷電流を遮断することを有することができ、前記下部端子から前記上部端子への電流を阻止することは更に、前記下部端子と前記上部端子とにわたる印加電圧が600ボルト以上で阻止することを有することができる。
【0006】
他の一例は、上部端子、下部端子、及び上部制御入力と、上部ベース、上部コレクタ-エミッタ、下部ベース、及び下部コレクタ-エミッタを画成したトランジスタと、前記上部端子に結合された第1のリード、前記上部コレクタ-エミッタに結合された第2のリード、及びゲートを画成した上部メインFETと、前記下部コレクタ-エミッタに結合された第1のリード、前記下部端子に結合された第2のリード、及びゲートを画成した下部メインFETと、前記上部制御入力、前記上部メインFETの前記ゲート、及び前記下部メインFETの前記ゲートに結合されたコントローラと、を有するスイッチアセンブリである。前記上部端子と前記下部端子とにわたる第1の印加電圧に対して、前記コントローラは、前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させることで、前記上部端子から前記下部端子に第1の負荷電流が流れるようにし、前記上部制御入力のデアサートを検知し、前記上部制御入力のデアサートに応答して、前記下部メインFETの前記ゲートをデアサートして前記第1の負荷電流を遮断し、それにより、前記下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成する、ように構成され得る。
【0007】
当該スイッチアセンブリ例において、前記トランジスタのブレイクダウン電圧は600ボルト以上であるとすることができ、前記下部メインFETのブレイクダウン電圧は100ボルト以下であるとすることができる。
【0008】
当該スイッチアセンブリ例において、前記トランジスタのブレイクダウン電圧は約1200ボルトであるとすることができ、前記下部メインFETのブレイクダウン電圧は80ボルト以下であるとすることができる。
【0009】
当該スイッチアセンブリ例は更に、前記上部ベースに結合された第1のリードと、前記上部端子に結合された第2のリードと、ゲートとを有する上部ベースFETを有することができ、前記第1の負荷電流が前記上部端子から前記下部端子に流れる期間の間、当該上部ベースFETは導通する。前記コントローラが、前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記上部ベースFETの前記ゲートをデアサートして前記上部ベースを電気的にフローティングにするように構成され得る。
【0010】
当該スイッチアセンブリ例は更に、前記コントローラに結合された下部制御入力を有し得る。前記上部端子と前記下部端子とにわたる、前記第1の印加電圧とは逆の極性と持つ第2の印加電圧に対して、前記コントローラは、前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させることで、前記下部端子から前記上部端子に第2の負荷電流が流れるようにし、前記下部制御入力のデアサートを検知し、前記下部制御入力のデアサートに応答して、前記上部メインFETの前記ゲートをデアサートして前記第2の負荷電流を遮断し、それにより、前記上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、前記下部端子から前記上部端子への電流フローを阻止するように前記トランジスタを構成する、ように構成され得る。当該スイッチアセンブリ例は更に、前記下部ベースに結合された第1のリードと、前記下部端子に結合された第2のリードと、ゲートとを有する下部ベースFETを有することができ、前記第2の負荷電流が前記下部端子から前記上部端子に流れる期間の間、当該下部ベースFETは導通する。前記コントローラが、前記下部コレクタ-エミッタから前記上部コレクタ-エミッタへの電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記下部ベースFETの前記ゲートをデアサートして前記下部ベースを電気的にフローティングにするように構成され得る。前記トランジスタのブレイクダウン電圧は600ボルト以上とすることができ、前記下部メインFETのブレイクダウン電圧は100ボルト以下であるとすることができる。
【0011】
他の一例は、双方向ダブルベースバイポーラ接合トランジスタを動作させる方法であり、当該当該は、前記トランジスタの上部ベースに電流を供給し、且つ前記トランジスタの下部ベースを電気的にフローティングにすることによって、前記トランジスタを上部コレクタ-エミッタから下部コレクタ-エミッタへと導通させ、次いで、前記上部ベースを電気的にフローティングにし、前記下部コレクタ-エミッタを電気的にフローティングにし、且つ前記トランジスタの前記下部ベースを通してシャットオフ電流を導くことによって、前記トランジスタを非導通にする、ことを有する。
【0012】
当該方法例において、前記下部コレクタ-エミッタを電気的にフローティングにすることは更に、前記下部コレクタ-エミッタに結合された第1のリードを持つ下部メイン電気制御式スイッチを非導通にすることを有し得る。
【0013】
当該方法例において、前記トランジスタを導通させることは更に、上部端子と前記上部コレクタ-エミッタとの間に結合された上部メイン電気制御式スイッチを閉じることと、下部端子と前記下部コレクタ-エミッタとの間に結合された下部メイン電気制御式スイッチを閉じることと、を有し得る。前記トランジスタを非導通にすることは更に、前記上部メイン電気制御式スイッチを開くことと、前記上部メイン電気制御式スイッチに付随するダイオードを通して前記上部コレクタ-エミッタに前記シャットオフ電流を導くことと、前記下部メイン電気制御式スイッチを開くことによって、前記下部コレクタ-エミッタから前記下部ベースへと前記シャットオフ電流を転流させることと、を有し得る。
する、請求項14に記載の方法。
【0014】
当該方法例において、前記下部ベースを通して前記シャットオフ電流を導くことは更に、前記下部ベースに結合された第1のリードを持つ電気制御式スイッチに付随するダイオードを通して電流を導くことを有し得る。
【0015】
当該方法例において、前記上部ベースに電流を供給することは更に、前記上部コレクタ-エミッタに印加されるコレクタ電圧とほぼ同じベース電圧で電流を供給することと、前記コレクタ電圧よりも高い前記ベース電圧で前記上部ベースに電流を供給することと、を有する群から選択される少なくとも1つを有し得る。
【図面の簡単な説明】
【0016】
実施形態例の詳細な説明のため、以下、添付の図面を参照する。
図1】少なくとも一部の実施形態に従ったB-TRANの立断面図を示している。
図2】少なくとも一部の実施形態に従った、B-TRANの一モデルを有するスイッチアセンブリをドライバ回路と共に示す電気回路図を示している。
図3】実施形態例に従った、B-TRANが非導通であるスイッチアセンブリ例を示している。
図4】少なくとも一部の実施形態に従った、ダイオード導通に構成されたスイッチアセンブリ例を示している。
図5】少なくとも一部の実施形態に従った、導通に構成されたスイッチアセンブリ例を示している。
図6】トランジスタターンオフに構成された関連するスイッチアセンブリを示している。
図7】少なくとも一部の実施形態に従った、プレターンオフに構成されたスイッチアセンブリ例を示している。
図8】少なくとも一部の実施形態に従ったスイッチアセンブリの、部分的に電気回路図である、部分ブロック図を示している。
図9】少なくとも一部の実施形態に従ったスイッチアセンブリの部分電気回路図を示している。
図10】少なくとも一部の実施形態に従った方法を示している。
図11】少なくとも一部の実施形態に従った、非導通状態に遷移する過渡時間のプロットを示している。
【発明を実施するための形態】
【0017】
定義
特定のシステムコンポーネントを参照するために様々な用語が使用されている。異なる会社は異なる名前でコンポーネントを参照することあり、この文書は、名前は異なるが機能は異ならないコンポーネントを区別することを意図していない。以下の説明及び請求項において、用語“含む”及び“有する”は、オープンエンド的に使用され、従って、“含むが、それに限られない”を意味すると解釈されるべきである。また、用語“結合する”は、間接的な接続又は直接的な接続のどちらも意味することを意図している。従って、第1のデバイスが第2のデバイスに結合する場合、その接続は、直接接続によってでもよいし、又は他のデバイス及び接続を介した間接接続によってでもよい。
【0018】
記載パラメータを参照しての“約”は、記載パラメータ、プラス/マイナス、記載パラメータの10%(+/-10%)を意味する。
【0019】
“アサートする”は、ブール(Boolean)信号の状態を変更することを意味する。ブール信号は、回路設計者の裁量にて、ハイにて、すなわち、高い方の電圧でアサートされてもよいし、ローにて、すなわち、低い方の電圧でアサートされてもよい。同様に、“デアサートする”は、ブール信号の状態を、アサートされた状態とは逆の電圧レベルに変更することを意味する。
【0020】
“双方向ダブルベースバイポーラ接合トランジスタ”は、バルク領域の第1の面又は第1の側にベース及びコレクタ-エミッタを持つとともに、バルク領域の第2の面又は第2の側にベース及びコレクタ-エミッタを持つ接合トランジスタを意味する。第1の側のベース及びコレクタ-エミッタは、第2の側のベース及びコレクタ-エミッタとは別個である。
【0021】
“FET”は、例えば接合ゲートFET(JFET)又は金属酸化膜シリコンFET(MOSFET)などの電界効果トランジスタを意味する。
【0022】
電気的に制御されるスイッチ(例えば、FET)を参照しての“閉じる”は、その電気的に制御されるスイッチを導通にすることを意味する。例えば、電気的に制御されるスイッチとして使用されるFETを閉じることは、そのFETを完全な導通状態に駆動することを意味し得る。
【0023】
電気的に制御されるスイッチ(例えば、FET)を参照しての“開く”は、その電気的に制御されるスイッチを非導通にすることを意味する。
【0024】
“上部ベース”は、トランジスタのバルク領域の第1の側の、双方向ダブルベースバイポーラ接合トランジスタのベースを意味し、重力に対する当該ベースの位置を意味するように読まれてはならない。
