特表-18225417IP Force 特許公報掲載プロジェクト 2015.5.11 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ パナソニックIPマネジメント株式会社の特許一覧
<>
  • 再表WO2018225417-蓄電システム、管理装置 図000003
  • 再表WO2018225417-蓄電システム、管理装置 図000004
  • 再表WO2018225417-蓄電システム、管理装置 図000005
  • 再表WO2018225417-蓄電システム、管理装置 図000006
  • 再表WO2018225417-蓄電システム、管理装置 図000007
< >
(19)【発行国】日本国特許庁(JP)
【公報種別】再公表特許(A1)
(11)【国際公開番号】WO/0
(43)【国際公開日】2018年12月13日
【発行日】2020年4月9日
(54)【発明の名称】蓄電システム、管理装置
(51)【国際特許分類】
   H01M 10/48 20060101AFI20200313BHJP
   H01M 10/44 20060101ALI20200313BHJP
   H02J 7/00 20060101ALI20200313BHJP
   H02J 7/02 20160101ALI20200313BHJP
【FI】
   H01M10/48 P
   H01M10/44 P
   H01M10/48 301
   H02J7/00 S
   H02J7/00 302C
   H02J7/02 J
【審査請求】未請求
【予備審査請求】未請求
【全頁数】19
【出願番号】特願2019-523396(P2019-523396)
(21)【国際出願番号】PCT/0/0
(22)【国際出願日】2018年4月26日
(31)【優先権主張番号】特願2017-113752(P2017-113752)
(32)【優先日】2017年6月8日
(33)【優先権主張国】JP
(81)【指定国】 AP(BW,GH,GM,KE,LR,LS,MW,MZ,NA,RW,SD,SL,ST,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,RU,TJ,TM),EP(AL,AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,HR,HU,IE,IS,IT,LT,LU,LV,MC,MK,MT,NL,NO,PL,PT,RO,RS,SE,SI,SK,SM,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,KM,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AO,AT,AU,AZ,BA,BB,BG,BH,BN,BR,BW,BY,BZ,CA,CH,CL,CN,CO,CR,CU,CZ,DE,DJ,DK,DM,DO,DZ,EC,EE,EG,ES,FI,GB,GD,GE,GH,GM,GT,HN,HR,HU,ID,IL,IN,IR,IS,JO,JP,KE,KG,KH,KN,KP,KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY,MA,MD,ME,MG,MK,MN,MW,MX,MY,MZ,NA,NG,NI,NO,NZ,OM,PA,PE,PG,PH,PL,PT,QA,RO,RS,RU,RW,SA,SC,SD,SE,SG,SK,SL,SM,ST,SV,SY,TH,TJ,TM,TN,TR,TT
(71)【出願人】
【識別番号】314012076
【氏名又は名称】パナソニックIPマネジメント株式会社
(74)【代理人】
【識別番号】100123102
【弁理士】
【氏名又は名称】宗田 悟志
(72)【発明者】
【氏名】渡邊 透
(72)【発明者】
【氏名】西川 員史
(72)【発明者】
【氏名】西川 慎哉
【テーマコード(参考)】
5G503
5H030
【Fターム(参考)】
5G503AA01
5G503BA03
5G503BA04
5G503BB01
5G503CA01
5G503CA11
5G503CB11
5G503DA04
5G503FA17
5G503GB06
5G503GD02
5G503GD03
5G503GD04
5G503GD06
5H030AA06
5H030AS03
5H030AS06
5H030BB09
5H030BB21
5H030FF22
5H030FF42
5H030FF43
5H030FF44
(57)【要約】
蓄電システム(1)において、管理部(50m)は、並列接続された複数の蓄電ブロック(10−30)の各単体のSOP(State Of Power)に基づいて複数の蓄電ブロック(10−30)全体のSOPを算出し、算出した全体のSOPを電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値に設定する。管理部(50m)は、複数のスイッチ(S1−S3)の少なくとも1つがターンオフして複数の蓄電ブロック(10−30)の少なくとも1つ(30)を解列するとき、残りの蓄電ブロック(10、20)全体のSOPを残りの蓄電ブロック(10、20)の各単体の電流バラツキに基づいて算出し、電力変換部(60)に流す電力または電流の上限値を設定する。
【特許請求の範囲】
【請求項1】
並列接続された複数の蓄電ブロックと、
前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、
前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、
前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部と、を備え、
前記管理部は、前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つを解列するとき、残りの蓄電ブロック全体のSOPを前記残りの蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定することを特徴とする蓄電システム。
【請求項2】
前記管理部は、前記残りの蓄電ブロックをそれぞれ流れる各電流の合計値を、当該各電流の最大値で割って求めた比率を、前記残りの蓄電ブロックの各単体のSOPの内の最小値に掛けて、前記残りの蓄電ブロック全体のSOPを算出することを特徴とする請求項1に記載の蓄電システム。
【請求項3】
前記管理部は、前記複数の蓄電ブロックの少なくとも1つを解列する前に、前記電力変換部に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つの蓄電ブロックに接続された少なくとも1つのスイッチをターンオフさせることを特徴とする請求項1または2に記載の蓄電システム。
【請求項4】
前記所定の電力値は可変値であり、
前記管理部は、本蓄電システムの動作モード、前記スイッチの動作回数履歴、及びマニュアル操作により設定された設定値の少なくとも1つを参照して、前記所定の電力値を決定することを特徴とする請求項3に記載の蓄電システム。
【請求項5】
前記管理部は、前記複数の蓄電ブロックをそれぞれ流れる各電流が最大の蓄電ブロックを除外した残りの蓄電ブロック全体のSOPを算出し、現在の前記複数の蓄電ブロック全体のSOPより高い場合、前記電流が最大の蓄電ブロックに接続されたスイッチをターンオフさせることを特徴とする請求項1から4のいずれかに記載の蓄電システム。
【請求項6】
並列接続された複数の蓄電ブロックと、
前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、
前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、
前記複数の蓄電ブロックの少なくとも1つを解列する必要が発生したとき、前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つの蓄電ブロックに接続された少なくとも1つのスイッチをターンオフさせる管理部と、を備えることを特徴とする蓄電システム。
【請求項7】
並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、を備える蓄電システムに接続される管理装置であって、
前記管理装置は、
前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定し、
前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つを解列するとき、残りの蓄電ブロック全体のSOPを前記残りの蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定することを特徴とする管理装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、複数の蓄電ブロックが並列接続された蓄電システム、管理装置に関する。
【背景技術】
【0002】
近年、蓄電システムが普及してきており、ピークシフト、バックアップ、FR(Frequency Regulation)等に使用される。大規模な蓄電システムは、例えば複数の蓄電モジュールが直列接続されて構成された蓄電ブロックが、複数並列に接続されて構築される。以下本明細書では蓄電ブロックとして、複数の蓄電モジュールが積層されて構成される蓄電ラックを想定する。
【0003】
並列接続された複数の蓄電ラックの1つに異常が発生した場合、その蓄電ラックを解列させるとともに、パワーコンディショナの上限電力を、残った蓄電ラックの数に応じて低下させることにより運転を継続することが多い(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2010−88202号
【発明の概要】
【発明が解決しようとする課題】
【0005】
上述の場合において、残りの蓄電ラック間に大きな電流偏差が発生した場合、蓄電ラックのいずれかが蓄電ラック単体の上限電力を超過してしまうことがある。この場合、蓄電ラックが連鎖的に解列し、蓄電システム全体が停止に至る可能性がある。
【0006】
本発明はこうした状況に鑑みなされたものであり、その目的は、並列接続された複数の蓄電ブロックの少なくとも1つが解列しても、安定的に運転を継続することができる蓄電システムを提供することにある。
【課題を解決するための手段】
【0007】
上記課題を解決するために、本発明のある態様の蓄電システムは、並列接続された複数の蓄電ブロックと、前記複数の蓄電ブロックから放電される直流電力を交流電力に変換して電力系統または負荷に出力し、前記電力系統から入力される交流電力を直流電力に変換して前記複数の蓄電ブロックに充電する電力変換部と、前記複数の蓄電ブロックと、前記電力変換部との間にそれぞれ介在する複数のスイッチと、前記複数の蓄電ブロックの各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック全体のSOPを算出し、算出した全体のSOPを前記電力変換部の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部と、を備える。前記管理部は、前記複数のスイッチの少なくとも1つがターンオフして前記複数の蓄電ブロックの少なくとも1つを解列するとき、残りの蓄電ブロック全体のSOPを前記残りの蓄電ブロックの各単体の電流バラツキに基づいて算出し、前記電力変換部に流す電力または電流の上限値を設定する。