【0025】
“下部ベース”は、第1の側とは反対側のトランジスタのバルク領域の第2の側の、双方向ダブルベースバイポーラ接合トランジスタのベースを意味し、重力に対する当該ベースの位置を意味するように読まれてはならない。
【0026】
“上部コレクタ-エミッタ”は、トランジスタのバルク領域の第1の側の、双方向ダブルベースバイポーラ接合トランジスタのコレクタ-エミッタを意味し、重力に対する当該コレクタ-エミッタの位置を意味するように読まれてはならない。
【0027】
“下部コレクタ-エミッタ”は、第1の側とは反対側のトランジスタのバルク領域の第2の側の、双方向ダブルベースバイポーラ接合トランジスタのコレクタ-エミッタを意味し、重力に対する当該コレクタ-エミッタの位置を意味するように読まれてはならない。
【0028】
トランジスタの“[ベース]に電荷キャリアを注入する”又はトランジスタの“[ベース](例えば、上部ベース、下部ベース)への電荷キャリアの注入”は、トランジスタの同じ側のコレクタ-エミッタに直接的に結合する(例えば、トランジスタを通じて)ことを含まない。
【0029】
トランジスタの“[ベース]から電荷キャリアを引き抜く”又はトランジスタの“[ベース](例えば、上部ベース、下部ベース)からの電荷キャリアの引き抜き”は、そのベースをトランジスタの同じ側のコレクタ-エミッタに直接的に結合する(例えば、トランジスタを通じて)ことを含まない。
【0030】
用語“入力”及び“出力”は、名詞として使用されるとき、接続(例えば、電気、ソフトウェア)を指し、動作を必要とする動詞として読まれてはならない。例えば、タイマ回路はクロック出力を画成し得る。当該タイマ回路例は、クロック出力上にクロック信号を生成又は駆動するとし得る。ハードウェアにて(例えば、半導体基板上に)直接的に実装されるシステムにおいて、これらの“入力”及び“出力”は電気接続を規定する。ソフトウェアにて実装されるシステムでは、これらの“入力”及び“出力”は、それぞれ、機能を実行する命令によって読み取られる又は書き込まれるパラメータを規定する。
【0031】
“コントローラ”は単独で又は組み合わさって、入力を読み取って該入力に応じた出力を駆動するように構成された、個々の回路コンポーネント、特定用途向け集積回路(ASIC)、制御ソフトウェアを有するマイクロコントローラ、縮小命令セットコンピューティング(RISC)、デジタル信号プロセッサ(DSP)、制御ソフトウェアを有するプロセッサ、プログラマブルロジックデバイス(PLD)、又はフィールドプログラマブルゲートアレイ(FPGA)を意味する。
【0032】
以下の説明は、本発明の様々な実施形態に向けられる。これらの実施形態のうちの1つ以上が好適であることがあるが、開示される実施形態は、請求項を含む本開示の範囲を限定するものとして解釈されたり、その他の方法で使用されたりすべきでない。さらに、当業者が理解することには、以下の説明は広範な応用を有し、いずれの実施形態の説明も、単にその実施形態を例示しようとするものであり、請求項を含む本開示の範囲がその実施形態に限定されることを暗に示す意図はない。
【0033】
様々な例が、双方向ダブルベースバイポーラ接合トランジスタ(B-TRAN)を動作させる方法及びシステムに向けられる。特に、様々な例は、ベータ効果によって引き起こされる上部コレクタ-エミッタと下部コレクタ-エミッタとの間(及びその逆)のブレイクダウン電圧の低下が低減又は排除され、且つ3端子トランジスタのターンオフと比較してシャットオフ時間が短縮されるように、B-TRANを動作させることに向けられる。より具体的には、トランジスタオンモードの間、B-TRANは、例えば上部コレクタ-エミッタから下部コレクタ-エミッタへ、負荷電流を導通し、制御信号が状態を変化させることに応答して、最初に、負荷電流が、B-TRANの阻止電圧よりも低いブレイクダウン電圧を持つ下部メインFETによって遮断(インタラプト)される。負荷電流を遮断することは、B-TRANを通る負荷電流の一部を下部ベースへと転流させる(転流される部分をシャットオフ電流と呼ぶ)。シャットオフ電流は、上部コレクタ-エミッタと下部ベースとの間のPN接合を逆バイアスし、それ故に、B-TRANを通る電流フローを迅速に阻止する。その後、印加電圧がB-TRANによって阻止される。逆極性の印加電圧によって生じる逆方向の(例えば、下部コレクタ-エミッタから上部コレクタ-エミッタへの)負荷電流は、同様に、最初に上部メインFETによって遮断され、次いでB-TRANによって阻止され得る。本明細書は、最初に、読者を方向付けるためにB-TRANの例を参照する。
【0034】
図1は、B-TRANの一例の立断面図を示している。特に、図1は、上面又は上側102と下面又は下側104とを有するB-TRAN100を示している。“上”及び“下”という指定は、恣意的なものであり、単に説明の便宜のために使用される。上側102は、下側104とは反対の方向に向く。言い換えると、上側102に垂直な外向きポインティングベクトル(このベクトルは特に図示されていない)は、下側104に垂直な外向きポインティングベクトル(このベクトルは特に図示されていない)に対して反対方向を指す。
【0035】
上側102は、ドリフト領域又はバルク基板108とジャンクションを形成する複数のコレクタ-エミッタコンタクト領域106を含む。上側102は更に、コレクタ-エミッタコンタクト領域106の間に配置された複数のベースコンタクト領域110を画成する。これらのコレクタ-エミッタコンタクト領域106が共に結合されて、上部コレクタ-エミッタ112を形成する。これらのベースコンタクト領域110が共に結合されて上部ベース114を形成する。同様に、下側104は、バルク基板108とジャンクションを形成する複数のコレクタ-エミッタコンタクト領域116を含む。下側104は更に、下側のコレクタ-エミッタコンタクト領域106の間に配置された複数のベースコンタクト領域118を画成する。これらのコレクタ-エミッタコンタクト領域116が共に結合されて、下部コレクタ-エミッタ120を形成する。これら下側のベースコンタクト領域118が共に結合されて下部ベース122を形成する。
【0036】
この例のB-TRAN100はNPN構造であり、故に、コレクタ-エミッタコンタクト領域106及び116はN型であり、ベースコンタクト領域110及び118はP型である。この例の系では、浅いN+領域が、コレクタ-エミッタコンタクト領域106及び116からそれぞれのコレクタ-エミッタ112及び120へのオーミックコンタクトを提供している。また、この例の系では、浅いP+コンタクトドーピングが、ベースコンタクト領域110及び118からそれぞれのベース114及び122へのオーミックコンタクトを提供している。この例では、オプションの誘電体充填トレンチ124が、ベースコンタクト領域とコレクタ-エミッタコンタクト領域との間の横方向の分離を提供している。なお、PNP型B-TRANデバイスも企図されるが、説明を必要以上に長くしないよう、PNP型B-TRANデバイスを具体的に示すことはしない。
【0037】
この例のケースでは、上側102に関連する様々な構造及びドーピングを、下側104に関連する様々な構造及びドーピングの鏡像としている。しかしながら、一部のケースにおいて、上側102に関連する様々な構造及びドーピングは、下側104の様々な構造及びドーピングとは異なる時に構築され、従って、これら2つの側の間で、構造及びドーピングに、製造公差に起因する僅かな違いが存在し得るが、そのようなものは、双方向ダブルベースバイポーラ接合トランジスタとしてのデバイスの動作に悪影響を及ぼすものではない。B-TRANデバイス例の動作を説明するため、本明細書は、次に、B-TRANデバイスのモデル例を、単純化したドライバ回路と共に参照する。
【0038】
図2は、B-TRANの一モデルを有するスイッチアセンブリ例の電気回路図を、概念的なドライバ回路の単純化した電気回路図と共に示している。特に、図2は、B-TRANのモデル200を、B-TRANの上側用のドライバ部分202及びB-TRANの下側用のドライバ部分204と共に示している。先ず、モデル200を参照するに、モデル例200は、上部コレクタ-エミッタ112及び上部ベース114(図2では、上部ベース114を左側に示しているが)を画成している。ドライバ部分202は、上部コレクタ-エミッタ112及び上部ベース114に結合されている。モデル例200は更に、下部コレクタ-エミッタ120及び下部ベース122(図2では、下部ベース122を右側に示しているが)を画成している。ドライバ部分204は、下部コレクタ-エミッタ120及び下部ベース122に結合されている。
【0039】
内部に、モデル例200は、上部コレクタ-エミッタ112に結合されたエミッタE1、下部コレクタ-エミッタ120に結合されたコレクタC1、及び上部ベース114を画成するベースB1を有する第1のNPNトランジスタ206を有する。モデル例200は更に、下部コレクタ-エミッタ120に結合されたエミッタE2、上部コレクタ-エミッタ112に結合されたコレクタC2、及び下部ベース122を画成するベースB2を有する第2のNPNトランジスタ208を有する。ベースB1及びB2は、バルク基板のドリフト領域を表す直列抵抗210及び212によって共に結合されており、直列抵抗210及び212は、それらの間にノード214を画成する。ノード214と上部コレクタ-エミッタ112との間にダイオード216が結合されており、ダイオード216は、上部コレクタ-エミッタ112と下部ベース122との間のPN接合を表す。同様に、ノード214と下部コレクタ-エミッタ120との間にダイオード218が結合されており、ダイオード218は、下部コレクタ-エミッタ120と上部ベース114との間のPN接合を表す。
【0040】