【発明の効果】
【0008】
本発明によれば、並列接続された複数の蓄電ブロックの少なくとも1つが解列しても、安定的に運転を継続することができる。
【図面の簡単な説明】
【0009】
図1】本発明の実施の形態に係る蓄電システムの構成を示す図である。
図2】本発明の実施の形態に係る蓄電システムの動作例1の具体例を示す図である。
図3】本発明の実施の形態に係る蓄電システムの動作例1の流れを示すフローチャートである。
図4】本発明の実施の形態に係る蓄電システムの動作例2の具体例を示す図である。
図5】本発明の実施の形態に係る蓄電システムの動作例2の流れを示すフローチャートである。
【発明を実施するための形態】
【0010】
図1は、本発明の実施の形態に係る蓄電システム1の構成を示す図である。蓄電システム1と電力系統2間の配電線に負荷3が接続される。蓄電システム1は、並列接続された複数の蓄電ラック、電力変換装置60、マスタ管理装置50mを備える。図1では3つの蓄電ラック(第1蓄電ラック10、第2蓄電ラック20、第3蓄電ラック30)が電力変換装置60に対して並列に接続される例を示している。
【0011】
電力変換装置60は、複数の蓄電ラック10−30から放電された直流電力を交流電力に変換して電力系統2または負荷3に出力し、電力系統2から入力される交流電力を直流電力に変換して並列接続された複数の蓄電ラック10−30に充電する。電力変換装置60は、一般的なパワーコンディショナで構成することができ、双方向インバータ、及び制御回路を備え、必要に応じて双方向DC−DCコンバータを備える。以下の説明では、電力変換装置60が双方向DC−DCコンバータを備える例を想定する。
【0012】
双方向DC−DCコンバータは、複数の蓄電ラック10−30に充電される又は複数の蓄電ラック10−30から放電される直流電力の電流/電圧を制御可能であり、例えば、CC/CV充電、CC/CV放電が可能である。双方向インバータは直流電力から交流電力への変換、又は交流電力から直流電力への変換を実行する。制御回路は、マスタ管理装置50mからの指示に従い、双方向DC−DCコンバータ及び双方向インバータを制御する。
【0013】
第1蓄電ラック10は、直列接続された複数の蓄電モジュール11−1n、第1ラック管理部50a、第1スイッチS1を備える。各蓄電モジュール11−1nは、直列または直並列接続された複数のセル及び監視回路を含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を用いることができる。以下、リチウムイオン電池セルを使用する例を想定する。
【0014】
各蓄電モジュール11−1nの監視回路は、各蓄電モジュール11−1n内の複数のセルの電圧、電流、温度を検出する。監視回路は、検出したセルの電圧、電流、温度をラック内通信線90aを介して第1ラック管理部50aに送信する。各監視回路と第1ラック管理部50a間の通信には例えば、RS−485規格に準拠したシリアル通信を使用することができる。なお、各監視回路と第1ラック管理部50a間は無線通信で接続されてもよいし、電力線通信で接続されてもよい。
【0015】
第1スイッチS1は、電力変換装置60に繋がる電力線70と、直列接続された複数の蓄電モジュール11−1nとの間に介在する。第1スイッチS1には例えば、メカリレーや半導体スイッチを使用することができる。以下、本明細書では、汎用的な電磁リレーを使用する例を想定する。電磁リレーは、コイルに電流を流すことにより接点のオン/オフを制御するスイッチである。
【0016】
第1ラック管理部50aは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。第1ラック管理部50aは、各蓄電モジュール11−1nの監視回路からラック内通信線90aを介して各セルの電圧、電流、温度を受信する。
【0017】
第1ラック管理部50aは、受信したセルの電圧、電流、温度をもとに、セルのSOC(State Of Charge)及びSOH(State Of Health)を推定する。なおSOC及びSOHの推定は、各蓄電モジュール11−1nの監視回路で行ってもよい。
【0018】
SOCは、電流積算法またはOCV(Open Circuit Voltage)法により推定することができる。SOHは、初期の満充電容量に対する現在の満充電容量の比率で規定され、数値が低いほど劣化が進行していることを示す。SOHは、完全充放電による容量計測により求めてもよいし、予め実験やシミュレーションにより得られた内部抵抗とSOHとの関係が記述されたテーブルを参照して推定されてもよい。内部抵抗は、電池に定電流を所定時間流した際に発生する電圧降下を、当該定電流で割ることにより推定することができる。内部抵抗は温度が上がるほど低下する関係にあり、電池の劣化が進行するほど増加する関係にある。
【0019】