モデル200の外部では、最初に上部ドライバ部分202を参照するに、電気制御式スイッチ222(以下、上部メインスイッチ222)が、上部コレクタ-エミッタ112に結合された第1のリード、及び上部端子224に結合されてそれを画成する第2のリードを有している。上部メインスイッチ例222は、オープン構成すなわち非導通構成にある単極単投スイッチとして示されているが、実際には、上部メインスイッチ222はFETとし得る。従って、上部メインスイッチ222が導通しているとき、上部コレクタ-エミッタ112が上部端子224に結合される。別の電気制御式スイッチ226(以下、単に、スイッチ226)が、上部端子224に結合された第1のリード、及び上部ベース114に結合された第2のリードを有している。スイッチ例226は、オープン構成すなわち非導通構成にある単極単投スイッチとして示されているが、実際には、スイッチ226はFETとし得る。従って、スイッチ226が導通しているとき、上部ベース114が上部端子224に結合される。ドライバ部分例202は更に、バッテリとして例示されている電荷キャリア源228を有している。電荷キャリア源228は、上部端子224に結合された負リードを有する。別の電気制御式スイッチ230(以下、単に、スイッチ230)が、電荷キャリア源228の正端子に結合された第1のリード、及び上部ベース114に結合された第2のリードを有している。スイッチ例230は単極単投スイッチとして示されているが、実際には、スイッチ230はFETとし得る。従って、スイッチ230が導通しているとき、電荷キャリア源228が上部端子224と上部ベース114との間に結合される。
【0041】
次に、下部ドライバ部分204を参照するに、電気制御式スイッチ232(以下、下部メインスイッチ232)が、下部コレクタ-エミッタ120に結合された第1のリード、及び下部端子234に結合されてそれを画成する第2のリードを有している。下部メインスイッチ例232は、オープン構成すなわち非導通構成にある単極単投スイッチとして示されているが、実際には、下部メインスイッチ232はFETとし得る。従って、下部メインスイッチ232が導通しているとき、下部コレクタ-エミッタ120が下部端子234に結合される。別の電気制御式スイッチ236(以下、単に、スイッチ236)が、下部端子234に結合された第1のリード、及び下部ベース122に結合された第2のリードを有している。スイッチ例236は、オープン構成すなわち非導通構成にある単極単投スイッチとして示されているが、実際には、スイッチ236はFETとし得る。従って、スイッチ236が導通しているとき、下部ベース122が下部端子234に結合される。ドライバ部分例204は更に、バッテリとして例示されている電荷キャリア源238を有している。電荷キャリア源238は、下部端子234に結合された負リードを有する。別の電気制御式スイッチ240(以下、単に、スイッチ240)が、電荷キャリア源238の正端子に結合された第1のリード、及び下部ベース122に結合された第2のリードを有している。スイッチ例240は単極単投スイッチとして示されているが、実際には、スイッチ240はFETとし得る。従って、スイッチ240が導通しているとき、電荷キャリア源238が下部端子234と下部ベース122との間に結合される。
【0042】
図3は、B-TRANが非導通であって電流フローを阻止しているモードにおけるスイッチアセンブリ例を示している。非導通であるスイッチは開回路として示され、導通であるスイッチは電気短絡として示されている。特に、上部端子224を正極性とした、上部端子224と下部端子234とにわたる外部印加電圧を考える。図3に示す構成では、上部メインスイッチ222が、下部ドライバ部分204内のスイッチ236とともに導通であり、残り全てのスイッチが非導通である。上部メインスイッチ222が導通であると、上部端子224が上部コレクタ-エミッタ112に結合される。スイッチ236が導通であると、下部ベース122が下部端子234に結合される。図示の構成では、モデル200のダイオード216として示されるPN接合が逆バイアスされる。また、下部コレクタ-エミッタ120及び上部ベース114の両方が電気的にフローティングにされる。従って、B-TRANは印加電圧の極性に対して非導通であり、B-TRANを通る電流は存在せず、故に、B-TRANは、上部コレクタ-エミッタ112と下部ベース122との間に形成されたPN接合によって印加電圧(例えば、上部端子224から下部端子234まで1200V)を阻止している。従って、図3の構成は非導通モード又はオフモードとして参照され得る。
【0043】
次に、B-TRANが導通にされることを考える。図4は、オプションのダイオードオンモードに構成されたスイッチアセンブリ例を示している。特に、図3のオフモードから、最初に、図示の極性にある外部印加電圧でB-TRANを導通させるために、下部メインスイッチ232が導通にされ、スイッチ226が導通にされ、且つスイッチ236が非導通にされる。上部メインスイッチ222はダイオードオンモードにおいて導通であってもよいし非導通であってもよい。図示の構成では、ダイオード216によって示される上部PN接合はバイパスされ、ダイオード218によって示される下部PN接合は順バイアスされる。従って、上部端子224から上部ベース114を通って下部コレクタ-エミッタ120に電流が流れる。使用されるとき、ダイオードオンモードは、所定の期間(例えば、両端を含めて約1マイクロ秒(μs)から5μs)だけ続き得る。図示の構成において、順方向電圧降下は比較的低い。一例において、順方向電圧降下は、約200A/cmの電流密度で約1.0Vである。しかしながら、順方向電圧降下は、もっと低くなることができる。
【0044】
図5は、導通に構成されたスイッチアセンブリ例を示している。ダイオードオンモードが使用される場合、B-TRANを横切る順方向電圧降下を更に低下させるために、スイッチ226が非導通にされ、スイッチ230が導通にされる。ダイオードオンモードが省略される場合には、オフモード(図3)から、スイッチ236が非導通にされ、下部メインスイッチ232が導通にされ、スイッチ230が導通にされ、上部メインスイッチ222は導通のままである。図示の構成では、電荷キャリア源228が上部端子224と上部ベース114との間に結合される。その結果、上部ベース114の電圧が、上部コレクタ-エミッタ112の電圧よりも高く駆動される。下部ベース122は電気的にフローティングにされるが、下部ベース122は、B-TRANのドリフト領域を介して内部で接続されており、従って、下部ベース122は、(電荷キャリア源228の電圧例に依存して)上部コレクタ-エミッタ112の電圧よりも高く駆動され得る。従って、モデル200のトランジスタ例の両方が部分的又は完全に導通し、この構成を導通モード又はトランジスタオンモードと呼ぶ。この構成では、電荷キャリア源228によって上部ベース114に電荷キャリア(ここでは正孔)が注入される。ドリフト領域内の追加の正孔がドリフト領域の導電率を高め、それが、B-TRANデバイスにわたる順方向電圧降下を低下させる。一例において、上部コレクタ-エミッタ112と上部ベース114との間に(例えば、電荷キャリア源228によって)両端を含めて約0.7Vから約1.0Vの印加電圧をかけると、順方向電圧降下は、両端を含めて約0.1Vと0.2Vとの間まで低減され得る。次に、B-TRANを非導通にする関連技術の方法、及び該関連技術の方法の潜在的な欠点について説明する。
【0045】
図6は、トランジスタターンオフに構成された関連技術のスイッチアセンブリを示している。特に、図6は、上述したモデル200と、2つの外部スイッチ600及び602とを示している。関連技術のシステムでは、スイッチ600が選択的に上部ベース114を上部コレクタ-エミッタ112に直接結合し、上部コレクタ-エミッタ112が上部端子を画成する。スイッチ602が選択的に、下部ベース122を下部コレクタ-エミッタ120に直接結合し、下部コレクタ-エミッタ120が下部端子を画成する。従って、図示の極性を持つ印加電圧例では、トランジスタターンオフは、上部ベース114をフローティングにし、下部ベース122を下部コレクタ-エミッタ120に直接結合することによって達成される。故に、B-TRANを非導通にすることは、ダイオード216として示される上部PN接合が逆バイアスされることになるまで、下部ベース122及び下部コレクタ-エミッタ120を通して電荷キャリアを排出することによって達成される。斯くしてB-TRANを非導通にすることを、トランジスタターンオフとして参照し得る。
【0046】
図示の構成によってB-TRANをトランジスタターンオフに遷移させることは、電流が漸近的に0に近づくので、長い“テール”を有し得るプロセスであり、従って、ごく僅かではない量の時間を要する。すなわち、関連技術の技法を用いてB-TRANを流れる電流が0に達するまでの時間の量は、B-TRANを流れる負荷電流の量、印加電圧の大きさ、及び下部ベース122によってドリフト領域から電荷キャリアがどれだけ迅速に排出されるかに依存し得る。例えば、シミュレーションに基づけば、100Aの電流を担持する完全な導通から非導通への遷移は、図6に示す構成を用いると約6μsかかり得る。遷移時間を短縮するために、関連技術では、例えば、ある期間にわたってスイッチ600及び602の両方が導通する構成を用いるなど、様々な技術が実装され得るが、そのような技術は遷移時間を短縮し得る一方で、遷移中に依然として電流“テール”が存在する。
【0047】
また、関連技術において図6に示すようにトランジスタターンオフを実施することは、ブレイクダウン電圧を低下させ得る。特に、スイッチ例602が導通として示され、それ故に下部ベース122を下部コレクタ-エミッタに直接結合しているが、実際には、スイッチ602は、例えばFETなどのトランジスタであるとし得る。よく設計及び構築されたFETであっても、完全な導通状態において非ゼロの電圧降下(例えば、0.1Vと0.3Vの間)を持つことになる。さらに、スイッチ602を含め、B-TRANと外部ドライバ回路との間の電気接続は各々、小さいがゼロではない抵抗を持つ。その結果、例の下部ベース122及び下部コレクタ-エミッタ120が同じ電位を持つのではなく、下部ベース122が下部コレクタ-エミッタ120よりも高い電位を担持し得る。下部ベース122上のこの高めの電位が、B-TRANのベータと組み合わさって、リーク電流を増加させ、上部コレクタ-エミッタ112から下部コレクタ-エミッタ120までのB-TRANのブレイクダウン電圧を低下させる。この低めのブレイクダウン電圧は、B-TRANの温度が上昇するにつれて更に低くなり得る。
【0048】
さらには、多くの場合、上部コレクタ-エミッタ112から下部コレクタ-エミッタ120へと運ばれる負荷電流例は、負荷自体が誘導性であるために(例えば、モータ)、若しくはB-TRANに関連する様々な接続の誘導性効果のために、又はこれらの両方のために、性質的に誘導性であり得る。図6に示すような関連技術のスイッチアセンブリは、誘導性負荷の存在下で非導通に遷移することに難しさを有し得る。別の言い方をすれば、下部ベース122と下部コレクタ-エミッタ120との間の非ゼロの電位差が、外部の誘導性負荷と組み合わさって、B-TRANを、非導通に遷移するのが非常に遅いものにし、より高い誘導電流での一部ケースでは、B-TRANを、非導通に遷移できないものにしてしまい得る。
【0049】
上述の問題は、上部メインスイッチ及び下部メインスイッチの使用によって、スイッチアセンブリ例において少なくとも部分的に対処される。図5に手短に戻ると、再び図5は、トランジスタオンモードに構成された例示的なスイッチアセンブリを示している。すなわち、印加電圧の極性例では、負荷電流が、上部端子224から上部メインスイッチ222を通って上部コレクタ-エミッタ112に、そしてB-TRANを通って、そして下部コレクタ-エミッタ120から下部メインスイッチ232を通って下部端子234へと導かれる。システム例において、遮断(インタラプト)信号又は制御信号(更に後述する)の状態の変化に基づいて、B-TRANを非導通にすることは、上部メインスイッチ又は下部メインスイッチのうちの一方によって電流フローを遮断することを伴う。図5の印加電圧の極性例では、下部メインスイッチ232によって電流が遮断される。
【0050】
図3に戻る。一部の例によれば、スイッチアセンブリを導通モード又はトランジスタオンモード(図5に示す)から図3の非導通モード又はオフモードに遷移させることは、図3の構成を再び実現することを伴い得る。すなわち、一部の例において、トランジスタオンモード(図5に示す)からオフモードに遷移することは、直接的に図3の構成を再び実現することを伴い得る。特に、スイッチアセンブリを非導通にすることは、スイッチ230を非導通にし、下部メインスイッチ232を非導通にし、スイッチ236を導通にし、且つ上部メインスイッチ222を導通のままにすることを有し得る。スイッチ230を非導通にすることは、上部ベース114を介した電荷キャリアの注入を止める。下部メインスイッチ232を開くこと又は非導通にすることは、下部コレクタ-エミッタ120から下部端子234への負荷電流を遮断する。さらに、下部メインスイッチ232を非導通にすることは、負荷電流の一部を、下部ベース122及びスイッチ236を流れるように転流させる。負荷電流の転流される部分(すなわち、シャットオフ電流)は、上部コレクタ-エミッタ112と下部ベース122との間のダイオード216として示されるPN接合が逆バイアスされることになるまで短期間だけ流れ、そして、電流は実質的にゼロまで減少する。ダイオード216として示されるPN接合が逆バイアスされると、システム例は、B-TRANによって上部端子224から下部端子234への電流を阻止する。斯くしてB-TRANを非導通にすることをダイオードターンオフと称し、これはトランジスタターンオフよりも有意に速い。他のケースにおいて、スイッチアセンブリを導通から非導通に遷移させることは、オプションのプレターンオフモードの使用によって行われてもよい。
【0051】
ダイオードターンオフを使用することは幾つかの利点を有し得るが、必ずしも全ての利点が全てのケースで存在するわけではない。特に、トランジスタターンオフよりも速いことに加えて、ダイオードターンオフのブレイクダウン電圧は、トランジスタターンオフよりも高い。また、温度が上昇するにつれて、ダイオードのブレイクダウン電圧が上昇する。さらに、誘導性負荷の下で、ダイオードターンオフは、トランジスタターンオフよりも高い電圧及び電流をターンオフ中に阻止することができる。
【0052】
図7は、オプションのプレターンオフモードに構成されたスイッチアセンブリ例を示している。一部の例において、B-TRANを非導通にする最初のプロセス(例えば、1200Vデバイスの完全ターンオフの約0.1μs-5μs前)は、スイッチ226及び236を導通にし、スイッチ230を非導通にし、且つ上部メインスイッチ222及び下部メインスイッチ232を導通のままにすることを伴い得る。スイッチ230を非導通にし、且つスイッチ226を導通にすることは、電荷キャリア源228からの電荷キャリアの注入を停止させる。さらに、スイッチ236を導通にすることが、ドリフト領域からの電流排出又は流出を引き起こす。その結果、これらの作用がドリフト領域から電荷キャリアを減少させ及び/又は除去し、B-TRANを飽和状態から外し、順方向電圧降下を増加させる。この構成をプレターンオフモードとして参照する。一例において、プレターンオフモードでは、上部コレクタ-エミッタ112から下部コレクタ-エミッタ120までの順方向電圧降下が、両端を含めて約0.9Vと3Vとの間まで上昇し得る。次いで、B-TRAN例は、この極性例に対して、図3のオフモードを再び実現することによって完全に非導通にされ得る。プレターンオフモードを実装することは、(例えば、図5の構成を図3の構成に直接変化させることと比較して)スイッチアセンブリをオフモードに遷移させるための時間の量を更にさらに減少させる。
【0053】
図3図5及び図7に関する例は、外部印加電圧が上部端子224において正の極性を持つ状況に関するものである。しかしながら、このB-TRAN例は対称なデバイスであり、そして、図示の極性例でB-TRANを流れる電流をどのように制御するのかをもはや理解しており、反対方向における電流の制御も直接的にそれに従う。そのような反対方向の電流の状況では、電荷キャリア源228とスイッチ230ではなく、電荷キャリア源238とスイッチ240が使用されることになる。
【0054】
図8は、スイッチアセンブリ例の、部分的に電気回路図である、部分ブロック図を示している。特に、スイッチアセンブリ例800は、B-TRAN100及びドライバ802を有する。B-TRAN100は、NPN構成をしており、2つのエミッタ及び2つのベースを持つ回路記号例で示されている。この回路記号は、上部コレクタ-エミッタ112、上部ベース114、下部コレクタ-エミッタ120、及び下部ベース122を示している。上部コレクタ-エミッタ112は、スイッチアセンブリ800の上部端子224に結合されている。下部コレクタ-エミッタ120は、スイッチアセンブリ800の下部端子234に結合されている。ドライバ例802が、上部ベース114に結合された上部ベース端子808、上部コレクタ-エミッタ112に結合された上部導通端子810、下部ベース122に結合された下部ベース端子812、及び下部コレクタ-エミッタ120に結合された下部導通端子814を画成している。
【0055】
ドライバ例802は更に、コントローラ816、電気アイソレータ818、及び絶縁変圧器820を含んでいる。B-TRAN100を様々な導通及び非導通モードに置くために、ドライバ例802は、複数の電気制御式スイッチ及び電荷キャリア源を含む。特に、ドライバ802は、その第1のリードを上部端子224に結合させ、第2のリードを上部ベース114に結合させ、且つ制御入力をコントローラ816に結合させたスイッチ226を含んでいる。先と同様に、スイッチ例226は単極単投スイッチとして示されているが、実際には、スイッチ226はFETとすることができ、制御入力はFETのゲートである。従って、スイッチ226がその制御入力のアサートによって導通にされるとき、上部ベース114が上部端子224に結合される。
【0056】
ドライバ802は更に、バッテリとして例示されている電荷キャリア源822を有している。電荷キャリア源822は、負リードを上部端子224に結合させている。別の電気制御式スイッチ824(以下、単に、スイッチ824)が、第1のリードを電荷キャリア源822の正端子に結合させ、第2のリードを上部ベース114に結合させ、且つ制御入力をコントローラ816に結合させている。スイッチ例824も単極単投スイッチとして示されているが、実際には、スイッチ824は、FETのゲートを制御入力とするFETとし得る。従って、スイッチ824が導通しているとき、電荷キャリア源822が上部端子224と上部ベース114との間に結合される。ドライバ802は更に、バッテリとして例示されている別の電荷キャリア源826を有している。電荷キャリア源826は、負リードを上部端子224に結合させている。別の電気制御式スイッチ828(以下、単に、スイッチ828)が、第1のリードを電荷キャリア源826の正端子に結合させ、第2のリードを上部ベース114に結合させ、且つ制御入力をコントローラ816に結合させている。スイッチ例828も単極単投スイッチとして示されているが、実際には、スイッチ828は、FETのゲートを制御入力とするFETとし得る。従って、スイッチ828が導通しているとき、電荷キャリア源826が上部端子224と上部ベース114との間に結合される。電荷キャリア源822及び826は、単独で又は組み合わせにて、図2の電荷キャリア源例228とし得る。
【0057】
ドライバ802は更に、上部端子224に結合された第1のリードと、上部コレクタ-エミッタ112に結合された上部導通端子810を画成する第2のリードと、コントローラ816に結合された制御入力とを有する上部メインスイッチ222を有する。前述のように、上部メインスイッチ例222は単極単投スイッチとして示されているが、実際には、上部メインスイッチ222は、FETのゲートを制御入力とするFETとし得る。従って、上部メインスイッチ222が、例えばその制御入力のアサートによってなどで導通にされるとき、上部端子224が上部コレクタ-エミッタ112に結合される。
【0058】
次に、B-TRAN100の下側を参照するに、ドライバ例802は更に、第1のリードを下部端子234に結合させ、第2のリードを下部ベース122に結合させ、且つ制御入力をコントローラ816に結合させたスイッチ236を含んでいる。スイッチ例236は単極単投スイッチとして示されているが、実際には、スイッチ236はFETとすることができ、制御入力はFETのゲートである。従って、スイッチ236がその制御入力のアサートによって導通にされるとき、下部ベース122が下部端子234に結合される。
【0059】