第1ラック管理部50aは、第1蓄電ラック10の充電および放電のSOP(State Of Power)をそれぞれ推定する。第1蓄電ラック10のSOPは、第1蓄電ラック10に対して充放電可能な最大の電力を示す。充電時のSOPcは、第1蓄電ラック10の上限電圧(満充電電圧)Vmaxを上回らない最大の充電電流Icに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式1、2参照)。一方、放電時のSOPdは、第1蓄電ラック10の下限電圧(放電終止電圧)Vminを下回らない最大の放電電流Idに、第1蓄電ラック10の端子電圧Vを掛けることにより求めることができる(下記式3、4参照)。
SOPc=IcV ・・・(式1)
Ic=(Vmax−E)/R ・・・(式2)
SOPd=IdV ・・・(式3)
Id=(E−Vmin)/R ・・・(式4)
Eは起電力、Rは内部抵抗。
【0020】
起電力EはSOCに依存し、SOCが高くなるほど高くなる関係にある。充電時のSOPcは、第1蓄電ラック10が上限電圧Vmaxに到達するとゼロになり、放電時のSOPdは、第1蓄電ラック10が下限電圧Vminに到達するとゼロになる。
【0021】
第1ラック管理部50aは、予め実験やシミュレーションにより得られたSOCとSOPとの関係が記述されたテーブルを参照して推定してもよい。なお、上記式1,3により算出されるSOPは、SOHの低下に従い減少する。従って、テーブル参照により特定した初期状態のSOPに現在のSOHを掛けることにより現在のSOPを推定することができる。ところで、蓄電ラック単体のSOP(ラックSOP)は、上記式1,3により定義されるものに限定されず、ラックの最大定格電力と等しくすることもある。この場合、蓄電ラック単体において放電終止時(SOC=0%)の放電ラックSOP=0とし、例えばSOC=2%となった時点で、放電SOPをラックの最大定格電力と等しい値に復帰させ、満充電時(SOC=100%)の充電ラックSOP=0とし、例えばSOC=98%となった時点で、充電SOPをラックの最大定格電力と等しい値に復帰させる。また、充電方式が疑似CC/CVの場合、充電SOPをラックの最大定格電力から小さい値に絞っていく場合もある。
【0022】
第1ラック管理部50aは、ラック間通信線80を介してマスタ管理装置50m、第2蓄電ラック20の第2ラック管理部50b、及び第3蓄電ラック30の第3ラック管理部50cと接続される。ラック間通信線80を介した通信には、RS−485、イーサネット(登録商標)、CAN(Controller Area Network)等の規格に準拠した通信方式を使用することができる。
【0023】
第1ラック管理部50aはラック間通信線80を介して、第1蓄電ラック10の監視データをマスタ管理装置50mに送信する。本実施の形態では監視データとして少なくとも、第1蓄電ラック10に流れる電流の値、第1蓄電ラック10のSOPをマスタ管理装置50mに送信する。
【0024】
第2蓄電ラック20及び第3蓄電ラック30の構成および動作は、第1蓄電ラック10の構成および動作と同様であるため、説明を省略する。
【0025】
マスタ管理装置50mは、ハードウェア資源とソフトウェア資源の協働により実現される。ハードウェア資源として、マイクロコンピュータ、DSP、FPGA、その他のLSI、アナログ素子を利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。マスタ管理装置50mは、ラック間通信線80を介してラック管理部50a−50cと通信することにより、複数の蓄電ラック10−30を管理する。またマスタ管理装置50mは、電力変換装置60の制御回路に制御信号を通知する。なお、マスタ管理装置50mは、図示しないシステム運用者の管理装置および/または系統運用者の管理装置と外部通信することが可能な構成であってもよい。
【0026】
マスタ管理装置50mは、並列接続された複数の蓄電ラック10−30全体のSOP(以下、システムSOPという)を算出する。システムSOPは下記(式5)により算出することができる。
システムSOP=最小ラックSOP*(ラック電流合計/ラック最大電流) ・・・(式5)
【0027】
最小ラックSOPは、複数の蓄電ラック10−30のSOPの内の最小値である。ラック電流合計は、複数の蓄電ラック10−30にそれぞれ流れる各電流の合計値である。ラック最大電流は、複数の蓄電ラック10−30にそれぞれ流れる各電流の最大値である。複数の蓄電ラック10−30のSOPと電流値が理想的に同じであれば、システムSOPはラックSOPに並列接続数(図1の例では3)を掛けた値になる。これに対して、複数の蓄電ラック10−30間の電流偏差が大きくなるほど、システムSOPは低下する。なお上記式5において、[最小ラックSOP]の代わりに、[(ラック電流/ラックSOP)が最小値となるラックのSOP]を使用してもよい。また、蓄電ラックの電流がゼロ、または小さい場合には、電流偏差の比率を決定する各種パラメータ(内部抵抗、配線抵抗など)よりシステムSOPを推定することもできる。
【0028】
電力変換装置60の双方向DC−DCコンバータは、システムSOPを使用して制御することができる。また後述する抑制電力値を使用して制御することもできる。マスタ管理装置50mは蓄電システム1の充電時、算出したシステムSOPcを電力変換装置60の制御回路に充電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPcを系統電圧で割った値を上限電流値として双方向DC−DCコンバータを充電制御する。またマスタ管理装置50mは蓄電システム1の放電時、算出したシステムSOPdを電力変換装置60の制御回路に放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPdを系統電圧で割った値を上限電流値として双方向DC−DCコンバータを放電制御する。なお、電力変換装置60が双方向DC−DCコンバータを備えていない場合、電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPcあるいはシステムSOPdを系統電圧で割った値を上限電流値として双方向インバータを充電制御あるいは放電制御する。