ドライバ802は更に、バッテリとして例示されている電荷キャリア源830を有している。電荷キャリア源830は、負リードを下部端子234に結合させている。別の電気制御式スイッチ832(以下、単に、スイッチ832)が、第1のリードを電荷キャリア源830の正端子に結合させ、第2のリードを下部ベース122に結合させ、且つ制御入力をコントローラ816に結合させている。スイッチ例832は単極単投スイッチとして示されているが、実際には、スイッチ832は、FETのゲートを制御入力とするFETとし得る。従って、スイッチ832が導通しているとき、電荷キャリア源830が下部端子234と下部ベース122との間に結合される。ドライバ802は更に、バッテリとして例示されている別の電荷キャリア源834を有している。電荷キャリア源834は、負リードを下部端子234に結合させている。別の電気制御式スイッチ836(以下、単に、スイッチ836)が、第1のリードを電荷キャリア源834の正端子に結合させ、第2のリードを下部ベース122に結合させ、且つ制御入力をコントローラ816に結合させている。スイッチ例836は単極単投スイッチとして示されているが、実際には、スイッチ836は、FETのゲートを制御入力とするFETとし得る。従って、スイッチ836が導通しているとき、電荷キャリア源834が下部端子234と下部ベース122との間に結合される。電荷キャリア源830及び834は、単独で又は組み合わせにて、図2の電荷キャリア源例238とし得る。
【0060】
ドライバ802は更に、下部端子234に結合された第1のリードと、下部コレクタ-エミッタ120に結合された下部導通端子814を画成する第2のリードと、コントローラ816に結合された制御入力とを有する下部メインスイッチ232を有する。前述のように、下部メインスイッチ例232は単極単投スイッチとして示されているが、実際には、下部メインスイッチ232は、FETのゲートを制御入力とするFETとし得る。従って、下部メインスイッチ232が、例えばその制御入力のアサートによってなどで導通しているとき、下部端子234が下部コレクタ-エミッタ120に結合される。
【0061】
コントローラ816は、制御入力838及び840と、それぞれ、スイッチ222、828、824、226、236、832、836、及び232の制御入力に結合された制御出力842、844、846、848、850、852、及び854とを画成する。制御入力838がアサートされるとき、コントローラ816は、上部端子224から下部端子234への導通のためにB-TRAN100を構成する(例えば、図4又は図5)ように設計及び構築される。逆に、制御入力838がデアサートされるとき、コントローラ816は、上部端子224から下部端子234への電流フローを阻止するようにB-TRAN100を構成する(例えば、図3のオフモード)よう設計及び構築される。同様に、制御入力840がアサートされるとき、コントローラ816は、下部端子234から上部端子224への導通のためにB-TRAN100を構成するように設計及び構築される。逆に、制御入力840がデアサートされるとき、コントローラ816は、下部端子234から上部端子224への電流フローを阻止するようにB-TRAN100を構成するよう設計及び構築される。制御入力838及び840が両方ともアサートされるとき、コントローラ816は、両方向への電流フローのためにB-TRAN100を構成し(例えば、ACブレーカサービス)、制御入力838及び840が両方ともデアサートされるとき、コントローラ816は、両方向で電流フローを阻止する。
【0062】
一部のケースにおいて、B-TRAN100が非導通にある構成は、印加電圧の極性に依存する。従って、コントローラ例816は更に、印加極性を指し示すブールインジケーションを受信する極性入力856を画成し得る。ドライバ例802では、比較器858が、第1の入力を上部端子224に結合させ(バブル“A”で示された接続)、且つ第2の入力を下部端子234に結合させている。比較器858は、極性入力856に結合された比較出力を画成している。図8は、それぞれの導通端子に直接結合された第1及び第2の入力を示しているが、実際には、非導通時にB-TRAN100にかかる電圧は大きい(例えば、1200V)ことができ、従って、第1及び第2の入力の各々は、それぞれの分圧回路を介してそれぞれの導通端子に結合され得る。より更なるケースでは、印加極性は、スイッチアセンブリ800の外部のシステム及び装置によって決定されてもよく、ブール信号が電気アイソレータ818を横切って制御入力856に送られる。
【0063】
B-TRAN100を非導通から導通に遷移させ、次いで非導通に戻すことは、多段階プロセスとし得る。多段階プロセスを実装するため、コントローラ816は、制御入力838及び840を読み取り、極性入力856を読み取って、B-TRAN100のモード遷移を実施するための制御出力を駆動するように構成された、個々の回路コンポーネント、特定用途向け集積回路(ASIC)、制御ソフトウェアを有するマイクロコントローラ、縮小命令セットコンピューティング(RISC)、デジタル信号プロセッサ(DSP)、制御ソフトウェアを有するプロセッサ、プログラマブルロジックデバイス(PLD)、若しくはフィールドプログラマブルゲートアレイ(FPGA)、及び/又は組み合わせとし得る。
【0064】
システム例において、スイッチアセンブリ800は電気的にフローティングにされる。スイッチアセンブリ800の電気ドメインで制御入力838及び840を受信するために、ドライバ例802は電気アイソレータ818を実装している。電気アイソレータ例818は、例えば光カプラ又は静電容量式絶縁デバイスなどの、任意の好適形態をとり得る。電気アイソレータ818の正確な性質にかかわらず、電気アイソレータ818の制御入力860及び862に、外部制御信号(例えば、ブール信号)が結合され得る。そして、電気アイソレータ818が、それらの制御信号をスイッチアセンブリ800の電気ドメインへと通過させる。この例において、外部制御信号は通されて、コントローラ816の制御入力838及び840になる。
【0065】
次に、絶縁変圧器820を参照する。スイッチアセンブリ800内の様々なデバイスが動作電力を使用し得る。例えば、コントローラ816は、B-TRANの様々な動作モードの実現を可能にするためにバス電圧及び電力を使用し得る。また、システム内の電荷キャリア源は、実際には、スイッチング電力コンバータの形態の個別の電圧源として、あるいは、やはりスイッチング電力コンバータを用いて実装される個別の電流源として実装され得る。電荷キャリア源を実装するスイッチング電力コンバータは、バス電圧及び電力を使用し得る。絶縁変圧器820は、スイッチアセンブリ800の電気ドメイン内に動作電力を提供するために設けられる。外部システム(具体的には図示せず)が、絶縁変圧器820の一次リード864及び866間に交流信号(例えば、15V AC)を提供し得る。絶縁変圧器820は、二次リード868及び870上にAC電圧を生成する。絶縁変圧器820の二次側のAC電圧がAC-DC電力コンバータ872に提供され、それが、AC電圧を整流し、コモン874に対するバス電圧VBUS(例えば、3.3V、5V、12V)によって電力を提供し得る。AC-DC電力コンバータ872によって提供される電力は、スイッチアセンブリ800の様々なコンポーネントによって使用され得る。他のケースでは、複数の絶縁変圧器が存在してもよい(例えば、B-TRANの各側に1つ)。より更には、複数の二次巻線を有する単一の絶縁変圧器が使用されてもよい。次に、スイッチアセンブリ800の文脈にてB-TRAN100を導通及び/又は非導通にするための構成例を説明する。
【0066】
一例として、印加電圧が上部端子224上で正の極性を持つ状況を考える。さらに、電気アイソレータ818に与えられる制御入力860がデアサートされ、従って、コントローラ816の制御入力838に与えられる制御信号がデアサートされるとする。デアサートされた状態の制御入力838に基づいて、コントローラ816は、印加された極性(例えば、極性入力856を通じてコントローラ816によって読み取られる)を考慮に入れて、B-TRAN100をオフモードに置くように設計及び構成される。従って、この構成例において、上部メインスイッチ222は導通であり、スイッチ236は導通である。一部の例において、スイッチ222及び236は、それぞれ、制御出力842及び850をコントローラ816がアサートすることによって導通にされる。しかしながら、他のケースでは、更に詳細に後述するように、スイッチ222及び236は、内部ボディダイオードを備えたFETとして実装される。従って、上部メインスイッチ222の導電性は、最初は少なくとも、上部メインスイッチ222を実装するFETのボディダイオードを印加電圧が順バイアスすることに基づき得る。同様に、スイッチ236の導電性は、最初は少なくとも、スイッチ236を実装するFETのボディダイオードを印加電圧が順バイアスすることに基づき得る。その結果、コントローラ816は、印加される電圧の想定される極性に対して電流阻止を達成するために積極的な行動をとる必要は必ずしもない。同様の構成及び/又は動作が、逆極性の電流を阻止するように構成されるときに下部メインスイッチ232及びスイッチ226について存在し得る。
【0067】