【0029】
本実施の形態では、電力変換装置60と各蓄電ラック10−30の間にDC−DCコンバータが介在しない回路構成であるため、各蓄電ラック10−30に流れる電流を個別に制御することはできない。各蓄電ラック10−30の抵抗成分に応じて、電力変換装置60の充放電電流が按分された電流が各蓄電ラック10−30に流れる。
【0030】
以上の構成において、蓄電システム1の充放電中に、少なくとも1つの蓄電ラックを解列させる必要が発生する場合がある。例えば、特定の蓄電ラックに異常が検出されたときである。具体的には特定の蓄電ラックに通信エラーが発生したり、特定の蓄電ラック内のセルに緊急性が無いと判断された過電流、過電圧、過小電圧、高温異常、低温異常が発生した場合である。また、特定の蓄電ラックの充電電力がラックSOPcを超えた場合、又は特定の蓄電ラックの放電電力がラックSOPdを超えた場合も当該特定の蓄電ラックを解列させる必要がある。当該蓄電ラックのラック管理部50は、これらの事象が発生すると、直ぐに電磁リレーをターンオフさせずに、解列要求信号をマスタ管理装置50mに通知する。
【0031】
蓄電システム1の充放電中に特定の蓄電ラックを解列する場合、電流が流れた状態で当該蓄電ラックの電磁リレーをターンオフする必要があり、電流が流れた状態で電磁リレーをターンオフすると電磁リレーを劣化させる要因となる。また汎用的な電磁リレーは極性を持っており、電流を遮断しやすい方向と遮断しにくい方向がある。遮断しにくい方向に大きな電流が流れると、溶着等の故障を発生させる要因となる。なお両極性のリレーも存在するが、コスト高となる。
【0032】
マスタ管理装置50mは特定の蓄電ラックのラック管理部50から解列要求信号を受信すると、システムの動作状況により電力低下を許容できる場合、電力変換装置60の充電電力または放電電力の上限値をシステムSOPから、所定の抑制電力値に低下させる。抑制電力値は固定値ではなく可変値であり、マスタ管理装置50mは、蓄電システム1の運転モード、解列履歴、及びマニュアル設定の少なくとも1つをもとに抑制電力値を決定する。システムの動作状況により電力低下を許容できない場合、電力を低下させずに電磁リレーをターンオフし、また、軽微な異常の場合、電力低下を許容できる状態まで電磁リレーをターンオフせずにそのままの状態を継続し、電力低下を許容できる時点で電磁リレーをターンオフすることが好ましい。
【0033】
電磁リレーは遮断回数が多くなるほど機械的な耐久性が低下し、接点に大きな電流が流れるほど電気的な耐久性が低下する。電磁リレーの総合的な耐久性は、接点電流と遮断回数で規定される耐久曲線により定義され、遮断時の接点電流が小さいほど使用上限回数が多くなる。この耐久曲線は極性ごとに定義される。
【0034】
マスタ管理装置50mは抑制電力値を、例えば1つの電磁リレーに流れる電流が10A以下になる値に決定する。高電圧、高容量の電磁リレーであっても、接点電流が10A以下程度であれば、電気的な耐久性に与える影響は小さくなる。なお接点電流を0Aにすることも考えられる。その場合は電磁リレーのターンオフ後に、新たなシステムSOP算出用の電流を流す必要がある。電磁リレーをターンオフする際に10A以下の電流(≠0A)を流しておけば、電流値の切り替えを1回分、減らすことができる。
【0035】
マスタ管理装置50mは電磁リレーの遮断回数が使用上限回数に近づいている場合、抑制電力値を、当該電磁リレーに流れる電流がより低くなる値に決定してもよい。これにより、使用上限回数に到達する前に電磁リレーが寿命により使用不能になる可能性を低減させることができる。
【0036】
マスタ管理装置50mは、蓄電システム1の運転モードが自立モードであり、負荷3が重要負荷である場合、電力変換装置60の放電電力の上限値を変更しない。即ち、電力変換装置60の放電電力を低下させない。例えば、蓄電システム1が電力系統2の停電時において、医療施設、通信施設、データセンタ等に設置された瞬時停電が許容されない負荷のバックアップ電源として使用されている場合、電力変換装置60の放電電力を低下させない。
【0037】
これに対して、蓄電システム1の運転モードが系統連系モードの場合、電力変換装置60の充電電力または放電電力を抑制電力値まで低下させる。また蓄電システム1の運転モードが自立モードの場合であっても、負荷3が瞬時停電を許容できる負荷であれば、電力変換装置60の放電電力を抑制電力値まで低下させる。
【0038】
マスタ管理装置50mは抑制電力値を、管理者またはユーザによりマニュアル設定された設定値に決定することができる。マニュアル設定された設定値が存在する場合、基本的に当該設定値が優先する。
【0039】
マスタ管理装置50mは決定した抑制電力値を電力変換装置60の制御回路に充電/放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得した抑制電力値を系統電圧で割った値を上限電流値として双方向DC−DCコンバータを充電/放電制御する。
【0040】
マスタ管理装置50mは、電力変換装置60の充電/放電電力が抑制電力値に低下した後、解列要求信号を送信してきたラック管理部50に解列指示信号を送信する。ラック管理部50は当該解列指示信号を受信すると、自己の蓄電ラックの電磁リレーをターンオフする。