上部端子224において正の極性である構成例をなおも考えるに、次に、電気アイソレータ818の制御入力860に与えられる制御信号がアサートされ、従って、コントローラ816の制御入力838に与えられる制御信号がアサートされるとする。このアサートに基づいて、スイッチアセンブリ例800では、コントローラ816は、先ず、制御出力842をアサートし(上部メインスイッチ222を導通にし)、制御出力854をアサートし(下部メインスイッチ232を導通にし)、制御出力850をデアサートし(スイッチ236を非導通にし)、且つ制御出力848をアサートする(スイッチ226を導通にする)ことによって、B-TRAN100をオプションのダイオードオンモードに置くように設計及び構成され得る。スイッチ226を導通させることは、上部端子224を上部ベース114に結合させる。この構成は、B-TRAN100を流れる電流を生じさせ、順方向電圧降下はダイオードオンモードに相応する。使用されるとき、ダイオードオンモードは、所定の期間(例えば、約0.1μsから5μs)だけ続き得る。コントローラ816は、次いで、上部ベース114に電荷キャリアを注入することによって、B-TRANをトランジスタオンモードに置くように設計及び構成され得る。ダイオードオンモードからトランジスタオンモードへの遷移に際し、コントローラ816は、制御出力848をデアサートし(スイッチ226を非導通にし)、そして、スイッチ226が非導通となることを確実にするのに十分な量の時間の後に、制御出力846をアサートする(スイッチ824を導通にする)ように設計及び構成され得る。ダイオードオンモードを実施しない場合には(すなわち、図3のオフモードからの場合)、コントローラ816は、制御出力842をアサートし(上部メインスイッチ222を導通にし)、制御出力854をアサートし(下部メインスイッチ232を導通にし)、制御出力850をデアサートし(スイッチ236を非導通にし)、且つ制御出力846をアサートする(スイッチ824を導通にする)ように設計及び構成され得る。とにかく、スイッチ824を導通させることは、電荷キャリア源822を上部コレクタ-エミッタ112と上部ベース114との間に結合する。一部のシステム例において、電荷キャリア源822は、上部コレクタ-エミッタ112と上部ベース114とを横切って印加される、約1.0Vの制御された電圧を生成し、これが、上部ベース114に流れ込む電流を生じさせる。この構成において、上部ベース114に電荷キャリアを注入することは、B-TRAN100のドリフト領域内の電荷キャリアの数を増加させ、それがB-TRAN100を飽和状態に駆動する。
【0068】
第2の電荷キャリア源826及び関係するスイッチ828は、異なるスイッチアセンブリ800において異なる機能を実行するために使用され得る。例えば、電荷キャリア源826によって生成される電圧は、電荷キャリア源822によって生成される電圧よりも高くすることができ、従って、非導通から完全導通までのスイッチング時間を短縮するために、電荷キャリア源826は所定の期間にわたって上部ベース114に結合されることができ、その後、全体的な効率を高めるために(例えば、スイッチアセンブリ800によって使用されるエネルギーを考慮して)、電荷キャリアの注入は電荷キャリア源822に移り得る。
【0069】
より更なる他のケースにおいて、電荷キャリア源826によって生成される電圧は、電荷キャリア源822によって生成される電圧より低くてもよく、導通から非導通へと移ることに付随するスイッチング損失を低減されるために、次の遷移より所定の時間だけ前に、スイッチアセンブリ例800は、電荷キャリア源826を用いた電荷キャリアの注入に遷移してもよく、これは、B-TRAN100にわたる順方向電圧降下を増加させ得るが、次の遷移におけるスイッチング損失を低減させ得る。
【0070】
図8に関して説明した動作例は、上部端子224に正の極性を持つ印加電圧例についてであった。しかしながら、繰り返しとなるが、B-TRAN例100は対称なデバイスであり、もはや、どのようにしてB-TRAN100を様々な導通及び非導通状態に構成するのかを理解しており、反対方向における電流フローの制御も直接的にそれに従う。
【0071】
図8のスイッチアセンブリ800は、電荷キャリアの2つの注入モードのために、各側に結合される別個の独立した電荷キャリア源を利用する。例えば、上側は、例示として電荷キャリア源822及び電荷キャリア源826を使用し、下側は、例示として電荷キャリア源830及び834を使用する。しかしながら、他のケースでは、B-TRAN100の各側は、各側に1つで、単一であるが可変の電荷キャリア源を使用して注入キャリアを駆動してもよい。
【0072】
図9は、スイッチアセンブリ例の部分電気回路図を示している。特に、図9は、B-TRAN例100と、ドライバ例802の一部とを示している。ドライバ802は、同様に、絶縁変圧器、AC-DC電力コンバータ、電気アイソレータ、コントローラ、及び比較器を有し得るが、それらのコンポーネントは、図9の簡略表記からは省略されている。説明の目的で、上側102について、図9は、スイッチ222、824、226、及び828、並びに電荷キャリア源例822及び826を示している。下側104について、図9は、スイッチ232、832、236、及び836、並びに電荷キャリア源例830及び834を示している。
【0073】
上で示唆したように、これらのスイッチのうち多くはFETとして実装される。図9のスイッチアセンブリ例において、上部メインスイッチ222は、上部端子224に結合されたソースと、上部コレクタ-エミッタ112に結合されたドレインと、制御入力を画成するゲートと、ソースとドレインとの間に結合されたボディダイオードと、を有するFETとして示されている。印加電圧が上部端子224上で正の極性を持つとき、ボディダイオードは順バイアスされ、故に、(コントローラ816(図8)によるアクションなしで)上部メインスイッチ222を導通させる。B-TRAN100の導通状態の間、印加される極性にかかわらず、コントローラ816は、ゲートを駆動して該FETを導通させ、全体的な電圧降下を低下させる。ケース例において、上部メインスイッチ222を実装するのに使用されるFETは、B-TRAN100が600V以上、一部のケースでは約1200V、のブレイクダウン電圧を持ち得ることにかかわらず、100V以下、一部のケースでは約80V、のブレイクダウン電圧を持つことができる。
【0074】
スイッチ例226は、一対の背中合わせのFETとして示されている。特に、スイッチ226は、ソースが上部端子224に結合された第1のFET、及びソースが上部ベース114に結合された第2のFETとして示されており、これらのFETのドレインは共に結合されている。これらのFETのゲートは、個別にコントローラ816(図8)に結合されてもよいし、あるいは、これらのゲートは共に結合されて単一ユニットとしてコントローラ816によって駆動されてもよい。これらのFETは各々、ボディダイオードを有し、図示の構成では、これらボディダイオードのカソードが共に結合されている。背中合わせのFETを有することは、ボディダイオードの存在にかかわらず、双方向の電流阻止、及び双方向の電流フローを可能にする。例えば、スイッチ226は、オプションのダイオードオンモード(図4)の間に導通であることができ、ダイオードオンモードにおいて、上部端子224に正の極性では、電流が上部端子224からスイッチ226を通って上部ベース114に流れ得る。しかしながら、トランジスタオンモードの間、スイッチ226は、(例えば、他のデバイスが電荷キャリアを注入することを可能にするために)非導通である必要があり得る。従って、上部端子224上に正の極性では、ゲートがデアサートされるとき、背中合わせのFETは、第1のFETのボディダイオードが順バイアスされるにもかかわらず電流フローを阻止する。正の極性が下部端子234にある状況でも、スイッチ226は、トランジスタオフモードへの遷移の際及びトランジスタオフモードの間、導通であることができる。例えば、トランジスタオフモードへの遷移におけるシャットオフ電流は、トランジスタオフモードにおけるリーク電流とともに、スイッチ226によって運ばれ得る。
【0075】
同様に、スイッチ824は、一対の背中合わせのFETとして示されている。特に、スイッチ824は、ソースが電荷キャリア源822に結合されたFET900、及びソースが上部ベース114に結合されたFET902として示されており、FET900及び902のドレインは共に結合されている。FET900及び902のゲートは、個別にコントローラ816(図8)に結合されてもよいし、あるいは、これらのゲートは共に結合されて単一ユニットとしてコントローラ816によって駆動されてもよい。FET900及び902は各々、ボディダイオードを有し、図示の構成では、これらボディダイオードのカソードが共に結合されている。背中合わせのFETを有することは、ボディダイオードの存在にかかわらず、双方向の電流阻止、及び双方向の電流フローを可能にする。上部端子224上を正の極性として、トランジスタオンモードは、電荷キャリア源822がFET900及び902を介して上部ベース114に電荷キャリアを注入することで実現され得る。他のモードにおいて、電荷キャリア源822から上部ベース114への電流フローは、FET900のボディダイオードが電荷キャリア源822によって順バイアスされ得ることにもかかわらず、FET902によって阻止され得る。
【0076】
ケース例において、抵抗904及び906が、スイッチ824がスイッチ226及びスイッチ230(図2)の両方の機能を果たすことを可能にする。すなわち、電荷キャリア源822を用いて電荷キャリアを上部ベース114に注入するとき、スイッチ824はスイッチ230の機能を果たす。しかしながら、スイッチ例824のFET902が、抵抗904及び906とともに、スイッチ824がスイッチ226の機能を果たすことも可能にする。例えば、正の極性が下部端子234上にあり且つ上部メインスイッチ222が非導通であるとき、シャットオフ電流が、FET902のボディダイオードを通り、FET900と並列の抵抗904を通り、そして電荷キャリア源922と並列の抵抗906を通って流れ得る。最終的にコントローラ816(図8)がスイッチ226を導通にし得るが、この状況例では、FET902のボディダイオードが、シャットオフ電流を作り出す転流と同時に導通するので、タイミング制約がよりいっそう寛容である。
【0077】
スイッチ824並びに抵抗904及び906(及び下側104のスイッチ832に関する対応する抵抗908及び910)をなおも考えるに、ボディダイオードを用いて電源投入セーフモードを可能にし得る。すなわち、抵抗904及び906は、スイッチアセンブリ800の電源投入時の競合状態が、B-TRAN100を介した不慮の導通を引き起こさないことを確実にする。特に、スイッチアセンブリ800は、システム全体内で結合された上部端子224及び下部端子234を有することができる。AC-DC電力コンバータ872(図8)が電源投入され終わる前、及び/又はコントローラ816が動作状態にブートストラップする機会を有することになった前に、いずれかの極性でも、上部端子224と下部端子234にわたって電圧が現れ得る。一例として、コントローラ816が動作可能になる前に正の極性が上部端子224に現れる電源投入状態を考える。このような状況で、上部メインスイッチ222を実装するFETのボディダイオードが導通する。さらに、スイッチ832のFET912のボディダイオードが順バイアスされることになって、シャットオフ電流及び/又はリーク電流を下部ベース122から下部端子234に流れさせる。同様の構成が、下部端子234に正の極性が現れるときに生じる。従って、コントローラ816による制御がなくても、B-TRAN100は、上部端子224と下部端子234との間に印加される電圧の極性にかかわらず非導通セーフモードに入る。