【0041】
マスタ管理装置50mは、蓄電システム1に残った蓄電ラックのラック管理部50からラックSOPと電流値を取得し、システムSOPを再計算する。マスタ管理装置50mは再計算したシステムSOPを電力変換装置60の制御回路に充電/放電電力の上限値として通知する。電力変換装置60の制御回路は、マスタ管理装置50mから取得したシステムSOPを系統電圧で割った値を上限電流値として双方向DC−DCコンバータを充電/放電制御する。
【0042】
図2は、本発明の実施の形態に係る蓄電システム1の動作例1の具体例を示す図である。時刻t0〜時刻t1間は、並列接続された3つの蓄電ラック10−30で通常運転している。時刻t1において第3蓄電ラック30に異常故障が発生し、マスタ管理装置50mは電力変換装置60の充放電電力を抑制電力値まで低下させる。
【0043】
時刻t2において第3蓄電ラック30が解列する。時刻t2〜時刻t3間において、マスタ管理装置50mは第1蓄電ラック10と第2蓄電ラック20の2並列のシステムSOPを算出する。時刻t3において、マスタ管理装置50mは算出した新たなシステムSOPを電力変換装置60に通知する。これにより、電力変換装置60に設定されたシステムSOPが低下する。時刻t4において電力変換装置60の電力抑制が解除され、電力変換装置60の充放電電力が新たなシステムSOPまで上昇する。時刻t4以降、並列接続された2つの蓄電ラック10、20で通常運転している。
【0044】
図3は、本発明の実施の形態に係る蓄電システム1の動作例1の流れを示すフローチャートである。並列接続された3つの蓄電ラック10−30で充放電する運転モードで蓄電システム1が動作している(S10)。第3蓄電ラック30に異常故障が発生すると(S11のY)、マスタ管理装置50mは、マニュアル設定、蓄電システム1の運転モード、電磁リレーの解列履歴を総合的に考慮して抑制電力値を決定する(S12)。マスタ管理装置50mは決定した抑制電力値を電力変換装置60に設定し、電力変換装置60は充放電電力を抑制電力値に低下させる(S13)。
【0045】
マスタ管理装置50mは解列指示信号を第3蓄電ラック30の第3ラック管理部50cに通知し、第3ラック管理部50cは第3スイッチS3(電磁リレー)をターンオフして、第3蓄電ラック30を蓄電システム1から解列させる(S14)。第3ラック管理部50cは、第3スイッチS3のターンオフ時の電流値および電流の方向をマスタ管理装置50mに通知する。マスタ管理装置50mは、受信した第3スイッチS3の解列情報をもとに第3スイッチS3の解列履歴を更新する(S15)。
【0046】
マスタ管理装置50mは、第1蓄電ラック10の第1ラック管理部50a及び第2蓄電ラック20の第2ラック管理部50bからラックSOPと電流値を取得する(S16)。なお、このラックSOPと電流値の取得は定期的(例えば、1分に1回、5分に1回)に実行されているが、蓄電ラックの解列時は、残りの蓄電ラックのラックSOPと電流値の取得が即時に実行される。
【0047】
マスタ管理装置50mは、取得した第1蓄電ラック10と第2蓄電ラック20のラックSOPと電流値をもとに新たな2並列のシステムSOPを算出する(S17)。マスタ管理装置50mは、算出した新たな2並列のシステムSOPを電力変換装置60に設定する(S18)。電力変換装置60はシステムSOPの更新後、充放電電力の抑制を解除する(S19)。抑制が解除されると、並列接続された2つの蓄電ラック10、20で充放電する運転モードで蓄電システム1が動作する(S110)。
【0048】
なおシステムSOPの更新と抑制解除の順番を逆にした場合、抑制解除後の充放電電力が新たなシステムSOPを超えてしまうリスクがある。また第3蓄電ラック30を解列する際に電力変換装置60の充放電電力を抑制していないと、第3蓄電ラック30を解列した瞬間に、電力変換装置60の充放電電力が新たな2並列のシステムSOPを超えてしまうリスクがある。
【0049】
図4は、本発明の実施の形態に係る蓄電システム1の動作例2の具体例を示す図である。蓄電ラック間の電流偏差が大きい場合、特定の蓄電ラックを解列させた方がシステムSOPが上昇する場合がある。動作例2では、特定の蓄電ラックを意図的に解列させることによりシステムSOPを上昇させる例を示す。
【0050】
時刻t0〜時刻t1間は、並列接続された3つの蓄電ラック10−30で通常運転している。電力変換装置60の充放電電流が第1蓄電ラック10に突出して多く流れている状況であり、システムSOPは図2と比較して非常に低く抑えられている。時刻t1において第1蓄電ラック10の解列処理を開始する。マスタ管理装置50mは電力変換装置60の充放電電力を抑制電力値まで低下させる。
【0051】
時刻t2において第1蓄電ラック10が解列する。時刻t2〜時刻t3間において、マスタ管理装置50mは第2蓄電ラック20と第3蓄電ラック30の2並列のシステムSOPを算出する。時刻t3において、マスタ管理装置50mは算出した新たなシステムSOPを電力変換装置60に通知する。時刻t4において電力変換装置60の電力抑制が解除され、電力変換装置60の充放電電力が新たなシステムSOPまで上昇する。新たなシステムSOPは、更新前のシステムSOPより高い値であり、電力変換装置60の充放電電力も、第1蓄電ラック10の解列前の充放電電力より大きくなる。時刻t4以降、並列接続された2つの蓄電ラック20、30で通常運転している。
【0052】