【0078】
スイッチ828は、上部ベース114に結合されたソースと、電荷キャリア源826の正のリードに結合されたドレインと、制御入力を画成するゲートと、ソースとドレインとの間に結合されたボディダイオードとを有する単一のFETとして示されている。上述のように、電荷キャリア源826は、B-TRAN100が導通に遷移するときに所定の期間にわたって使用され得る。電荷キャリア源826に付随する電圧が、FET自体が非導通であるときにFETのボディダイオードを逆バイアスされたままにすることができ、故に、スイッチ828に関しては背中合わせのFETは必要とされないとし得る。
【0079】
図9は更に、下部メインスイッチ232を、下部端子234に結合されたソースと、下部コレクタ-エミッタ120に結合されたドレインと、制御入力を画成するゲートと、ソースとドレインとの間に結合されたボディダイオードと、を有するFETとして示している。印加電圧が下部端子234上で正の極性を持つとき、ボディダイオードは順バイアスされ、故に、(コントローラ816(図8)によるアクションなしで)下部メインスイッチ232を導通させる。B-TRAN100の導通状態の間、印加される極性にかかわらず、コントローラ816は、ゲートを駆動して該FETを導通させ、全体的な電圧降下を低下させる。ケース例において、下部メインスイッチ232を実装するのに使用されるFETは、B-TRAN100が600V以上、一部のケースでは約1200V、のブレイクダウン電圧を持ち得ることにかかわらず、100V以下、一部のケースでは約80V、のブレイクダウン電圧を持つことができる。
【0080】
スイッチ226と同様に、スイッチ236は、背中合わせのFETとして実装され得る。また、同様に、スイッチ832は、背中合わせのFETとして実装され得る。スイッチ236及び832の動作の説明は、印加電圧の極性を考慮に入れて、スイッチ226及び824の説明と重複するものであり、説明を必要以上に長くしないよう、ここで再び繰り返すことはしない。同様に、スイッチ828に関して説明したのと同じ理由で単一のFETとして例示されているスイッチ836に電荷キャリア源834が付随する。
【0081】
様々なスイッチが、図9に示されるようなボディダイオードを備えたFETとして実装されるとき、コントローラ816(図8)によって状態遷移がいっそう容易且つ迅速に実施され得る。一例として、正の極性が上部端子224上にあり、且つトランジスタオンモードに構成されたB-TRAN100をドライバ802が有することを考える。このような状況では、上部メインスイッチ222は導通であり、スイッチ824は導通であり、下部メインスイッチ232は導通であり、残りのスイッチは非導通である。ここで、B-TRAN100を非導通にするコマンド(例えば、制御入力838(図8)のデアサート)をドライバ802が受信することを考える。スイッチが図示のようにFETとして実装されるとき、トランジスタオフモードを実装するようにドライバ802を構成することは、コントローラ816(図8)が全てのFETの全てのゲートをデアサートすることを伴い得る。上部メインスイッチ222は、ボディダイオードが順バイアスされて導通していることに基づいて導通のままとなる。下部メインスイッチ232は電流フローを遮断し、そのボディダイオードは逆バイアスされる。下部メインスイッチ232を用いて電流フロー(例えば、100A)を遮断するが、下部メインスイッチ232は、より高い電圧を阻止する主たるデバイスではなく、B-TRAN100がそのタスクを実行する。従って、下部メインスイッチ232は、100V以下、一部のケースで約80V、のブレイクダウン電圧を持てば十分である。電流フローの遮断は、シャットオフ電流を、スイッチ832のFET912のボディダイオードと抵抗908及び910とを通って流れるように転流させる。状況例におけるある時点で、コントローラ816は、スイッチ236を導通にして、抵抗908及び910を通る電流を減少させ得るが、そのようなことは厳に必要とされるわけではない。
【0082】
再びトランジスタオンモードからオフモードへの遷移を、やはり上部端子224で正の極性の状況例において考える。コントローラ816(図8)が、B-TRAN100を導通から非導通に遷移させるとき、図9のシステム例は、FET914として例示されるスイッチ及び電荷キャリア源916によって上部ベース114を通じて電荷キャリアを引き抜き得る。特に、コントローラ816がトランジスタオンモードからオフモードに遷移するとき、コントローラ816は、FET914のゲートのアサートによって中間ステップを実施して、該FETを導通させ、及び故に、電荷キャリア源916を上部ベース114と上部端子224との間に結合するように設計及び構成され得る。この極性の電荷キャリア源916は、上部ベース114を介してドリフト領域から電荷キャリアを引き抜き、それが、例えばプレターンオフモードを実施する(図7)又は上部ベース114を電気的にフローティングにする場合よりも高速な非導通への遷移を可能にする。順方向電圧降下の傾きに関して言えば、この極性例の電荷キャリア源916は、順方向電圧降下の上方傾斜を増加させ、それがスイッチング時間を短縮し、ひいては、スイッチング損失を減少させる。ケース例において、電荷キャリア源916は電圧源(例えば、両端を含めて5.0Vと15Vとの間であり、12Vとして例示している)とすることができ、電荷キャリアを引き抜くことは、導通状態からオフモードに遷移するための時間を、両端を含めて約0.5μsと2μsとの間だけ短縮し得る。ダイオード918は、ドライバ802のこの経路を介した上部ベース114への逆の電流フローの阻止を確実にする。遷移時間における同様の減少が、正の極性が下部端子234上にある状況に対して、FET920、電荷キャリア源922、及びダイオード924によって達成され得る。
【0083】
より更なる他のケースにおいて、トランジスタオンモードからオフモードへの遷移中に、FET914及びFET920の両方が導通にされてもよく、従って、電荷キャリア源916及び922の両方が電荷キャリアを引き抜く。FET914及び920の両方が導通する期間は、両端を含めて約0.5μsと2μsとの間の比較的短い期間とし得る。さらには、端子224及び234間に印加される極性とは無関係に、遷移の一部としてFET914及び920の一方のみが導通にされてもよい。
【0084】
図10は、少なくとも一部の実施形態に従った方法を示している。特に、当該方法は、開始し(ブロック1000)、第1の負荷電流を、パワーモジュールの上部端子からトランジスタの上部コレクタ-エミッタに、そしてトランジスタを通して、そしてパワーモジュールの下部コレクタ-エミッタから下部端子へと導通させ(ブロック1002)、次いで、第1の遮断信号のアサートに応答して、下部メインFETを開くことによって、下部コレクタ-エミッタから下部端子への第1の負荷電流を遮断し、それにより、トランジスタの下部ベースを介して下部端子へと第1のシャットオフ電流を転流させ(ブロック1004)、そして、トランジスタによって上部端子から下部端子への電流を阻止する(ブロック1006)ことを有する。この例は更に、第2の負荷電流を、パワーモジュールの下部端子からトランジスタの下部コレクタ-エミッタに、そしてトランジスタを通して、そして上部コレクタ-エミッタから上部端子へと導通させ(ブロック1008)、次いで、第2の遮断信号のアサートに応答して、上部メインFETを開くことによって、上部コレクタ-エミッタから上部端子への第2の負荷電流を遮断し、それにより、上部ベースを介して上部端子へと第2のシャットオフ電流を転流させ(ブロック1010)、そして、トランジスタによって下部端子から上部端子への電流を阻止する(ブロック1012)ことを有し得る。その後、当該方法は終了する(ブロック1014)。
【0085】
図11は、B-TRANを導通から非導通に遷移させるための過渡時間のプロットを示している。特に、図11は、ここでの例のダイオードターンオフの幾つかの実装を、対応する関連技術の3端子又はトランジスタターンオフの例とともに一緒にプロットしている。縦軸は、アンペア単位でのB-TRANを流れる負荷電流であり、横軸は、任意の開始時間からのマイクロ秒単位での過渡時間である。これら様々なプロットは、スイッチアセンブリコントローラ電流を抵抗負荷に流して、シミュレーションプログラム(例えば、テクノロジーコンピュータ支援設計(TCAD)プログラム)を使用して作成されたものである。プロット例1100は、例えば、トランジスタオンモード(図5)から直接的にオフモード(図3)に遷移するなど、プレターンオフモードを使用しないダイオードターンオフの過渡時間を示している。また、プロット1100では、遷移が恣意的な時間30μsで始まっており、従って、100Aの電流例から実質的にゼロの電流までの過渡時間は、約3μs(すなわち、30μsの点と33μsの点との間)で生じている。対照的に、プロット1102は、例えば、導通モードから非導通モードに遷移する(図6)など、プレターンオフモードを使用しない関連技術のトランジスタターンオフについての過渡時間を示している。前述のように、プロット1102では、遷移が恣意的な時間30μsで始まっており、従って、100Aの電流例から実質的にゼロの電流までの過渡時間は、ここでのケース例の2倍の長さである約6μsで生じている。
【0086】