図5は、本発明の実施の形態に係る蓄電システム1の動作例2の流れを示すフローチャートである。並列接続された3つの蓄電ラック10−30で充放電する運転モードで蓄電システム1が動作している(S20)。マスタ管理装置50mは、第1蓄電ラック10の第1ラック管理部50a、第2蓄電ラック20の第2ラック管理部50b及び第3蓄電ラック30の第3ラック管理部50cからラックSOPと電流値を定期的に取得する(S21)。マスタ管理装置50mは、電流値が最大の蓄電ラック(本具体例では、第1蓄電ラック10)を特定する(S22)。マスタ管理装置50mは、特定した蓄電ラックを除いた2つの蓄電ラックのシステムSOPを、切替候補システムSOPとして算出する(S23)。
【0053】
マスタ管理装置50mは算出した切替候補システムSOPと、電力変換装置60に設定されている現在のシステムSOPを比較する(S24)。切替候補システムSOPが現在のシステムSOP以下の場合(S24のN)、ステップS21に遷移する。切替候補システムSOPが現在のシステムSOPより大きい場合(S24のY)、マスタ管理装置50mは、マニュアル設定、蓄電システム1の運転モード、電磁リレーの解列履歴を総合的に考慮して抑制電力値を決定する(S25)。マスタ管理装置50mは決定した抑制電力値を電力変換装置60に設定し、電力変換装置60は充放電電力を抑制電力値に低下させる(S26)。
【0054】
マスタ管理装置50mは解列指示信号を第1蓄電ラック10の第1ラック管理部50aに通知し、第1ラック管理部50aは第1スイッチS1(電磁リレー)をターンオフして、第1蓄電ラック10を蓄電システム1から解列させる(S27)。第1ラック管理部50aは、第1スイッチS1のターンオフ時の電流値および電流の方向をマスタ管理装置50mに通知する。マスタ管理装置50mは、受信した第1スイッチS1の解列情報をもとに第1スイッチS1の解列履歴を更新する(S28)。
【0055】
マスタ管理装置50mは、第2蓄電ラック20の第2ラック管理部50b及び第3蓄電ラック30の第3ラック管理部50cからラックSOPと電流値を取得する(S29)。マスタ管理装置50mは、取得した第2蓄電ラック20と第3蓄電ラック30のラックSOPと電流値をもとに新たな2並列のシステムSOPを算出する(S210)。マスタ管理装置50mは、算出した新たな2並列のシステムSOPを電力変換装置60に設定する(S211)。電力変換装置60はシステムSOPの更新後、充放電電力の抑制を解除する(S212)。抑制が解除されると、並列接続された2つの蓄電ラック20、30で充放電する運転モードで蓄電システム1が動作する(S213)。
【0056】
以上説明したように本実施の形態によれば、複数の蓄電ラックの少なくとも1つを解列する際、残りの蓄電ラックの並列数だけでなく、残りの蓄電ラックの電流偏差も加味して、新たなシステムSOPを算出する。これにより、各蓄電ラックがラックSOPを超過することなく、継続的に安定した運転が可能になる。これに対して、残りの蓄電ラックの並列数のみに基づき新たなシステムSOPを算出した場合、蓄電ラック間の電流偏差が大きくなるとラックSOPを超過する蓄電ラックが発生し得る。
【0057】
また解列時に電力変換装置60の充放電電力を低下させることにより、リレーの長寿命化が可能になる。また極性を有する汎用的で安価なリレーを採用しても、安全な解列動作が可能になる。また蓄電ラック間の電流偏差が大きくなったとき、特定の蓄電ラック(具体的には電流が大きい蓄電ラック)を意図的に解列することによりシステムSOPを上昇させることができる。
【0058】
以上、本発明を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
【0059】
上述の動作例2では、並列接続された3つの蓄電ラックの1つを、システムSOPの改善のために意図的に解列させる例を挙げた。この点、並列接続される蓄電ラックの数が多い場合、2つ以上の蓄電ラックを解列させた方がシステムSOPが改善する場合が存在する。例えば、電流値が最大の蓄電ラックを、切替候補システムSOPが現在のシステムSOP以下になるまで繰り返し解列していく。なお解列する蓄電ラックを特定するアルゴリズムは、図5に示したアルゴリズムに限るものではない。例えば、電流値の上位1位と2位の蓄電ラックを解列した場合の切替候補システムSOPを算出し、算出した切替候補システムSOPが現在のシステムSOPより大きい場合、電流値の上位1位と2位の蓄電ラックを2つ同時に解列させてもよい。
【0060】
上述の実施の形態では、マスタ管理装置50mをラック管理部50a−50cの外に設けたが、ラック管理部50a−50cのいずれかの中に設けてもよい。
【0061】
なお、実施の形態は、以下の項目によって特定されてもよい。
【0062】
[項目1]
並列接続された複数の蓄電ブロック(10−30)と、
前記複数の蓄電ブロック(10−30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10−30)に充電する電力変換部(60)と、
前記複数の蓄電ブロック(10−30)と、前記電力変換部(60)との間にそれぞれ介在する複数のスイッチ(S1−S3)と、
前記複数の蓄電ブロック(10−30)の各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック(10−30)全体のSOPを算出し、算出した全体のSOPを前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値に設定する管理部(50m)と、を備え、