プロット1100によって示されるダイオードターンオフについての過渡時間は、繰り返しとなるが、いかなるプレターンオフも用いていない。しかしながら、過渡時間は、トランジスタオンモード(例えば、図5)とオフモード(例えば、図3)との間でのプレターンオフモード(例えば、図7)の実装によって更に短くされ得る。例えば、プロット1104は、5μsのプレターンオフモードを用いたダイオードターンオフについての過渡時間を示している。すなわち、システム例において、スイッチアセンブリは、オフモード(図3)に遷移する前に、トランジスタオンモード(図5)から、約5μsの間プレターンオフモード(図7)に遷移することができる。すなわち、トランジスタオンモード(図5)から、スイッチアセンブリは、図11の横軸の水平時間スケールの約25μsの点でプレターンオフモード(図7)を実施する。上述したように、プレターンオフモードは、B-TRANのドリフト領域から電荷キャリアを排出することができ、故に、デバイスの飽和状態を減じさせることができるが、図示されるように、B-TRANを通る電流の量は僅かにしか減少しない。約30μsの点で、スイッチアセンブリ例はオフモード(図3)に遷移し、プロット1104は、その遷移に関連する過渡時間を示している。従って、プレターンオフモード(図7)を使用することは、過渡時間(図3のオフモードの実施から測定される)を1μs未満にし得る。対照的に、プロット1106によって示されるように、5μsの継続時間を持つプレターンオフを実施しても、トランジスタターンオフは、3μsより少し短いところまでしか短縮されることができない。
【0087】
より短い過渡時間を持つことは、それらの利点の全てが各実装に存在する必要はないが幾つかの利点を有し得る。例えば、ダイオードターンオフのいっそう短い過渡事象により、トランジスタターンオフと比較してスイッチング損失が低減され得る。ダイオードターンオフ(プレターンオフなし)でのスイッチング損失をトランジスタターンオフ(プレターンオフなし)と比較すると、スイッチング損失が半分に削減され得る。より短い過渡時間はまた、高められた周波数が望まれる状況において、より高い周波数での動作を可能にする。
【0088】
上部メインスイッチ及び下部メインスイッチは各々、完全に導通であるときに対応する電圧降下を持つが、パワーFETとして実装されるとき、順方向電圧降下は小さく(例えば、0.01Vから0.1V)、関連するB-TRANの順方向電圧降下(例えば、0.2Vから0.6V)と比較して多くのケースで無視できる。また、留意されたいことには、導通から非導通への遷移中に正の極性とは反対側のベースを流れるシャットオフ電流は、負荷電流にほぼ等しいピーク電流を持ち得るが、ベース領域及び接続は、長期間にわたって全負荷電流を扱うように設計されなくてもよく、本明細書の発明者がシミュレーションを通じて見出したことには、シャットオフ電流の過渡特性(例えば、1μsから3μs)を所与として、負荷電流に等しいピークを持つシャットオフ電流であってもデバイスの動作に悪影響を及ぼすことはない。
【0089】
図面中の電気接続の多くが、介在デバイスを持たない直接的な結合として示されているが、上の説明ではそのように明示的に述べられていない。そうとはいえ、この段落が、請求項において電気接続を、図面に示されている介在デバイスのない電気接続に関する“直接結合”として参照するための先行根拠としての役割を果たす。また、この段落は、トランジスタを介してコレクタ-エミッタに電気的に接続されるベースが“直接的に結合される”として参照され得ることを否定するものではない。
【0090】
上の説明は、本発明の原理及び様々な実施形態の例示であることを意図している。上の開示が十分に理解されることで、当業者には数多く変形及び変更が明らかになる。そのような全ての変形及び変更を包含するように以下の請求項が解釈されることが意図される。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
【手続補正書】
【提出日】2023-06-13
【手続補正1】
【補正対象書類名】特許請求の範囲
【補正対象項目名】全文
【補正方法】変更
【補正の内容】
【特許請求の範囲】
【請求項1】
双方向ダブルベースバイポーラ接合トランジスタを有するパワーモジュールを動作させる方法であって、
第1の負荷電流を、前記パワーモジュールの上部端子から前記トランジスタの上部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記パワーモジュールの下部コレクタ-エミッタから下部端子へと導通させ、次いで、第1の遮断信号のアサートに応答して、
下部メインFETを開くことによって、前記下部コレクタ-エミッタから前記下部端子への前記第1の負荷電流を遮断し、それにより、前記トランジスタの下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、そして、
前記トランジスタによって前記上部端子から前記下部端子への電流を阻止する、
ことを有する方法。
【請求項2】
前記第1の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記下部メインFETを用いて前記第1の負荷電流を遮断することを有し、
電流を阻止することは更に、前記上部端子と前記下部端子とにわたる印加電圧が600ボルト以上で阻止することを有する、
請求項1に記載の方法。
【請求項3】
前記上部端子から前記下部端子への電流を阻止することの後に、
第2の負荷電流を、前記パワーモジュールの前記下部端子から前記トランジスタの前記下部コレクタ-エミッタに、そして前記トランジスタを通して、そして前記上部コレクタ-エミッタから前記上部端子へと導通させ、次いで、第2の遮断信号のアサートに応答して、
上部メインFETを開くことによって、前記上部コレクタ-エミッタから前記上部端子への前記第2の負荷電流を遮断し、それにより、上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、そして、
前記トランジスタによって前記下部端子から前記上部端子への電流を阻止する、
ことを更に有する請求項1に記載の方法。
【請求項4】
前記第2の負荷電流を遮断することは更に、100ボルト以下のブレイクダウン電圧を持つ前記上部メインFETを用いて前記第2の負荷電流を遮断することを有し、
前記下部端子から前記上部端子への電流を阻止することは更に、前記下部端子と前記上部端子とにわたる印加電圧が600ボルト以上で阻止することを有する、
請求項3に記載の方法。
【請求項5】
スイッチアセンブリであって、
上部端子、下部端子、及び上部制御入力と、
上部ベース、上部コレクタ-エミッタ、下部ベース、及び下部コレクタ-エミッタを画成したトランジスタと、
前記上部端子に結合された第1のリード、前記上部コレクタ-エミッタに結合された第2のリード、及びゲートを画成した上部メインFETと、
前記下部コレクタ-エミッタに結合された第1のリード、前記下部端子に結合された第2のリード、及びゲートを画成した下部メインFETと、
前記上部制御入力、前記上部メインFETの前記ゲート、及び前記下部メインFETの前記ゲートに結合されたコントローラであり、前記上部端子と前記下部端子とにわたる第1の印加電圧に対して、当該コントローラは、
前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させることで、前記上部端子から前記下部端子に第1の負荷電流が流れるようにし、
前記上部制御入力のデアサートを検知し、前記上部制御入力のデアサートに応答して、
前記下部メインFETの前記ゲートをデアサートして前記第1の負荷電流を遮断し、それにより、前記下部ベースを介して前記下部端子へと第1のシャットオフ電流を転流させ、
前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成する、
ように構成される、コントローラと、
を有するスイッチアセンブリ。
【請求項6】
前記トランジスタのブレイクダウン電圧は600ボルト以上であり、前記下部メインFETのブレイクダウン電圧は100ボルト以下である、請求項5に記載のスイッチアセンブリ。
【請求項7】
前記トランジスタのブレイクダウン電圧は約1200ボルトであり、前記下部メインFETのブレイクダウン電圧は80ボルト以下である、請求項5に記載のスイッチアセンブリ。
【請求項8】
当該スイッチアセンブリは更に、
前記上部ベースに結合された第1のリードと、前記上部端子に結合された第2のリードと、ゲートとを有する上部ベースFETであり、前記第1の負荷電流が前記上部端子から前記下部端子に流れる期間の間、当該上部ベースFETは導通する、上部ベースFET、
を有し、
前記コントローラが、前記上部端子から前記下部端子への電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記上部ベースFETの前記ゲートをデアサートして前記上部ベースを電気的にフローティングにするように構成される、
請求項5に記載のスイッチアセンブリ。
【請求項9】
当該スイッチアセンブリは更に、
前記コントローラに結合された下部制御入力、
を有し、
前記上部端子と前記下部端子とにわたる、前記第1の印加電圧とは逆の極性と持つ第2の印加電圧に対して、前記コントローラは、
前記下部メインFETの前記ゲートをアサートして前記下部メインFETを導通させ、前記上部コレクタ-エミッタから前記下部コレクタ-エミッタへの導通のために前記トランジスタを構成し、且つ前記上部メインFETの前記ゲートをアサートして前記上部メインFETを導通させることで、前記下部端子から前記上部端子に第2の負荷電流が流れるようにし、
前記下部制御入力のデアサートを検知し、前記下部制御入力のデアサートに応答して、
前記上部メインFETの前記ゲートをデアサートして前記第2の負荷電流を遮断し、それにより、前記上部ベースを介して前記上部端子へと第2のシャットオフ電流を転流させ、
前記下部端子から前記上部端子への電流フローを阻止するように前記トランジスタを構成する、
ように構成される、
請求項5に記載のスイッチアセンブリ。
【請求項10】
当該スイッチアセンブリは更に、
前記下部ベースに結合された第1のリードと、前記下部端子に結合された第2のリードと、ゲートとを有する下部ベースFETであり、前記第2の負荷電流が前記下部端子から前記上部端子に流れる期間の間、当該下部ベースFETは導通する、下部ベースFET、
を有し、
前記コントローラが、前記下部コレクタ-エミッタから前記上部コレクタ-エミッタへの電流フローを阻止するように前記トランジスタを構成するとき、前記コントローラは更に、前記下部ベースFETの前記ゲートをデアサートして前記下部ベースを電気的にフローティングにするように構成される、
請求項9に記載のスイッチアセンブリ。
【請求項11】
前記トランジスタのブレイクダウン電圧は600ボルト以上であり、前記下部メインFETのブレイクダウン電圧は100ボルト以下である、請求項9に記載のスイッチアセンブリ。
【国際調査報告】