前記管理部(50m)は、前記複数のスイッチ(S1−S3)の少なくとも1つがターンオフして前記複数の蓄電ブロック(10−30)の少なくとも1つ(30)を解列するとき、残りの蓄電ブロック(10、20)全体のSOPを前記残りの蓄電ブロック(10、20)の各単体の電流バラツキに基づいて算出し、前記電力変換部(60)に流す電力または電流の上限値を設定することを特徴とする蓄電システム(1)。
これによれば、並列接続された複数の蓄電ブロック(10−30)の少なくとも1つ(30)が解列しても、安定的に運転を継続することができる。
[項目2]
前記管理部(50m)は、前記残りの蓄電ブロック(10、20)をそれぞれ流れる各電流の合計値を、当該各電流の最大値で割って求めた比率を、前記残りの蓄電ブロック(10、20)の各単体のSOPの内の最小値に掛けて、前記残りの蓄電ブロック(10、20)全体のSOPを算出することを特徴とする項目1に記載の蓄電システム(1)。
これによれば、残りの蓄電ブロック(10、20)の各単体の電流バラツキを反映させた、残りの蓄電ブロック(10、20)全体のSOPを算出することができる。
[項目3]
前記管理部(50m)は、前記複数の蓄電ブロック(10−30)の少なくとも1つ(30)を解列する前に、前記電力変換部(60)に流す電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つの蓄電ブロック(30)に接続された少なくとも1つのスイッチ(S3)をターンオフさせることを特徴とする項目1または2に記載の蓄電システム(1)。
これによれば、スイッチ(S3)にかかるストレスを軽減し、スイッチ(S3)の寿命を延ばすことができる。
[項目4]
前記所定の電力値は可変値であり、
前記管理部(50m)は、本蓄電システム(1)の動作モード、前記スイッチ(S3)の動作回数履歴、及びマニュアル操作により設定された設定値の少なくとも1つを参照して、前記所定の電力値を決定することを特徴とする項目3に記載の蓄電システム(1)。
これによれば、状況に応じて柔軟に所定の電力値を決定することができる。
[項目5]
前記管理部(50m)は、前記複数の蓄電ブロック(10−30)をそれぞれ流れる各電流が最大の蓄電ブロック(10)を除外した残りの蓄電ブロック(20、30)全体のSOPを算出し、現在の前記複数の蓄電ブロック(10−30)全体のSOPより高い場合、前記電流が最大の蓄電ブロック(10)に接続されたスイッチ(S1)をターンオフさせることを特徴とする項目1から4のいずれかに記載の蓄電システム(1)。
これによれば、電流が最大の蓄電ブロック(10)を意図的に解列させることにより、複数の蓄電ブロック(20、30)全体のSOPを上昇させることができる。
[項目6]
並列接続された複数の蓄電ブロック(10−30)と、
前記複数の蓄電ブロック(10−30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10−30)に充電する電力変換部(60)と、
前記複数の蓄電ブロック(10−30)と、前記電力変換部(60)との間にそれぞれ介在する複数のスイッチ(S1−S3)と、
前記複数の蓄電ブロック(10−30)の少なくとも1つ(30)を解列する必要が発生したとき、前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値を所定の電力値または電流値に低下させた後、前記少なくとも1つの蓄電ブロック(30)に接続された少なくとも1つのスイッチ(S3)をターンオフさせる管理部(50m)と、を備えることを特徴とする蓄電システム(1)。
これによれば、スイッチ(S3)にかかるストレスを軽減し、スイッチ(S3)の寿命を延ばすことができる。
[項目7]
並列接続された複数の蓄電ブロック(10−30)と、前記複数の蓄電ブロック(10−30)から放電される直流電力を交流電力に変換して電力系統(2)または負荷(3)に出力し、前記電力系統(2)から入力される交流電力を直流電力に変換して前記複数の蓄電ブロック(10−30)に充電する電力変換部(60)と、前記複数の蓄電ブロック(10−30)と、前記電力変換部(60)との間にそれぞれ介在する複数のスイッチ(S1−S3)と、を備える蓄電システム(1)に接続される管理装置(50m)であって、
前記管理装置(50m)は、
前記複数の蓄電ブロック(10−30)の各単体のSOP(State Of Power)に基づいて前記複数の蓄電ブロック(10−30)全体のSOPを算出し、算出した全体のSOPを前記電力変換部(60)の充電および放電の少なくとも一方の電力または電流の上限値に設定し、
前記複数のスイッチ(S1−S3)の少なくとも1つ(S3)がターンオフして前記複数の蓄電ブロック(10−30)の少なくとも1つ(30)を解列するとき、残りの蓄電ブロック(10、20)全体のSOPを前記残りの蓄電ブロック(10、20)の各単体の電流バラツキに基づいて算出し、前記電力変換部(60)に流す電力または電流の上限値を設定することを特徴とする管理装置(50m)。
これによれば、並列接続された複数の蓄電ブロック(10−30)の少なくとも1つ(30)が解列しても、安定的に運転を継続することができる。
【符号の説明】
【0063】
1 蓄電システム、 11,12,1n 蓄電モジュール、 S1 第1スイッチ、 2 電力系統、 S2 第2スイッチ、 3 負荷、 S3 第3スイッチ、 10 第1蓄電ラック、 20 第2蓄電ラック、 30 第3蓄電ラック、 50a 第1ラック管理部、 50b 第2ラック管理部、 50c 第3ラック管理部、 50m マスタ管理装置、 60 電力変換装置、 70 電力線、 80 ラック間通信線、 90 ラック内通信線。
図1
図2
図3
図4
図5
【国際調査報告】